# Contribution to the Study of Mealy Bugs of the 

## Tribe Pseudococcini (Cocoiciae).

With Special Reference to the Genus Pseudococcus.

# UNIVERSITYOF <br> BIRMINGHAM 

## University of Birmingham Research Archive

e-theses repository

This unpublished thesis/dissertation is copyright of the author and/or third parties. The intellectual property rights of the author or third parties in respect of this work are as defined by The Copyright Designs and Patents Act 1988 or as modified by any successor legislation.

Any use made of information contained in this thesis/dissertation must be in accordance with that legislation and must be properly acknowledged. Further distribution or reproduction in any format is prohibited without the permission of the copyright holder.

## Table of Contents.

Pages.
Introduction. ..... 1-4.
Acknowledgements ..... 5.
Abbreviations to Literature ..... 6-8.
List of Authors, and Chief Papers. . . . ..... 9-13.
Methods and Technique ..... 14-17.
Systematic Position of Genera ..... 18-34.
Study of Specific Characters. ..... 35-46.
Development of the Pseudococcint. . . . ..... 47-49.
Scheme for Description, and
Chart for Comparison of Species ..... $50-53$.
Descriptions and Charts ..... 54-172.
Descriptions of new species ..... 85 and 125
Parasites ..... 173-183.
IntracelıuIar Symbionta. ..... 184-188.
Literature dealing with the Symbionts. . ..... 189.
Catalogiue of Species ..... 190-207.
Plates.

## Introduction.

liealy-bugs may, under certain conditions, become pests or the hiehest eoonomis importance. This, fact was well illustrated in the case of D. filamentosus (CKll.) In 1909, when this insect attacked the Lebbek trees in the streets of Cairo and became so numerous that large trees were killed by their ravages in a few months. In addition to the actual loss of plants, or the damage caused to them by large numbers of the insects sucking their sap, the fruit or fruit clusters are often rendered quite unfit for market by the vast number of $9 \%$ with ovisacs which infest them.

Very few coccidologists, however, have paid particular attention to this emop, and our knowledge of even the most common species is very imperfect.

The only reference to many of the mealy bugs is found in the original descriptions of the species, and it is unfortunate that many of these descriptions are quite inadequate for the determination of material. This inadequacy may be due to the shortness and incompleteness of the descriptions themselves, or to the unsuitability of the characters usod.

I have endeavoured to collect the most important facts concerning all the species described to the end of 1913 , and to arrange the matter in a manner suitable for fur-
-ther study. To do this it has been necessary to refer to more than fifty different journals and periodicals for the original desoriptions of species alone. The only Catalogue of the Cocoidae which has been published is that by Mrs. Fernald which appeared in 1903. In this work all the genera which are dealt with in the present thesis ere included in the Pribe Dactylopiini, but since it can be shown that they are closely related to one another, and are distinct from the other Dactylopinini genera, a new tribe, i.e.Pseudococcini, has been $\epsilon$ stablished for ther.

The genera insluden tn the pseunooccini as here constituted illustrate, I believe, a phylogenetic series, the chief line of develomment being illustrated by the production of additional antennal segments. Thus Ripersia has 6-jointed antemae, Pseudococcus 8-jointed, and Phenacoccus 9-jointed, while a new genus, which I have named Dactopesudocojous, contains the 7 -jointed forms. A large number of new species have been described since Hrs. Fermald's Catalogue was published, and it has been found necessary to make a number of alterations, so that a provisional list of species has been added as an attempt to bring this part up to date. Two new species of Pseudococcus sre here described for the first time, both from South Africa.

A suggested soheme for the full description of specios Is included, together itith particulars of a chart which I have found of great use in the rapid comparison of those charaoters which are considered of the greatest specific significance. A large number of these charts are included with the original descriptions of the insects.

A careful stuay of the Iiterature dealing with the parasites of the mealy bugs has been made, and the results indicate, I think, that this branch of the study would well repay scientific investigation.

The study of the intracellular symbionts of the Insecta is so recent that it is not surprising to find that very little attention has yet been paid to those of the Pseudococcinf.

I am particularly indebted to Professor F.W.Gamble F.R.S. for his kindness in bringing this extremely fascinating branch of study to my notice, and for his assistance during the time $I$ have spent with him.
It is too early to predict what the results of the study of the intraceilular symbionts of animals will be, but it is a subject of the greatest interest, and one which may have far-reaching resultis.

Ify own studies on this subieot sre not yet complete, but
It is hoped to include them in an Introduction to the

Study of the Intraceliular Symbionts of the Coccidae to be published later.

I have included a brief outine of the work done on the symbiont of pseviocosus aitri, and a plate of drawings illustrating the chief points connected with the organism concerned. Three new ronds are used, one of which is adopted from the work of Dr. Büchner, while the other two are after Dr. Pierantoni. They are "mycetom", "sferule" and "sferette".

