
MULTI-LAYER QUALITY-AWARE (MULQA) CLOUD
FRAMEWORK

by

Arash MORATTAB

THESIS PRESENTED TO ÉCOLE DE TECHNOLOGIE SUPÉRIEURE

IN PARTIAL FULFILLMENT FOR A MASTER’S DEGREE

WITH THESIS IN SOFTWARE ENGINEERING

M.A.Sc.

MONTREAL, "JUNE 9, 2017"

ÉCOLE DE TECHNOLOGIE SUPÉRIEURE
UNIVERSITÉ DU QUÉBEC

c© Copyright 2017 reserved by Arash Morattab

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Espace ÉTS

https://core.ac.uk/display/95551686?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

c© Copyright reserved

It is forbidden to reproduce, save or share the content of this document either in whole or in parts. The reader

who wishes to print or save this document on any media must first get the permission of the author.

BOARD OF EXAMINERS

THIS THESIS HAS BEEN EVALUATED

BY THE FOLLOWING BOARD OF EXAMINERS

Mr. Mohamed Cheriet, Memorandum Supervisor

Department of Automated Manufacturing Engineering at École de technologie supérieure

Mr. Chamseddine Talhi, President of the Board of Examiners

Department of Software and IT Engineering at École de technologie supérieure

Mr. Abdelouahed Gherbi, Member of the Jury

Department of Software and IT Engineering at École de technologie supérieure

THIS THESIS WAS PRESENTED AND DEFENDED

IN THE PRESENCE OF A BOARD OF EXAMINERS AND THE PUBLIC

ON "MAY 17 2017"

AT ÉCOLE DE TECHNOLOGIE SUPÉRIEURE

ACKNOWLEDGEMENTS

Foremost, I would like to express my sincere gratitude to my advisor Prof. Mohamed Cheriet

for the continuous support of my Master study and related research, for his patience, motiva-

tion, and immense guidance. He was always available and helped me all the time in this two

year journey.

Besides my advisor, I would like to thank Prof. Kim Khoa Nguyen, our team lead in Synchro-

media lab for giving me insights and guidance during my research and reviewing this docu-

ment. Also I want to thank my friend, Dr. Shahin Vakilinia for sharing his valuable knowledge

and helping me significantly to improve this research technically.

Next, I would like to thank the rest of my thesis committee: Prof. Chamseddine Talhi and Prof.

Abdelouahed Gherbi, for their insightful comments and encouragement, helping me improve

my research from various perspectives.

Last but not the least, I would like to thank my first teachers in life, my parents for supporting

me since childhood and allowing me to realize my own potential.

MULQA: UN CADRE DE NUAGE DE QUALITÉ À PLUSIEURS COUCHES

Arash MORATTAB

RÉSUMÉ

Pendant les dernières années, des solutions infonuagiques dans le domaine TI ont augmenté

significativement à cause du changement de l’industrie IoT, des réseaux à haute vitesse et no-

tamment les avantages émergents d’informatique en nuage. Cependant, ceci présente plusieurs

défis techniques comme l’optimisation de l’infrastructure pour des applications hétérogènes

particulièrement celles qui sont sensibles à la qualité, et de fournir simultanément des attributs

de qualité différents. Dans cette recherche, nous proposons MULQA, une plateforme logi-

cielle autonome qui contrôle et estime les métriques de qualité dans les couches physique,

d’infrastructure, de la plate-forme et logiciels d’un système de logiciel libre nuagique et as-

sure la qualité de la métrique ciblée en déclenchant des actions appropriées. MULQA est une

nouvelle approche fournissant différents niveaux de qualité dans toutes les couches du nuage.

Dans ce mémoire, nous décrivons la conception de MULQA où le module d’analyse, prédit la

violation de la métrique de qualité et ces prédictions seront utilisées pour créer des événements

pour l’automate fini de la plate-forme de planification. Ce mécanisme de contrôle consiste en

des états Normal, Alarme et Transition. L’état Alarme est utilisé pour préparer le nuage pour

l’état Transition, tandis que l’état Transition empêche les violations et ramène le système à

l’état Normal. Étant une plateforme modulaire MULQA fournit des fonctionnalités génériques

et les modules qui peuvent être personnalisés par des programmes d’utilisateur, qui peut être

utilisé pour tester des algorithmes proposés pour les modules Moniteur, Analyser, Planificateur

et Exécuteur. MULQA est conçu pour surmonter les défis dans la mise en oeuvre d’un système

de couplage mou qui peut être facilement distribué et personnalisé par une API. En outre,

la plateforme est compatible avec l’architecture Openstack et peut surveiller et contrôler les

composants que ce intergiciel de nuage n’a pas d’accès.

Le cas d’étude présenté dans ce mémoire est une application Web à trois niveaux qui est dé-

ployée avec Openstack. Les résultats expérimentaux des tests qui se concentrent sur la per-

formance QA (Quality Attribute) montrent que MULQA peut augmenter le taux de réussite de

requêtes de 32%, 69% et 94% pour le nombre de requêtes concurrentielles de 200, 500 et 1000.

De plus, le débit a été améliorée de cinq fois, avec un faible impact sur l’utilisation de CPU.

Mots clés: Informatique en Nuage, Gestion de la Qualité, QoS, Système Autonome, Open-

stack

MULTI-LAYER QUALITY-AWARE (MULQA) CLOUD FRAMEWORK

Arash MORATTAB

ABSTRACT

In the past few years, the popularity of cloud-based solutions in the IT domain has been in-

creased significantly as the consequence of the industry shift towards IoT, super-fast computer

networks and notably the benefits of emerged cloud computing. However, this leads to many

technical challenges such as optimizing the infrastructure for heterogeneous applications es-

pecially the quality sensitive types, and issues toward addressing different quality attributes

simultaneously. In this research, we propose MULQA, an autonomic framework that monitors

and estimates the quality metrics in physical, infrastructure, platform and software layers of an

open source cloud system, and ensures the quality of the targeted metrics by triggering appro-

priate actions. MULQA is a novel approach providing such framework which targets different

quality metrics in all layers of the cloud.

During this thesis, we describe MULQA framework where the analyze module, predicts the

violation status of the quality metrics and this predicted information will be used to create

events for the finite state machine of the planning platform. This control mechanism consists

of Normal, Warning and Transition states. Warning state is used to prepare the cloud for the

transition state, while transition state prevents the violations and brings back the system to

the normal state. Being a modular framework, MULQA provides generic functionalities and

modules that can be selectively changed by additional user-written code, which can be used to

test proposed algorithms for Monitor, Analyze, Plan and Execute modules. MULQA frame-

work is built to overcome the challenges in providing a loosely coupled system which can be

easily distributed and customized through an API. Furthermore, this framework is compatible

with Openstack architecture and is able to monitor and control the components that the cloud

middleware doesn’t have access to.

The use-case in this thesis, is a three-tier Web application which is deployed with Openstack.

Experimental results of the tests which focus on the performance QA, show that MULQA

can increase the success rate of requests sent by 32%, 69% and 94% for request concurrency

numbers of 200, 500 and 1000 in order. Moreover, throughput has been improved five times

with low impact on the CPU utilization.

Keywords: Cloud Computing, Quality Management, QoS Aware, Autonomic System,

Openstack

TABLE OF CONTENTS

Page

CHAPTER 1 INTRODUCTION . 1

CHAPTER 2 STATE OF THE ART . 7

2.1 Introduction . 7

2.2 Context and Terms . 7

2.2.1 Cloud characteristics and models . 7

2.2.2 Service-Level Agreement (SLA) . 10

2.2.3 Hypervisor . 10

2.2.4 Openstack . 11

2.2.5 Autonomic Cloud Computing System (ACCS) . 13

2.3 Quality and Cloud Computing . 14

2.3.1 Quality definition and views . 14

2.3.2 Quality model . 15

2.3.3 Relationships between quality attributes . 16

2.4 Quality Challenges in Cloud Computing . 18

2.4.1 Quality-aware software engineering challenges . 19

2.4.2 Quality-aware resource management challenges . 20

2.5 Quality Attributes of Cloud systems . 21

2.5.1 Performance . 22

2.5.2 Availability . 23

2.5.3 Reliability . 23

2.5.4 Security . 24

2.5.5 Scalability and Elasticity . 25

2.5.6 Interoperability . 26

2.5.7 Cost . 27

2.5.8 Energy-efficiency . 27

2.6 Similar Works . 28

CHAPTER 3 MULQA SYSTEM DESIGN . 33

3.1 Introduction . 33

3.2 Parameters and Notations . 33

3.2.1 Layers . 34

3.2.2 Quality attributes . 35

3.2.3 Metrics . 36

3.3 Finite State Machine model of MULQA . 37

3.3.1 Metric thresholds . 39

3.3.2 Metric status, quality warning and violations . 41

3.3.3 Control . 42

3.4 General Model . 43

3.4.1 Discussion . 45

XII

3.5 SLA Negotiation . 47

CHAPTER 4 MULQA IN ACTION . 51

4.1 Introduction . 51

4.2 MULQA Implementation . 53

4.2.1 Data storage . 55

4.2.2 API and SLA modules . 55

4.2.3 Ansible integration module . 56

4.2.4 Monitor . 57

4.2.5 Analyze . 58

4.2.6 Plan . 59

4.2.7 Execute . 60

4.3 Deployment . 63

4.3.1 Openstack . 63

4.3.2 Three-tier web application . 66

4.4 Experimental Results . 71

4.4.1 Test scenario . 72

4.4.2 Problem . 73

4.4.3 Solution using MULQA . 78

4.4.4 Discussion . 81

CONCLUSION AND RECOMMENDATIONS . 85

APPENDIX I MULQA TEST SCRIPT USED IN THIS THESIS . 91

APPENDIX II MULQA PARAMETERS SET IN THE TESTS . 93

BIBLIOGRAPHY . 95

LIST OF TABLES

Page

Table 2.1 Openstack main projects . 12

Table 2.2 Different views of quality and their understanding . 15

Table 3.1 Summary of notations used in MULQA design . 35

Table 4.1 Apache Bench results summary for Web stack without MULQA 74

Table 4.2 Monitored metrics discussed and their associated layers . 75

Table 4.3 Apache Bench results summary for Web stack with MULQA 80

Table 4.4 Sample multi-QA setting explanation for MULQA . 82

LIST OF FIGURES

Page

Figure 2.1 Cloud layers and the customer responsibility in the service models

of the cloud . 9

Figure 2.2 Architecture of an autonomic system . 13

Figure 2.3 A concrete matrix of relationships between quality attributes 17

Figure 3.1 MULQA notations hierarchical model. 34

Figure 3.2 MULQA finite state machine. 38

Figure 3.3 MULQA metric intervals and thresholds and their relationship with

system states . 40

Figure 3.4 General model of MULQA . 46

Figure 3.5 Literature model for quality-aware SLA in autonomous systems 48

Figure 3.6 MULQA model for quality-aware SLA negotiation . 48

Figure 4.1 Steps to test MULQA in action and the used tools . 52

Figure 4.2 Layers defined in MULQA implementation and examples of

deployed components in each layer . 54

Figure 4.3 MULQA implementation modules and the control loop workflow 56

Figure 4.4 High-level architecture of Openstack Telemetry . 57

Figure 4.5 Proposed architecture for a general purpose Openstack deployment

to run a webserver application . 64

Figure 4.6 A two-node Openstack deployment for MULQA . 65

Figure 4.7 Openstack component connections and its workflow in the three-

tiered web app use-case. 67

Figure 4.8 Layered architecture of the three-tiered web application use-case 68

Figure 4.9 Wordpress homepage of the use-case in a web browser . 69

Figure 4.10 Topology of the deployed use-case Heat stack . 70

XVI

Figure 4.11 Network topology of the deployed use-case stack . 71

Figure 4.12 Chart for HTTP requests sent to the use-case stack over time 72

Figure 4.13 Use-case VM placement on the physical nodes during the test. 73

Figure 4.14 Chart for requests received in the software layer on VMs over time

while MULQA is not controlling . 75

Figure 4.15 Chart for VMs CPU utilization over time . 76

Figure 4.16 Chart for VMs RAM utilization over time. 76

Figure 4.17 Chart for number of operating system threads for VMs over time 77

Figure 4.18 Chart for CPU utilization for physical nodes over time while

MULQA is not controlling . 78

Figure 4.19 Chart for CPU utilization of Node c1-2 over time before and after

MULQA control . 80

Figure 4.20 Chart for number of received requests by app1 over time before

and after MULQA control . 81

LIST OF ABREVIATIONS

ACCS Autonomic Cloud Computing System

AE Autonomic Element

AM Autonomic Manager

API Application Programming Interface

AWS Amazon Web Services

CLI Command-Line Interface

CMMI Capability Maturity Model Integration

CMS Content Management System

CPU Central Processing Unit

DVFS Dynamic Voltage and Frequency Scaling

E2E End to End

ETS École de Technologie Supérieure

FSM Finite State Machine

HPC High Performance Computing

IaaS Infrastructure as a Service

ISO International Organization for Standardization

IT Information Technology

KVM Kernel-based Virtual Machine

LAMP Linux Apache MySQL PHP

XVIII

LBaaS Load-Balancer as a Service

MULQA Multi-Layer Quality-Aware

NIST National Institute of Standards and Technology

OS Operating System

PaaS Platform as a Service

QA Quality Attribute

QoS Quality of Service

RAID Redundant Array of Independent Disks

RAM Random-Access Memory

RDBMS Relational Database Management System

ROI Return On Investment

SaaS Software as a Service

SDN Software Defined Networking

SLA Service-Level Agreement

SMI Service Measurement Index

SOA Service Oriented Architecture

SSD Solid-State Drives

VM Virtual Machine

VMM Virtual Machine Monitor

YAML YAML Ain’t Markup Language

LISTE OF SYMBOLS AND UNITS OF MEASUREMENTS

b Bit

cr Concurrent requests

GB Giga-Byte

mips Millions of instructions per second

mps Messages processed per second

rps Requests processed per second

s Second

tps Transactions per second

CHAPTER 1

INTRODUCTION

Context and Motivation

Nowadays popularity of the cloud computing model in the IT domain plays a significant role

in application design by the developers, and enterprise operation by IT managers. These con-

siderations in planning and operation, help to bring the numerous benefits of cloud computing

to the users’ side. According to National Institute of Standards and Technology (NIST) in

Mell and Grance (2011), “it enables ubiquitous, convenient, on-demand network access to a

shared pool of configurable computing resources (e.g. networks, servers, storage, applications,

and services) that can be rapidly provisioned and released with minimal management effort

or service provider interaction.” The mentioned characteristics and advantages of cloud com-

puting idea are entirely consistent with the goals of upcoming IT trends and hence, make it

one of the most important supporting technologies. Regarding the levels of service that can

be delivered by cloud systems, we can consider three categories: Infrastructure as a Service

(IaaS), Platform as a Service (PaaS) and Software as a Service (SaaS). However, providing

these cloud services that ensure user’s dynamic quality requirements and avoid Service Level

Agreement (SLA) violations, is a big challenge in cloud computing. To improve the quality of

the cloud applications, one could be mistaken by addressing this issue in isolation and without

considering it in all layers of the cloud used by the application. Another possible mistake is im-

proving one quality attribute and neglecting the others and the required trade-off between them.

For example, to increase the application availability we may need to run more servers which

increases the energy consumption. Besides, most of the cloud-based applications are heteroge-

neous (meaning that they incorporate components with different technologies or from different

vendors across various levels), so interoperability should be considered in the provided quality

management solution. Moreover, some of these apps like e-commerce web applications are

quality-sensitive, and failure to respond or insecure transactions, can impact customer satis-

2

faction and sales. Furthermore, targeting the quality of just customers or just providers and

neglecting the other system stakeholders is another common mistake in improving quality.

In this thesis we propose an autonomous cloud framework named MULQA after Multi-Layer

Quality-Aware, to improve the quality of cloud systems. Quality attributes targeted by MULQA

can be comprised of performance, availability, reliability, cost, energy-efficiency, etc. Also,

quality metrics for a targeted quality attribute can be defined, modeled, monitored, predicted

and controlled in all layers of the cloud, including physical, infrastructure, platform and soft-

ware layer.

In this research, the quality awareness of the cloud systems is addressed, a framework to im-

prove the quality management is built and a test scenario of the scheme in web applications is

implemented. The key contributions of this thesis are twofold:

• Propose a framework for handling the quality definition, monitoring, and control for open

source cloud computing systems. The proposed solution is named MULQA which is a

Multi-Layer Quality-Aware cloud system.

• A real testbed in the framework is designed, and a real scenario of a web application (Word-

press) is implemented to evaluate the performance of the proposed quality management

system. In the implementation, OpenStack, the most popular private cloud middleware, is

used. Results show that using MULQA, can improve the quality of the use-case scenario

significantly.

Problem Statement

As mentioned earlier, a diverse set of softwares can coexist in a cloud system which makes

quality management difficult. These softwares may include operating systems like Ubuntu,

Redhat Enterprise, and Windows, cloud middlewares like Openstack and Cloudstack, runtimes

and compilers, databases, IoT Apps, web servers, monitoring and logging systems, High-

Performance Computing (HPC) applications, etc. Heterogeneity in applications leads to di-

3

vergence in different quality metrics. In the following examples for instance, when a banking

application user wants to transfer money to another account, the security of the system has a

higher importance than the system’s response time. So, security metrics are defined and tar-

geted in the quality management. Secondly, when a user subscribes to an HD video channel,

he may expect the video to be smooth and high quality for a higher price. And thirdly, when

the cloud user is a PHP developer who runs applications on a LAMP (Linux Apache MySQL

PHP) platform, the quality of handling 100 Threads/sec (i.e. a performance quality) on the

platform is preferred, rather than increasing energy efficiency.

The current aforementioned quality management systems are dedicated to specific service mod-

els, mostly IaaS and SaaS. For instance, in IaaS management, CPU utilization or VM consol-

idation is improved to decrease the energy consumption and operational costs. Improving

different quality attributes with such systems leads to multiple quality management systems at

various layers of a cloud deployment, which may bring interoperability issues and cause inef-

ficiency in monitoring and control mechanisms. In other words, management in cloud systems

is not integrated to cover different QAs and all layers.

Addressing quality attributes in isolation and without considering it in all the service levels

used by the application is wrong, and this research claims that to have full control on the quality

there should be a system which considers quality in all layers of the cloud system including

physical, infrastructure, platform and software.

Furthermore, our testbed’s cloud middleware, OpenStack, at the time of writing this thesis does

not have any component to guarantee and control the quality of the cloud. Ceilometer, which

is the telemetry project of OpenStack collects data on the utilization of the physical and virtual

resources comprising deployed clouds. It also persists these data for subsequent retrieval and

analysis, and trigger actions when defined criteria are met. But Ceilometer is only a limited

monitoring system which just targets some of the metrics in the physical and infrastructure

layers, which is far from a complete solution to cover various QAs in different layers which is

automated.

4

To improve the quality of a cloud system, some common actions are load balancing, VM migra-

tion, resource throttling, VM (instance) group scaling and "Dynamic Voltage and Frequency

Scaling" (DVFS). The challenge is that triggering such actions may cause quality violations

of other quality metrics in different layers of the cloud system. Also, designing a customiz-

able and modular system which considers different actions regarding the state of the cloud is

needed. In this thesis, we consider triggering these actions with consideration of all quality

metrics in different layers. We claim that taking actions applying this extra quality information

in different cloud layers results in higher quality cloud systems.

Research Questions

To conduct this research and find a solution to the mentioned problem statements, we need to

answer the following research questions:

• Q1: Which quality attributes are important in cloud systems and how are they defined?

• Q2: What are the quality management challenges in cloud computing domain and how can

the previous works be improved?

• Q3: How can we design an autonomic modular framework to integrate quality management

in all layers and target different QAs?

• Q4: How to implement, deploy and evaluate the designed framework in a practical produc-

tion use-case?

• Q5: How does our tested framework perform and how much improvement is made to the

quality?

