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The treatment of some infectious diseases can currently be very challenging since the spread of multi-,
extended- or pan-resistant bacteria has considerably increased over time. On the other hand, the number
of new antibiotics approved by the FDA has decreased drastically over the last 30 years. The main
objective of this study was to investigate the activity of wasp peptides, specifically mastoparan and some
of its derivatives against extended-resistant Acinetobacter baumannii. We optimized the stability of
mastoparan in human serum since the specie obtained after the action of the enzymes present in human
serum is not active. Thus, 10 derivatives of mastoparan were synthetized. Mastoparan analogues (gua-
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Pei;tide nidilated at the N-terminal, enantiomeric version and mastoparan with an extra positive charge at the C-
Antimicrobial peptide terminal) showed the same activity against Acinetobacter baumannii as the original peptide (2.7 uM) and
Mastoparan maintained their stability to more than 24 h in the presence of human serum compared to the original

Acinetobacter baumannii compound. The mechanism of action of all the peptides was carried out using a leakage assay. It was
shown that mastoparan and the abovementioned analogues were those that released more carboxy-
fluorescein. In addition, the effect of mastoparan and its enantiomer against A. baumannii was studied
using transmission electron microscopy (TEM). These results suggested that several analogues of mas-
toparan could be good candidates in the battle against highly resistant A. baumannii infections since they
showed good activity and high stability.

© 2015 The Authors. Published by Elsevier Masson SAS. This is an open access article under the CC BY

license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction diabetes mellitus [1]. It is therefore important to solve this issue,

although the perspectives for the future are not very optimistic.

Infections caused by multidrug resistant bacteria are currently
an important problem worldwide. Taking into account data
recently published by the WHO, lower respiratory infections are the
third cause of death in the world with around 3.2 million deaths per
year, this number being higher compared to that related to AIDS or
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During the last 30 years an enormous increase has been observed of
superbugs isolated in the clinical setting, especially from the group
called ESKAPE (Enterococcus faecium, Staphylococcus aureus, Kleb-
siella pneumoniae, Acinetobacter baumannii, Pseudomonas aerugi-
nosa, Enterobacter spp.) which show high resistance to all the
antibacterial agents available [2]. We will focus on Acinetobacter
baumannii, the pathogen colloquially called “iraquibacter” for its
emergence in the Iraq war. It is a Gram-negative cocobacillus and
normally affects people with a compromised immune system, such
as patients in the intensive care unit (ICU) [3,4]. Together with
Escherichia coli and P. aeruginosa, A. baumannii are the most com-
mon cause of nosocomial infections among Gram-negative bacilli.

0223-5234/© 2015 The Authors. Published by Elsevier Masson SAS. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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The options to treat infections caused by this pathogen are
diminishing since pan-drug resistant strains (strains resistant to all
the antibacterial agents) have been isolated in several hospitals [5].
The last option to treat these infections is colistin, which has been
used in spite of its nephrotoxic effects [6]. The evolution of the
resistance of A. baumannii clinical isolates has been established by
comparing studies performed over different years, with the per-
centage of resistance to imipenem being 3% in 1993 increasing up
to 70% in 2007. The same effect was observed with quinolones, with
an increase from 30 to 97% over the same period of time [7]. In
Spain the same evolution has been observed with carbapenems; in
2001 the percentage of resistance was around 45%, rising to more
than 80% 10 years later [8]. Taking this scenario into account, there
is an urgent need for new options to fight against this pathogen.
One possible option is the use of antimicrobial peptides (AMPs)
[9—11], and especially peptides isolated from a natural source [12].
One of the main drawbacks of using peptides as antimicrobial
agents is the low stability or half-life in human serum due to the
action of peptidases and proteases present in the human body [13],
however there are several ways to increase their stability, such as
using fluorinated peptides [14,15]. One way to circumvent this ef-
fect is to study the susceptible points of the peptide and try to
enhance the stability by protecting the most protease labile amide
bonds, while at the same time maintaining the activity of the
original compound. Another point regarding the use of antimicro-
bial peptides is the mechanism of action. There are several mech-
anisms of action for the antimicrobial peptides, although the global
positive charge of most of the peptides leads to a mechanism of
action involving the membrane of the bacteria [16]. AMPs has the
ability to defeat bacteria creating pores into the membrane [17],
also acting as detergents [18], or by the carpet mechanism [19]. We
have previously reported the activity of different peptides against
colistin-susceptible and colistin-resistant A. baumannii clinical
isolates, showing that mastoparan, a wasp generated peptide (H-
INLKALAALAKKIL-NH,), has good in vitro activity against both
colistin-susceptible and colistin-resistant A. baumannii [20].
Therefore, the aim of this manuscript was to study the stability of
mastoparan and some of its analogues as well as elucidate the
mechanism of action of these peptides.
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2. Results and discussion