The mycetom is the particular tissue, usually modified fat-body, mion alveys sontiains the symbiont. A definite mycetom is not always present throughout the Insecta as a whole, although it appears to be essential in the Pseudococcini.

The other two terms are explained in the section dealing with symbionts, where they first occur.

Acknowledgements.

## Acknowledgenents.

During the last eight years my studies in South Africa, United States, and England, have enabled me to see practically all the original descriptions of species, and a large number of slides of type, or topotype material of mealy bugs of the genus pseudococcus and closely related genera.

Without the kind assistance of many friends, however, this would have been impossible, and I have pleasure in expressing my sincere gratitude to the following entomologists : Mr. C.P.Iounsbury, Ohief of the Division of Entomology for the Union of South Africa, and to Messmss C.Fuller and C.W. Maily also: of that Division: to my former teacher and esteemed friend Professor Herbert Osborn of Ohio State Universoty; Professors T.D.A. Cockerell and R.H.Pettit of Colorado and Michigan respectively; Dr.L.O.Howard, Chief of the U.S.Bureau of Entomology; Mr.E.if.Fhrhorn, Entomologist, Honolulu; Mr.F.O.Fssig, Secretary of the Horticultural Commission of California; Dr.Ieonardi of Portici; Dr.Marchal and M.P.Vayssiere of the Departrent of Agriculture of France; Professor RaNewstead F.R.S. of the Liverpool School of Tropical Medicine; Mr.F.E.Green, former Entomologist of Ceylon; and finally, to whom my debt is greatest, to Professor F.W.Grmble F.R.S.

Abbreviations to Literature.

## Abbreviations to Literature.

Ag. Gar. N. S.W.-Agricultural Gazette of Ne: South wales. Am. Nat. - The American Naturalist.

Ann.di AEr. - Annali della Ministero ni Acrisoltume Tndustria e corrercio, Poltici.

Ann.Hag.N.H. - Annals and Hagazine of Natural Histomy.
Ann.Mus. Zool.Ac.Trp.Sci.st.P.-Annuaire Musée Zoologique noederie Ir ifriaie des Sciences ie St. Petersboure.

Anr.Soo. Brt. An. - Annals of the notrmalosical Sooiety of America.

Ann.Soc.Fnt.FI. - Annales de la Société Entorologicue de France.

Aroh.f. Prot.- Archiv für protistenkunde.
Bol.Zool.Sc.Sup.Pont,-Boilitinc del Laboratorio di Zoologia generale e agraria della R.Scuola Superiore d'Agricoltura di Portici.

Bul.Soz.Fnt. Fr.- Bulletin de la Société Fintomologique de France.

Bul.Snc.7001.Fr.- Bulietin de la Soztóté Zoologique de rannes.

BuI.T.S.Bur.Ent.t.s.- Bulletin, Technieal Series, Bureau of Fintorolocy, U.S.Dert. of Asriculture.

Can.Fnt.- Canadien Trtomologist.
Coco.Cst. (T-T.) Cocoidarum Catalogus (Targioni-Toseetti) rebinnipr, I86s.

Catalogue, Fernald.- A Catalogue of the Coccidae of tine World. Armerst, I903.
rocc. Cey.- Cocoidae of Ceylon.(Green).
rom. Mus.Buen.Aires.- Communioationes del Museo Nacional di Buenos Aires.

Comp.Rend.Ac.Sci.P.- Comptes rendus hebdomadaires des séances de l'Académie des Sciences. Paris.

Deut.ent.Zeits.- Deutsche entomolocische Zeitschrift.
Die Schildi.- Die Schildläuse (Coccidae)Furopas etc. (Lindinger), Stuttgart, I9I2.

Fntom.- The Fntomologist.
Fnt. News.- Entomological News.
Ent.Mon.Mag.- The Entomologists' Monthly Magazine.
Ent.Rec.Jn. Tar.- The Entomologiste' Peoord and Journal of variation.

Fssai Hist. Nat.Or.- Fssai sur I'Histoire Naturalle des Orangers.(Risso).

Gard.Chr.- The Gardener's Chronicle.
Ind. Mus. Notes.- Indian Museum Notes.
Jahrb. Hamb.wiss Anst.- Jahrbuch der Hamburgischen wissenschaftlichen Anstalten.

Jn.Econ.Biol.- The Journal of Economic Biology.
Jn.Fcon.Fnt.- The Joumal of Fconomic Entomology.
Jn.Inst.Jam.- Joumal of the Institute of Jamaica.
Jn.N.Y.Ent.Soc.- Journal of the New York Entomological Society.

Jn.Trin.Nat.club.- Journal of the Trinidad Field Naturalists' Club.

Kiliman.-Mem Fixp.- Sohmodischen zoologischen Fxpedition nach dem Kilimand jaro, dem Meru und cien umgebenden Massaistempen Deutsch-ostafrikas.

Mem.Dent.Ag.India.- Memoirs of the Department of Agriculture in India.

