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Learning Functional Object-Categories from a Relational

Spatio-Temporal

Muralikrishna Sridhar and Antho

Abstract. We propose a framework that learns functional object-
categories from spatio-temporal data sets such as thosactbd
from video. The data is represented as one activity grafletitodes
gualitative spatio-temporal patterns of interaction lestw objects.
Event classes are induced by statistical generalizati@ninistances
of which encode similar patterns of spatio-temporal reteghips be-
tween objects. Equivalence classes of objects are dised\wer the
basis of their similar role in multiple event instantiatio®bjects are
represented in a multidimensional space that capturesrtieiin all
the events. Unsupervised learning in this space resulignictibnal
object-categories. Experiments in the domain of food majm
suggest that our techniques represent a significant stepsimper-
vised learning of functional object categories from sp&timporal
patterns of object interaction.

1

Children learn about the world around them by observing ard p
ticipating in activities that engage them in the course argwday
life. One aspect of learning activity models involves aciqgi no-
tions of what objects mean to them based on the function thiey f
fill in activities. Functional categories and taxonomie®bjects are
naturally acquired by humans during the process of obsguiject
behaviour and using them accordingly. An important stefatowun-
supervised learning of activity models is to learn an analsgnodel
of functional object categories purely by observing theindviour.

In this work, we represent the behaviour of objects involired
an activity, in terms of aractivity graph which captures qualita-
tive spatio-temporal patterns of interaction betweenedludgects. We
search for frequent similar subgraph instances and géreithlese
by variablizing. These are our event classes, the instamiceach
event class encoding a similar pattern of spatio-tempaiation-
ships between their respective object instances.

Then we learn object categories by clustering in an objeatep
where the similarity measure between objects is measuasedon
whether they play a similar role across the event instammesdch
of the event classes; e.g., a set of objects, even thougtretiff in
appearance, may tend to play a similar role in events suclasising,
cutting and cooking as opposed to others that do not play sucle
in these events. By observing multiple instances of suchtelasses
that have the samevent role for this set of objects, it is natural to
form a category that correspond to what we refer to as velgstab
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In section 3 we show how functional object categories can be
learned from event classes. The rest of the paper describegeh
procedure for inducing event classes from video input.

2 Related Work

Much previous work has focused on supervised learning afabbj
classes either based on the appearance of the object itjedt by
recognizing contextual cues such as activities associgitadbjects
[8] to locate and recognize objects. By contrast, unsupedvliearn-
ing of objects can be divided into two stages, the first beibiga
discovery e.g. discovery of blobs that are candidates figotdfrom
video. The second stage is object class learning which vegohu-
tomatically categorizing these blobs into object clas&asly work
on object discovery [6] formed candidate objects by grogmixels
with similar temporal signatures that are constructed twpnading
colour (RGB) values for stable intervals when objects atristay
and depart from a region. In [7], candidate objects are nbthby
first over segmenting images in a video and after extractimage
features for these segments, rigidly moving features arepgd into
potential objects.

Both object discovery and class learning is performed ganet
ously from a collection of static images [5] in two steps.sFimul-
tiple segmentations for each image are produced, by vathimga-
rameters of the normalized cut technique with the assumgtiat
each object instance is correctly segmented at least byegraen-
tation. Then object classes which are groups of correctiynemited
objects that are coherent in a large set of candidate segemet
learned. Another approach [1] obtains a hierarchy of objxdses
for static scenes by grouping image features which spatialoccur
across images for the same scene, under the same leaf oéthe hi
chy. In this manner, the technique learns to identify camgidbjects
such as keyboards, while also learning higher level objedses
such as a desk area (consisting of a computer, desk etc).

In this work we perform object discovery by first over segment
ing the video in terms of colour patches and then grouping spa
tially cohesive and continuous coloured blobs to discoveaadi-
date set of objects. We perform object class learning bytenling
on a object space, where the similarity between objectsssdan
similar spatio-temporal behaviour (specifically obje¢enactions) in
scenes.