Objectives

To deal with the challenges associated with the research problems mentioned in Section 1, the

following objectives are delineated:

5

• Obj1: Propose a quality model with notations and mathematical models for cloud systems

and design an autonomic Multi-Layer Quality-Aware system to monitor, model, predict

and control the different quality attributes in cloud systems.

• Obj2: Build a modular and customizable framework for the designed solution in Obj1, and

design and implement a cloud-based three-tier web application that can be used to evaluate

the proposed system design on a multi-node OpenStack testbed.

Thesis Organization

In this chapter, we explained the context of the problem domain and the motivations behind

proposing MULQA. Next, we clarified the problem statements and asked the research ques-

tions followed by mentioning the objectives of this research; Finally in this section, the struc-

ture and organization of this thesis is described as the following.

Chapter 2 presents relevant state-of-the-art research and surveys important quality attributes in

the cloud computing domain. This chapter starts with an introduction to the context and terms

used in this thesis, varying from cloud characteristics and models to Openstack and autonomic

cloud computing system. Next, quality with the focus on cloud systems is discussed, and

challenges of quality management in cloud computing are surveyed. This chapter follows with

QAs of cloud systems and their metrics, and finally reviews similar works related to MULQA.

In Chapter 3, MULQA, our proposed solution for making cloud systems quality-aware, will

be described and explained in detail. This chapter first illustrates our model’s notations for

layers, quality attributes and metrics of the cloud. Next, it explains the finite state machine of

the MULQA and the quality control mechanism. After it gives a general view of our model

and then explains the multi-layer concept in our quality model. Then it describes our proposed

approach for the SLA negotiation using fine-grained quality metrics.

Chapter 4 explains how MULQA has been implemented in a cloud system with OpenStack

installed middleware and pictures the deployment architectures and describes the implemented

6

modules. Moreover, in this chapter the designed test scenario (which is a three-tiered Web

application) for validating our solution will be described and the results of the experiments and

the related discussion are provided.

Finally, the last chapter of this thesis concludes this document and gives the future proposals

to improve this research.

CHAPTER 2

STATE OF THE ART

2.1 Introduction

To answer the research questions posed in Section 1, relevant researches are surveyed in this

chapter. In the other words, quality has been surveyed and analyzed delving in the cloud

computing domain.

This chapter first explains our domain, cloud computing, and its characteristics. It covers both

service models and layers in cloud computing. Furthermore some other terms used in this

research are explained, to help the reader understand the concepts discussed in the rest of this

document.

Next, quality with the focus on cloud systems is discussed, and challenges of quality man-

agement in cloud computing are surveyed. This chapter follows with common QAs of cloud

systems and their metrics, and challenges in formulating these metrics. Finally, this chapter

briefly reviews the works similar to MULQA.

2.2 Context and Terms

2.2.1 Cloud characteristics and models

Based on National Institute of Standards and Technology (NIST) definition of cloud model, it is

composed of five essential characteristics, three service models, and four deployment models.

For sake of simplicity in this document, sometimes we refer to "cloud computing" shortly as

"Cloud".

Essential characteristics of the cloud are: on-demand self-service, broad network access, re-

source pooling, rapid elasticity and measured service. On-demand self-service means that a

8

cloud consumer can unilaterally provision computing capabilities, such as server time and net-

work storage, as needed automatically without requiring human interaction with each service

provider. Broad network access feature implies that cloud users can access capabilities over the

network through standard mechanisms that promote use by heterogeneous thin or thick client

platforms. In the cloud model, computing resources of the provider are pooled to serve multi-

ple consumers using a multi-tenant model. This is done by assigning and reassigning different

physical and virtual resources dynamically according to consumer demand. Rapid elasticity

means Cloud is capable of provision and release the resources, to scale rapidly outward and

inward commensurate with demand. The key to creating a pool of resources is to provide an

abstraction mechanism so that a logical address can be mapped to a physical resource. Virtu-

alization refers to the act of creating a virtual version of something, including virtual computer

hardware platforms, computer network resources, operating systems and storage devices. Ser-

vices in cloud are typically measured in pay-per-use basis. Cloud systems automatically control

and optimize resource use by leveraging a metering capability at some level of abstraction ap-

propriate to the type of service. Resource usage can be monitored, controlled, and reported,

providing transparency for both the provider and consumer of the utilized service. Accord-

ing to Bittman (2009) virtualization is a key enabler of the key attributes of cloud computing

mentioned as: service-based, scalable and elastic, shared services, metered usage and Internet

delivery.

When enterprise architects and network planners want to plan cloud computing deployments,

they need to be able to identify the expectations for control and management, based on the type

of cloud and its level categorization. One categorization can be based on kind of the service

which cloud provides, such as Software as a Service (SaaS), Platform as a Service (PaaS), and

Infrastructure as a Service (IaaS). Another classification can be based on the models for cloud

computing deployment, which relate to strategies for extending virtualization outside of the

data center into the cloud. Deployment models include: public cloud, private Cloud, hybrid

cloud and community cloud.

9

Each cloud service model provides a level of abstraction that diminishes the efforts required by

the service consumer to build and deploy systems. Unlike cloud, in a traditional on-premises

data center, the IT team has to build and manage everything. Figure 2.1 shows these models

and the layers of the cloud which is managed by cloud consumers.

Software

Platform

Infrastructure

Physical

On-Premise

Cu
st

om
er

M

an
ag

es
M

an
ag

es

Software

Platform

Infrastructure

Physical

IaaS
Cu

st
om

er

M
an

ag
es

M
an

ag
es

Software

Platform

Infrastructure

Physical

PaaS

Cu
st

om
er

M

an
ag

es
M

an
ag

es Software

Platform

Infrastructure

Physical

SaaS

Cu
st

om
er

M

an
ag

es
M

an
ag

e

Figure 2.1 Cloud layers and the customer responsibility in the

service models of the cloud

Note that layers in MULQA are an abstraction for the level of components which exist in the

cloud system and they are different from the kind of service levels obtained from cloud systems

such as SaaS, PaaS and IaaS.

In IaaS, the capability provided to the consumer is to provision processing, storage, networks,

and other fundamental computing resources where the consumer is able to deploy and run

arbitrary software, which can include operating systems and applications. The most mature

and widely used public IaaS cloud service provider is Amazon Web Services (AWS) (Kavis

(2014)). On the other hand, for providing IaaS in private clouds, currently Openstack is the

well-known solution as mentioned in Jiang (2015).

PaaS service model provides the capability to the consumer to deploy onto the cloud infras-

tructure consumer-created or acquired applications created using programming languages, li-

braries, services, and tools supported by the provider. Some of the services that can be found

10

in most mature PaaS solutions are: database, logging, monitoring, security, caching, search,

E-mail.

SaaS provides the capability to the consumer to provision processing, storage, networks, and

other fundamental computing resources where the consumer is able to deploy and run arbitrary

software, which can include operating systems and applications. In this model, the underlying

cloud infrastructure is not controlled by the consumer.

2.2.2 Service-Level Agreement (SLA)

As defined in Hausman et al. (2013), a Service-Level Agreement (SLA) is an official commit-

ment that prevails between a service provider and the customer and summarizes the expected

level of service a customer can expect to receive from a service provider, the metrics used to

measure said service, and the roles and responsibilities of both the service provider and the

customer.

According to Baset (2012), a typical SLA of a cloud provider has the following components:

service guarantee, service guarantee time period, service guarantee granularity, service guar-

antee exclusions, service credit and Service violation measurement and reporting.

2.2.3 Hypervisor

As stated in Marinescu (2013), a hypervisor , also known as Virtual Machine Monitor (VMM)

is the software that securely partitions the resources of a computer system into one or more

virtual machines. An operating system that runs under the control of a hypervisor rather than

directly on the hardware is called guest operating system. Unlike the hypervisor which runs in

kernel mode, a guest OS runs in user mode.

VMMs allow several operating systems to run concurrently on a single hardware platform;

Meanwhile, VMMs enforce isolation among these systems, which improves security. A hy-

pervisor controls how the guest operating system uses the hardware resources. The events

11

occurring in one VM do not affect any other VM running under the same VMM. According to

Marinescu (2013), at the same time, the VMM enables:

• Multiple services to share the same platform.

• The movement of a server from one platform to another, the so-called live migration.

• System modification while maintaining backward compatibility with the original system.

Hypervisor also monitors system performance and takes corrective action to avoid performance

degradation.

According to Sosinsky (2010), there are two major types of hypervisor: Type I and Type II.

A hypervisor running on bare metal is a type-1 VM or native VM. Examples of type-1 virtual

machine monitors are LynxSecure, RTS Hypervisor, Oracle VM, Sun xVM Server, Virtual-

Logix VLX, VMware ESX and ESXi, and Wind River VxWorks. On the other hand, some

hypervisors are installed over an operating system and are referred to as type-2 or hosted VM.

Examples of type-2 virtual machine monitors are containers, KVM, Microsoft Hyper V, Par-

allels Desktop for Mac, Wind River Simics, VMWare Fusion, Virtual Server 2005 R2, Xen,

Windows Virtual PC, and VMware Workstation 6.0 and Server, among others.

2.2.4 Openstack

OpenStack is an open source project that provides IaaS capabilities for those consumers who

want to avoid vendor lock-in and want the control to build their own IaaS capabilities in-house,

which is referred to as a private cloud.

Beside Openstack, there are some other open source cloud platforms (aka cloud middlewares)

like CloudStack, Eucalyptus, Nimbus, and OpenNebula. But regarding to Jain et al. (2014),

OpenStack is the fastest growing free open source software in the cloud community. Openstack

is now a global success and is developed and supported by thousands of people around the

globe; backed by leading players in the cloud space today.

12

OpenStack official website defines it as a cloud operating system that controls large pools

of compute, storage, and networking resources throughout a datacenter, all managed through

a dashboard that gives administrators control while empowering their users to provision re-

sources through a web interface.

Many hypervisors are supported under the OpenStack framework, including XenServer/XCP,

KVM, QEMU, LXC, ESXi, Hyper-V, BareMetal and others. Throughout this thesis, the

Kernel-based Virtual Machine (KVM) will be used. KVM has been part of the Linux ker-

nel since the 2.6.20 release in early 2007, and it’s fully supported by OpenStack.

OpenStack has a modular architecture with various code names for its components. Core

components of Openstack are: Nova, Keystone, Cinder, Swift, Neutron and Glance. Table 2.1

lists several of OpenStack’s components. There are many more projects in various stages of

development, but these are the foundational components of OpenStack.

Table 2.1 Openstack main projects

Project Code Name Description

Compute Nova
Manages VM resources, including CPU, memory, disk, and

network interfaces.

Networking Neutron

Provides resources used by the VM network interface, includ-

ing IP addressing, routing, and software-defined networking

(SDN).

Object Storage Swift Provides object-level storage, accessible via a RESTful API.

Block Storage Cinder Provides block-level (traditional disk) storage to VMs.

Identity Keystone
Manages role-based access control (RBAC) for OpenStack

components. Provides authorization services.

Image Service Glance
Manages VM disk images. Provides image delivery to VMs

and snapshot (backup) services.

Dashboard Horizon Provides a web-based GUI for working with OpenStack.

Telemetry Ceilometer
Provides collection for metering and monitoring OpenStack

components.

Orchestration Heat
Provides template-based cloud application orchestration for

OpenStack environments.

13

2.2.5 Autonomic Cloud Computing System (ACCS)

Self- or Autonomic Cloud Computing Systems (ACCS), are kind of cloud systems that the

services provided through them, are able to self-manage themselves as per their environment’s

needs without the involvement of humans.

Autonomic systems based on quality parameters are inspired by biological systems like Au-

tonomic Nervous System that can handle situations like uncertainty, heterogeneity, dynamism

and faults easily. ACCSs sense, monitor, and react based on the situations, such as self-healing,

self-protecting, self-configuring, and self-optimizing.

According to Singh and Chana (2016), ACCSs are based on Computing et al. (2006), an IBM’s

autonomic model, which considers four steps of the autonomic system (Monitor, Analyze,

Plan, and Execute) in a control loop, two interfaces (sensors and effectors) for environmental

interaction, and one database (knowledge base) to store rules, as shown in Figure 2.2.

Sensor Effector

Execute

PlanAnalyze

Monitor
Knowledge

Symptom

Request for
change

Change plan

Autonomic Manager

Figure 2.2 Architecture of an autonomic system

14

This figure illustrates Autonomic Elements (AEs) and Autonomic Manager (AM) in ACCSs

and the workflow of an autonomous system; AM interacts with the environment through Sen-

sors and Effectors interfaces to manage the system intelligently. Actions take place based on

the input received from sensors and rules defined in a knowledge base. The administrator

configures the AM based on alerts and actions.

2.3 Quality and Cloud Computing

2.3.1 Quality definition and views

As mentioned in Jones and Bonsignour (2012), quality can be defined in different ways, in-

cluding in the context of software engineering. There are definitions of quality as given by

national and international standards, however there is no ‘ideal’ definition of quality. In fact,

there can be different viewpoints of quality: conformance viewpoint, human viewpoint and

negative viewpoint.

The conformance viewpoint of quality as is in ISO (2011) is independent of the subject and

relatively abstract: The totality of characteristics of an entity that bear on its ability to satisfy

stated and implied needs. In human viewpoint quality as defined in ISO (2010), quality def-

inition is specific to a collection of subjects and relatively concrete: The ability of a product,

service, system, component, or process to meet customer or user needs, expectations, or re-

quirements. In the negative viewpoint, as stated in Emam (2005), the quality of a software

system can be expressed in terms defect density, which is number of defects discovered per

module size (Rico (2004)). In other words, the higher the defect density, the lower the quality.

In Garvin (1984) which is one of the earliest approaches towards perceptions of quality, five

views of quality are given, as elaborated in Table 2.2. These views are not necessarily exclusive.

For example, an economics-based view constrains the transcendental-based view of quality.

Therefore, any initiatives for quality assurance or evaluation need to end if the cost exceeds the

benefit.

15

Table 2.2 Different views of quality and their

understanding

Type of View Understanding of Quality
Transcendental-Based Quality is Perfective

Product-Based View Quality is Measurable

Manufacturing-Based View Quality is Conformance

Economics-Based View Quality is Benefit for Cost

User-Based View Quality is Satisfaction

In addition, each of these views of qualities have their own issues. For example, in product-

based view, the main issue is that of quantifiability. There are quality attributes, especially

pertaining to human-machine interaction, which may not be quantifiable. For example, it is

difficult to quantify comfortableness or satisfaction. In an economics-based view of quality, the

notion of quality is benefit for cost. The main issue in this view is that of complacency. If sales

of a software system are meeting an organization’s target, then initiatives towards improving

quality may subside.

2.3.2 Quality model

Following the definition of quality, in ISO (2007), quality model is as a defined set of char-

acteristics, and of relationships between them, which provides a framework for specifying

quality requirements and evaluating quality. Also Deissenboeck et al. (2009) has defined qual-

ity model as a model with the objective to describe, assess and/or predict quality. Regarding to

Heston and Phifer (2011) some of the reasons for formulating a quality model are: awareness,

motivation, consistency, repeatability and communication.

According to Ardagna et al. (2014), quality modeling discipline in cloud computing can be

categorized to control theory based, machine learning based or operations research based (i.e.

optimization, game theory, bio-inspired algorithms). Each of these approaches has its own us-

ages and advantages. As mentioned in Padala et al. (2007), the advantage of control theory is

guaranteeing the stability of the system upon workload changes by modeling the transient be-

havior and adjusting system configurations within a transitory period. Machine learning tech-

16

niques, rather, by utilizing learning mechanisms, can capture the behavior of the system with

no explicit performance or traffic model. Furthermore, this approach needs minimal built-in

system knowledge. However, according to Kephart et al. (2007), training sessions sometimes

can take several hours and also for evolving workloads retraining is required. The goal of op-

erations research approaches is optimizing the degree of user satisfaction which are expressed

in terms of user-level quality metrics. Ordinarily, these approaches comprise of a performance

model embedded within an optimization program, which is solved either locally, globally, or

heuristically.

The main application of quality models is optimal decision-making for cloud system manage-

ment. According to Ardagna et al. (2014), these decision problem areas include capacity allo-

cation, load balancing, admission control, pricing, resource bidding, and provider-side energy

management.

The notion of quality is decomposed into a number of Quality Attributes (QA) which can each

be decomposed further. For example, maintainability, security, or usability, can be such a qual-

ity attribute. The quality attributes are a kind of concerns. As discussed in Cesare and Xiang

(2012) a ‘standard’, closed-form, list of relevant quality attributes applicable to every system

doesn’t exist. The relevancy of a quality attribute fluctuates with respect to the type of system.

For example in section 1.2.3 of Suryn (2013), the most relevant quality attributes for "Network

management systems" are specified as fault tolerance, interoperability, and operability; In the

other hand for "Telecommunication systems", the most relevant quality attributes are func-

tionality, reliability, usability, and efficiency; And for "Decision support systems", the most

relevant quality attributes are accuracy, analyzability, and suitability.

2.3.3 Relationships between quality attributes

As mentioned in Chapter 14 of Wiegers and Beatty (2013), the quality attributes are not nec-

essarily mutually exclusive. Indeed, they can affect each other in one of the following manner:

positive (+), negative (-), or neutral (). Positive (+) relationship means that changing one at-

17

tribute affects the other positively. On the other side, Negative (-) relationship means that

changing one attribute affects the other one negatively. And Neutral () relationship means that

the attributes are independent of each other. These relationships among some quality attributes

are shown in Figure 2.3.

Figure 2.3 A concrete matrix of relationships between quality

attributes.

Taken from: Wiegers and Beatty (2013)

As is shown in Figure 2.3, the main diagonal of the matrix would contain all empty spaces.

The quality attribute matrix is not symmetric. For instance, efforts towards increasing security

may decrease usability. However, the opposite is not necessarily the case.

As mentioned in Henningsson and Wohlin (2002), there are various results of the dependencies

between quality attributes:

18

• Prioritization of quality requirements: The perceptions of quality by each stakeholder may

be different than the others. Therefore, the importance of quality attributes may be different

for each stakeholder. In result, the quality attributes are prioritized differently by different

stakeholders.

• Assessment of the product: It is impractical to optimize all quality attributes simultane-

ously. This means some stakeholders are probably get disappointed. This can challenge or

even fail the whole product, if these stakeholders are ‘High’ on the importance or influence

scheme.

2.4 Quality Challenges in Cloud Computing

The root of the challenges in figuring a quality model has significant variations in context.

Formulating a quality model generally presents some challenges rooted in the domain, stake-

holders and artifacts. In theory, many quality models, including those in current international

standards, aim to be general and abstract enough to be applicable for all sorts of systems.

However, in practice, as discussed in Moody (2005) and Ruhe and Wohlin (2014), there are a

number of challenges in applying these models sustainably. These challenges include: univer-

sality (Ruhe and Wohlin (2014)), need for tailoring and cost-effectiveness (Jagannathan et al.

(2005))

In addition to these challenges related to formulating and using quality models mentioned pre-

viously, there exist some other cloud computing domain-specific challenges in quality topic.

Many years before the advent of cloud computing, QoS and quality in computer systems have

been studied and discussed. But quality analysis, prediction, and assurance in cloud platforms

has got significantly complex due to performance heterogeneity and resource isolation mech-

anisms. According to Petcu et al. (2013), this is prompting several researchers to investigate

automated quality management methods that can leverage the high programmability of hard-

ware and software resources in the cloud.

19

Despite the fact that the cloud has enormously simplified the resource provisioning process,

it represents several new challenges in the quality management. QoS in cloud context usually

indicates the levels of performance, reliability, and availability offered by an application and

by the platform or infrastructure that hosts it. QoS is crucial for both cloud providers, who

need to find the right tradeoffs between QoS levels and operational costs, and for cloud users,

who expect providers to deliver the advertised quality attributes. However, as mentioned in

Ardagna et al. (2012), SLAs by specifying quality targets and economical penalties for SLA

violations, increase the complexity of finding optimal tradeoff.