Mitt. 2001 .Mus. Berlin.- Mitteilungen aus den zoologischen Museum in Berlin.
N.Z.Trans.- Transactions of the New Zealand Institute.

```
Porn.Jin.Rnt.- Pomona rollere Jourmal of Fntomolost,
    Claremont, ralifornia.
Pr.Ac.Nat.Soi.Pinil.- Proceedings of the Acacery of
                        laturai Soienoes, Phi`adelphia.
Pr.reI.Ao.Sci.- moceedings of the California Aoscemy
        of Science.
D=.Darr.Ac.Sci.- mooecdings of the Davenport Aced.ry
    of Natural Science.
Rep.Ins.IIl.- (I4.)- The I4th Anmual Report on tine
    Noxious and Beneficial Jnsects of Illinois.
Dep.U.S.Ent.com.- Report of the U.S.Entomoloġcal
    Commission.
Per.Chil.Hist,.Mat.- Perista Clilena de Historia natural.
Rev.Mus.Paul.- Rerista do Museu PauIista.
Sch.vart.Ins.- Naturgeschichte der Sohedliohen Gsrten
    Inseaten.(Bouche ). T833.
Soz.lossip.- Science fossip.
Stett.Fnt.Zeit,- Stet,tiner manmologicohe Zeitung.
Syn.fen.Br.Ins.- Synopris of the renera of British
                                    Insects.(Vestrood.)
ureat Am.Sci.- The west Amomioan Soientist.
Wien.Ent.7eit.- Wiener Entomologisone Zeitung.
Nombat.- The Mombat.
"ict.Nat.- Whe Yictorian NaruraIist.
```

Ifist of Authors, and Chief papers denline 꾼

The Pseuriococcini.

## Inst of Authors , With Reference to the Chief

fapers dealin with the reudococoinf.
N.B. When a we wopenva is given it fenomily indicates the oifginal desaription of a species, and may not denote the first pace or the article.

Bärensprung, 1849. Ze1ts.f.Zool. and Zoot., .174.
Berlese. less. Piviste al patologia vegetele, TI, l-8.

Bouché. 1833. ぶh. Gart.Ins. I.49.
1834. Soh.Gart.Tre.p.30.

Brain.1012. Ann.Ent.800.Amei., p.177-180. P1.3.
Cockerell.1893. Fntom. XXT, 1.288.


1853.d. Jin. Inst. Jam. T, p. .254.

18:A. Inseat Iffe, II, 2.40 .
1854-b.Can. Tna -VYVI ,I•286.
2864.0.mnt.Nera,", p.363.



3.as5.d. N1.Nat. XiIT , p. 7as.

186\%. Can.Ent. XVTII, 1.0.224.

3807. A Cr.ifat ©XXI, T. .58.


1ece. (emernt oxT, $) .267^{\circ}$
1805.h.Pr.Ac.Nat. Soi. Dinl.p.26ö.

$1000.0 . \mathrm{ntom} . \mathrm{XXXTJ}, \mathrm{n} \cdot 86$.



SO1.d.Can.t't...XITI,p.136.





```
Cookerell. contd.
    1903. Amn.Mag.ir.H.(7),XI,F.I63.
    1905.D.Entor.*XXVI,p.147.
    1903.0.Tr.Amer.Ent.SOC.XXIX,p.112.
    1905. Can.Ent .XXXVII,P.I36.
    1005.b.Dav.Aoad.Soi.X,p.130.
    1909. Cen.Fnt, RII,(2),D.55.
    1910. Can.Ent.XILI,(3),D.74.
    1910.b,Entom.XLII,563,p.113.
    1911. Ent.News.XXIT.p.217.
    1913. Jn.Eoon.Fnt.vi,p.143.
Coleman.1901. Pr.Cal.AO.SoL.(3),II,P.410.
    1903. In.N.Y.Fnt.SO0.XI,p.62.
    2908. Jn.1.Y.Ent.Soc.KVI,p.197.
Comstook. 1882. Rep.U.S.Dept.Agr.p.342.
Coquillet. 1885. H.Amer.Sci.VI,p.I23. 1890. W.Amer.Sci.VII,D.43.
De Chamoy. 1899.500.Am1c.Sa1.(Hauritius), p. 43 .
Doug 1as. 1888. Ent. Mon. Heg . XV, D. 88.
2389. Ent.Mom.Mag.XXV, D. 317.
```



```
Ehrhom. 1899. Can. Fint XXXI, p.5.
1000. Can.Bnt .XXXII, D. 325 .
1006. Cariont XXXYIII, D. 333. 1911. Can.Ent XLIII. 1912. Can.Bnt.XI111,8,p.279.
Fhrhorn and Cookerell. 1901. Pr.B101.S00.Wash.XIV,P.166.
EssiE. 1909. Fom.Jn.Ent. I. \(2, \mathrm{M}\).42. 1910. Pom.Jn.Ent. IT, 2, D. 218.
Fernald. 1903. Catalogue.
Forbes. 1885. 14th Rep.Ins.I11.,p.72.
Fullaway. 1909. Pr.Haw.Ent. Soc. II. 2, p. 73. 1910. Pr. Пav.Ao.Sot.XII, D.223.
Fuilaway and Kotinsky. 1910. Ent. News, XXI, I, D. 49.
Fuller. 2897. Hotes on Cocc. W.Austr. \({ }^{2} .10\). 1899. IT. Ent. SOO.T.Ond.p. 454.
```