Recent work on event learning [3, 4] aims at learning activ-

Through our experiments we demonstrate that using our famejty/event classes given a sequence of primitive events reviiee

work it is possible to learn semantically meanindfuictional object
categories and a taxononpurely by observing object behaviour.
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primitive events are defined and recognized a priori. In [2ka
lational representation language is introduced for definémporal
events, and algorithms for learning these definitions frage out-
put are described. In this work, we introduce a generic dafmfor
events, in terms of graphs, that captures changing spatipdral



{F(X1,X2,p1), F(X1, X2,p2)} obtained by substituting foXs
0 FX, X X, ) with py, p2 respectively . As the substituted constafits, b, bs}

23 and {p1,p2}, play the same roles (as the variabl& and X3
respectively) for the event clasg, we say thatF has induced
event rolesfor instances of the variable¥, and X3 resulting in
equivalence class€$1, b2, b3} and{p1, p2} respectively.

We now show that, by applying the same procedure at one level
below (level 1) of the lattice, we obtain a more specific event
role for the specific event obbjects placed on a certain plate
(p1). The procedure applied at level 1 results in a set of nodes
{F(X1,b1,p1), F(X1,b2,p1)} at level 2 (as shaded in fig. 1), ob-
tained by substituting foX, in F'(X1, X2, p1) with b1, b2 respec-
tively. We say that the more specific event cl&gsX:, X2, p1) has
induced a morspecific event roléor the variableX, resulting in an
equivalence class of objec{#1, b2}, i.e. objects being put on plate
3 F(h1b1 ’p1) F(h1b2 ,p1) F(h1b3 ypzl) p1- By progressiv_ely traversing down the lattice using th'm:p!d_ure,

| it becomes possible to create event roles and correspoedinga-
! lence classe€' ...Cy,, from general to specific.

Event Instances of F Applying this idea, we produce a matrix object by equivalence
Figure 1. Lattice for general to specific object learning classesO in which O; ; equals 1 if the object occurs in the equiv-
alence clasg”; and O otherwise. As each equivalence class corre-
sponds to an event role, the row vectors of this matrix suriz@ar
each object in terms of the role it plays in all the eventsaad thus
induce a multidimensionadbject spaceln this space, objects that
have a similar role with respect to similar sets of eventseapected
have a high similarity measure. We therefore perférmeans clus-
tering using a cluster partition index to determikeHierarchical
clustering on these categories then yields an object targno

Assume the existence of a setefent classe#' (X ), whereX is a In the next section, we show how event classes can be learned
sequence of object variables in some canonical orderingyeem  from video input and in section 6 the results of applying objeot
which some set of spatio-temporal relationships hold andchvh l€arning procedure are discussed.

when instantiated, yields a set of event instances. Thet el@sses

Fi(X) = Fi(X1, .., Xigy ooy Xm) N general have multiple event in- 4 Activity Graphs from Video

stances in the corpus so that all these instances encodartteeset

(or more generally a similar set) of spatio-temporal relahips be-  Object discovery is performed by first over segmenting thieoiin

tween their objects. This induces a natural mapping betwbgtts  terms of colour patches and then grouping thesesptially contin-

corresponding to each object variab¥g for the event instances of uous and cohesivielobs that are a mix of noisy patches along with

an event class. Given a corpus of such instances, we show asi  potential objects. These blobs are given IDs and their jposiénd

example, how to induce functional object categories fordbeof  extent are recorded from the video.

objects present in these instances. The event classeslmiland- The spatio-temporal patterns in the entire video are repted

crafted manually through knowledge engineering techriigog as  using aractivity graph The spatial relationships between the bound-

we describe in later sections, could be induced from a videarb  ing boxes of each pair of objects for every frame are mapped to

event learning procedure. a set of spatial primitive&® = {D,S,T}. Two objects are either
Let F(X1, X2, X3) be an example event class that representsspatially Disconnecte) or connected through the Surroun@s6r

events such asX, being lifted away from ofX3 by X;”. The Touches() relationship€. illustrated in fig. 2(b).

example in fig 2(c), is one suchvent instance(F'(hi,b1,p1)) For each pair of objects, these spatial relationships hotihd a

of the event clasg” with object instances;, by, p1 having IDs  time interval. In general, I{o1, 02...0, } is the set of all the objects

3,4 and 6 respectively. Let us suppose that two other instance®bserved in the video, for each pais, 0;, a particular spatial rela-

F(ha,b2,p3), F(h1,bs,p2) of the same clasg had been observed tionshipr € R holds for each fram¢, i.e. holds(r(o;, 05), f). We

relationships between discovered objects. We show howréipise-
sentation enables event mining and object learning.