However, Quality as a general term in software engineering, can include the common QoS

concepts, as well as cost and some other quality attributes such as energy-efficiency. On the

other hand, instead of quality, QoS is used generally in network-specific context. Hence, this

thesis mostly mentions Quality rather than QoS to generalize the quality concept.

According to Abdelmaboud et al. (2015), surveys on quality challenges in cloud computing

can be classified in two categories: (1) Quality-aware software engineering challenges, (2)

Quality-aware resource management challenges.

2.4.1 Quality-aware software engineering challenges

Many cloud computing challenges related to software engineering was discussed in Vázquez-

Poletti et al. (2013). These challenges include: elasticity and provisioning of QoS for cloud

application deployments, the lack of application management and the lack of approaches to

cloud deployment optimization services with various quality metrics such as performance and

cost.

Moreover, Yau and An (2011) has discussed the importance of combining the cloud com-

puting and services paradigms and how a software engineering framework can help service

providers to combine these paradigms. They contended that to address the challenges such as

QoS management and security, more research was needed on software engineering for cloud

computing. In addition, they discussed the main challenges and issues in application develop-

20

ment using service-oriented software engineering, such as service reliability and availability,

confidentiality and integrity, and quality monitoring. As an example, in quality monitoring,

managing different quality requirements is difficult, because in the cloud there exist multiple

providers, and each of them needs different approaches to manage their services. Moreover

different workflows required to host these different services dynamically.

2.4.2 Quality-aware resource management challenges

Challenges of cloud computing have already been surveyed by various researchers. Before

Abdelmaboud et al. (2015), these researches reported on the QoS in cloud computing within

limited scope. However, Abdelmaboud et al. (2015) performed a systematic mapping of QoS

in cloud computing.

Foster et al. (2008) have compared grid and cloud computing from multiple aspects. They

also discuss many challenges that will face cloud computing services in the future, such as

cloud adoption, security issues, resources management, interoperability and the integration of

services. Specifically, they mention the main challenges of resources management as: the

monitoring of resources, the quality delivered to the users to locate or relocate the resources of

applications, and the difficulty of achieving SLA requirements in terms of the cost effectiveness

of systems provision. Similarly, the difference between quality in cloud computing and quality

in grid computing was considered by Armstrong and Djemame (2009) which focused mostly

on the performance and management of resources.

In addition, Dillon et al. (2010) mentioned the challenges of cloud computing in general. They

looked into cloud adoption issues, for example security and the costing and charging model.

Service providers should ensure the QoS (availability, reliability and performance) of the re-

sources, because consumers of the cloud do not have control and access of the underlying

cloud resources. Consequently, the issue of the SLA definition and specifications must be ad-

dressed in a suitable way that covers the consumers’ expectations. Moreover, the SLA should

include advanced mechanisms for user feedback. However, this study focused more specifi-

21

cally on interoperability issues. Similarly, Zhang et al. (2010) discussed the design challenges

and state-of-the-art implementation of cloud computing, including server consolidation, au-

tomated service provisioning and virtual machine deployment. In this study, the challenges

for service providers in achieving service-level objectives have been highlighted among issues

related to automated service provisioning. For example, these SLA objectives can be quality

requirements to allocate and de-allocate resources with minimum operational costs.

Finally, Buyya et al. (2009) gave a new vision of universal cloud exchange for commercial

services and proposed the resources method of clouds from a market-oriented view. Also, they

discussed the issues in cloud platforms such as the lack of negotiation between providers and

users to fulfil SLAs, the limited support for resources management from a market-oriented per-

spective, the lack of models and limit mechanisms of the virtual machine resources allocated to

meet SLAs, and the need to manage risks related to SLA violation. In addition, interoperability

issues between various cloud service providers requiring interaction protocols were discussed.

Furthermore, they identified the need for programming environments and tools to enable the

development of cloud applications.

2.5 Quality Attributes of Cloud systems

As described in Gorton (2006), quality attribute (QA) requirements are part of an system’s

nonfunctional requirements, which capture the many facets of how the functional requirements

of a system are achieved. All but the most trivial systems will have nonfunctional requirements

that can be expressed in terms of quality attribute requirements. In the cloud computing con-

text, quality attributes can be expressed in the SLA to ensure the quality of the desired service

to the costumer.

As listed in Wikipedia (2016), system engineers have introduced more than 80 quality attributes

with their definitions. But in-average among these, performance, availability, reliability, secu-

rity, scalability, elasticity, interoperability, cost and energy were more important for the re-

searchers who study in the field of cloud computing (considering Garg et al. (2013), Gorton

22

(2006), Lee et al. (2009), Mahdavi-Hezavehi et al. (2013), Nallur et al. (2009), Chang (2014),

Sodhi and Prabhakar (2012)).

2.5.1 Performance

In the software engineering context, as described in Gorton (2006), a performance quality re-

quirement defines a metric that expresses the amount of work an application must perform in

a given time, and /or deadlines that must be met for correct operation. This QA is phenome-

nal for some application like avionics and robotic systems, which in those, if some output is

produced a millisecond too late, undesirable things can happen. But applications needing to

process hundreds, sometimes thousands and tens of thousands of transactions every second are

found in many large organizations, especially in the worlds of finance, telecommunications and

government.

Performance can mean different things in different contexts. As mentioned in O’Brien et al.

(2007), in Service Oriented Architectures (SOA) generally, it is related to response time which

is how long does it take to process a request, throughput which is how many requests overall

can be processed per unit of time, or timeliness which indicates the ability to meet deadlines

(i.e. to process a request in a deterministic and acceptable amount of time).

Response time is most often associated with the time an application takes to respond to some

input. A rapid response time allows users to work more effectively. Also, it’s often important

to distinguish between guaranteed and average response times.

Throughput is usually measured in transactions per second (tps), messages processed per sec-

ond (mps) or requests processed per second (rps). For instance, an on-line banking application

might have to guarantee it can execute 1,000 tps from Internet banking customers. It’s impor-

tant to specify clearly in the throughput requirement that if it means peak throughput or the

average throughput over a given period of time.

23

2.5.2 Availability

Availability is related to an application’s reliability, but it is not the same. If an application is

not available for use when needed, then it’s unlikely to be fulfilling its functional requirements.

Availability has been defined as the degree to which a system or component is operational and

accessible when it is needed. Users are turned off if the service is not available due to frequent

over-loading. Availability can be measured as a percentage of the total system downtime over

a predefined period. it will be affected by system errors, infrastructure problems, malicious

attacks, and system load.

Usually a failed service will stay unavailabile till the failure is detected and restarting the failed

component is performed. Consequently, to have a system with high availability feature, mini-

mizing the single points of failure and automatic failure detection and recovery are suggested.

This is why recoverability quality attribute is closely related to availability.

In addition, replicating components is a tried and tested strategy for high availability. When a

replicated component fails, the application can continue executing using replicas that are still

functioning. This may lead to degraded performance while the failed component is down, but

availability is not compromised.

2.5.3 Reliability

Reliability is the ability of the system to remain operating over time. According to O’Brien

et al. (2007), two important aspects of reliability in SOA are the reliability of message passing

between services, and the reliability of services. Failures in applications cause them to be

unavailable. Failures impact on an application’s reliability, which is usually measured by the

probability that a system will not fail to perform its intended functions over a specified time

interval as mentioned in Microsoft (2009).

Services are often made available over a network with possibly unreliable communication

channels. Consequently, messages may fail to get delivered or will deliver in the wrong or-

24

der or will deliver more than once. However currently, messaging middlewares, like IBM

WebSphere MQ and RabbitMQ (used in Openstack), support mechanisms to prevent these

reliability problems. When different products with different messaging middlewares need to

communicate, interoperability issue may cause reliability issue. Usually the SOA platform, not

the service developer, is responsible for providing reliability.

Service reliability is the correct service operation and not either failing or reporting any failure

to the service user. As O’Brien et al. (2007) discusses, the main challenge is managing the

transactional context in order to preserve data integrity during failures and concurrent access.

2.5.4 Security

Security is the capability of a system to prevent malicious or accidental actions outside of the

designed usage, and to prevent disclosure or loss of information. A secure system aims to

protect assets and prevent unauthorized modification of information.

The most common security-related requirements for an application are:

• Authentication: Applications can verify the identity of their users and other applications

with which they communicate.

• Authorization: Authenticated users and applications have defined access rights to the re-

sources of the system. For example, some users may have read-only access to the applica-

tion’s data, while others have read–write.

• Encryption: The messages sent to/from the application are encrypted.

• Integrity: This ensures the contents of a message are not altered in transit.

• Nonrepudiation: The sender of a message has proof of delivery and the receiver is assured

of the sender’s identity. This means neither can subsequently refute their participation in

the message exchange.

25

As discussed in Jansen (2010), several security metrics have been proposed in academia and in-

dustry such as vulnerability density, relative vulnerability, attack surface, severity-to-complex

and security scoring vector.

According to Torkura et al. (2015), currently in cloud computing, Service Level Agreements

(SLAs) used to guarantee security and privacy. As mentioned in Luna et al. (2011), unfortu-

nately due to the Cloud’s special characteristics there are just a few efforts aimed at using a

framework or common set of objectives and quantitative security metrics for the Cloud. Briefly,

as Luna et al. (2011) mentions, security metrics haven’t gained attention in cloud security.

2.5.5 Scalability and Elasticity

Scalability is ability of a system to either handle increases in load without impact on the per-

formance of the system, or the ability to be readily enlarged. Enlargement of the system may

be increase either in the request load, simultaneous connections or data size.

In the perfect situation and without additional resources to serve the application, as the load

increases, application throughput should remain constant, and response time per request should

increase only linearly. As an example if an architecture for a server application designed to

support 100 rps at peak load, with an average 1s response time, by growing request load by 10

times, throughput should remain 100 rps and response time per request should turn to 10s. On

the other hand, a scalable system will permit additional resources to be deployed to increase

throughput and decrease response time. This additional capacity may be deployed in two

different ways, one by adding more resources to the machine the applications runs on (scale

up), the other from distributing the application on multiple machines (scale out).

According to Gorton (2006), in reality, as load increases, application throughput decreases and

response time increases exponentially. These happen because: First, the increased load causes

increased contention for resources such as CPU and memory by the processes and threads in

the server architecture. Second, each request consumes some additional resource (buffer space,

26

locks, and so on) in the application, and eventually this resource becomes exhausted and limits

scalability.

Karacali and Tracey (2016) has evaluated the cloud scalability by examining how performance

varies as a function of topology size and number of flows.

Scalability and elasticity are similar concepts and they are often confused. But they are dif-

ferent in some aspects. Scalability, unlike elasticity does not consider temporal aspects of

how fast, how often, and what granularity scaling actions can be performed. In other words,

scalability is a static property, and it is a time-free notion. However, elasticity is a dynamic

property, which should consider how fast and how well a system will scale on-demand without

interruption at runtime.

According to Karacali and Tracey (2016) which surveyed elasticity in cloud computing, elas-

ticity is a complex problem which involves many aspects. Because many cloud providers have

different architecture, elasticity metrics don’t have standard metrics, which makes evaluating

elasticity become difficult.

2.5.6 Interoperability

According to Microsoft (2009), interoperability is the ability of a system or different systems

to operate successfully by communicating and exchanging information with other external sys-

tems written and run by external parties. An interoperable system makes it easier to exchange

and reuse information internally as well as externally.

Communication protocols, interfaces, and data formats are the key considerations for inter-

operability. Standardization is also an important aspect to be considered when designing an

interoperable system.

There are few researches dedicated to interoperability issues in the cloud and as far as the

author of this thesis knows there is no metrics found to measure this quality. The Topology

and Orchestration Specification for Cloud Applications (TOSCA) is a recent standard that has

27

focused on standardizing the way cloud applications are structured and managed to favor in-

teroperability (OASIS (2013)).

2.5.7 Cost

Although cost is often not defined as a quality attribute in the software engineering literature,

but the first question that arises in the mind of organizations before switching to cloud comput-

ing and choosing their Cloud provider is whether it is cost-effective or not. Therefore, cost is

clearly one of the vital attributes for IT and the business. As mentioned in Garg et al. (2013),

cost tends to be the single most quantifiable metric today and is one of the attributes in Service

Measurement Index (SMI) which provides a holistic view of QoS needed by the customers for

selecting a Cloud service provider.

Jallow (2016) has introduced cost as a metric in order to compare the quality of different cloud

services provided by Amazon AWS and Google Cloud Platform.

According to the economical-view of quality in Section 2.3.1 (i.e. the notion of quality is ben-

efit for cost), cost can be identified as a quality attribute in cloud context due to its importance

to both cloud providers and cloud customers.

2.5.8 Energy-efficiency

The technology shift toward cloud computing introduced the growth of large-scale data centers

world-wide; each of them contains thousands of nodes. These data centers consume more

electrical energy which increase the operating costs as well as carbon dioxide (CO2) emissions

to the environment. The growth of energy consumption is a real critical problem, for instance

in 2015 the share of data centers from the total energy in Switzerland and US was 2.8% and

2.0% in order (Bertoldi (2014) and Cima et al. (2015)). Improving the efficiency of energy

consumption in data centers is an effective endeavor towards increasing the sustainability in

the future smart cities.

28

There are many research works which target energy efficiency in cloud-based data centers,

mainly focusing on using host’s CPU (Physical layer) efficiently, and many researches consider

performance constraints of the VM (Infrastructure layer). Some other propose solutions with

"VM to Physical host mapping" algorithms and DVFS and power switching strategies. Authors

couldn’t find any energy efficient solution in the literature that considers quality in Platform or

Software layers.

2.6 Similar Works

The idea of considering quality in different cloud layers has been investigated in cloud moni-

toring domain in Trihinas et al. (2014), Montes et al. (2013), Mdhaffar et al. (2013) and Bruneo

et al. (2015). One of the most similar works to MULQA in this domain is Bruneo et al. (2015),

which presents a 3-D cloud monitoring framework called Ceiloesper. Three dimensions of this

monitoring are cloud metrics, applications and physical machines. Bruneo et al. (2015) claims

that all previous monitoring solutions fail to provide frameworks which have multi-layer mon-

itoring and data stream analysis, and in the same time perform actions in different layers of

the cloud. Ceilosper extends the OpenStack Ceilometer project and adds Complex Event Pro-

cessing (CEP) engines to support the real time analysis of the collected data. Also, they have

tested their solution on a scenario including high loads and low loads based on the Wordpress

application. The layers of the cloud in this research are identified as: physical, virtualization,

application architecture and application business logic. Although this research focuses on the

monitoring and real-time analyze, rather than a autonomic quality management framework, it

is similar to MULQA by monitoring from different layers of the cloud and triggering actions.

In addition, Bruneo et al. (2015) uses Openstack as the cloud middleware, but their proposed

architecture needs installations of extra modules per VM, per Node and per application on the

cloud system, which decreases the scalability and interoperability of the architecture. How-

ever, MULQA by proposing a modular and customizable framework (based on Computing

et al. (2006)) which controls upper layers of the cloud by leveraging Ansible. This minimizes

29

additional installations on the cloud, and provides extra freedom and security through standard

SSH authentications.

Many studies also have been done on multi-layer frameworks for service computing. Among

those, Sırbu and Babaoglu (2014) proposed a framework to characterize and identify the cloud

system according to the analysis of datasets on four different metrics, namely power consump-

tion, temperature, platform events and workload, which is similar to our platform regarding

the selection of various metrics from different service layers. They also performed a further

analysis on the correlation between the metrics from multiple layers in which some of them are

highly correlated (i.e. power consumption and temperature), while some of them like platform

events and workload are not correlated at all. However, in Sırbu and Babaoglu (2014), authors

are not focused on optimum decision making and is based on the IBM BlueGene platform

which is not suitable for this purpose. Taking fault prediction as the objective, Dudko et al.

(2012) and Liang et al. (2007) strived to classify the state of IBM BlueGene cloud services

through the machine learning algorithms and neural networks applied on the log of the low-

level hardware failure and high-level kernel logs. To this end, they also used window based

time-series, similar to our approach, to predict the errors in the system. However, in their work,

a platform is not proposed to analyze the data.

In Jain et al. (2016), authors also performed multi-dimensional analysis of different perfor-

mance metrics from various service layers and applied linear regression to predict the conges-

tion and latency and manage other QoS in the network. Accordingly, the correlations among

different performance metrics are evaluated. However, no decision making especially for un-

expected and uncorrelated events are provided in their work. They also mention a need for out

proposed platform to make decisions for uncorrelated events.

As mentioned earlier, none of the above literature has focused on the decision-making. One

of the best platforms for decision-making is Daleel (Samreen et al. (2016)), a multi-criteria

decision making to select the best type of the instance and the best time to create the instance

according to applying regression technique on the dataset of the user requirements in different

30

service layers. However, in Samreen et al. (2016), the framework is just dived into the selection

procedure neglecting the other actions such as VM migration and resizing that is addressed

in our proposed framework. Moreover, their analysis is just limited to Amazon instances.

In Hasan et al. (2012), taking into consideration metrics from different multiple layers, the

authors proposed an Integrated and Autonomic Cloud Resource Scaler (IACRS) that extend the

decision making analysis via the full automation of the cloud scaling. Similar to our proposed

approach, policies in IACRS are defined according to the trigger events which have to be

selected wisely. Hence, IACRS is focused on the selection of the metric triggers and their

attributed thresholds in an effective and optimal manner. The other similarity between our

proposed framework and IACRS is that they both are integrated with Openstack. However,

their decision-making policies are constrained to the IAAS auto scaling and does not have

anything to do with the other service layers.

Additionally, multi-layer quality management in cloud systems has been targeted by many re-

searches in the energy-efficiency domain. Most of them focus on using host’s CPU (Physical

layer) efficiently and some consider performance constraints of the VM (Infrastructure layer).

So the proposed solutions are usually VM to physical host mapping algorithms, DVFS and

power switching strategies. Authors couldn’t find any energy efficient solution references that

considers quality in Platform or Software layers. Nathuji et al. (2007) proposes a hierarchical

power management system. At the local level, the system coordinates and leverages power

management policies of guest VMs at each physical machine; While global policies are in

charge of managing physical nodes and have knowledge about rack or blade level characteris-

tics and requirements. This work considers quality at the Physical layer (including some data

center equipment) and Infrastructure layer. pMapper proposed by Verma et al. (2008) consid-

ers the energy-efficiency problem as continuous optimization and converts it to a bin packing

problem. Their proposed system contains Migration Manager, Arbitrator, Performance Man-

ager and Power Manager. Migration Manager issues commands for live migration of VMs.

Arbitrator makes decisions about placements of VMs and which VMs to migrate. Performance

Manager monitors applications behavior and resizes VMs according to current resource re-

31

quirements and the SLA. Power Manager adjusts hardware power states and applies DVFS.

In pMapper, application SLA means their needed Infrastructure resources which is different

than Software layer quality explained this thesis. So, only Physical and Infrastructure qual-

ity metrics are covered in this research. Kusic et al. (2009) investigates the behavior of each

application running on the cloud using simulation-based learning. Using Kalman filter, future

system states over a prediction horizon has been estimated by applying limited look-ahead

control. In this paper, quality in Software layer has been considered indirectly using a learning

system. Song et al. (2009) investigates the scheduling problem in three levels by introduc-

ing application, local and global level schedulers. Authors develop the RAINBOW framework

which assigns priority to group of VMs which run a specific application and considers the Soft-

ware layer QAs indirectly and limited. This model doesn’t consider the case in which different

applications running on a VM have different quality parameters. The GreenCloud project by

Buyya et al. (2010) has a QoS-aware energy-efficient provisioning for Cloud resources. This

research proposes real-time scheduling of VMs in cloud data centers and applying DVFS in

order to minimize the energy consumption and deadline constraints of the applications. This

solution considers the application quality as a condition on the hosted VM. For example in their

simulation SLA violation occurs when a VM cannot get amount of MIPS that are requested.

In this section we briefly reviewed similar works to MULQA. Compared to the studied liter-

ature, MULQA is different in terms of introducing an autonomic, modular and customizable

quality management framework to consider cloud QAs independently and in all layer of the

cloud simultaneously. This idea complies the heterogeneity and scalability of the cloud sys-

tems at the same time. Also we have modeled, implemented and tested our proposed system

with the same characteristics.