2.1. Mastoparan analogues, rational design and synthesis, activity
and stability

Taking into account that our objective was to improve the sta-
bility of mastoparan and design analogues that enhance this sta-
bility, a human and mice serum stability assay with the original
mastoparan was performed. Both results were exactly the same,
observing the similarity when using both serums. Surprisingly at
6 h the intact mass of mastoparan (12.5%) was observed by MALDI-
TOF. Lineal peptides are normally very attractive targets for pepti-
dases and proteases. The most abundant peak observed by MALDI-
TOF, apart from the original mass of our peptide, was the deletion of
the isoleucine present at the N-terminal, which generated a peptide
with a mass of 1366 Da (Fig. 1). It was not possible to calculate the
half-life of the peptide by HPLC due to its almost coelution between
the original peptide, mastoparan, and one of the resulting products
after the incubation with serum. Neither could the half-life be
calculated after using an isocratic gradient, especially in the pres-
ence of a low quantity of mastoparan.

The resulting peptide after the incubation with human serum
(peptide 2) (Table 1) was synthesized in order to test its activity
against several colistin-resistant A. baumannii strains. However, the
MIC values for this peptide increased to very high levels (MIC values
between 19.2 and 76.8 uM).

Taking into account, the information obtained in the stability
assay and the fact that the resulting peptide is not active, ten
peptides in addition to mastoparan (peptide 1) and the resulting
peptide after the action of proteases and peptidases (peptide 2),
were synthesized using solid-phase peptide synthesis (SPPS)
(Table 1). They were obtained with a purity higher than 95%.
Characterization of the peptides by HPLC is provided in the
supporting information (SI). In order to enhance the stability of the
peptide in human serum, several options were adopted. The first
option was to introduce p-amino acids, resistant to proteases and
peptidases, in the susceptible positions. Therefore the peptide with
a p-isoleucine (peptide 3), another with a p-asparagine (peptide 4),
and the peptide with both p-isoleucine and p-asparagine (peptide

13471
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Fig. 1. MALDI-TOF MS spectra of mastoparan 6 h after incubation with human serum. The major compound is Peptide 2 (H-NLKALAALAKKIL-NH,). (m/z) [M+H]* 1366, [M+Na]*
1388, [M+K]* 1404. The minor compound is mastoparan (H-INLKALAALAKKIL-NH,). (m/z) [M+H]" 1480, [M+Na]* 1502, [M+K]" 1518.
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Table 1

MIC and stability in human serum of different mastoparan analogs against colistin-resistant A. baumannii clinical isolates. p-amino acids are represented in lower case.

Antimicrobial peptide

Minimal inhibitory concentration (M) A. baumannii strains

Stability in human serum

CR17 CR86 Ab11 Ab113
1 Mastoparan 2.7 2.7 2.7 2.7 12.5 % (6 h)*
2 H-NLKALAALAKKIL-NH;, 19.2 384 76.8 76.8 93.47% (24 h)°
3 H-iNLKALAALAKKIL-NH, 21.6 21.6 433 433 70.04% (24 h)b
4 H-InLKALAALAKKIL-NH; 21.6 433 86.5 173 71.98% (24 h)°
5 H-inLKALAALAKKIIL-NH, 86.5 86.5 86.5 173 77.67% (24 h)°
6 H-LIKKALAALAKLNI-NH, 173 173 173 173 12% (2 h)?
7 H-likkalaalakIni-NH, 173 173 173 173 92.86% (24 h)°
8 H-inlkalaalakkil-NH, 2.7 2.7 2.7 2.7 95.33% (24 h)°
9 H-INLKALAALAKKIL-CH,CH;NH, 2.6 2.6 13 2.6 10.6% (6 h)*
10 H-LIKKALAALAKLNI-CH,CH,NH, 42 84.1 84.1 42 8.5% (2 h)?
11 Ac-INLKALAALAKKIL-NH, 10.5 21 42 42 74.34% (24 h)°
12 Gu-INLKALAALAKKIL-NH, 2.6 2.6 2.6 2.6 79.20% (24 h)°