3 Object Learning

in the scene. are interested in maximal one-piece time intervals duritctvr
A lattice as shown in fig. 1 is grown from event instances at theholds betweem; ando;, which we refer to agpisodes

bottom level (3), by generalizing exactly one argument pmsito We represent such episodes by a quadruple= (o;, 05,7, 1),

a variable at each successive level. We then search foratgnoe ~ where [{r : Holds(r(0s,05), f) € 7}| = 1 and 7 is a con-

!

classes of objects from general to specific by traversingndihis ~ secutive sequence of frames such that’ (r C = —
lattice, using the following procedure. For every node afrelevel  |{r : Holds(r(os, 05), f) € 7'}| > 1. We thus obtain the set of all
1 in the lattice, the procedure involves searching for setsooles at ~ episodesA = {E1, Es...E., } for all pairs of objects. Episodes la-
level I + 1, where each set is formed by substituting more than onebelled E1 — E»o in fig 2(a) correspond to this set, for the activity
object instance for the same variabig, for that node at level. considered in this example.

Applying this procedure at level 0 of the Iattice, 5 — P s e  of apaiationsl
. is approach clearly could be applicable to any set of apagiations¥’.
we get two such sets at level 1 (shaded with two Our simplified approach to video analysis is 2D, thus usiiggbt of spa-
colours) D AF(X1, b1, X3), F(X1, b2, X3), F(X1,b3, X3)} tial relations means, e.g. an objegt placed on an object; is represented
obtained by substituting for X, with b;,02,b5 and asS(o1,02) —these 3 relations have sufficed for our experiments.
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Having obtained all the episodes, we obtain a complete grapRiassed Fig. 2(d) shows a subgraph of the level-0 activity graph for
— which we call anactivity graph— whose vertices represent the episodests — E;» - depicted in fig. 2(c). Therefore, prior to search-

episodes and whose edges relate the time intervals condisigoto
their respective episodes using Allen’s temporal prire&i®. We
call the complete graph encoding all temporal relatiorsbigiween
intervalsE; — Eoo alevel-0 activity grapHor the activity in fig. 2(a).
More formally, we have the activity graptV, E,n, p, A, ),
where the functiom : V. — A maps the vertice¥ = {v;} to

ing for event classes we use an attention mechanism tosteuahd
simplify the level-0 activity graph to produce a level-liaity graph.
This is achieved by using a foreground attention mechaniden (
scribed below) to cluster episodes and forming a new grapbtsre
over these clusters. Each cluster represents an atomit avemwe
call the clusters of episodes and their Allen relationshgpsnary

episodes im\ andp : E — & maps the directed edges between all event graph(unary EG). The graph whose nodes are unary event

pairs of verticesF : e;; = (v;, v;) to temporal relationships ig.

graphs and whose edges are Allen’s temporal relationsleiveeen

We require that is a bijective mapping from vertices to the set of these nodes is tHevel-1 activity graph
episodes in the activity graph.

The complete activity graph is too large to display here atypa
ical activity graph is too complex to be able to search to finehe

3 If we considern = 10 objects andc as the average number of episodes
in video which is usuallyl0? even for scenes that last for a minute, the

activity graph results in a search spacei2n?) .i.e O(10%).



Foreground Attention Mechanism: We hypothesize that many ac- 5 Event Learning

tivities can be conceived in terms of different foregroumdres each » . o

of which involve interactions only between a subset of oisjefore- 1 he activity graph consists of many individual events; éhean be
ground objectsat different time periods. This idea can be intuitively Similar in that they have similar spatio-temporal relatibips be-
explained using fig. 2(a), where the entire activity showmloa.con- tween their constituent objects. In orQe_r to_formallze theai of an
ceived in terms of threforeground events(1) theleft handscooping ~ €Vent chs:that captures t.hese regularities, |r!dependent of thelactua
somebutterwith aknife (2) theright handremoving thebreadfrom objects involved, we first introduce a generalized versicemainary

the plate (3) theleft handspreadingbutteron thebreadwith aknife, ~ €vent graphWe then show how.-ary event classes can be formed,
while theright handholds thebread consisting of .|nd|V|duaI unary event classgs. .