CHAPTER 3

MULQA SYSTEM DESIGN

3.1 Introduction

In this chapter, the architecture of MULQA, our proposed solution for making cloud systems

quality-aware, is described and explained in detail.

According to state of the art (Section 2.4.1), some of the challenges in today’s quality man-

agement in cloud systems are: the lack of application management and the lack of approaches

to cloud deployment optimization services with various quality metrics such as performance

and cost. Also in quality monitoring, managing different quality requirements is difficult, be-

cause in the cloud there exist multiple providers, and each of them needs distinct approaches

to control their services.

This chapter first gives a general view of the quality model and the multi-layer concept. Then,

it illustrates the model notations for layers, quality attributes, and metrics of the cloud. Later, it

describes our modeling approach for the quality metrics, and it explains the finite state machine

of the MULQA and the quality control mechanism.

3.2 Parameters and Notations

To describe the system design specifications and operations, some notations and symbols are

presented. This section explains the notations for layers, quality attributes and metrics.

Figure 3.1 shows the hierarchy of these notations. The cloud controlled by MULQA consists

of different layers (li) and each layer has its own quality attributes (e.g. qi
j), and finally each

quality attribute has some metrics (e.g. mi, j
k).

In addition, all the notations introduced in this chapter are summarized in Table 3.1. Some of

these notations will be explained later in this chapter.

34

... ...

...

...

All Metrics

All Quality
Attributes

All Layers
1l

1
1q | |

| |
| |L
L
Qq

1,1
1m

1,1
2m | |

| |,| || |

| |,| |
| |

L

L QL

L Q
Mm

L

Q

M

Cloud

| |Ll

...
1

1
| |Qq

1,1

1,1
| |Mm

| |
1
Lq

1Q | |LQ

L

| || |,| |
1

LL Qm | || |,| |
2

LL Qm

...

1,1M
| || |,| |LL QM...

,: i i j
i j kkey l q m

Figure 3.1 MULQA notations hierarchical model

3.2.1 Layers

MULQA is designed in order to be able to monitor metrics, and perform actions, in different

layers of the cloud system autonomously, in order to improve different quality attributes. These

targeted layers together create the set L which consists of some li. We have:

li ∈ L

For example, li can be physical, in f rastructure, plat f orm or so f tware. The cloud can be lay-

ered more fine-grained, to attain better separation of concerns. As an example, {presentation,

application,business,data} can be used instead of so f tware layer. Furthermore, quality man-

ager may decide to add extra layers, such as datacenter below physical layer in order to qual-

ity control the data center facilities such as racks, cooling systems, power systems and security

systems used in the data center.

35

Table 3.1 Summary of notations used in MULQA

design

Notation Description
li ith layer of the cloud

qi
j jth QA of ith layer

mi, j
k kth metric for the jth QA of the ith layer

L set of all layers of the cloud

Qi set of all QAs of the ith layer

Mi, j set of all metrics for the jth QA of the ith layer

M set of all metrics for all QAs in all layers

T i, j,k
g,min global minimum threshold for mi, j

k metric

T i, j,k
g,max global maximum threshold for mi, j

k metric

T i, j,k
t,min transition minimum threshold for mi, j

k metric

T i, j,k
t,max transition maximum threshold for mi, j

k metric

T i, j,k
w,min warning minimum threshold for mi, j

k metric

T i, j,k
w,max warning maximum threshold for mi, j

k metric

T i, j,k
n,min normal minimum threshold for mi, j

k metric

T i, j,k
n,max normal maximum threshold for mi, j

k metric

Ii, j,k
g global interval for global thresholds of mi, j

k metric

Ii, j,k
t transition interval for transition thresholds of mi, j

k metric

Ii, j,k
w warning interval for warning thresholds of mi, j

k metric

Ii, j,k
n normal interval for normal thresholds of mi, j

k metric

ψ i, j
k status of mi, j

k metric, compared to its thresholds

A set of all actions available to execute by MULQA

an nth action member of set A

Something we need to clarify here is that these layers are an abstraction for the level of com-

ponents which exist in the cloud system and they are different from the kind of service levels

obtained from cloud systems mentioned in Section 2.2.1 (e.g. SaaS, PaaS, IaaS).

3.2.2 Quality attributes

We target each quality attributes in distinct layers through qi
j which denotes jth QA of the ith

layer. As depicted in Figure 3.1, set of Qi, includes all values of qi
j in the specific layer of li.

We have:

36

qi
j ∈ Qi ⇒ li ∈ L

While the qi
j notation has been used in mathematical statements and definitions, to increase

readability we have introduced the (i, j) equivalent tuple to be used in explanations.

As an examples:

Q1 = {q1
1} ∼ {(physical,cost)}

Q3 = {q3
1} ∼ {(plat f orm,reliability)}

Q4 = {q4
1,q

4
2,q

4
3} ∼ {(so f tware,reliability),(so f tware,security),(so f tware, per f ormance)}

Symbol of ∼ shows the equivalence relationship. Quality attributes set in each layer can in-

clude: performance, availability, reliability, scalability, cost, energy-efficiency or other quality

manager custom defined QAs.

3.2.3 Metrics

In MULQA, each quality attribute of a targeted layer may have different metrics to measure

and control. These metrics have been defined as mi, j
k which denotes kth metric from the jth

QA of the ith layer. Additionally, as illustrated in Figure 3.1, Mi, j is the set which includes all

values of mi, j
k in the specific QA of qi

j (which are for layer li). We have:

mi, j
k ∈ Mi, j ⇒ (qi

j ∈ Qi)∧ (li ∈ L)

37

Furthermore, all metrics of the layer li will make the set of Mi, and the global set of all metrics

of the cloud will be denoted by the set of M. It is convenient that:

⋃

qi
j∈Qi

Mi, j = Mi

⋃

li∈L

Mi = M

Likewise, to increase readability we have introduced the (i, j,k) tuple to be used in practice,

instead of mi, j
k . As some examples:

M4,3 = {m4,3
1 ,m4,3

2 ,m4,3
3 } ∼ {(so f tware, per f ormance,responsetime),

(so f tware, per f ormance,receivedreqs),

(so f tware, per f ormance, throughput)}

M3,3 = {m3,3
2 } ∼ {(in f rastructure, per f ormance,cpuusageV M2)}

M1,2 = {m1,2
1 } ∼ {(physical, per f ormance,cpuusageNode1)}

3.3 Finite State Machine model of MULQA

In this part, the controlling mechanism of MULQA is expressed as a Finite State Machine

(FSM) which is illustrated in Figure 3.2 with three main states: Normal, Warning and Transi-

tion state. The initial state of this FSM is Normal, and an Error state is considered to be used

when MULQA can’t handle violations. Penalties in the SLA, and SLA renegotiation, can be

mediated for the error state, however, these issues are not covered in this thesis.

In all the main states (normal, warning and transition), an updateState() function is running

periodically, to check the violation (and warning) conditions (provided by Analyze module

shown in Figure 3.4) of metrics, and return one of the nState, wState or tState events for the

FSM. Also an eState can be returned if a transition takes longer than a specific time.

38

Warning

Transition

Error

/ ()tState transit/ (()wState prepToTransit

/ ()nState decMonFreq

/nState

/ ()eState error/ ()Heal

&incMonFreq())

Normal

Figure 3.2 MULQA finite state machine

In the normal state, the quality metrics in different layers are periodically fetched by the Mon-

itor module. After gathering the measured data, in the Analyze module, the quality metrics

in different layers are compared with the associated thresholds. If a metric’s value passes its

attributed threshold, the violations or warnings are reported to the Plan module. Once the

updateState() in this module, generates wState by evaluating violations and warnings, the

system will be entered to the warning state and runs incMonFreq() and prepToTransit().

incMonFreq() is called to proactively monitor the system by increasing the monitoring fre-

quency. Also entering warning state, executes prepToTransit() function to investigate the

required operations and resources to return/compensate the values of quality metrics. The fre-

quency for mining the information increases in order to monitor the information more precisely.

For each metric, two kinds of thresholds for over-utilized and under-utilized situations are con-

sidered. If the updateState(), generates tState, actions will be executed through transit() func-

tion and the system will be transited back to the Normal state. All resources are provided and

preparations are managed previously in the warning state (through running prepToTransit()

previously) in order to run the transit() smoothly. Transition state should be done as short as

39

possible to not harm the quality parameters. For instance, in Transition state, actions like VM

resizing, VM group scale-up, VM group scale-down and VM migration can be performed. If

these actions take longer than a specific time, eState event will be triggered which takes the

system to the Error state. However, if these actions succeed, the system will be back to the

normal state by generating nState event.

Furthermore, if the system is currently in the Warning state and the updateState() returns

nState, decMonFreq() will run and system will return back to Normal state. decMonFreq()

reverts the monitoring frequency by decreasing it to the normal state value.

Note that, the self-healing aspect of autonomous systems is not in the scope of this thesis,

however it can be implemented as shown in Figure 3.2 in the Error state with the red arrow

transition.

3.3.1 Metric thresholds

For each of the metrics provided by the system, consumer specifies intervals which satisfies

her desired quality for that metric. MULQA defines four interval sets for each metric: Normal,

Warning, Transition (or Violation) and Global. In this thesis, we have identified each interval

set simply with two thresholds: I = (Tmin,Tmax). However, the general form could be a set

which is not necessarily continuous.

Figure 3.3 illustrates these intervals. In this figure, the x-axis is for the metric values. All

possible values for a metric such as mi, j
k , are between its global maximum and minimum,

which is Ii, j,k
g = [T i, j,k

g,min,T
i, j,k

g,max] interval, while the provider only provides the values in Ii, j,k
t =

[T i, j,k
t,min,T

i, j,k
t,max] and the consumer expects the metric’s value to be in Ii, j,k

w = [T i, j,k
w,min,T

i, j,k
w,max] which

is the healthy interval for the metric as well. However, the consumer can ask for a strict

condition on metric’s value to be in Ii, j,k
n = [T i, j,k

n,min,T
i, j,k

n,max] too. Ii, j,k
n also can be set by the

quality manager or by default as a subset (i.e. 90%) of the Ii, j,k
w interval to specify the warning

state borders.

40

Normal
Warning
Transition

States

,i j
km

, ,i j k
g,maxT, ,i j k

g,minT , ,i j k
t,minT , ,i j k

t,maxT, ,i j k
w,minT , ,i j k

w,maxT, ,i j k
n,minT , ,i j k

n,maxT

, ,i j k
nI

, ,i j k
wI

, ,i j k
tI

, ,i j k
gI

Healthy

All Possible Values

, ,i j k
tmin

, ,i j k
wmin

, ,i j k
norm

, ,i j k
wmax

, ,i j k
tmax

Status:

Figure 3.3 MULQA metric intervals and thresholds and their

relationship with system states

Consumer specifies normal and warning intervals, and provider specifies the transition interval.

Normal interval should be a subset of the warning interval. When a monitored metric’s value

exits the normal interval, it passes a normal threshold (upper or lower) which takes the system

to the warning state. Next, the metric can either exit the warning interval (which takes system

to the transition state) or go back to normal interval (which takes back the system to the normal

state).

So for the normal and warning intervals of metric mi, j
k , we have:

Ii, j,k
n = (T i, j,k

n,min,T
i, j,k

n,max)

Ii, j,k
w = (T i, j,k

w,min,T
i, j,k

w,max)

Ii, j,k
t = (T i, j,k

t,min,T
i, j,k

t,max)

Ii, j,k
g = (T i, j,k

g,min,T
i, j,k

g,max)

Ii, j,k
t ⊆ Ii, j,k

w ⊆ Ii, j,k
t ⊆ Ii, j,k

g

41

Note that T i, j,k depends on the metric mi, j
k and is defined based on the the quality sensitivity

and SLA for that specific metric. For instance, in application layer, MySQL connection alarms

(from 10/min to 20/min) , web-page error(from 0.01% to %1) or response time (from 50 msec

to 1sec) can be different for different applications (Cima et al. (2015)).

3.3.2 Metric status, quality warning and violations

As explained in Section 3.3.1, if a quality metric passes the T i, j,k
w,max or T i, j,k

w,min thresholds, the

quality constraints are most likely violated. We define metrics quality status set ψ , which

includes statuses of each metric. Each member of ψ , presents the status of a metric such as

mi. j
k compared to its thresholds, which can be: ψ i, j,k

tmin (for low value violation), ψ i, j,k
tmax (for high

value violation), ψ i, j,k
wmin (for low value warning), ψ i, j,k

wmax (for high value warning) and ψ i, j,k
norm (for

normal).

These values are added to ψ set, if the probability of being in a section shown in Figure 3.3

(next to status) becomes higher than a benchmark presented by ε for a specific metric. As a

result, for the violation status, we introduce the following logical statements:

i f (Pr(T i, j,k
w,max < mi, j

k < T i, j,k
t,max)> ε)⇒ ψ.Add(ψ i, j,k

tmax) (3.1)

i f (Pr(T i, j,k
t,min < mi, j

k < T i, j,k
w,min)> ε)⇒ ψ.Add(ψ i, j,k

tmin) (3.2)

For warning statuses, wMin and wMax, similar statements with are evaluated:

i f (Pr(T i, j,k
n,max < mi, j

k < T i, j,k
w,max)> ε)⇒ ψ.Add(ψ i, j,k

wmax) (3.3)

i f (Pr(T i, j,k
w,min < mi, j

k < T i, j,k
n,min)> ε)⇒ ψ.Add(ψ i, j,k

wmin) (3.4)

42

And finally, for the normal status:

i f (Pr(T i, j,k
n,min < mi, j

k < T i, j,k
n,max)> ε)⇒ ψ.Add(ψ i, j,k

norm) (3.5)

Clearly, ψ depends on the metrics in all layers including physical and virtual resources, plat-

forms and applications.

3.3.3 Control

As discussed earlier, in order to control a quality violation, first system needs to analyze the

metric values to predict the status of the metrics.

The Analyze function by evaluating Equations 3.1 to 3.5 for the predicted metric values, returns

the statuses for metrics. This function can be explained as:

Analyze : M → ψ

Note that MULQA is open to different kind of decision making mechanisms. Mechanisms

such as machine learning or control theory mentioned in Section 2.3.2.

After analyze, to control the violation, system needs to run prepToTransit() while moving to

the warning state, to plan for the the violation situation. This planing could be for instance,

allocate (for over-utilized case) or de-allocate (for under-utilized case) a resource. Next, we

run transit() when violation is about to happen to run the planned situation in order to return

to the normal state while preventing the violation.

What we plan, in order to prevent the violation of metric mi, j
k , would be a planning for a set of

actions which is relevant to mi, j
k . We define actions set A, to cover all these possible actions,

for all kinds of violations. We have:

43

an ∈ A

For instance, in a setting these actions can be: V mResize, ScaleupV mGroup, ScaleDownV mGroup

and LiveMigrateV m.

The set A, is the answer to the "what to do?" question. On the other hand, plan function defined

below is the answer to "when to do a specific subset actions of set A?":

Plan : P(ψ)→ P(A)

In this function, the domain is P(ψ), which denotes the power set of ψ , or in the other words,

set of all subsets of the status set. Similarly, the codomain is the power set of actions set.

3.4 General Model

To be able to monitor all quality attributes in different layers of the cloud autonomously,

MULQA is designed as illustrated in Figure 3.4. This general design improves the initial

design concepts of ACCS mentioned in Section 2.2.5; However, MULQA’s general design has

two main differences:

• Cloud layers and layer agents are introduced which yields to fine-grained quality control

and troubleshooting of the overall cloud.

• The human guidance has been introduced through an API module which is used by a quality

manager to customize other modules. Furthermore, API could be used by cloud layer

consumers and providers to ease and clarify the SLA negotiation by agreement on fine-

grained quality metrics which is pushed to the knowledge module too.

As mentioned in Section 2.2.5, autonomic systems are favored to handle situations like un-

certainty, heterogeneity, dynamism and faults easily. This is the reason for using ACCS ar-

44

chitecture in the MULQA design. ACCSs sense, monitor, and react based on the situations,

such as self-healing, self-protecting, self-configuring, and self-optimizing. However among

these self-management abilities, MULQA’s first goal is to build a framework to enable re-

searchers customize the system with their desired quality management algorithms which can

be categorized to provide self-configuration and self-optimizing kinds of self-management to

the targeted cloud system; However, it can be used to improve self-healing and self-protecting

too.

MULQA is composed of functional and non-functional components. Functional components

include API, Monitor, Analyze, Plan and Execute. Also MULQA has Knowledge as a non-

functional component where all the information about the environment and the system is lo-

cated. For a system component to be self-managing, it must have an automated method to

collect the details it needs from the system; to analyze those details to determine if something

needs to change; to create a plan, or sequence of actions, that specifies the necessary changes;

and to perform those actions. When these functions can be automated, an intelligent control

loop is formed. The architecture dissects the control loop into four parts that share knowledge:

monitor, analyze, plan and execute. The autonomous control flow is shown with black arrows

in Figure 3.4. This flow can be explained as below:

a. The monitor function provides the mechanisms that collect, aggregate, filter and report

details (such as metrics and topologies) collected from a managed resource through Sensor

agents and transfers this information to the next module for further analysis.

b. The analyze function provides the mechanisms that correlate and model complex situ-

ations (for example, time-series forecasting and queuing models). These mechanisms

allow the autonomic manager to learn about the IT environment and help predict future

situations.

c. Once data has been analyzed, the plan function provides the mechanisms that construct

the actions needed to achieve goals and objectives. The planning mechanism uses policy

information to guide its work.

45

d. The execute function provides the mechanisms that control the execution of a plan with

considerations for dynamic updates.

e. Finally Effector agents are used to transfer the new policies, rules, and alerts to other

nodes of the autonomic system with updated information.

In Figure 3.4 three kinds of actors are illustrated: cloud consumer, cloud provider and quality

manager. MULQA offers a general and customizable system. Autonomic systems need as-

sistance from humans and Quality manager is the one who is supervising the quality control

procedure. This actor by using API, configures and customizes MULQA autonomous mod-

ules. Quality manager can change all functional and non-functional modules through the non

autonomous flow shown with blue arrows in 3.4.

As Figure 3.4 presents, a cloud controlled by MULQA, will have two kinds of agents (shown

with circles) in each layer to I) sense metrics and transfer data to the monitor module II) trigger

desired actions sent from executer module. The rule of these agents is similar to Sensors and

Effectors in IBM’s autonomous model.

Moreover, MULQA modules can be deployed centralized or distributed, inside or outside the

cloud which is quality-controlled by MULQA.

3.4.1 Discussion

Satisfaction of the cloud customers is based on how much the cloud service is provided with

accordance with the SLA and advertised QoS. While a violation in one layer or a components

of the cloud can affect the whole system, providing the desired End-to-End (E2E) quality level

must be considered in quality management. According to Toosi et al. (2014), this is one of the

major issues in the current solutions of the cloud. MULQA by investigating different qualities

in all layers (from top layer to the bottom) of the cloud, is an effort to fix this issue.

Moreover, as mentioned in Beach et al. (2015), quality must be considered in the different

phases of the life cycle of cloud solutions, including the component design of the applications.

46

Knowledge

API

Analyze Plan

Monitor Execute

s ... s e ... e

s ... s e ... e

s ... s e ... e

s ... s e ... e

Quality Manager

ProviderConsumer

l 1

l 2

l ...

l i

Functional Module

Actor

Non Functional Module

Cloud Agent

Legends

Autonomous Flow

Non Autonomous Flow

Figure 3.4 General model of MULQA

Thus, it is important to think of suitable architectural decisions (while designing a cloud ap-

plication) for cloud developers who want to quality-control their system with MULQA. Com-

plementarily, MULQA as a self-managed system is introduced to improve the E2E behavior of

the global service.

In addition, stakeholders in MULQA can negotiate about SLA more clearly due to availability

of fine-grained quality metrics. This will be explained in Section 3.5.