@ Calculated using MALDI-TOF, taking into account same behaviour of both peptides.

b Calculated using HPLC by integrating peaks at time 0 h and 24 h. In bold Mastoparan activity and stability values

5) were synthesized.

Another common strategy followed when designing new
peptidic drugs is to synthesize the retro (peptide 6), enantio
(peptide 8) and retroenantio (peptide 7) versions of mastoparan.
These three peptides have been found to be less cytotoxic than
mastoparan [21]. The last strategy followed was to modify both the
C- and N-terminus of the original mastoparan, without perturbing
the original sequence of the peptide. Modifications at the C-ter-
minal were performed using a special resin (1,2-diamino-ethane
trityl), thereby obtaining an extra positive charge by the addition of
an ethylamine moiety to the amide at the C-terminal of mastoparan
(peptide 9) and retro-mastoparan sequences (peptide 10). The
modifications at the N-terminal were performed by acetylating the
free amine group (peptide 11), in which the action of the enzymes
present in the serum diminished by the generation of steric hin-
drance of the acetyl group; however the peptide lost the positive
charge present in the N-terminal. Another modification of the N-
terminal was made by adding a guanidinium group, which also
generates steric hindrance, in addition to maintaining the positive
charge at the N-terminal.

These peptides were tested against four extended-resistant A.
baumannii strains. The resistant profiles of these strains can be seen
in (SI), highlighting that all of these strains were highly resistant to
colistin. To test its increase in stability we also performed stability
assays.

In terms of activity, the only peptides that maintained activity
were peptides 8, 9 and 12 with the same MIC values for
A. baumannii as those for mastoparan (2.6—2.7 uM). On comparing
peptides 11 and 12 valuable information was obtained regarding
the importance of conserving the positive charge in the N-terminal
of these two peptides, with the MIC of the latter peptide increasing
8 and 16-fold, only with the removal of the positive charge. It is also
important to highlight that with the change of only one single
amino acid from the original sequence of mastoparan a high
decrease in the antimicrobial activity of the peptide can be
observed.

It was also of note that most of the peptides synthesized showed
high stability in human serum compared to mastoparan. The pep-
tides built with all p-amino acids (peptides 7 and 8), and peptide 2
showed very high stability with values of more than 90% after 24 h
of incubation with human serum. Other peptides such as peptides
3, 4, 5,11 and 12, also showed an increase in stability, reaching
values of between 70 and 80% after 24 h. These values were
calculated by integrating the peaks obtained in the HPLC spectra at
0 and 24 h. Other peptides synthesized that were built using L-
amino acids in the most susceptible position were unprotected.

Similar values compared to mastoparan were observed with pep-
tide 9 (10.6% at 6 h), with even lower values found for peptides 6
and 10 with 12 and 8.5% at 2 h, respectively.