As long as{left handknife, butter} and {right hand plate , To generalize events &vent glassesrye first con5|deraur)ary EG
bread }, are disconnected, we have two sets of foreground objecté = (Vs £, p, Ap,3) for a time periodP. Instead of object in-
{1,2,5}, {3,4, 6}, between frames 26 and 49. When the knife andStances; < Qand intervals- € A, consider sets of object an inter-
the bread start to interact, the foreground set changesetsghof ~ Val variablesX = (Xo, Xr) so thatO; € Xo andT € Xr". We
IDs {1,2, 3,4}, in which the butter and plate with IDs 5 and 6 are ¢&n now generalize the set of episodes Ap to Ex € Ax where
not included (frames 54-75). Three periods and their cpoeding ~ 2x isasetsuchthaty € Ax ifandonly if Ex = (01,02, T, 7)
set of episode$ By — Ey}, {Es — Era}, {F1s — Eao} (as shown in whereOl € XO.’ 02 € Xo,T € Xr,r € N. We use the gener-
the parallel lines below the frames), for the three foregtbavents ~ alised set of episodes to formalise event classes by firstidgfa
are thus obtained. The next two paragraphs describe howniergl ~ Unary event class grapunary ECG) which captures a common pat-
foreground events are detected and may be ommited on a ficst re tern of spatio-temporal relationships amongst a set oflaiminary
ing. EG (instances), in a generic form.

We look for spatial changes between a pair of objects. Fdneac =
such pair ofprimary foreground objects: , o, at some framef, we ~ Definition Leto = (V, E,n, p, AP;%) ,be/a unary EG of the trans-
find the set of all movingobjects which are connected (iB.or  formed activity graph, then = (V', E', 7, p’, Ax, 3) is aunary
S) t0 01 Or 0s, or which are connected te; or o, indirectly via ~ €Vent class graph (unary EC®J ¢, or we say that, 6-generalizes
anothermoving object which is connected toy or o; (directly or ¢ if 30 = 6o - 67 wherefo : Xo — Q andfr : Xr — A, such
indirectly). The set? is propagated forwards to some fragigand ~ thaty is isomorphic taj under the substitutiod, i.e.
backwards to some framg from f until such time that one of the L, , ,
objects inQ2 — {01, 02} (thesecondary foreground objegtshanges 1 {77, (”,)9 v ev }/ :,{77(”) v eV} L
its spatial relation to some other object{into D, (unlesso; ando» 2. {p'(e3;) : eij = (vi,v) € E'} = {p(ei;) : es; = (vif,vj0) €
are connected at that time). The entire time fréimo f- is termed a E}.
period during which aforeground eveninvolving o1 ando2 occurs,
involving all the foreground objecta.

The intuition behind this definition is that a spatial chafgmises
attention on a pair of objects (at least one of which must bg-mo
ing, since a change has occurred), and all the objects whécimé-
mately connected to the two objects, and groups all thednotiems
involving the primary objects together until such time as ofi the
secondary objects becomes fully disconnected from thepgubab-
jects (which then terminates this particular set of foregbobjects). . -
Note that it is possible, depending on the choice of primdiigats ~ ECGL Whose vertices are the sgfs, ..., .. } 6-generalizes an-ary
o1 andos for there to be multiple temporally overlapping foreground EG ® With vertices{¢1, ..., .}, if each~; ¢-generalizes a corre-
events involving shared objects (though this has not oedumr the ~ SPonding; and the temporal relationship between any, ¢;) € ©
videos we have analysed so far). is the same as for the cor.relspond(n,g., v;) € v. An-ary ECG rep-

For each foreground event, we create a unary event graphy(una€Sents a-ary event class it generalises at least n-ary EGs. We
EG) restricted to the foreground objects of the foregrourgheand model\ as an exponential decrea}smg functiomoh order to allow
just during the temporal extent of the foreground eventhEawary ~ [Of largern-ary ECGs td)-generalise fewen-ary EGs.