Another approach for hierarchical classification of the quality metrics could be first divide the

cloud by layers, and then by components of the layers and finally metrics of those components.

However, MULQA instead of components, considers quality attributes, which makes the qual-

ity negotiation more understandable, where customers can focus on their desired QA based on

47

their concerns, especially QAs usually affect each other negatively or positively as mentioned

in Section 2.3.3. However, MULQA’s approach, may be more difficult for the providers who

want to add metrics for their recently added components.

3.5 SLA Negotiation

As mentioned previously in Section 2.4.2, achieving SLA requirements is difficult and chal-

lenging in cloud resource management. Regarding to the state of the art, in future models, SLA

definition and specifications must be addressed in a suitable way that covers the consumers’

expectations. Moreover, studies suggest that there should be fine-grained quality-based negoti-

ation between providers and users to fulfill SLAs, and the literature doesn’t include models to

cover this problem effectively. As an example, there is no model to enforce limit mechanisms

on the virtual machine resources to meet SLAs. Furthermore, the literature mentions that the

risks related to these kinds of SLA violations need to be managed.

Figure 3.5 shows the interaction of the cloud consumer and cloud provider to negotiate SLA in

autonomic clouds which has been discussed in the literature. In this model different consumers

select the QAs they care for the most, and negotiate over them with providers. This model gives

a general idea of SLA negotiation and it doesn’t go through the details such as: QA metrics,

QA of which layer or component and the user-story of the SLA negotiation. Also there is no

link between SLA negotiation (non-autonomic) and the autonomic aspects of the cloud.

Stakeholders in MULQA can negotiate the SLA more clearly due to availability of fine-grained

quality metrics. Figure 3.6 shows an SLA negotiation scenario for a cloud controlled by

MULQA.

In this process, first the providers (through Rp
i request set for provider i) submit all the metrics

of the services they are providing, as well as the It intervals for each metric which specifies

the possible quality thresholds for the providing qualities. Next, each consumer (through Rc
j

request set for consumer j) selects a subset of the provided metrics which they are interested

in, as well as the Iw and In intervals for each selected metric. Quality manager (through Rq
k

48

SLAProviders
Consumers

Cost

Time

Reliabil ity

Scalability

Security

Figure 3.5 Literature model for quality-aware SLA in

autonomous systems

Taken from Singh and Chana (2016)

Knowledge

API

Quality Managers

Providers Consumers

SLA

SLA
Processor

p
iR c

jR

q
kR

1 2

Executer

In Error state

Figure 3.6 MULQA model for quality-aware SLA negotiation

request set for manager k) can set the SLA management parameters (e.g. default percentage of

Ii, j,k
n /Ii, j,k

w when the consumer only provides the Ii, j, j
w). All these requests enter the system from

49

API module and they pass the "SLA Processor" module in order to manage the conflicts, and

be verified. For instance, a simple verification could be checking if Ii, j,k
w ⊆ Ii, j,k

t for all metrics

like mi, j
k . All the SLA inputs from system stakeholders will be stored in the knowledge module,

in order to be used by other modules (such as analyze and plan) in the future.

Moreover, desired consumer QA metrics can be prioritized by a weight parameter which can

be added to Rc
k for any selected metric of any consumer. Also, in the case of Error state in the

FSM mentioned in 3.3, penalties and SLA renegotiation process can be managed through a call

from the Executer module to the SLA processor module.

CHAPTER 4

MULQA IN ACTION

4.1 Introduction

In the previous chapter, the general design and architecture of MULQA was explained through

different diagrams and notations. This chapter dives into the details of MULQA implementa-

tion and the decisions made to fit the use-case and tests. This chapter explains how MULQA

can be used in practice, in a cloud system with OpenStack installed middleware, and pictures

the deployment architectures and describes the implemented modules.

Moreover, a three-tiered web application use-case which is designed to validate our solution,

has been described. Also, the results of the experiments and the related discussion is provided.

To test out MULQA, first a distributed cloud-native application use-case have been designed to

be able to run on top of the Openstack infrastructure. The use-case application for this thesis

is a three-tiered web application which consists of a web presentation tier, an application tier,

and a persistent database tier. Second, the Openstack infrastructure has been designed and

deployed in order to provide the needed requirements of the use-case application. Then, the

use-case application has been deployed on the Openstack.

Moreover, MULQA will be installed on the system in order to provide the autonomous multi-

layer quality-aware cloud functionality. Finally, the sample test scenarios are designed and run

in order to show the MULQA capabilities and picture the results. Figure 4.1 shows the steps

taken in order to do experiments in this thesis.

Since our use-case is a web-application, the selected meters and actions in all layers of the

cloud will be relevant to this use-case.

Web application use-case is chosen, because it is the most prevalent application in today’s busi-

ness with more than 1.1 billion websites online today as reported by Netcraft (2017). Web apps

52

Designing the Use-case

Designing, Deploying and Configuring the Cloud Infrastructure

Implementing and Installing the Three-tier Web App Use-case (LAMP)

Implementing MULQA and All integration tools in order to fit the Use-case

Defining Appropriate Metrics and Actions and Running Tests

Research, Analysis

Devstack, Openstack,
Linux Configs

Heat-Template, Cloud
Config

Python, Ansible, Bash,
Shade

Ansible, Stress, Apache
Bench, PySci

Steps Tools

Figure 4.1 Steps to test MULQA in action and the used tools

are client-server applications in which the client usually runs in a web browser. Web applica-

tions include common websites for web-mails, social media, e-commerce, online banking and

more. Another reason for selecting this test-case is, because they are typically characterized

by IT resource requirements that fluctuate with usage, predictably or unpredictably and failure

to respond to either can impact customer satisfaction and sales. So, quality assurance of the

IT systems is crucial to these applications. Chosen web stack to run the use-case, is a LAMP

stack which consists of Linux, Apache, MySQL, and PHP. LAMP is considered by many as

the platform of choice for development and deployment of high performance web applications.

In this thesis, Openstack is chosen as the cloud middleware due to its open source code and

its popularity and growth in today’s cloud market. Openstack offers comprehensive platform

for all IT applications, offering agility and cost-effectiveness by controlling large pools of

compute, storage, and networking resources throughout datacenters, all managed through a

dashboard or API. Also Openstack offers monitoring and orchestration of the cloud resources

which have been used by MULQA in order to perform its tasks.

This chapter is divided into three main sections: Implementation, Deployment, Experimental

Results. In the first section, the simplified implementation of MULQA modules is described.

53

The designs explained previously in Section 3 are implemented in more details to fit the use-

case and tests. Next, the infrastructure architecture in Openstack has been explained, and

following, the deployment of the use-case is described in detail. Finally, this chapter talks

about the tests performed and system settings, and illustrates the results.

According to the use-case and the available resources, layers set in MULQA implementation

and deployment in this thesis is defined as:

L = {l1, l2, l3, l4, l5} ∼ {Physical,Openstack, Instance,Plat f orm,So f tware}

Note that, in this implementation, {Openstack, Instance} is used instead of In f rastructure

layer to target Openstack components and VMs separately.

Figure 4.2 shows these layers with some of their deployed components in this thesis. c1_2server

and c1_3server are physical blade servers which Openstack has been deployed on. vm_web1

and vm_web2 are two instances of a web_server scaling group deployed in Openstack. Also

apache refers to Apache web-server deployed on some instances of the Openstack. Word press

has been used as the main software to be accessed through apache. WordPress is a free and

open-source content management system (CMS) based on PHP and MySQL and according to

W3Techs (2017), it was used by more than 27% of the top 10 million websites as of December

2016.

4.2 MULQA Implementation

In the implementation phase of MULQA, different programming and scripting languages such

as Python, Bash and YAML are used which are listed in Figure 4.1. Also monitor and exe-

cute modules use Ansible playbooks to communicate with both Openstack nodes (computes,

controllers and etc.) and instances (VMs). Ansible is an open-source automation engine that

automates cloud provisioning, configuration management, and application deployment. Once

installed on a control node, Ansible, which has a secure agentless architecture, connects to a

managed node through the default OpenSSH connection type. Using Ansible for communicat-

54

l 1

l 2

l 4

l 5

l 3

Physical

Openstack

Instance

Platform

Software

c1_2server 3c1_ server

nova neutron cinder

linux apache mysql

_ 1vm web _ 2vm web _ 1vm app

wordpress haproxy

v

k n

component exampleLayer

Figure 4.2 Layers defined in MULQA implementation and

examples of deployed components in each layer

ing with nodes and instances, eliminates the need for having agents and listeners or any extra

package installation on these elements of the cloud. Moreover, having more than 700 modules

(Ansible (2017a)), Ansible eliminates coding from scratch for monitoring and control tasks.

Installing Ansible tower is recommended for this implementation which enables playbooks to

be triggered by requesting a URL. This can be used directly in alarm action trigger of a stack

deployment in Openstack.

Python is used mainly for implementing the main MULQA system and its modules. Some

of imported libraries in the Python codes are shade, mysqldb, and Openstack clients. Shade

(Openstack (2017c)) is a simple client library for interacting with OpenStack clouds which

eases and decreases the code amount for regular cloud commands, rather than using REST

APIs and parsing the data.

55

YAML is used to build the Heat templates in order to make the use-case stack (i.e. three-tier

web application). Also, Cloud config (Cloud-init (2017)) is used to configure the Cloud-init

scripts on stack instances’ first run.

In addition, devstack local.conf and local.sh configs for both controller and compute nodes are

provided and some useful tools have been developed to ease and clarify the reproduction of the

implementations and deployments.

4.2.1 Data storage

MULQA uses two kinds of databases. A time-series database is used for storing the metered

data and another Mysql database for storing MULQA parameters and settings. Time-series

database can be Openstack’s default Gnocchi or other third-party DBs such as InfluxDB. In

Monitor, Analyze, Plan and Execute modules, associated algorithms are stored in files. These

algorithms can be changed through the API module by the quality manager.

In order to test the design of MULQA, described in Chapter 3, the system workflow and its

modules can be implemented as shown in Figure 4.3. In this figure the control loop is shown

with numbered arrows.

4.2.2 API and SLA modules

API module is connected to Monitor, Analyze, Plan and Execute modules as well as the

MULQA DB. Cloud providers, cloud consumers and quality managers access MULQA through

this API. The suggestion for this API is an Openstack style CLI and a Horizon plugin. This

functionality of MULQA has not been implemented in this work. Quality manager will be

capable to change the algorithms in the other modules and stakeholders will be able to input

their desired metrics and their associated thresholds. Additionally, for the SLA negotiation

and enforcement, MULQA can be integrated with Congress project of Openstack as explained

in Giannetti and Owens (2016). These SLAs can be defined as a set of complex policies in

56

Monitor

Analyze Plan

Execute

Instance
#2

Instance
#1

Instance
#n

Node#1 Node#2 Node#m

...

...

Time-Series
Data DB

Ansible

Ansible

Heat

Nova

Ceilom
eter

Neutron1

2

2

3

4

5 7 8

9

MULQA DB

Metrics,
Frequency

Violations,
Algorithms,

Actions
Aodh

API
All Green Components and

MULQA DB

Thresholds

6

9

Ansible
Inetgration

Figure 4.3 MULQA implementation modules and the control

loop workflow

Congress, that identify conditions to be met in the infrastructure. The SLA implementation is

not in the scope of this thesis.

4.2.3 Ansible integration module

Note that, Ansible before running a playbook, needs to be fed with the list of hosts (a.k.a.

inventory). As the instances and nodes of the cloud are dynamically changing, we can’t use

the default static hosts file. One solution could be using a pull model for playbook execution,

which makes the system more dynamic and scalable. However, this approach needs Ansible

to be installed on all nodes and instances of the cloud and it increases the complexity of the

management of the playbook execution. The proposed and implemented solution in this thesis

is an application which performs the dynamic inventory generation continuously. This pro-

gram has been developed in Python and fetches both the current Openstack nodes (through

57

nova−manage CLI parsing) and Openstack instances (through Shade calls) and then catego-

rizes them by their host type or instance type (i.e. [openstack-compute], [openstack-scheduler],

[instances-web], [instances-db]).

4.2.4 Monitor

The monitor function provides the mechanisms that collect, aggregate, filter and report details

(such as metrics and topologies) collected from a managed resource through Sensor agents and

transfers this information to the next module for further analysis.

To monitor all layers of the cloud, this thesis has used Openstack’s Telemetry projects and An-

sible. Openstack’s Telemetry project has been divided into smaller projects such as Aodh (an

alarming service), Ceilometer (a data collection service), Gnocchi (a time-series database and

resource indexing service) and Panko (an event, metadata indexing service). Figure 4.4 shows

how these projects are connected and the high-level architecture of Telemetry in Openstack.

Figure 4.4 High-level architecture of Openstack Telemetry

58

As illustrated in Figure 4.3, Monitoring module first fetches the list of metrics to collect and

the frequency for the collection, from the database. Next, this modules collects data from two

main sources. Ceilometer has been used mostly to collect the metrics related to the lower

layers of the cloud (e.g. Physical, Openstack and Instance layers). Metrics such as: CPU,

RAM, Network and IO utilization of Openstack nodes and instances, object storage and block

storage metrics and SDN and Load balancer metrics. List of all these metrics can be found in

Openstack (2017d).

On the other side, by using Ansible calls, data collection from upper layers (e.g. Platform and

Software) is performed. For example, data collection of metrics related to Wordpress, Apache

webserver, MySQL and Linux services can be performed by running Ansible playbooks.

Frequency of the data collection for the Ceilometer metrics is configured in the pipeline.yaml

file next to the interval value for each metric. For the other metrics which their value will

be fetched in a loop through a playbook call, the running interval for each Ansible playbook

determines the monitoring frequency. Note that, to utilize other monitoring tools, extra local

sensors can be installed and configured on the instances and nodes through Ansible too. For

example monitoring agents of systems such as Nagios, Zabbix or Sensu can be easily integrated

with the MULQA system. Monitoring modules of Ansible are listed in Ansible (2017b).

After collecting the data, Monitor module stores them in a time-series database which can be

Openstack’s Gnocchi or other similar databases to be used in the Analyze phase.

4.2.5 Analyze

As mentioned before, the analyze function is to provide the mechanisms that correlate and

model complex situations to allow the autonomic manager to learn about the IT environment

and help predict future situations.

This module fetches the metering data from the time-series DB and then predicts the future

values for the desired metrics and compares them to the thresholds fetched from the MULQA

59

DB and updates the violations and states data in the MULQA DB which is used in the Plan

phase.

Though MULQA is open to different estimation methods to predict the quality metrics vari-

ables, in this section a simple estimator is introduced to trace the various quality metrics.

Assuming mi, j
k as the variable metric value. The estimated value of the mi, j

k can be obtained

by an Exponential Weighted Moving Average (EWMA) estimator (Guo and CHEN (2002)) in

which the most recent rational subgroup mean and the current value of the metric will be used

iteratively over the time according to the following Equation:

Emi, j
k (t +1) = α i, j

k mi, j
k (t)+(1−α i, j

k)Emi, j
k (t)

Where the parameter α i, j
k is, the weight given to the most recent historical data and α i, j

k ∈ (0,1).

α i, j
k selection is a matter of experience and does depend on the dynamicity of the metric so that

more dynamic the metric lower the value of α should be selected. However, tracking the

variable in a short time is enough to select the best weight coefficient.

Note that, since scale and noise of the system increases, these quality metrics become more

complicated and harder to be tracked from the software layer to the physical layer. Under these

circumstances, more advanced estimation methods are recommended.

4.2.6 Plan

As depicted in Figure 4.3, once data has been analyzed, the plan function by fetching the state

of the metrics and violations from MULQA DB, provides the mechanisms that construct the

actions needed to achieve goals and objectives. This module should be designed to find the

best set of actions and send it to the execute module in order to control the system. To plan

efficiently, this module will fetch the available actions and their effects from the MULQA DB.

60

In the implementation of this thesis, Plan module is a simple mapping algorithm which is based

on the experience.

However, MULQA system can be easily used to implement planing algorithms based on dif-

ferent approaches like control theory, machine learning or operational research and other opti-

mization algorithms.

4.2.7 Execute

Due to diversity of coverage in Monitor, Analyze and Plan modules on all layers and different

QAs, the Execute module should have the similar control action capabilities. This tends to

design a module which is able to trigger actions in different components of the cloud, such as:

Openstack modules including Nova, Neutron, Heat, Aodh and Openstack instances through

Ansible calls. Execute module in MULQA is brainless, and as Figure 4.3 depicts, it just runs

the action set provided by Plan module and sends appropriate signal to the other modules which

are described in the following.

Aodh and Panko components from the Telemetry project of Openstack can be called to make an

alarm or a notification in response to a specific state change of the cloud or violation (warning

or transition). A common usage of calling Aodh and Panko can be a response to a hypervisor

failure, which triggers evacuation alarm for an Openstack node. If a hypervisor needs to be

taken down for maintenance, the source hypervisor should be emptied by moving instances

to other target hypervisors. Rebuilding instances is required when something goes horribly

wrong. The instance is booted from a new disk, but preserves its configuration including the

IP address.

Also some of the other actions can be plugged (with a REST API call) to the action trigger

attribute of an alarm. For instance scale-up URL can be attached to the CPU alarm of a scaling

group.

61

Neutron can be called in order to control the Openstack network including: adding, removing

or configuring the routers, load balancers or other network components, changing the topology

or even change the SDN layer.

Moreover, Nova can be called to perform an action (generated by a command from the Plan

module). Among common usages of Nova calls are, resizing or migrating an instance. When an

application runs into resource limits and does not scale out (for example in autoscaling group of

instances), scaling up can be considered. With Openstack enabled cloud, its possible to change

the memory, CPU and storage on the servers. Someone can start with a smaller set of resources

and then order additional memory or CPU for the physical servers or move to larger systems

as the need arises. There is, however, a limit to how much resources can be scaled up and it

may be cost prohibitive. Most of these resize operations require downtime. When you resize

the primary disk on a dedicated server, the cloud provider may reinstall the operating system.

With the proper partitions, OpenStack allows the resizing of ephemeral storage without loss of

data and will move the VM to another hypervisor in the process. allow_resize_to_same_host

parameter can be set to allow resizing on the same host. If supported, hot-add RAM (Kernel

(2016)) and hot-plug CPU (Raj (2016)) functionalities can be performed too, so even there will

be no need to shut down the virtual machine or application.

Another action to execute using Nova calls is migration. Migrating VMs between cloud nodes

may not be straightforward; However, Openstack allows seamless migration between virtual

and physical environments. For instance, if someone run into resource limits that are I/O bound,

she can move to more powerful dedicated servers with Solid-State Drives (SSDs) and RAID.

In OpenStack, migration provides a scheme to move instances from one OpenStack compute

node to another and it is useful for redistributing the load among the available hypervisors.

There are two types of migration: Live (or Hot) and Non-live (or Cold). Non-live is where the

instances will be shut down for the move to another hypervisor. While, live migration is where

the instance will be kept running. Live migration offers extreme versatility but may result

in degraded performance during the migration. Among live migration types (shared storage

based and block migration), block migration is incompatible with read-only devices such as

62

CD-ROMs and Configuration Drive. Since the ephemeral drives are copied over the network

in block migration, migrations of instances with heavy I/O loads may never complete if the

drives are writing faster than the data can be copied over the network.

Heat is called when we want to create, remove or modify a resource in a stack. In the use-case

of this thesis for example, the three-tiered web application stack can be modified in response to

an observation in the layers of our cloud. A common usage for the heat calls is performing hor-

izontal scaling in a scaling group of a stack. Scaling out (horizontal scaling) is often cheaper,

easier to run fault-tolerance and easy to upgrade, compared to Scaling up (vertical scaling or

resize). On the other hand some cons of this method are: more licensing fees, bigger foot-

print in the data center, higher utility cost and possible need for more networking equipment

(switches/routers).