With the synthesis of all these peptides we found that most had
high stability after 24 h in the presence of human serum, and some
had the same activity as mastoparan, thereby suggesting that they
may be useful in the treatment of infections caused by extended-
drug resistant A. baumannii strains. We have also find out that
the present of both an isoleucine and a positive charge in the N-
terminal is really important for the activity of the compound ac-
cording to the results obtained by the analogues synthesized. It is
also possible to observe, that by introducing just one p-amino acid
in the sequence a significant decrease in the activity of the peptides
is observed, however when all the peptides are in the same L- or D-
form the activity of these peptides is the same such us mastoparan
and the retro version compared to its enantiomers. This fact could
be affected by the loose of helicity when introducing a different
amino acid form, and therefore decrease its activity. Another
important feature to take into account before starting the in vivo
assays is cytotoxicity; therefore some MTT assays of the most active
compounds were performed using HeLa cells. Most of the active
peptides showed similar cytoxicity values (SI), furthermore some
hemolysis experiments were performed using mastoparan and the
enantiomer version, in which low hemolysis was observed at MIC
concentrations (SI). On review of the scientific literature, few
effective peptide compounds have been described against colistin-
resistant bacteria. Rodriguez-Herndndez and colleagues [22] re-
ported that the in vitro activity of cecropinA-melittin was similar
against A. baumannii as the best peptides described in our study.
However, optimization of the cecropinA-melittin was not per-
formed. They also tested the in vivo activity with this peptide and
only observed a local effect due to low in vivo stability [23].
Another peptide that has been described is api88 (Gu-ONNRP-
VYIPRPRPPHPRL-NH;) [24], which was found to be active against
the most common Gram-negative pathogens such as E. coli,
P. aeruginosa, K. pneumoniae or A. baumannii with MIC values
below 1.8 uM. It was optimized in terms of activity and afterwards
tested in vivo, showing good in vivo response against E. coli. Two
peptides isolated from frog-skin secretions ([E4K]alyteserin-1c
[GLKEIFKAGLGSLVKGIAAHVAS-NH,], [D4K]|B2RP [GIWK-
TIKSMGKVFAGKILQNL-NH>]) have been tested against both
colistin-susceptible and -resistant Acinetobacter species and
showed similar values for all the strains tested (1.7—7.1 pM).
Nonetheless, the cytoxicity and stability of these peptides were not
optimized, and therefore, their activity in vivo may actually be very
low [25].
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2.2. Mechanism of action of mastoparan analogues

2.2.1. Analysis of the leakage

Leakage assays were performed using two different membrane
mimetics, a negatively charged membrane mimicking bacterial
membranes, and a neutral membrane. Negatively charged mem-
branes are composed by phosphatidylethanolamine (PE), car-
diolipin (CL) and phosphatidylglycerol (PG) 63:14:23. Although this
is the composition of P. aeruginosa, its high similarity with
A. baumannii allows it to also be used [26]. The concentrations of
peptides used to test their ability to release carboxyfluorescein
from the liposome were 0.1, 0.25, 0.5, 1, 10 and 50 uM. Fig. 2(A) and
Table S4-A (SI) shows the percentage of release of each peptide at
the concentrations mentioned above. No release was observed at
concentrations below 1 puM. At 10 uM some differences were
observed between the peptides, and most of the active peptides
against highly-resistant strains of A. baumannii showed a higher
ability to release the fluorophore from the negative liposomes.
Peptide 8 reached 87% of release followed by mastoparan and
peptide 12, with 72 and 60%, respectively. These three peptides
were also the most active at low MIC values (2.6—2.7 uM). Despite
the different MIC values of peptides 9 and 11 (peptide 9,1.3—2.6 uM
and peptide 11, 10.5—42 puM) these peptides share the same per-
centage of release (53%). The next three peptides, peptides 2, 3 and
4, with high MIC values of greater than 19.2 pM, also had similar
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release values with 35, 33 and 37%, respectively. All these peptides
released the carboxifluorescein present inside liposome at 50 uM.

The last four peptides (5,6,7 and 10) were the least active in
terms of both in vitro activity against A. baumannii and carboxi-
fluorescein release. For peptide 6 the percentage of release at 10 uM
was 14%, rising to up to 51% at 50 uM. The last three peptides,
peptides 5, 7 and 10, had MICs greater than 42 pM and all showed
very low release values of 10% at 10 uM, At 50 uM the only peptide
to show a slight increase in release was peptide 5 which increased
up to 20% while these values remained at around 10% for the other
two peptides.