Gennadius.1883. Ann. So . Tnt.mr. (6), IrI, D. 31.
Green. 1896. Ind.Mus.Notes, IV, D.5.
2900. Ind. itus .Notes, V, D. 37 .
1905. Tron.Agx. XXIV P. 44.
1907. Mem.Dept Agr. Ind. I, 5, 1.347.
2008. lem.Dent.AEI.Inc.II,, , P. 25.
-1909. Coco. of Ceylon, Yol3.1-1.
1910. Jn. Fcon. B1.ol.V.1, D.3.

1911, Jn.Econ. B1.01.VI,2,10.35.
Green and Lidgett. 1800. V1.0t. Ifat. XVII, 1.13. 1908. Mer. Nept.Agr.Ind.II,2,D.25.

Hardy, 1860. Coohenille in Alqeria.
Hempel. 1900. Rev. itus. Paul. Iv, p.384.
1901. Rev.Ch11. Y1at.Nat.1.180. 1901.b.Ann. Mag. I.H. (7),VIII, D.388.

KIng. 1901. Can.Fnt. XXXIII,p.180. 1902. Can.Rnt . YYXIY, p. 385 . 1902.b.Rev.Mus. Yeuj.V, P. 616. 1902.0.Fint.News.X111, 1.48.

Kine and Cockereli. 1897. Can.Ent .XXIX, p. 92.


King and Tinsley. 1897. Psyche, VIII,p.150. 1898. Psyche, VIII,D.297.

Künow. 1880. Int.Nachr. VI,p. 46.
Kuwana. 1901. Pr.Ca.I.AO.Sos.(3).II, D.401.
1902. Pr.CaI.AO.Sa1. (3), III, D.52.
1907. Bu11.Agr. Fxp.St. Japan,I,2,p.184.
1909. Jn. M. Y. innt. SOO. XVII, A, D.16I.

Kuwana and Cockerell.
1909. In. H. Y. Tint. Soc. XYII, 4, D.152.

Leonard1. 1908. B01.z001.Sc.Imp.Port101,III,p.174. 2911. Bo1.Zoo1. So.Imp. Portio1,V, D.225.

Liohtenste1n. 1879. Stett.Ent.Ze1t. XL, p. 387. 1879.b.C.R.AORC. Sc1. Paris, p .870 . 1881. Bull.Ent.Soc.Fr.(6),I,

ILdett．18U8．Hombst，III，D．©L．
Lindinger．1909．Jahrb．Hamb ．Wiss．Anst ．XXVI，p．25．
1910．Zeita．f．wing．Insektbiol．VI，II，p． 373 ．
 I912．Die Schildanse（Goboidae）．

Loew．1883．Wien．Ent．Zeits．II，D． 257.
Marchal．1908．Ami．Sod．Ent．FI．IXXYIT，D． 236.
1910．Bul3．Soc．Fnt．FTM．NC．13，D．244．
Maskell．1878．N．Z．Trans．XI，2．218．
18モ̃．N．Z．Trans ．XVI， F .138 ．
1887．Ins．Nox．AET．N．T．D．G9．
1888．Tr．ROY．Soc．S．Austr．p．106．
1889．N．Z．Trans XXII，P．150．
1890．N．Z．Trans．XXIII，D．24．
1891．H．Z．Trane．XXTY，p．38．

1892．N．Z．Trans．XXT，p． 0 ． 328.
1893．N．Z．Trans．XXVI，D． 90 ．
1894．Entom．XXVIT，D．46．
1856．K．Z．Trans．XXIX，p．332．
1857．N．Z．Trana．XXX，D．224．
Nassonow．1SOC．Anr．Mus．7ool．Ac．Imp．So1．St．P．XIII，P．484．
Newstead．1891．Mrit．Mon．liae XXVIIp． 164.
1892．met．Mon．Hage XXVIIT，P．145．
1893．Ent．MOn．MAE XXIX．P． 79.
1894．Ind．Mus Notes，III，5，p，25．
1895．Bnt Mon Mne＊PXI p．167．
1897．Fnt ．Mon．Hag．YXXIII，D．167．
1898．Ent．Hon．ILag＊XXIV．p．96．
1900．Ent．Hon．MaE ©XXVI，D．249．

1801－1903．Mon．Br．Cocoldae，I－II．
1907．Ent．Reo．Jn．Tar．XIX，D．5．
908．K111mand．－Heru Exp．12，p．9．
1908．D．Jn．FEON．B101．III，2，p．37．
1910．Bull．Ent．Res．I，3，p．190．

1911．Mitte11．Z001．Mu日．Ben．サ，2，Dp．255－174．
1912．Zool．antir．Exgeb．west1．zentr．Sudaf，V，p．17
1913．Bul1．Fnt，Res．IV，DP．67－81．
Newstead and 1111000 ks ．
1910．Bul1．Frit ．Res．T， $2,2 D .138-140$.
N1edielski．1870．Bull．Soc．${ }^{\text {（Acolim．（2），VII，p．328．}}$

Porrott. 1900. Bull.98,Kan.Exp.St.D.138.
Parrott and Councion.