Ansible will be called to perform any action which can’t be handled through other components

described above. These actions usually include the ones controlling below Openstack layer

(like DVFS in the in the Physical layer) and above instance layer (Software and Platform lay-

ers). Ansible can perform any possible action which can be run though SSH, in all instances

and nodes of the Openstack. These actions can include adjustment of OS in Openstack nodes

and instances, database actions, Apache configuration and even Wordpress configuration and

updates. One approach to save energy and operational costs is performing Dynamic voltage

and frequency scaling (DVFS) in the physical node. This approach enables the operating sys-

tem to scale the CPU frequency up or down in order to save power. CPUs can be dynamically

disabled and re-enabled on a Linux system.

Connection to almost all components of the cloud, creates a lot of freedom in actions, which

provides tremendous control capabilities on the MULQA cloud.

Also this module can access the MULQA DB to update some values such as monitoring_-

frequency, which is used by other MULQA components.

63

4.3 Deployment

In this section, first the proposed and deployed Openstack architecture for the infrastructure

has been discussed. Next, the use-case application which has been deployed on top of the

Openstack has been explained.

In this project, first we deployed an Openstack controller node and then a compute node using

Devstack on two physical blade servers. Next the required images and keys and other configu-

rations are installed and then, we launched the use-case stack to be deployed on the Openstack

layer. Later, MULQA will be installed in order to control the cloud.

4.3.1 Openstack

Openstack has been used as the cloud middleware for MULQA. The suggested Openstack

deployment for the three-tiered web use-case in production setup is composed of more than

five Openstack nodes and more network considerations to insure the quality, and not being a

bottleneck for the upper layers. However, due to the limited facilities available to this project,

the setup for the tests of this thesis is composed of two openstack nodes with multi-node setup.

Openstack deployment architecture should be based on the chosen hardware (for compute,

storage and network) and the requirements for the cloud. For example based on Openstack

(2017a), an online classified advertising company who wants to run web applications consisting

of Tomcat, Nginx and MariaDB in a private cloud may need:

• Between 120 and 140 installations of Nginx and Tomcat, each with 2 vCPUs and 4 GB of

RAM

• A three-node MariaDB and Galera cluster, each with 4 vCPUs and 8 GB RAM

On a typical 1U server using dual-socket hex-core Intel CPUs with hyperthreading, and assum-

ing 2:1 CPU overcommit ratio, this would require 8 OpenStack compute nodes. The general

architecture for this deployment is illustrated in Figure 4.5.

64

Figure 4.5 Proposed architecture for a general purpose

Openstack deployment to run a webserver application

Taken from Openstack (2017a)

However in this thesis tests, our setup is composed of only two Openstack nodes which one

acts as both controller and compute (with MULQA components) and the other one is a compute

node. Figure 4.6 shows the Openstack deployment in this setup.

Each Physical Openstack node is a Cisco UCS B200 M3 Blade Server System with two Intel

Xeon Processor E5-2660 v2 CPUs and 8x16GB DDR3 (M393B2G70DB0-CMA) RAM. Each

of the Xeon CPUs have 10 Cores and 25MB of L2 Cache and working by default in 2.2GHz

frequency. Also each server has 500GB SCSCI 1500rpm HDD for storage. All servers run

Ubuntu 14.04 with Linux kernel 3.16, KVM hypervisor QEMU 2.0.0. Openstack version used

65

MULQA

Controller/
Compute/

MULQA Node

Keystone Horizon

Heat Nova

Neutron LBaaS

Cinder Swift

Glance Trove

Ceilometer Aodh

Shade

mysql

app

web

web

VMs

Monitor Analyze

Execute Plan

MU

Ansible

Openstack

......

app

app

web

web

VMs Openstack

......
Ceilometer

-agt
Ceilometer

Nova-cpu

Neutron-
agt

app

web

...

mysql

app

...

Compute Node

ULQAULQ

Tools

ETH0

ETH1

ETH0

ETH1

Public Network

M
an

ag
em

en
t N

et
w

or
k

Pr
iv

at
e

 N
et

w
or

k

Figure 4.6 A two-node Openstack deployment for MULQA

in this setup is Mitaka. Devstack has been used to to quickly bring up the OpenStack environ-

ment with the multi-node setting.

Each compute node has two physical network interfaces. In this setup we have three main

networks: Public, Private and Management. The public network is to expose instances (VMs)

on floating IPs to the rest of the world and also, make OpenStack services APIs public. This

network is a single class C network from the cloud owner’s public network range and is isolated

from private networks and management network.

The private network is connected to the compute nodes; all the bridges on the compute nodes

are connected to this network. This is where instances exchange their fixed IP traffic. If

VlanManager is in use, this network is further segmented into isolated VLANs, one per project

existing in the cloud. Each VLAN contains an IP network dedicated to this project and connects

66

virtual instances that belong to this project. If a FlatDHCP scheme is used, instances from

different projects all share the same VLAN and IP space.

The management network is used to exchange internal data between components of the Open-

stack cluster, as well as MULQA. This network must be isolated from private and public net-

works for security reasons. This network is a single class C network from a private IP address

range (not globally routed).

As shown in Figure 4.6, VMs (instances) related to the use-case stack are distributed between

compute nodes. Our web stack is composed of three kinds of instances: Web, App and MySQL.

These instances will be explained in detail in Section 4.3.2. The Controller node runs most of

the Openstack services which are relavant to our use-case. On the other hand, the Compute

node only runs nova-cpu, neutron-agent and ceilometer-agent and essential openstack services

like rabbitmq.

While in Figure 4.6, the internal connections between components are not shown, Figure 4.7

shows some of these connections between Openstack components used in the use-case sce-

nario. VM in this figure relates to each of Openstack instances like: Web, App and MySQL.

Horizon, Keystone and Ceilometer are connected to all other openstack components (colored

yellow).

4.3.2 Three-tier web application

The web application use-case which is a LAMP stack, is deployed in three-tiers:

• Web presentation tier: cluster of web servers that will be used to render either static or

dynamically generated content for the web browser.

• Application tier: cluster of application servers that will be used to process content and

business logic.

• Database tier: cluster of database servers that store data persistently.

67

Keystone

Horizon Ceilometer

All
Components

Provides auth

MonitoringProvides UI

TroveGlance

Neutron

Swift

Heat

Nova

CinderVM

Scaling Triggers

Orchestrates

Registers images

Backup DBs

Manage DBs Provisions

Provide volumes

Bkup volumes

Provides Images

Stores Images

Figure 4.7 Openstack component connections and its workflow

in the three-tiered web app use-case

The layered architecture for this use-case is illustrated in Figure 4.8. In this architecture, the

end-user who wants to connect to the Wordpress application, sends requests to a load balancer’s

Virtual IP (VIP) and accesses the Web tier, then the traffic will be directed to the App tier

cluster through another load balancer and then the App tier, whenever it needs, will access the

Database tier. Each tier in Figure 4.8 consists of some instances in a scaling group. On each

instance of the Web tier, Apache webserver with mod_proxy is installed and App tier instances

will have Apache webserver, PHP, MySQL Client and WordPress. Also, the database server

is running MySQL. Figure 4.9 shows the homepage of this use-case while accessed via web

browser.

Spawned instances of Web, App and Database, can be configured in different ways. These

instances can be boot from pre-installed and configured images or be configured on-the-fly.

68

web web

Web Autosscaling Group

app app

App Autoscaling Group

db db

Cinder
Vol

Cinder
Vol

Swift
Repo

Database Network

Failover Replication

b

Web Tier Load balancer

App Tier Load balancer

DB Backup

Figure 4.8 Layered architecture of the

three-tiered web application use-case

Pre-configured images will go functional faster, but they need to be patched, updated and li-

censed time to time. On the other hand, on-the-fly configuration of instances is more flexible,

and dynamic, but the instance will get ready slower. This thesis has used Cloud-config and

cloud-init to configure and install all needed packages in each instance.

69

Figure 4.9 Wordpress homepage of the use-case in a web

browser

Auto-scaling (using Ceilometer) on each scaling group is desirable to automatically respond

to unexpected traffic spikes (by scaling up) and resume to normal operation when the load

decreases (by scaling down). Two load balancers are required to equally distribute load. The

first load balancer distributes the web traffic at the presentation tier. A separate load bal-

ancer is required to distribute the load among the application servers. The database tier uses

a master/slave RDBMS configuration. Data is kept in persistent block storage and backed-up

periodically. For security reasons, using security groups, a set of firewall rules are enforced at

each tier.

The whole use-case including its instances for each tier, networks, routers, security groups and

etc. are deployed as a Heat stack on top of our Openstack deployment mentioned in Section

4.3.1.

The Heat template for this use-case, uses a nested structure, with a primary YAML file, which

uses four nested files. The templates were tested using Mitaka release of OpenStack, and

Ubuntu server 14.04 (Trusty).

70

Figure 4.10 Topology of the deployed use-case Heat stack

In this thesis, the use-case deployment uses LBaaSv1 due to its compatibility and stability.

However, the newer LBaaSv2 can be used with Octavia project and newer Openstack releases

which has been explained in Box (2016). By default, there is round robin, least connections,

or random policies for the load balancing method in Openstack. Round robin has been used

in our deployment. Moreover, haproxy has been used as the load balancer provider, and the

health monitor for the server pools uses TCP checks.

In this deployment the network is configured to filter unnecessary traffic at different tiers.

Neutron is used to create multiple subnets, one for each tier: a web subnet, an application

subnet, and a data subnet. Neutron routers are created to route traffic between the subnets.

Figure 4.11 shows the network topology for the use-case deployment.

As illustrated in Figures 4.7 and 4.8, the use-case stores the data in block and object storages.

Cinder volumes are persistent block storage devices that act like physical external hard drives

which can be mounted and attached to an instance. In MULQA use-case, a Cinder volume

is attached to the Database VM to increase the data persistency in the database tier. In this

71

Figure 4.11 Network topology of the deployed use-case stack

architecture, when a Database VM failure happens, a new VM can be created and the Cinder

volume can be re-attached to the new VM.

In addition, Swift is used to provide object storage with highly availability, eventually-consistency

and distributed characteristics. Unlike Cinder blocks, which need to be connected to an in-

stance, object storage is independent of the instances and are accessed through REST service

calls. In our use-case, the object storage is used for storing static files like images and videos

used by the web application and also for the database backups.

4.4 Experimental Results

To show a sample utilization of MULQA, an experiment is designed which is focused on the

performance quality attribute. The goal of this test is to show that without a multi-layer system

like MULQA for quality control (both sensing and actions), a common cloud system with

Openstack is not be able to fully guarantee the performance. However, MULQA is able to

easily solve the issue by sensing the metrics in one layer and changing the system in another

(or same) layer.

72

Note that designing a test with mix of all QAs and layers at the same time, and discuss the

results, due to its complexity and size, is beyond the scope of this thesis.

4.4.1 Test scenario

The test scenario is utilizing the three-tier web use-case deployment illustrated in Figure 4.8.

In the test, the user sends HTTP requests to the public IP (first load balancer’s VIP) of the stack

and in the same time, all layers of the cloud are monitored.

The HTTP requests are sent using Apache Bench (a tool for benchmarking an HTTP server).

According to Apache (2016), this tool, especially shows how many requests per second an

Apache web server installation is capable of serving. Using Apache Bench, the streams of

5000 HTTP requests are sent with different concurrent request numbers. After sending each

stream, there is a 20s halt (sleep) period without requests. These requests are sent to our three-

tiered Heat stack. Figure 4.12 illustrates these requests over time. Concurrency numbers are

in order: 10, 20, 30, 40, 50, 100, 200, 500, 1000. The test script used here, can be found in

Appendix I. In this test, the metrics are monitored in all layer with the normal state frequency

of 0.2Hz.

1

10

100

1000

0 40 81 12
2

16
2

20
3

24
4

28
4

32
5

36
6

40
6

44
7

48
8

52
9

56
9

61
0

65
1

69
1

73
2

77
3

81
3

85
4

89
5

93
5

97
6

10
17

Nu
m

be
r o

f H
TT

P
re

qu
es

ts

Time (s)

HTTP requests sent over time to the Use-case

Figure 4.12 Chart for HTTP requests sent to the use-case stack

over time

73

Figure 4.13 shows the available VMs (instances) and their placement on the nodes, while this

test was running before and after controlling by MULQA. As this figure shows, there is five

instances running in the beginning: web1, web2, app1, app2 and db. These instances are

located on two physical nodes: c1− 2 and c1− 3 which their specifications are described in

Section 4.3.1. c1−3 is the controller/compute/MULQA node, and c1−2 is the compute node.

app1web1

VMs

dbweb2

app2

VMs

C1-3 Node

C1-2 Node

app1web1

VMs

dbweb2

app2

VMs

C1-3 Node

C1-2 Node

MULQA Control

Scale based on
Software Metric

app3

Figure 4.13 Use-case VM placement on the physical nodes

during the test

4.4.2 Problem

Table 4.1 shows the results of the test on the use-case. This table shows number of successful

requests (# S Reqs), success rate (S Rate), average response time (Avg Resp), maximum re-

sponse time (Max Resp) and time taken for each stream (T Taken) for the associated request

streams with the request concurrency number (Req Con #). As this table illustrates, running the

74

test on the web stack without MULQA control, has request failure on high concurrent requests

(200 and more) and as this number increases, the success rate decreases. This test totally took

1017 seconds (including 20s sleep periods).

Table 4.1 Apache Bench results summary for Web

stack without MULQA

Req Con # # S Reqs S Rate (%) Avg Resp (ms) Max Resp (ms) T Taken (s)
10 5000 100 192.651 715 111.07

20 5000 100 390.132 1409 97.533

30 5000 100 595.365 2082 99.228

40 5000 100 791.815 3012 98.977

50 5000 100 1000.678 3951 100.068

100 5000 100 2047.614 8254 102.381

200 3789 75.78 3177.992 14031 79.45

500 2967 59.34 7548.273 32921 75.483

1000 2581 51.62 14651.42 66235 73.257

In this section, some of the monitored performance metrics are illustrated. By investigating

these charts, we try to find a solution to fix the problem using MULQA. Note that, in this

section MULQA control is not enabled and MULQA monitored data is used in the charts.

Figures 4.14 to 4.18 show the monitored data for this test. Also, Table 4.2 lists the illustrated

metrics in these figures and their associated layers. In this section, to make the comparison

of requests easier, Apache mod_proxy requests in the Web tier and Mysql requests in the

database tier are considered in the Software layer, however, in some references they are part of

the Platform layer.

As shown in the left-hand side of Figure 4.13, at the beginning, we have two instances of web, a

db instance and two instances of app in our stack. Figure 4.14 illustrates the software requests

received by these instances. In the diagrams in this section (results), we just show the results

of the web1, web2, app1 and db VMs. As we know, because web1 and web2 are behind the

load balancer, the number of requests received by each of them should be almost half of the

requests sent to the stack (shown in Figure 4.12). But, due to the packet storm tests, when the

75

Table 4.2 Monitored metrics discussed and their

associated layers

Layer Metrics
Software Number of web, app and db requests received

Platform Number of threads on the operating system

Instance CPU utilization for VM

Instance RAM utilization for VM

Physical CPU utilization for Node

connections to the software ports are established, it will take some amount of time for the server

to close them, and this increases the counted number of received requests in the monitoring.

This figure also shows that number of web tier requests is almost balanced for web1 and web2

and the number of requests in db instance is lower than the instances in other tiers.

0

50

100

150

200

250

300

350

400

450

500

0 35 71 10
6

14
2

17
8

21
3

24
9

28
4

32
0

35
6

39
1

42
7

46
2

49
8

53
4

56
9

60
5

64
0

67
6

71
2

74
7

78
3

81
8

85
4

89
0

92
5

96
1

99
6

10
32

Nu
m

be
r o

f r
eq

ue
st

s

Time (s)

app1 reqs

db reqs

web1 reqs

web2 reqs

Figure 4.14 Chart for requests received in the software layer on

VMs over time while MULQA is not controlling

Figure 4.15 shows the CPU utilization for the VMs, which is an instance layer metric. If we

look into each VM’s chart solely, it shows rises in CPU utilization almost similarly, in the

stream periods, regardless of the concurrency number. From this chart, we can conclude that

the most processing stress in the tiers, is on the App tier which runs PHP and Wordpress. So in

order to solve the request failure problem, this tier should be targeted.

76

0

20

40

60

80

100

120

0 40 81 12
2

16
2

20
3

24
4

28
4

32
5

36
6

40
6

44
7

48
8

52
9

56
9

61
0

65
1

69
1

73
2

77
3

81
3

85
4

89
5

93
5

97
6

10
17

CP
U

ut
ili

za
tio

n
(%

)

Time (s)

-web1 CPU

-db CPU

-web2 CPU

-app1 CPU

Figure 4.15 Chart for VMs CPU utilization over time

Figure 4.16 illustrates the RAM utilization for VMs which is an instance layer metric. This

figure shows that, streams of requests don’t have a major effect on the RAM utilization of the

VMs, except some rises for app1 after we start streams of 100 and 500 concurrent requests.

0

5

10

15

20

25

30

35

40

45

0 30 61 91 12
2

15
2

18
3

21
3

24
4

27
4

30
5

33
5

36
6

39
6

42
7

45
7

48
8

51
8

54
9

57
9

61
0

64
0

67
1

70
1

73
2

76
2

79
3

82
3

85
4

88
4

91
5

94
6

97
6

10
07

10
37

RA
M

 u
til

iza
tio

n
(%

)

Time (s)

-web1 RAM

-web2 RAM

-app1 RAM

-db RAM

Figure 4.16 Chart for VMs RAM utilization over time

Figure 4.17 shows number of running threads on the Linux operating system of the VMs. This

metric is a platform layer metric. This figure shows that, number of threads increases clearly

for app1, for some streams, but there is no significant trace of the streams that cause request

failure (200 and more concurrent requests).

77

0

50

100

150

200

250

73.5

74

74.5

75

75.5

76

76.5

77

77.5

78

78.5

0 61 12
2

18
3

24
4

30
5

36
6

42
7

48
8

54
9

61
0

67
1

73
2

79
3

85
4

91
5

97
6

10
37

Nu
m

be
r o

f T
hr

ea
ds

 fo
r a

pp
1

Nu
m

be
r o

f T
hr

ea
ds

 e
xc

ep
t f

or
 a

pp
1

Time (s)

-web1 Th

-web2 Th

-db Th

-app1 Th

Figure 4.17 Chart for number of operating system threads for

VMs over time

Figure 4.18 illustrates the CPU utilization for the physical nodes: c1−3 and c1−2. As shown

in Figure 4.13, two instances (web1 and app1) are running on c1−3 node, which is an Open-

stack controller node too. So, when the node is not receiving requests, the CPU utilization

is about 6% and streams of requests to the web stack, increases both node’s CPU utilization.

Also, three instances (web2, app2 and db) are located on c1−2, and the CPU metric for this

instance has higher jumps on the request streams.

As previously shown in Table 4.1, there are failed requests when concurrent request number is

equal or more than 200; However, other streams are served successfully. If we define through-

put as the number of concurrent requests that system can handle, throughput for this test is less

than 200. The deployed Heat stack for the three-tiered web was not able to detect the failure

in the software layer in order to scale the web tier effectively or trigger other actions in order

to serve high requests. The scaling alarm, in this test is triggered when the average CPU uti-

lization over 10 minutes (i.e. a common trigger metric in Openstack autoscaling applications)

of the scaling group VMs passes 50%. As illustrated in Figure 4.15, this metric for the web

scaling group is not passing this threshold, so the scaling didn’t happen for this tier. Note that,

78

0

2

4

6

8

10

12

14

16

18

0 51 10
1

15
2

20
3

25
4

30
5

35
6

40
6

45
7

50
8

55
9

61
0

66
1

71
2

76
2

81
3

86
4

91
5

96
6

10
17

CP
U

ut
ili

za
tio

n
(%

)

Time (s)

-c1-2 CPU

-c1-3 CPU

Figure 4.18 Chart for CPU utilization for physical nodes over

time while MULQA is not controlling

in this chart, there is no specific threshold to be used to distinguish the failure states (when

we have 200 or more requests) and normal states. As a result, changing the alarm threshold

in the use-case stack to another number rather than 50% does not solve the problem. Further-

more, autoscaling in App tier is not efficient, because having concurrent requests as low as

10, the CPU utilizations reaches 100%. Investigating Figures 4.16 and 4.18 leads to the same

conclusion. So, normal Ceilometer metrics which are performing in Physical, Openstack and

Instance layers can’t be used as thresholds for the autoscaling in order to solve the request fail-

ure problem. Number of threads for app1 metric, which is a platform layer metric monitored

by Ansible, may be used to detect the failure periods. But, using the software request numbers

is the best option to predict the failure, because due to availability of other unrelated processes

in the operating system, number of threads may increase regardless of the failure situation.