The values observed for the neutral liposomes (EPC/cholesterol,
5:1) used as bacteria models can be divided into four main groups
as it can observed in both Fig. 2(B) and Table S4-B (SI). The first
group was composed by the best compound, peptide 8, with a 65%
of carboxyfluorescein released at 50 uM. The second group was
composed by mastoparan and peptides 2, 3, 4, 9,11 and 12, with the
percentage of release ranging from 44% to 36% at 50 uM (Fig. 2B).
Peptides 6 and 7, belonged to the third group, having percentages of
release of 19 and 17%, respectively at 50 uM. The last group included
the peptides 10 and 5, which showed almost no activity at either
10 puM or 50 pM, with values of less than 10%. On analysing the
values obtained, it was found that the most active compounds
(lower MIC values) also had the highest percentage of carboxy-
fluorescein release. It was also of note that, the release vales
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Fig. 2. A) Percentage of carboxyfluorescein release of all the mastoparan analogues at different concentrations using negative liposomes. B) Percentage of carboxyfluorescein release
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obtained when incubating these peptides with negative liposomes
were higher compared to neutral liposomes due the cationic nature
of the peptides synthesized. The different interaction between
positively charged peptides and negative or neutral liposomes may
explain the different values observed. The leakage values of the
lactoferrin analogues using liposomes mimicking Gram-negative
membranes were similar to those presented in our study [27]. A
similar effect was observed with some peptides of the mastoparan
family. However, the authors did not compare the activity of the
peptides with the leakage, but rather they only correlated the
number of cationic charges with the leakage [28]. In contrast, the
results of our study showed different leakage despite the presence
of the same number of positive charges.

2.2.2. Transmission electron microscopy

The effect of mastoparan and peptide 8 on the cell morphology
of extended-resistant A. baumannii was also investigated by
transmission electron microscopy (TEM). Untreated cells of
A. baumannii grown in LB (Luria Broth) medium showed a normal
morphology with no structural damage to any of the membranes
when grown in the absence of the peptide (Fig. 3A). After 1 h of
incubation with mastoparan and peptide 8 (at the MIC for each
peptide), the bacteria showed considerable damage with fractures
in the membrane in the bacteria incubated with either mastoparan
or peptide 8 (Fig. 3B and C). Although with the information ob-
tained with the TEM studies we cannot confirm that the

Fig. 3. A) TEM of untreated colistin-resistant A. baumannii cells. B) TEM of colistin-
resistant A. baumannii cells incubated with mastoparan. C) TEM of colistin-resistant
A. baumannii cells incubated with mastoparan enantiomer.

mechanism of action of these peptides is due to a membrane
disruption, our results, together with the data obtained with the
leakage experiments, as well as previous reports on the mechanism
of action of the mastoparan peptide family suggest that membrane
disruption is the mechanism by which these peptides kill bacteria.
Using the peptides Gramicidin S/PGLa and NK-2, respectively,
Hartman et al. [29] and Hammer at al [30]. observed the formation
of membrane blebs, electron-dense surfaces or membrane ruffling
in E. coli, whereas the formation of holes was observed in our study
on incubating A. baumannii with mastoparan. These different ef-
fects of the AMPs demonstrate that the mechanism observed de-
pends on the type of pathogen, the peptide or the concentration
used.

3. Conclusion

In the present study we optimized an initial hit (mastoparan) in
an attempt to overcome one of the most important drawbacks of
drug peptides which is their low stability in human serum. We
therefore chose the option to protect the susceptible points of
proteolysis of the molecule. Other options may increase the sta-
bility such as polyethyleneglycol (PEG) [31], the use of lipids for
drug delivery of the peptides [32], the use of nanoparticules in
order to achieve a longer life time [33] or the use of dendrimers
[34]. The mastoparan family is a very promising group of potential
new drugs. In addition to antiviral activity [35] our results show
that mastoparan and some of its analogues may be potential anti-
bacterial agents to treat infections caused by multi-, extended- and
pan-drug resistant A. baumannii which have the ability to overcome
all the antibiotics administered. Their good in vitro activity against
this microorganism allows very high stability in human serum and
moderate toxicity in HeLa cells. However, further in vivo studies
involving the best candidates should be performed.

4. Materials and methods
4.1. Bacterial strains

The four A. baumannii strains used in this study were clinical
isolates from the Hospital Virgen del Rocio in Sevilla (Spain).