Pettit. 1899. Gar. Fint. 1902. 11.200,:5ch.mo.St.p.193.

Risso. 1813. Rssai Hist.des Oramems
Sanders. 1502. Onle lat. II, $8, p .284$.
Signoret. Is $75 \cdot \operatorname{Ranci}$


TinsIey. 18:8. Canabnote, D.n20.
18.9. Cunomit. "TI,p.2ra. 1900. Can. t. XXXI, p. 6 .

Tinsley and rine.
1899. Fnt. Nevs, $: \therefore$, 1.57.
 Isiz. Ann.des Bundirtien.I, p. 424.



Methocis ne Technicue.

## Methods of Staining and General Technidue.

Specimens of mealy bugs which have been merely boiled in KOH and cleared do not make suitable nounts for purposes of study. The ohitin is then too transparent and colourless; the distinction between the antennal segments and the delicate connectine membrane is not sufficiently conspicuous; and the extremely thin extremities of the anal.lobe, and anal ring setae, are not distinct enough for measurement.

Picric acid in Xylol, or beechwood creosote,is the simplest stain for chitin, giring a sulphur yellow tinge to it, but while this is quite satisfactory for the armoured scale insects, it does not give sufficient contrast for use in the Pseudococcini.
The best results have been obtained by using ziehlNielsen Solution of Carbol fuchsin, ful: strength. After boiling the speoimens in KOH they are transferred to water to winch a trace of Acetic acid is added. They are then washed in distilled water and transferred to the stain. They are left in this for some hours if used cold, but are well stained in ten minutes if the solution is warmed to steaming point and then allowed to stand. They are then transferred to 70 p.c. alcohol, and on through the alcohols to Canada balsam. I have received some excellently stalned slides from

Dr. Marchal, of Paris, so I give his method too, which is a rather quicker one than the Carbol fuchsin method already given, as the specirens are not stained until they have reached the $95 \mathrm{p} . c$. , or the absolute alcohol. All his slides are of hollow wood, with the specimens mounted between cover-giasses.

The rethod is given as follows:-
4a. Ékuilition dans ia potarse à $10 \mathrm{p} . \mathrm{c}$. , jusqu 'à éclaircissement.
b. Ifavage à I'eau chaude.
c. Traitement par les alcools à $40^{\circ}, 70^{\circ}, 90^{\circ}$.
d. Coloration dans une solution de rouge de Magenta dans l'alcool absolu.
e. Lavage à l'alcool absolu. fclaircissement au xylol et montage dans le baume de Canada entre deux lames minces, de façon à pouvoir examiner Ies préparations sur les deux faces avec un fort grossissement." This is practically the same method as the one suggested by Professor R. Newstead in Vol. II, of his Monograph. For the study of the internal anatomy of the insects, or for the study of their intracellular symbionts, it is necessary to make disseotions, and also to cut sections and stain for the particular organisms.

Gross dissections are best made in normal salt solution. For this purpose $I$ find the Zeiss dissecting ricroscope
rractically indisyensable.
The experience of several years lwork in the disseotion of various insects shows that the most suitanie dich, for use on the microscope stage, is made from an ordinary Syracuse solid watch glass. Wax is melted and poured in, sufficient being used to fill it level full. When cold it should be scraped so that the surface resembles the inside surface of an ordinary watch elass, level rith the edges, but considerably lower in the riddle.

The killed insect for dissection is held in position by placing it in a shallow spot of melted vax mich is prepared by touchine the sumface with a heated knife point.A littie nomal salt solution is placed in the dish to float out the organs on dissection. nelicate, and fine pointed instrments are essential, and I find that one of the most useful is a fine straight Hagedorn needle, mounted in an ordinary needle holder. The cutting edge is small, and can easily be kent in good condition. For the isolation of the mycetom, the "corpo ovale" of Berlese, a longitudinal, redian out is nade on the rentral surface, when the body may be floated out with ease. For the study of this body in situ, serial sections are the most satisfactory, also for the study of the symbiont in the egg.

I obtained the best results from material which was fixed in full strength Pioro-nitric solution. If used at a temperature of about $90^{\circ} \mathrm{C}$. the adult 9 insect is completely fixed in about tnnee minutes. From this fixative the specinens should be transferred direct to 70 p.c. alcohol, Thich サiIl extract most of the picric acid in about thirty minutes if kept warm. The specimens should then be passed quickly through the stronger alcohols, into cedar wrood oil, and then into paraffin.