4.4.3 Solution using MULQA

Following the discussion in the previous section, it was concluded that predicting the metrics

monitored in Physical, Instance and Platform layers, can’t detect the request failure. However,

by predicting the received requests in the Software layer, the failure can be predicted. For

79

example, an appropriate action can be triggered when the number of received requests in app1

reaches 150.

This metric is monitored by an Ansible call and uses a simple netstat command which checks

for the established connections to the software’s port (80 in our use-case). MULQA uses this

metric from Software layer to predict the failure. Next, it prevents the failure by triggering an

autoscale signal in the App tier (stressed tier) of the use-case stack. In this section, we discuss

the results of the similar tests, on a the same cloud deployment, with MULQA enabled. All

the configured parameter in this deployment of MULQA are listed in Appendix II. When the

system is about to fail, MULQA adds a new app instance (e.g. app3) which helps to prevent

the failure. This VM is shown in right hand side of the Figure 4.13.

In our deployment, it took 25s to create and configure a new app instance. This period can be

decreased by using a pre-installed image, instead of running a cloud-config script on the boot

of the instance. The first autoscale is supposed to be triggered at about 640s, while we have set

"the number of received requests in app1 is more than 150" as the plan to do so. The allocation

and installation of the VM will happen in the warning state, while the transition will happen on

higher number of received requests, which is 200.

Table 4.3 shows the results for the test on the use-case, while MULQA is fully operating. This

results show that, by using MULQA, the success rate will reach 100% even for high request

concurrency numbers. MULQA improved this metric by 32%, 69% and 94% for 200, 500

and 1000 "Req Con #" in order. Being able to handle 1000 concurrent requests, means the

throughput is at least 1000, which compared to "without MULQA" case (with less than 200cr

throughput), shows more than 400% improvement.

As shown in right hand side of Figure 4.13, by checking Openstack logs, it was found that app3

is added to c1−2 and got ready successfully, and the requests which caused failure previously,

are handled. Furthermore, as the load increases to 500 and 1000, more instances are added to

the App tier. Figure 4.19 shows CPU utilization for c1− 2 physical node in both scenarios:

before and after MULQA control enabled. This figure also shows the average value of this

80

Table 4.3 Apache Bench results summary for Web

stack with MULQA

Req Con # # S Reqs S Rate (%) Avg Resp (ms) Max Resp (ms) T Taken (s)
10 5000 100 191.631 721 96.325

20 5000 100 390.145 1409 99.222

30 5000 100 594.372 2065 99.726

40 5000 100 789.789 3039 99.036

50 5000 100 1001.707 3944 101.368

100 5000 100 2047.59 8217 103.276

200 5000 100 2000.441 14079 50.011

500 5000 100 5641.267 45070 56.413

1000 5000 100 17487.48 68005 87.437

metric, in both scenarios. Average CPU utilization for c1− 2 in enabled MULQA, is greater

than before MULQA control scenario by 0.77%. As higher CPU utilization, causes higher en-

ergy consumption, we can conclude that using MULQA slightly increases energy consumption

which is a trade-off for gaining better performance. In addition, CPU and RAM utilization of

the MULQA processes (with the settings described in Appendix II) were measured separately

and results show that running MULQA processes will add 0.06% CPU utilization and 2576KB

RAM utilization overhead.

0

2

4

6

8

10

12

14

16

18

0 46 91 13
7

18
3

22
8

27
4

32
0

36
6

41
2

45
7

50
3

54
9

59
5

64
0

68
6

73
2

77
8

82
3

86
9

91
5

96
1

10
07

10
52

CP
U

ut
ili

za
tio

n
(%

)

Time (s)

c1-2 CPU - After

c1-2 CPU - Before

c1-2 CPU avg - Before

c1-2 CPU avg - After

Figure 4.19 Chart for CPU utilization of Node c1-2 over time

before and after MULQA control

81

Also in Figure 4.20, number of received requests by app1, while MULQA is controlling the

quality (performance in this case) is compared to the previous scenario’s data (before MULQA

control). This figure shows that, app1 is receiving more requests to handle, while the concur-

rency number is more than 200. Probably the reason for having request failures previously was

a crash in app1 (and probably app2 as well) server on high requests.

0

50

100

150

200

250

300

350

400

450

0 51 10
1

15
2

20
3

25
4

30
5

35
6

40
6

45
7

50
8

55
9

61
0

66
1

71
2

76
2

81
3

86
4

91
5

96
6

10
17

Nu
m

be
r o

f r
eq

ue
st

s

Time (s)

app1 req - Before

app1 req - After

Figure 4.20 Chart for number of received requests by app1 over

time before and after MULQA control

This was a simple example in improving the results of a concurrency test for a real use-case

application using MULQA. Note that, this system can be used to handle the complex situations

by using more advanced Analyze and Plan modules.

4.4.4 Discussion

In this chapter, we used MULQA to improve the performance quality of a practical cloud-

based use-case. The parameters of MULQA in the tests, were configured to monitor, analyze

and plan for the performance metrics in all layers of the cloud. Although the tests were focused

on a single QA, MULQA is able to target multiple QAs simultaneously. Table 4.4 gives an idea

about how MULQA can be used to cover a diverse mix of QAs and layers in both sensing and

82

actions. For instance, first row of this table can be explained as the following: we know there

is a direct relationship between CPU frequency of a node, and its energy consumption. So,

we can configure (Physical,Energy,CPUUtilNodeN) metric to be monitored, and controlled

through running DVFS actions like IncreaseNodeNCPUFreq and DecreaseNodeNCPUFreq.

The metric in this case is a Physical layer metric and an Energy QA metric. This metric is

sensed by Ceilometer and its attributed action (which is a Physical layer action) is executed by

Ansible.

Table 4.4 Sample multi-QA setting explanation for

MULQA

Metric Monitor Description Action Decription Action
Layer

(Physical,

Energy,

CPUUtilNodeN)

Check CPU utilization of

node N using Ceilometer and

calculate energy consumption

Run DVFS using Ansible to

increase or decrease the CPU

frequency in Node N

Physical

(Openstack,

Scalability,

#InsBy#InsQuota)

Check the number of avail-

able instances divided by the

quota number of instances

Send warning alarms using

Adoh to add more nodes in

the Physical layer

Openstack

(Instance,

Performance,

CPUUtilVMGrX)

Check average CPU utiliza-

tion of the scaling group X

Scale-up and Scale-down

scaling group X using Heat

Openstack

(Platform,

Reliability,

ApaAndDbHealth)

Check Apache servers and Db

servers health

Reset the failed service using

Ansible

Platform

(Software,

Security,

WordpressVer)

Check version of Wordpress

and its plugins

Update the outdated version

using Ansible

Software

Note that, MULQA is not an integration system which serves as a universal hub for connecting

different heterogeneous components and technologies for monitoring, analyzing, planning and

execution. However, quality managers can feed the framework with their desired algorithms in

Python programming language format for each module. By doing this, quality managers will

benefit from a complete system which maintains high quality. This system is made of loosely

coupled modules which can be easily distributed and scaled to multiple nodes. The interoper-

ability issue which MULQA is trying to resolve is related to the heterogeneous components that

83

are inside the cloud controlled by MULQA. MULQA is able to sense and control these com-

ponents in different layers, through standard protocols. On the other hand, sometimes using

the built-in monitoring and control APIs of the cloud systems or other third-party monitoring

platforms may ease the installation and management process and increase the efficiency. For

example in this thesis we have used Ceilometer module of Openstack to monitor some compo-

nents of the cloud. MULQA is able to easily integrate with a lot of these systems too (which

are supported by Ansible). However, having multiple monitoring softwares can create new

challenges such as difficulty in modification and maintenance, decreasing the interoperability

and security of the cloud, and increasing the cost.

CONCLUSION AND RECOMMENDATIONS

In this thesis, an autonomic framework named MULQA was proposed. MULQA is a Multi-

Layer Quality-Aware system to improve the quality of cloud systems. Quality attributes tar-

geted by MULQA could comprise of performance, availability, reliability, cost, energy-efficiency,

etc. Also, quality metrics for a targeted quality attribute can be defined, modeled, monitored,

predicted and controlled in all layers of the cloud, including physical, infrastructure, platform

and software layer.

By enabling autonomic fine-grained quality management in all layers, MULQA unlike previ-

ous systems in this field, was able to bring full quality control to the cloud, including to the

software layer. Being a modular framework, MULQA provides generic functionalities and

modules that can be selectively changed by additional user-written code, which can be used by

future quality management researchers to test their proposed algorithms for Monitor, Analyze,

Plan and Execute modules. Furthermore, the modular design of MULQA can be easily scaled

and deployed in a distributed fashion to fit the requirements.

Modules of MULQA include: Monitor, Analyze, Plan and Execute. First Monitor module

collects, aggregates, filters and reports quality metrics from managed resources through Sensor

agents and transfers this information to the next module for further analysis. Then, Analyze

module is used to predict the performance metrics and their statuses. If the probability of

predicted metrics violates the performance metrics threshold, depending on the SLA and QoS

sensitivity of the applications, attributed events will be generated. These events will trigger

the state changes in the finite state machine used by Plan module. This module prepares the

cloud for the possible violation and when the quality is about to violate, it triggers appropriate

actions (through Execute module), again in all layers of the cloud, to brings back the cloud to

the normal state.

86

This framework also provides a practical use-case scenario to evaluate the performance of the

quality management system. The implemented use-case of MULQA was a three-tier Web

application which runs Wordpress, one of the most common applications used on the Internet.

This use-case is implemented with Heat project of OpenStack. Openstack was selected to

be the cloud middleware, and it was deployed in a multi-node architecture. We tested our

implementation of MULQA to show that MULQA is able to improve the performance of the

use-case by monitoring different quality metrics in all layers of our cloud. Experimental results

of the tests show that MULQA could increase the success rate of requests to the use-case by

32%, 69% and 94% for request concurrency numbers of 200, 500 and 1000 in order. Moreover,

throughput was been improved by 400%, while having low impact on the energy consumption.

Throughout this thesis, We were able to:

• Identify the relevant quality attributes in cloud systems and their metrics and challenges in

managing each of them by surveying the existing literature. These QAs are performance,

availability, reliability, security, scalability and elasticity, interoperability, cost, and energy-

efficiency.

• Review the state-of-the-art in the area of quality in cloud computing and find the challenges

of quality management in the cloud systems. These problems are categorized to "software

engineering based" and "resource management based". MULQA aims to solve the chal-

lenges rooted in interoperability, scalability, multi-QA and multi-layer, and autonomicity

of these systems. Also, it proposes the integration of SLA negotiation system with the

fine-grained quality management system to solve some issues in SLA management.

• Introduce a quality model with notations and mathematical models for cloud systems and

design an autonomic Multi-Layer Quality-Aware system to monitor, model, predict and

control the different quality attributes in cloud systems. Also create an FSM for the control

mechanism which consists of Normal, Warning, Transition and Error states.

87

• Build a modular and customizable framework for the designed solution, and develop a

cloud-based three-tier Web application that can be used to evaluate the proposed system

design on a multi-node Openstack testbed.

• Run tests on the use-case and Configuring MULQA to improve the performance QA of

a system. Experimental results of the tests show that implemented MULQA can increase

the success rate of requests to the use-case by 32%, 69% and 94% for request concurrency

numbers of 200, 500 and 1000 in order. Moreover, throughput has been improved by 400%,

while having a low impact on the energy consumption.

The main challenges targeted by MULQA and the solutions provided by this thesis are listed

in the following:

• Challenge: Current quality management systems are dedicated to specific service models,

mostly IaaS and SaaS. Improving different quality attributes with such systems leads to

multiple quality management systems at various layers of a cloud deployment, which may

bring interoperability issues and cause inefficiency in monitoring and control mechanisms.

Solution: MULQA design is a unified quality control system for all layers of the cloud and

multiple quality attributes with customizable and loosely coupled modules.

• Challenge: Quality analysis, prediction, and assurance in cloud platforms has become sig-

nificantly complex due to performance heterogeneity and resource isolation mechanisms.

Solution: As Petcu et al. (2013) indicates, MULQA by using automated quality manage-

ment methods (which is based on ACCS), can leverage the high programmability of hard-

ware and software resources in the cloud and facilitate solving this challenge.

• Challenge: SLAs by specifying quality targets and economical penalties for SLA viola-

tions, increase the complexity of finding optimal tradeoff.

88

Solution: MULQA proposes the integration of the SLA negotiation system with the fine-

grained quality management system to solve some of these issues in SLA management.

However, the implementation and test of the proposed idea for this section was not done.

• Challenge: Lack of application management and the lack of approaches to cloud deploy-

ment optimization services with various quality metrics such as performance and cost.

Solution: MULQA by covering different QAs including performance, cost and even custom-

defined QAs, builds a quality management framework. This framework has been imple-

mented and tested in practical use case scenario.

• Challenge: Proposed literature architectures need installations of extra modules per VM,

per Node and per application on the cloud system, which decreases the scalability and in-

teroperability of the architecture.

Solution: By leveraging standard communication protocols like SSH and HTTP and Ansi-

ble calls for sensing and executing commands on the endpoints, MULQA overcomes this

challenge.

Briefly, we believe that using MULQA alongside today’s heterogeneous cloud systems, and

adoption of its approach towards quality, will facilitate the quality management process and

can improve the quality of complex clouds more.

Future Research Direction

Despite contributions of the current thesis in building a framework for quality management of

the cloud systems, there are a number of open research challenges that need to be addressed to

further advance the area. Such are listed below:

• Being an open framework, all modules of MULQA are open to more advanced mechanisms

for monitoring, data analysis, prediction, filtering and decision making.

89

• Finding proper mechanisms to specify the thresholds automatically and efficiently

• Evaluating and testing the system with other settings and in other applications

• Develop and implement the SLA negotiation modules

• Design and implement the auto-healing mechanism

APPENDIX I

MULQA TEST SCRIPT USED IN THIS THESIS

1 # ! / u s r / b i n / env bash

2 echo ’ s l e e p f o r 20 s . . . ’

3 s l e e p 20

4 echo ’ s t r e a m wi th 10 c r # s t a r t s : ’

5 ab −n 5000 −c 10 h t t p : / / 1 7 2 . 2 4 . 4 2 . 2 2 9 /

6

7 echo ’ s l e e p f o r 20 s . . . ’

8 s l e e p 20

9 echo ’ s t r e a m wi th 20 c r # s t a r t s : ’

10 ab −n 5000 −c 20 h t t p : / / 1 7 2 . 2 4 . 4 2 . 2 2 9 /

11

12 echo ’ s l e e p f o r 20 s . . . ’

13 s l e e p 20

14 echo ’ s t r e a m wi th 30 c r # s t a r t s : ’

15 ab −n 5000 −c 30 h t t p : / / 1 7 2 . 2 4 . 4 2 . 2 2 9 /

16

17 echo ’ s l e e p f o r 20 s . . . ’

18 s l e e p 20

19 echo ’ s t r e a m wi th 40 c r # s t a r t s : ’

20 ab −n 5000 −c 40 h t t p : / / 1 7 2 . 2 4 . 4 2 . 2 2 9 /

21

22 echo ’ s l e e p f o r 20 s . . . ’

23 s l e e p 20

24 echo ’ s t r e a m wi th 50 c r # s t a r t s : ’

25 ab −n 5000 −c 50 h t t p : / / 1 7 2 . 2 4 . 4 2 . 2 2 9 /

26

92

27 echo ’ s l e e p f o r 20 s . . . ’

28 s l e e p 20

29 echo ’ s t r e a m wi th 100 c r # s t a r t s : ’

30 ab −n 5000 −c 100 h t t p : / / 1 7 2 . 2 4 . 4 2 . 2 2 9 /

31

32 echo ’ s l e e p f o r 20 s . . . ’

33 s l e e p 20

34 echo ’ s t r e a m wi th 200 c r # s t a r t s : ’

35 ab −n 5000 −c 200 h t t p : / / 1 7 2 . 2 4 . 4 2 . 2 2 9 /

36

37 echo ’ s l e e p f o r 20 s . . . ’

38 s l e e p 20

39 echo ’ s t r e a m wi th 500 c r # s t a r t s : ’

40 ab −n 5000 −c 500 h t t p : / / 1 7 2 . 2 4 . 4 2 . 2 2 9 /

41

42 echo ’ s l e e p f o r 20 s . . . ’

43 s l e e p 20

44 echo ’ s t r e a m wi th 1000 c r # s t a r t s : ’

45 ab −n 5000 −c 1000 h t t p : / / 1 7 2 . 2 4 . 4 2 . 2 2 9 /

APPENDIX II

MULQA PARAMETERS SET IN THE TESTS

L = {l1, l2, l3, l4, l5} ∼ {Physical,Openstack, Instance,Plat f orm,So f tware}

Q1 = {q1
1} ∼ {(Physical,Per f ormance)}

Q2 = Φ

Q3 = {q3
1} ∼ {(Instance,Per f ormance)}

Q4 = {q4
1} ∼ {(Plat f orm,Per f ormance)}

Q5 = {q5
1} ∼ {(So f tware,Per f ormance)}

M1,1 = {m1,1
1 ,m1,1

2 } ∼ {(Physical,Per f ormance,CPUUtilNodeC12),

(Physical,Per f ormance,CPUUtilNodeC13)}

M3,1 = {m3,1
1 ,m3,1

2 ,m3,1
3 ,m3,1

4 ,m3,1
5 ,m3,1

6 ,m3,1
7 ,m3,1

8 } ∼
{(Instance,Per f ormance,CPUUtilV mWeb1),

(Instance,Per f ormance,CPUUtilV mWeb2),

(Instance,Per f ormance,CPUUtilV mApp1),

(Instance,Per f ormance,CPUUtilV mDb),

(Instance,Per f ormance,RAMUtilV mWeb1),

(Instance,Per f ormance,RAMUtilV mWeb2),

(Instance,Per f ormance,RAMUtilV mApp1),

(Instance,Per f ormance,RAMUtilV mDb)}

94

M4,1 = {m4,1
1 ,m4,1

2 ,m4,1
3 ,m4,1

4 } ∼ {(Plat f orm,Per f ormance,NumT hreadWeb1),

(Plat f orm,Per f ormance,NumT hreadWeb2),

(Plat f orm,Per f ormance,NumT hreadApp1),

(Plat f orm,Per f ormance,NumT hreadDb)}

M5,1 = {m5,1
1 ,m5,1

2 ,m5,1
3 ,m5,1

4 } ∼ {(So f tware,Per f ormance,NumRecReqWeb1),

(So f tware,Per f ormance,NumRecReqWeb2),

(So f tware,Per f ormance,NumRecReqApp1),

(So f tware,Per f ormance,NumRecReqDb)}
M = M1,1

⋃
M3,1

⋃
M4,1

⋃
M5,1

A = {a1,a2} ∼ {ScaleupV mgroupApp,ScaledownV mgroupApp}

T 5,1,3
n,min = 0, T 5,1,3

n,max = 150

T 5,1,3
w,min = 0, T 5,1,3

w,max = 200

α i, j
k = 0.6

Plan = {({ψ5,1,3
wmax},{a1})

({ψ5,1,3
wmin},{a2})}

BIBLIOGRAPHY

Abdelmaboud, A., D. N. Jawawi, I. Ghani, A. Elsafi, and B. Kitchenham. 2015. "Quality

of service approaches in cloud computing: A systematic mapping study". Journal of
Systems and Software, vol. 101, p. 159–179.