4.2. Susceptibility testing

The MICs of all the peptides for the A. baumannii strains were
determined with the microdilution method following the CLSI
guidelines [36]. The concentrations ranged from 1875 pM to
0.34 uM. The E-test (Biomerieux, Marcyl’Etoile, France) was used to
determine the susceptibility of the strains used in this study to a
group of antibacterial agents.

4.3. Materials

The synthesis of all the peptides except the two with a positive
charge in the C-terminal was made using Rink amide-Chemmatrix
resin purchased from PCAS BioMatrix (Quebec, Canada). The other
two peptides were synthesized using 1,2-diamino-ethane trityl
resin from Novabiochem (Merck) (Darmstadt, Germany). The
coupling reagents used were: 2-(1H-benzotriazol-1-yl)-1,1,3,3-
tetramethyluronium tetrafluoroborate (TBTU) from Albatros
Chem, Inc. (Montreal, Canada); Trifluoroacetic acid (TFA) was from
Scharlab S.L. (Barcelona, Spain). Piperidine, dimethylformamide
(DMF), dichloromethane (DCM) and acetonitrile (MeCN) were from
SDS (Peypin, France); N,N-diisopropylethylamine (DIEA) was ob-
tained from Merck (Darmstadt, Germany) and Tri-isopropylsilane
(TIS) was from Fluka (Buchs, Switzerland).
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4.4. Peptide synthesis

Peptides were synthesized by solid-phase peptide synthesis
(scale: 100 pmol) using the 9-fluorenylmethoxycarbonyl/tert-butyl
(Fmoc/'Bu) strategy. N*-Fmoc-protected amino acids (300 pmol)/
TBTU (300 umol), and DIEA (600 pumol) (3eq:3eq:6eq) were used.
The Fmoc protecting group was cleaved by treatment with a solu-
tion of 20% piperidine in DMF. For the acetylated peptides 50eq of
Ac;0 and 50eq of DIEA in DCM were used. For guanidination, 5 eq of
1,3-Di-Boc-(trifluoromethylsulfonyl) guanidine and 5 eq of triethyl
amine in DCM were used. Peptides were cleaved from both resins
using 95% TFA, 2.5% TIS, 2.5% water for 3 h. The peptides have been
cleaved using TFA and the HPLC solvents contain also TFA, this have
been removed after liophilization. The peptides are all in their tri-
fluoroacetate form as counter ion. The peptides were analysed at
A = 220 nm by analytical HPLC [Waters Alliance 2695 separation
module equipped with a 2998 photodiode array detector, Sunfire
Cig column (100 mm x 4.6 mm x 3.5 mm, 100 A, Waters), and
Empower software; flow rate = 1 mL/min. The peptides were then
purified by semi-preparative HPLC [Waters 2700 Sample Manager
equipped with a Waters 2487 dual A absorbance detector, a Waters
600 controller, a Waters fraction collection II, a Symmetry C;g col-
umn (100 mm x 30 mm, 5 mm, 100 A, Waters) and Millenium
chromatography manager software]. Flow rate = 15 mL/min; sol-
vents: A = 0.1% trifluoroacetic acid in water, and B = 0.05% tri-
fluoroacetic acid in acetonitrile. Peptides were characterized by
MALDI-TOF mass spectrometry (Voyager-DE RP MALDI-TOF, PE
Biosystems with a N2-laser of 337 nm) and a high resolution ESI-
MS model (LTQ-FT Ultra, Thermo Scientific).

4.5. Peptide human serum stability

The peptides were incubated at 37 °C in the presence of 100%
human serum (from human male AB plasma). At different times,
200 pL aliquots were extracted and serum proteins were precipi-
tated by the addition of 400 pL of acetonitrile at 4 °C to stop
degradation (2:4, v/v). After 30 min at 4 °C, the samples were
centrifuged at 10,000 rpm (9300 x g) for 10 min at 4 °C. The su-
pernatant was analysed by HPLC (flow = 1 mL/min;
gradient = 0—100% B in 8 min; A = 0.045% trifluoroacetic acid in
H,0, B = 0.036% trifluoroacetic acid in acetonitrile). The fractions
were also analysed by MALDI-TOF mass spectrometry (Voyager-DE
RP MALDI-TOF, PE Biosystems with a N2-laser of 337 nm).