Sections which have been stained with iron haematoxylin should be counter-stained nith whter-eosin or orange $G$, or some such stain, as the symbionts of the Coccidae do not appear to retain much of the haematoxylin.

Systematic Position of Genera.

Systematic position of fenera under consideration.

The most comprehensive scheme of classification of the Coccidae which has yet appeared is that given by Cockerell in the "Canadian Entomologist", Vol.XXXI,1899. As we are only concemed with his Tribe Dactylopini I give this part in full for reference: "f not enclosed in a hard shell or maxy or horny sac; or if enclosed (Porococcus, Cryptoripersia), antennae and legs present. Newly hatched larva without rows of dorsal spines Dactylopiini.

## Dactylopiini.

Anal ring without hairs. . . . . . . . . . . . . 3. Anal ring with hairs . . . . . . . . . . . . . . 2 I.Adult $\%$ with all the legs present; first four small, hind pair very large; margin with spines Sphaerococconsis CkIl.
Adult $q$ with the antennae minute, conical; legs entirely absent; skin with many circular glands Sphaerococcus Mask.
Adult, of with the antennae reduced to a mere tubercle; spiracles small, legs absent; skin tuberculate, but without conspieuous giandskiz. pheniocosons Ckll. 2.Adult with well formed legs and antennae. . . . 3. Adult with legs and antennae absent or mudimentary • . . . . . . . . . . . . . . . . . . 15 .
3.Antennae 9-jointed . . . . . . . . . . . . . . 4. Antennae 8- sometimes 7-jointed . . . . . . . 6 . Antennae not more than 7-jointed . . . . . . . . 10.
4.Anal ring with 8 hairs . . . . . Puto Signoret. Anal ring with 6 hairs . . . . . . . . . . . . . 5 .
5.9 having the aspect of a nactylopius . Phenacoccus $C$. i covered with waxy lamellae, like an Orthezia
6. Insect with large projecting marginal tubercles . . . . . . . . . . . . . Tylococcus Newst. Without projecting marginal tubercles ••••. . 7.
7.Anal ring of $f$ with nore than 8 hairsLachnodius Mask.
Anal ring of 9 with 6 hairs ..... 8.
8. of with 4 caudal filanents . . . Oudablis Sign.
o with 2 caudal filanents ..... 9.
9. Body very elongate; antennae 8-jointed, shorterand stouter than in nactylopius; eyes present;mentum short . . . . . . . . . Pergandielia Ckli.Body oval, usually with cottony tasselDactylopius Costa.Body subglobular, enclosed in a cottony sacFrium Crawford.10. Antennae 6- or 7-jointed, distinguishedfrom Dactylopius by the stouter legs andusually subterranean habitat . . . . . . . . . . 11.Antemae 5-jointed; form elongate; analtubercles prominent . . . . . . . Rnizaecus Kunc.
11. 8 arterous, with relatively shortantennae . . . . . . . . . . Fonscolombia Linn.Hot so . . . . . . . . . . . . . . . . . . . . . . 12 .12. Iegs extremely thiok, like orab's clawsPseudoripersia Ckll.
Not so, legs ordinary ..... 13.13.9 enclosed in a waxy sac . . . Cryptoripersia Ckll.Not so . . . . . . . . . . . . . . . . . . . . . 14.14."Antennae very olose together". Ripersiella Tins.Antemnae normally placer. . . . . . Ripersia Sign.15. Newly hatched larva elongate, with6-jointed antennae . . . . . . . .
Newly hatched larva oval and suboval16.6.'Terminal segment of newly hatched Iarval
antenna oval, little longer than theone before . . . . . . . . . . . Pseudolecariun Ckll.This segment as lone as the 3 before. Chaetococcus $M$.
17.Larva with 5 -jcinted antennae; anal ringof adult with only 4 hairs . . . . Gryptococous Doug.Iarva with 6-jointed antennae, joint 6long; anal ring of adult with 6 hairs. Antonina Sign.Larva ilth r-jointod antennae, sides very
hairy; anal ring of adult and larva with
17 nairs Kermicus Newst."

The genera to wind I wis: to refer at present are :-
Phenacocous, Ceroputo, Tylococcus, Oudablis, Bergand-
1ella, Dactylopius, Erium, Pseudoripersia, Gryptoripersia, Ripersiella, and Ripersia.

The genus phenacoccus CKll. includes those forms in which the adult $9 \%$ have 9 -jointed antennae. The name used by Signoret for these was Pseudococous Westmood. Westrood, however, based his genus on the common mealybug, and on the commercial coshineal. The species first cited was adonidum, which has 8 -jointed antennae, so that this really belonged to the genus Dactylopius of Signoret.