Ansible. 2017a. "List of Ansible Modules". <http://docs.ansible.com/ansible/list_of_all_

modules.html>.

Ansible. 2017b. "Monitoring Modules of Ansible". <http://docs.ansible.com/ansible/list_of_

monitoring_modules.html>.

Apache. 2016. "Apache HTTP server benchmarking tool". <https://httpd.apache.org/docs/2.

4/programs/ab.html>.

Ardagna, D., B. Panicucci, M. Trubian, and L. Zhang. 2012. "Energy-aware autonomic re-

source allocation in multitier virtualized environments". IEEE Transactions on Services
Computing, vol. 5, n◦ 1, p. 2–19.

Ardagna, D., G. Casale, M. Ciavotta, J. F. Pérez, and W. Wang. 2014. "Quality-of-service

in cloud computing: modeling techniques and their applications". Journal of Internet
Services and Applications, vol. 5, n◦ 1, p. 1.

Armstrong, D. and K. Djemame. 2009. "Towards quality of service in the cloud". In Proc. of
the 25th UK Performance Engineering Workshop.

Baset, S. A. 2012. "Cloud SLAs: present and future". ACM SIGOPS Operating Systems
Review, vol. 46, n◦ 2, p. 57–66.

Beach, T., O. Rana, Y. Rezgui, and M. Parashar. 2015. "Governance model for cloud comput-

ing in building information management". IEEE Transactions on Services Computing,

vol. 8, n◦ 2, p. 314–327.

Bellavista, P., G. Carella, L. Foschini, T. Magedanz, F. Schreiner, and K. Campowsky. 2012.

"QoS-aware elastic cloud brokering for IMS infrastructures". In Computers and Com-
munications (ISCC), 2012 IEEE Symposium on. p. 000157–000160. IEEE.

Bertoldi, P. 2014. "A Market Transformation Programme for Improving Energy Efficiency in

Data Centres".

Bittman, T. J. 2009. "Server virtualization: One path that leads to cloud computing". Gartner
Technology Research, Gartner RAS Core Research Note G, vol. 171730, p. 2009.

Box, B. 2016. "Using Heat for autoscaling". <http://ibm-blue-box-help.github.io/

help-documentation/heat/autoscaling-with-heat/>.

96

Bruneo, D., F. Longo, and C. C. Marquezan. 2015. "A framework for the 3-D cloud monitoring

based on data stream generation and analysis". In Integrated Network Management (IM),
2015 IFIP/IEEE International Symposium on. p. 62–70. IEEE.

Buyya, R., S. Pandey, and C. Vecchiola. 2009. "Cloudbus toolkit for market-oriented

cloud computing". In IEEE International Conference on Cloud Computing. p. 24–44.

Springer.

Buyya, R., A. Beloglazov, and J. Abawajy. 2010. "Energy-efficient management of data center

resources for cloud computing: a vision, architectural elements, and open challenges".

arXiv preprint arXiv:1006.0308.

Calheiros, R. N., E. Masoumi, R. Ranjan, and R. Buyya. 2015. "Workload prediction using

ARIMA model and its impact on cloud applications’ QoS". Cloud Computing, IEEE
Transactions on, vol. 3, n◦ 4, p. 449–458.

Cardosa, M., M. R. Korupolu, and A. Singh. 2009. "Shares and utilities based power consol-

idation in virtualized server environments". In Integrated Network Management, 2009.
IM’09. IFIP/IEEE International Symposium on. p. 327–334. IEEE.

Cesare, S. and Y. Xiang, 2012. Software similarity and classification.

Chang, A. 2014. "7 Critical Cloud Service Attributes". <http://www.networkcomputing.com/

cloud-infrastructure/7-critical-cloud-service-attributes/1852724555>.

Cima, V., B. Grazioli, S. Murphy, and T. M. Bohnert. 2015. "Adding energy efficiency to

Openstack". In Sustainable Internet and ICT for Sustainability (SustainIT), 2015. p.

1–8. IEEE.

Cloud-init. 2017. "Cloud config in Cloud-init". <http://cloudinit.readthedocs.io/en/latest/

topics/examples.html>.

Community, O. 2016. "OpenStack Administrator Guide". http://docs.openstack.org/

admin-guide/index.html. [Online; accessed 29-August-2016].

Computing, A. et al. 2006. "An architectural blueprint for autonomic computing". IBM White
Paper, vol. 31.

Deissenboeck, F., E. Juergens, K. Lochmann, and S. Wagner. 2009. "Software quality models:

Purposes, usage scenarios and requirements". In Software Quality, 2009. WOSQ’09.
ICSE Workshop on. p. 9–14. IEEE.

Dillon, T., C. Wu, and E. Chang. 2010. "Cloud computing: issues and challenges". In 2010 24th
IEEE international conference on advanced information networking and applications.

p. 27–33. Ieee.

Dromey, R. G. 1995. "A model for software product quality". IEEE Transactions on Software
Engineering, vol. 21, n◦ 2, p. 146–162.

97

Dudko, R., A. Sharma, and J. Tedesco. 2012. "Effective failure prediction in hadoop clusters".

University of Idaho White Paper, p. 1–8.

Emam, K. E. 2005. "The ROI from software quality".

Foster, I., Y. Zhao, I. Raicu, and S. Lu. 2008. "Cloud computing and grid computing 360-

degree compared". In 2008 Grid Computing Environments Workshop. p. 1–10. Ieee.

Garg, S. K., S. Versteeg, and R. Buyya. 2013. "A framework for ranking of cloud computing

services". Future Generation Computer Systems, vol. 29, n◦ 4, p. 1012–1023.

Garvin, D. A. 1984. "What Does “hltoduct Quality” Really Mean?". Sloan management
review, p. 25.

Giannetti, F. and K. Owens. 2016. "Enforcing Application SLAs with

Congress and Monasca". <https://www.openstack.org/videos/video/

enforcing-application-slas-with-congress-and-monasca>.

Gmach, D., J. Rolia, L. Cherkasova, and A. Kemper. 2009. "Resource pool management:

Reactive versus proactive or let’s be friends". Computer Networks, vol. 53, n◦ 17, p.

2905–2922.

Gorton, I., 2006. Essential software architecture.

Guo, R.-S. and J.-J. CHEN. 2002. "An EWMA-based process mean estimator with dynamic

tuning capability". IIE Transactions, vol. 34, n◦ 6, p. 573–582.

Hamilton, J. D., 1994. Time series analysis, volume 2.

Hasan, M. Z., E. Magana, A. Clemm, L. Tucker, and S. L. D. Gudreddi. 2012. "Integrated

and autonomic cloud resource scaling". In Network Operations and Management Sym-
posium (NOMS), 2012 IEEE. p. 1327–1334. IEEE.

Hausman, K. K., S. L. Cook, and T. Sampaio, 2013. Cloud Essentials: CompTIA Authorized
Courseware for Exam CLO-001.

Henningsson, K. and C. Wohlin. 2002. "Understanding the relations between software quality

attributes-a survey approach". In Proceedings 12th International Conference for Soft-
ware Quality. Citeseer.

Heston, K. M. and W. Phifer. 2011. "The multiple quality models paradox: how much ‘best

practice’is just enough?". Journal of Software Maintenance and Evolution: Research
and Practice, vol. 23, n◦ 8, p. 517–531.

Hida, T., 1980. Brownian motion.

Islam, S., S. Venugopal, and A. Liu. 2015. "Evaluating the impact of fine-scale burstiness on

cloud elasticity". In Proceedings of the Sixth ACM Symposium on Cloud Computing. p.

250–261. ACM.

98

ISO, I. 2007. "IEC 25030 Software and system engineering–Software product Quality Require-

ments and Evaluation (SQuaRE)–Quality requirements". International Organization for
Standarization.

ISO, I. 2010. Iec/ieee 24765: 2010 systems and software engineering-vocabulary. Technical

report.

ISO, I. 2011. "IEC 25010: 2011,“". Systems and Software Engineering—Systems and Software
Quality Requirements and Evaluation (SQuaRE)—System and Software Quality Models.

Jagannathan, S., S. Bhattacharya, and K. Matawie. 2005. "Value Based Quality Engineering".

TickIT International, , p. 3–9.

Jain, S., M. Khandelwal, A. Katkar, and J. Nygate. 2016. "Applying big data technologies

to manage QoS in an SDN". In Network and Service Management (CNSM), 2016 12th
International Conference on. p. 302–306. IEEE.

Jain, S., R. Kumar, and S. K. J. Anamika. 2014. "A Comparative Study for Cloud Comput-

ing Platform on Open Source Software". ABHIYANTRIKI: An International Journal of
Engineering & Technology (AIJET), vol. 1, n◦ 2, p. 28–35.

Jallow, A. 2016. "CLOUD-METRIC: A Cost Effective Application Development Framework

for Cloud Infrastructures".

Jansen, W., 2010. Directions in security metrics research.

Jiang, Q. 2015. "Open Source IaaS Community Analysis". http://www.qyjohn.net/

wp-content/uploads/2015/04/CY15-Q1-IaaS-Community-Analysis.pdf. [Online; ac-

cessed 16-August-2016].

Jones, C. and O. Bonsignour. 2012. "The economics of software quality B. Goodwin, ed".

Karacali, B. and J. M. Tracey. 2016. "Experiences evaluating OpenStack network data plane

performance and scalability". In Network Operations and Management Symposium
(NOMS), 2016 IEEE/IFIP. p. 901–906. IEEE.

Kavis, M. J., 2014. Architecting the cloud: Design decisions for cloud computing service
models (SaaS, PaaS, AND IaaS).

Kephart, J. O., H. Chan, R. Das, D. W. Levine, G. Tesauro, F. L. Rawson III, and C. Le-

furgy. 2007. "Coordinating Multiple Autonomic Managers to Achieve Specified Power-

Performance Tradeoffs.". In ICAC. p. 24.

Kernel, L. 2016. "Memory Hotplug". <https://www.kernel.org/doc/Documentation/

memory-hotplug.txt>.

Khosravi, A., S. K. Garg, and R. Buyya. 2013. Energy and carbon-efficient placement of

virtual machines in distributed cloud data centers. Euro-Par 2013 Parallel Processing,

p. 317–328. Springer.

99

Kumar, S., V. Talwar, V. Kumar, P. Ranganathan, and K. Schwan. 2009. "vManage: loosely

coupled platform and virtualization management in data centers". In Proceedings of the
6th international conference on Autonomic computing. p. 127–136. ACM.

Kusic, D., J. O. Kephart, J. E. Hanson, N. Kandasamy, and G. Jiang. 2009. "Power and per-

formance management of virtualized computing environments via lookahead control".

Cluster computing, vol. 12, n◦ 1, p. 1–15.

Lee, J. Y., J. W. Lee, S. D. Kim, et al. 2009. "A quality model for evaluating software-

as-a-service in cloud computing". In Software Engineering Research, Management and
Applications, 2009. SERA’09. 7th ACIS International Conference on. p. 261–266. IEEE.

Liang, Y., Y. Zhang, H. Xiong, and R. Sahoo. 2007. "Failure prediction in ibm bluegene/l event

logs". In Data Mining, 2007. ICDM 2007. Seventh IEEE International Conference on.

p. 583–588. IEEE.

LLC, M. 2016. "Cisco Visual Networking Index: Global - 2019 Forecast Highlights". <http:

//www.cisco.com/c/en/us/solutions/service-provider/visual-networking-index-vni/

vni-forecast.html>.

Luna, J., H. Ghani, D. Germanus, and N. Suri. 2011. "A security metrics framework for the

cloud". In Security and Cryptography (SECRYPT), 2011 Proceedings of the Interna-
tional Conference on. p. 245–250. IEEE.

Mahdavi-Hezavehi, S., M. Galster, and P. Avgeriou. 2013. "Variability in quality attributes

of service-based software systems: A systematic literature review". Information and
Software Technology, vol. 55, n◦ 2, p. 320–343.

Marinescu, D. C., 2013. Cloud computing: theory and practice.

Marston, S., Z. Li, S. Bandyopadhyay, J. Zhang, and A. Ghalsasi. 2011. "Cloud comput-

ing—The business perspective". Decision support systems, vol. 51, n◦ 1, p. 176–189.

Mdhaffar, A., R. B. Halima, M. Jmaiel, and B. Freisleben. 2013. "A dynamic complex event

processing architecture for cloud monitoring and analysis". In Cloud Computing Tech-
nology and Science (CloudCom), 2013 IEEE 5th International Conference on. p. 270–

275. IEEE.

Mell, P. and T. Grance. 2011. "The NIST definition of cloud computing".

Microsoft. 2009. "Microsoft Application Architecture Guide 2.0 - Quality Attributes". <https:

//msdn.microsoft.com/en-us/library/ee658094.aspx>.

Montes, J., A. Sánchez, B. Memishi, M. S. Pérez, and G. Antoniu. 2013. "GMonE: A complete

approach to cloud monitoring". Future Generation Computer Systems, vol. 29, n◦ 8, p.

2026–2040.

100

Moody, D. L. 2005. "Theoretical and practical issues in evaluating the quality of conceptual

models: current state and future directions". Data & Knowledge Engineering, vol. 55,

n◦ 3, p. 243–276.

Nallur, V., R. Bahsoon, and X. Yao. 2009. "Self-optimizing architecture for ensuring quality

attributes in the cloud". In Software Architecture, 2009 & European Conference on
Software Architecture. WICSA/ECSA 2009. Joint Working IEEE/IFIP Conference on. p.

281–284. IEEE.

Nathuji, R., C. Isci, and E. Gorbatov. 2007. "Exploiting platform heterogeneity for power

efficient data centers". In Autonomic Computing, 2007. ICAC’07. Fourth International
Conference on. p. 5–5. IEEE.

Netcraft. 2017. "Total number of Websites". <http://www.internetlivestats.com/

total-number-of-websites/>.

OASIS. 2013. "Topology and Orchestration Specification for Cloud Applications Version 1.0".

<http://docs.oasis-open.org/tosca/TOSCA/v1.0/os/TOSCA-v1.0-os.html>.

O’Brien, L., P. Merson, and L. Bass. 2007. "Quality attributes for service-oriented architec-

tures". In Proceedings of the international Workshop on Systems Development in SOA
Environments. p. 3. IEEE Computer Society.

Openstack. 2017a. "Prescriptive example for General Purpose Openstack Deployment". <http:

//docs.openstack.org/arch-design/generalpurpose-prescriptive-example.html>.

Openstack. 2017b. "Openstack Sample Configurations". <https://www.openstack.org/

software/sample-configs>.

Openstack. 2017c. "Shade’s documentation". <http://docs.openstack.org/infra/shade/>.

Openstack. 2017d. "Telemetry Measurements". <http://docs.openstack.org/admin-guide/

telemetry-measurements.html>.

Padala, P., K. G. Shin, X. Zhu, M. Uysal, Z. Wang, S. Singhal, A. Merchant, and K. Salem.

2007. "Adaptive control of virtualized resources in utility computing environments". In

ACM SIGOPS Operating Systems Review. p. 289–302. ACM.

Petcu, D., G. Macariu, S. Panica, and C. Crăciun. 2013. "Portable cloud applications—from

theory to practice". Future Generation Computer Systems, vol. 29, n◦ 6, p. 1417–1430.

Raghavendra, R., P. Ranganathan, V. Talwar, Z. Wang, and X. Zhu. 2008. "No power struggles:

Coordinated multi-level power management for the data center". In ACM SIGARCH
Computer Architecture News. p. 48–59. ACM.

Raj, A. 2016. "CPU hotplug Support in Linux(tm) Kernel". <https://www.kernel.org/doc/

Documentation/cpu-hotplug.txt>.

101

Rico, D. F., 2004. ROI of software process improvement: Metrics for project managers and
software engineers.

Ruhe, G. and C. Wohlin, 2014. Software Project Management in a Changing World.

Samreen, F., Y. Elkhatib, M. Rowe, and G. S. Blair. 2016. "Daleel: Simplifying cloud instance

selection using machine learning". In Network Operations and Management Symposium
(NOMS), 2016 IEEE/IFIP. p. 557–563. IEEE.

Singh, S. and I. Chana. 2016. "QoS-aware autonomic resource management in cloud comput-

ing: a systematic review". ACM Computing Surveys (CSUR), vol. 48, n◦ 3, p. 42.

Sırbu, A. and O. Babaoglu. 2014. "Towards a systematic analysis of cluster computing log

data: the case of IBM BlueGene/Q".

Sodhi, B. and T. Prabhakar. 2012. "Examining the Impact of Platform Properties on Quality

Attributes". arXiv preprint arXiv:1205.4626.

Song, Y., H. Wang, Y. Li, B. Feng, and Y. Sun. 2009. "Multi-tiered on-demand resource

scheduling for VM-based data center". In Proceedings of the 2009 9th IEEE/ACM Inter-
national Symposium on Cluster Computing and the Grid. p. 148–155. IEEE Computer

Society.

Sosinsky, B., 2010. Cloud computing bible, volume 762.

Stillwell, M., D. Schanzenbach, F. Vivien, and H. Casanova. 2009. "Resource allocation using

virtual clusters". In Proceedings of the 2009 9th IEEE/ACM International Symposium
on Cluster Computing and the Grid. p. 260–267. IEEE Computer Society.

Suryn, W., 2013. Software Quality Engineering: A Practitioner’s Approach.

Toosi, A. N., R. N. Calheiros, and R. Buyya. 2014. "Interconnected cloud computing environ-

ments: Challenges, taxonomy, and survey". ACM Computing Surveys (CSUR), vol. 47,

n◦ 1, p. 7.

Torkura, K. A., F. Cheng, and C. Meinel. 2015. "Application of quantitative security metrics in

cloud computing". In 2015 10th International Conference for Internet Technology and
Secured Transactions (ICITST). p. 256–262. IEEE.

Trihinas, D., G. Pallis, and M. D. Dikaiakos. 2014. "Jcatascopia: Monitoring elastically

adaptive applications in the cloud". In Cluster, Cloud and Grid Computing (CCGrid),
2014 14th IEEE/ACM International Symposium on. p. 226–235. IEEE.

Vakilinia, S., M. M. Ali, and D. Qiu. 2015. "Modeling of the resource allocation in cloud

computing centers". Computer Networks, vol. 91, p. 453–470.

Vakilinia, S., B. Heidarpour, and M. Cheriet. 2016a. "Energy Efficient Resource Allocation in

Cloud Computing Environments". IEEE Access.

102

Vakilinia, S., X. Zhang, and D. Qiu. 2016b. "Analysis and optimization of big-data stream

processing". In Global Communications Conference (GLOBECOM), 2016 IEEE. p.

1–6. IEEE.

Vázquez-Poletti, J. L., R. Moreno-Vozmediano, R. S. Montero, E. Huedo, and I. M. Llorente.

2013. "Solidifying the foundations of the cloud for the next generation Software Engi-

neering". Journal of Systems and Software, vol. 86, n◦ 9, p. 2321–2326.

Verma, A., P. Ahuja, and A. Neogi. 2008. pmapper: power and migration cost aware applica-

tion placement in virtualized systems. Middleware 2008, p. 243–264. Springer.

W3Techs. 2017. "Usage Statistics and Market Share of Content Management Systems for

Websites". <https://w3techs.com/technologies/overview/content_management/all/>.

Wiegers, K. and J. Beatty, 2013. Software requirements.

Wikipedia. 2016. "List of system quality attributes". <https://en.wikipedia.org/wiki/List_of_

system_quality_attributes>.

Yau, S. S. and H. G. An. 2011. "Software engineering meets services and cloud computing".

Computer, vol. 44, n◦ 10, p. 47–53.

Zhang, Q., L. Cheng, and R. Boutaba. 2010. "Cloud computing: state-of-the-art and research

challenges". Journal of internet services and applications, vol. 1, n◦ 1, p. 7–18.

Zhang, Q., M. F. Zhani, R. Boutaba, and J. L. Hellerstein. 2014. "Dynamic heterogeneity-

aware resource provisioning in the cloud". Cloud Computing, IEEE Transactions on,

vol. 2, n◦ 1, p. 14–28.