4.6. Leakage assay

Aliquots containing the appropriate amount of lipid in chloro-
form/methanol (1:1, v/v) were placed in a test tube, the solvents
were removed by evaporation under a stream of O,-free nitrogen,
and finally traces of solvents were eliminated under vacuum in the
dark for more than 3 h. Afterwards, 1 mL of buffer containing
10 mM HEPES, 100 mM NaCl, 0.1 mM EDTA, pH 7.4 buffer and
carboxyfluorescein at a concentration of 40 mM was added, and
multilamellar vesicles were obtained. Large unilamellar vesicles
(LUVs) with a mean diameter of 200 nm were prepared from the
multilamellar vesicles by the LiposoFast device from Avestin, Inc.,
using polycarbonate filters with a pore size of 0.2 pm (Nuclepore
Corp). Breakdown of the vesicle membrane led to content leakage,
i.e., carboxyfluorescein fluorescence. Non-encapsulated carboxy-
fluorescein was separated from the vesicle suspension through a
Sephadex G-25 filtration column eluted with buffer containing
10 mM HEPES, 150 mM Na(l, and 0.1 mM EDTA, pH 7.4. Leakage of
intraliposomal carboxyfluorescein was assayed by treating the
probe-loaded liposomes (final lipid concentration, 0.125 mM) with
the corresponding amount of peptide in Costar 3797 round-bottom

96-well plates, with each well containing a final volume of 100 pl.
The micro titre plate was incubated at RT for 1 h to induce dye
leakage. Leakage was measured at various peptide concentrations.
Changes in fluorescence intensity were recorded using the FL600
fluorescence microplate reader with excitation and emission
wavelengths set at 492 and 517 nm, respectively. Total release was
achieved by adding Triton X-100 to a final concentration of 1% v/v to
the microtitre plates. Fluorescence measurements were initially
made with probe loaded liposomes, followed by the addition of the
peptide and, finally the addition of Triton X-100 to obtain 100%
leakage. The results were expressed as percentage of carboxy-
fluorescein released relative to the positive control (Triton X-100).

4.7. Cytotoxicity (MTT) assay

HeLa cells were used for these experiments. Their doubling
time and the lineal absorbance at 570 nm were taken into an ac-
count for seeding purposes. Cell viability in the presence of pep-
tides was tested using a 3-(4,5-dimethylthiazol-2-yl)-2,5-
diphenyltetrazolium bromide (MTT) assay. For each assay,
5 x 10% Hela cells were seeded on a 96-well plate (NalgeNunc)
and cultured for 24 h. Samples were added at concentrations
ranging from 0.1 pM to 500 uM depending on the peptide. Cells
were incubated for 24 h at 37 °C under a 5% CO, atmosphere. After
20 h, medium with compounds was removed, and MTT was added
to a final concentration of 0.5 mg/mL. MTT was incubated for a
further 4 h, and the medium was then discarded. DMSO was added
to dissolve the formazan product, and absorbance was measured
at 570 nm after 15 min. Cell viability percentages were calculated
by dividing the absorbance value of cells treated with a given
compound by the absorbance of untreated cells.

4.8. Transmission electron microscopy (TEM)

Bacteria were grown in LB media and in mid-log exponential
were incubated with MIC (2.7 uM) concentrations with mastoparan
and mastoparan enantiomer for 1 h at 37 °C. A control without
peptide was also performed. After the incubation, centrifugation at
3500 rpm 4 °C was done. The pellets were then fixed for 1 h with 2%
of gluteraldehyde, washed three times with water and then fixed
again with 1% of 0sO4. The post-fixation positive stain was carried
out with 3% of uranyl acetate acqueous solution during 1.5 h, after
which graded ethanol series (30, 50, 70, 90 and 100%) were carried
out every 15 min for dehydration purposes. The samples were
embedded in an epoxy resin. A Tecnai Spiritmicroscope (EM) (FEI,
Eindhoven, The Netherlands) equipped with a LaB6cathode was
used. Images were acquired at 120 kV and room temperature with a
1376 x 1024 pixel CCD camera (FEL,Eindhoven, The Netherlands).
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