The genus pseudococcus Signoret, (non Westwood) is descrined in the "Essai" as folkows:"Cette division se caracterise par la présence de neuf articles aux antennes de le femelle adulte, six à la larve et sept à la larve mâle. De plus, les tarses n' offrent pas de digitules longs comme la majeure partie des espèces, excepté dans le Coccus hederae. Tous les autres caractères sont ceux des nactylopius, dont ce groupe n'est qu'un demembrement pour faciliter l'étude." A suo-genus, Paroudablis, was suggested by Cockerell, in the Entomologist, 1900 , to include the forms in Which the $\delta$ has 4 caudel filaments, but this was not generally accepted, probably because so few of the $\delta^{\circ}$ are known.

The gemus Ceronuto Sulc is in many mays unsatisfactory. It includes twelve species at present, and the onief characteristic seems to be that the female is covered with waxy lamellae, Iike an Orthezia.

The type species is $\underline{C}$. pilosella Sulc, which has, according to lindinger (Die Schildiäuse,p.180,I9I2.) antennae 9 - or 10 -jointed. In $\underline{\mathrm{C}}$. mexicanus Ckll, the of has 8 -jointed antennae, and the of is winged, while in $\underline{\text {. }}$ volynicus Nassonow the $q$ has 9 -jointed antennae and the $\delta$ apterous.

The genus Tylococcus was established by Newstead in 1897 for an insect received from Madagascar, where it was found in the nests of Crematogaster Schenki For. The type species, T. madaçascarensis Newst. has 8jointed antennae, anal ring with six haira, and legs well developed. The genus is ciefined : "q adult with a series of large, projecting, marginal tubercles; anal tubercles large. Anal ring and antennae as in Dactylopius."
Oudablis vas created by Signoret in 1881 for the forms which differec rem nactylonius only in so far as the males had four caucal filaments instead of two. This was discarded by Mrs. Fernald in her Catalogue (1903) owing to the fact that so few of the males are known. The nane Pergandiella of Cockerell (1899), had to give way to Trionymus Berg., which preceded it by a few months only. Other synonyms for this are Westmoodia Sign. Signoretia Kraatz, Bergrothia Kraatz, and Bergrothiella Reit., all of which wore pre-occupied.

The type species is perrisi, which was described by Signoret as Westwoodia perrisi (Essai,p.337.) The characters given for the genus are:"Nous caraoterisons cette division par les antennes de la femelle adulte et celles de la larve mâle composées de huit articles, la Iarve femelle n'en offrant que six. Menton très-court, filets rostraux très-courts, dont I' anse depasse à peine les jambes anterieures. Le reste comme dans les nactylopius. La longueur du corps de $l^{\prime}$ espèce qui sert a former cette coupe est très-remarquable et depasse de beaucoup l'ordinaire car elle est plus de trois fois plus grande que la largeur.: It is always unfortunate when a name which has become well known, by use for many rears, has to be discarded or replaced by another, as happened in the case of Dactylopius. Signoret used the nane, which he called Dactylonius Cocta, in tine following sense:"Ce genre se distinguera par la présence de huit articles aux antennes dans la femelle, de six dans la larve, et de sept pour la larve mâle avant les metamorphoses, de quatre digitules et d'un anneau genito- anal de six poils."

This term, with others such as Dactylopid and Dactylopiine, became general for such forms, and since no other work was used to such an extent as Signoret's Essai, by workers on the Coccidae, the word aoquired
a world-wide significance.
nact,ylopius Cocte (1830), was founded (Fauna del Regno di Napoli VI, 0.15 ) on two species, D. coccus Costa, and D. polynicus Costa. The latter belonged to the already founded genus Margarodes, the former, which is the first mentioned, is to be regarded as the type of the genus. D. coccus is said to be coccus cacti Linn., but instead of being a synonym of that, it is the first available name for the cochineal insect. This insect has the antennae with 7 segments and the anal ring hairless, the latter character separating it at once from the form under consideration, which all agree In having the anal ring with six hairs. This genus must now be known as Pseudococcus Westwood, with the type species P . adonidun (IInn.) Westw.

Erium globosum Crawford is the type of the genus Erium. It was first described by Maskell in the N.Z.Trans. 34, p.34, 1891, under the name Dactylopius globosus. "Adult $\rho$ enclosed in a mass of white, or sometimes grey1sh, rather loose cotton, which, when separate, takes a more or less globular form, but may be aggregated in large masses covering the twigs. Insect sub-globular, flat beneath and convex above; colour red, or purple, or brown; distinctiy segmented: length sometimes reaching $1 / 8$ inch. Antennae properly of 8 joints, but sometines of 7 ; the $4 t \mathrm{~h}, 5 \mathrm{th}, 6 \mathrm{th}$, and 7 th the shortest,
the last the longest and cylindrical. Mentum rather large , pointed, trimerous. Feet usually normal, sometimes rather shoxt. Ano-genital ring with six hairs. Fpidermis bearing large numbers of simple circular spinnerets and fine hairs.