EG endures for a periof? and can be represented by the unary EG. Using these definitions, we flnallly formalleqent classeas max-

(V, E,n, p, Ap, ) between the episodes for the time perfédThe imal event class graphs. We defln.e a maxnmal event class graph
three unary EGs for the activity in fig. 2(a) are shown as thiero (MECG) as a event class graph which generalises some setsf EG
in the level-1 activity graph in fig. 2(e). Unary EGs (whiceaingle such that no other EQG which contains |§ generalizes thlslsgt
nodes of the level-1 activity graph) typically capture siepvents ~ €Very MECG generalises a set of EGs which are not generaiised
such as removing a slice of bread from a plate. some larger ECG. 'The procedure for computlng M.EC.G.s myolves

In the next section we show how to generalize unary events t§WO Stages. In the first stage, unary ECGs with a statisfisagnifi-
unary eventlasses, and then how to formary event classes, which c@ntnumber of EG instantiations are found. In the secorgestaese
are compound event classes composed of unary event classes. unary ECGs are iteratively used to build larger and largeGE @Qvith

stances ofi-ary event classes areary events which are composed statistically significant number of instantiations), batifinal set of
of n unary EGs of the level-1 activity graph and which representMECGS are obtained. In this manner we discover event clesses

complex events such as the entire activity depicted in fig,c3( MECGs from the level-1 activity graph. _
Having found all the MECGs, we give them names

Fi(X)..Fx(X), where X is a sequence of variables in the

We require that a unary ECG generalises at Ieastary EGs, i.e.
instances must occur frequently.

We now extend the the idea of a unary event class graph to an
n-ary event class grapm{ary ECG) composed of unary ECGs. A
n-ary ECG is just a graph made up of unary ECGs.v,»,n > 2 as
its vertices and whose edges relate the time perigdsnd P; cor-
responding toy; and~; by Allen’s temporal primitivesy. A n-ary

4 Note that we use capitalized/bold letters for variables smdll letters for
instances.
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MECGs, in some canonical ordering of nodes in each MECGmining events from this graph and then learning object fonei
In section 3, where we were purely concerned with inducing ancategories from these events have been proposed in this ®ork

object taxonomy from the event definitions we ignored theriml
structure of an MECG and used just theBg X ), which can be
defined as predicates from each of the MECGs.

6 Experiments

We demonstrate our framework using a video taken with a ttas{p
tic) kitchen set up. We have chosen a constrained environfoen
the moment, in order to minimize the complexities arisingireal
kitchen as a result of cluttered backgrounds, flickeringtig shiny
surfaces, multiple shadows etc. We have further simplifiedatrob-
lem by focusing only on the hand (not the entire person) aleitigy
the other objects in the kitchen scene and taking care indiens of
the cook to not create complications arising, for instarficen full
occlusion of objects involved. However, despite such sificptions,
a large number of noisy patches are produced from the ohipsrind
ery module, making the learning problem challenging. Thiewiis
taken with a static overhead camera that focuses on the.sthae
scene consists of hands simulating the preparation of dahdsy
hot drinks, cutting vegetables and cooking vegetable dislsting
around 10 minutes. The video consists of exactly one instéoic
each of these preparations.

After applying event and object learning, we obtain the obie-
erarchy in fig. 3. While our procedure outputs a hierarchylpéct
IDs, we replace these labels with the corresponding obfeats the
video, in order to visualize the results. It can be obserkiatthe pro-
posed framework has been able to differentiate betweerdbraat-
egories such as food items and containers and interessegigrate
noisy patches from all other objects. Finer levels of grarity are
captured in the grouping which separates a slice of whitacdbfim
another group consisting of vegetables. A distinction leemplates
pans and spoons is also clear from the hierarchy. It canftirerbe
concluded that the learned categories and taxonomy idiirgwnd
corresponds to a functional classification of objects.

7 Summary and Future Work

A framework for learning object and event categories fromiewi
has been introduced. This framework offers a general wagier
senting activities in terms of spatio-temporal graphs hiégues for

experiments show that our framework offers a promising aggin
toward learning functional categories.

In the future, we plan to extend this framework in severagciir
tions. At present, event generalisation requires exaghgisomor-
phism. We plan to extend event classes to generalize a laegaf
event instances by experimenting with similarity metriesAeen our
event graphs. This will allow our approach to exploit a geestriety
of video input to learn event and object taxonomies , and pe d®t-
ter with noise (which might also intervene during an evestance).
In contrast to almost all work in object recognition whiclbased on
learning categories based on perceptual features, we acided the
little researched problem of learning categories from fiamc How-
ever, there is clearly scope to use the learned functiotegoses to
supervise visual appearance based object learning.
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