Larva not observed.
Ifle puna brown, enclosed in a sac of white cotton smaller and more elongate than that of the 9. Adult $d$ unknown.

Hab. In Australia, on Acacia armata and A. decurrens. Another of Mr. Crawford's species, to which he originally attached the name of Frium globosum. My specimens on Acacia decurrens Were sent by Mr. French." The above is the only mention of the genus Erium Craw. which was really established by Cockerell in the Amer. Naturalist XXXI, $0.590,1897$. His majn points seem to be the sub-globular body and the enclosing sac. These characters are found throughout the serles now under consideration, and cannot, in the estimation of the writer, be given generic importance. The species given under this genus by lirs. Fernald, in the Catalogue, are now included in the new genus Dectopseudococcus, or under Pseudococous.

Pseudoripersia was first given generic rank by Mrs. Fernald. Professor Cockerell, in his Check List of the Coccidae (1899), suggested making a sub-genus with this
name, to include the inseot described by laskell under the name of Eriococcus turgipes. This insect was found in Australia, and was distinguished principally by its legs which were "extremely thick, like crab's claws." The genus Cryptoripersia of Cockerell, founded on the character of the ovisac, was not accepted, and was merely given as a synonym of Ripersia by Mrs. Fernald. In 1899 Tinsley separated a few species from the genus Ripersia, in which tile antennae were very close together, and formed the genus Ripersiella to contain them. The type was given as R. Tumicis Mask., a New Zealand insect found underground on the roots of Rumex acetosella. It has 6-jointed antennae, and anal ring of 6 hairs.

Ripersia Signoret was desorined in the Essai, p.335, as follows:-
"Nous avons crée ce genre pour les espèces de Dactylopites dui offrent oix articles aux antennes pour la larve embryonnaine et pour la femelle arrivée à l'état adulte, la larve mâle conservant le nombre sept, le plus ordinaire dans le groupe. Les autres caractères sont ceux des Dactylopius; cependant nous pouvons ajouter l'absence des digitules des tarses." With the exception, possibly, of ceroputo, of which our knowledge is very imperfect, I am convinced that the genera discussed above constitute a phylogenetic
series, of which Ripersia forms the sten. From this, by following very definite lines of development, the Whole series may be derived.

Pipersia is not the starting point, the root, as it were, for belor this we should find the more primitive types showing relationship with the Coccidae as a whole, but it is from this genus that the series is moulded. The main line of develoment seems to be indicated in the production of an additional number of segments in the antennae of the adult females. The males (not considering possible veriations in the genus Ceroputo) seem to have undergone comparatively little change from the usual Coccid type, and possess lo-jointed antennae. One difference found in the males has been mentioned in connection with the genera Oudablis and Paroudablis,in the production of four instead of two caudal filaments, -but this modification is looked upon as slight. In Ripersia the $q$ larva has 6 -jointed antennae, and, for $\&$ larvae, this number is normal throughoutt the series. During metamorphosis, however, there appear; with ecaysis, additional segments, from one to three, in all the genera excert Ripersia. In this genus the original larval number, (six), persists throughout. In Phenacoccus, Where the adult of has 9 -jointed antennae, the larva still has six, the additional segments appearing gradually with tie eodyses.

Jt will have been orserved that tise maner of joints in the antennae forms the cheif basis for classification in this grour, and in many ways this appears to me very unsatisfactory, especially, as will be shown later, that, variation in this character may be seasonal. I am not in a position, unfortunately, to suggest any single character to remedy this, but I have attempted, by utilising the comparative lengths of the setae of the anal lobes, and those of the anal ring, and also of the legs, to facilitate the determination of species. These, and the other charaoters used in descriptions of species are discussed in a special section, later. The number of segments in the antennae appears at first to be a simple means for determination, and while the species to be described conformed to Signoret's genera having 6-, 8-, or 9-jointed antennae it was simple enough.

Specimons were found, however, which had forms in the same generation of adults, which proved to have six or seven jointed antennae; others with six and seven jointed forms together. These are all included in the genus Ripersia. In the same way generations of adult forms were found, in whion? 7 - ©and $8-j o i n t e d$ forms ivere found, and likewise others which exhibited 8- and 9-segmented antennae.

There is still ourther class which must be mentioned
here. In Pseudococous agrifoliae Essie, and P. trifolif Forbes, we find two distinct generations, a Summer form in which all the adult females have 8 -jointed antennae, and a Winter generation in which the adult females all have 7 -jointed antennae.

In Phenacocous acericola King we have a similar seasonsl dinorphism, the Summer generation with 9-jointed antennae and the Winter form with antennae of 8 segments. It is quite possible thet this phenomenon may be much more common than is now recognised, for in the majority of cases nothing is known of the species beyond what was written conceming the type material.

It is obvious that two seasonal forms such as are mentioned above, cannot represent different species, in different genera, as would be the case if the present classification were adhered to, and I suggest the folloving scheme to obviate such difficulties. Tribe Pseudococcini (nov.)

Adulto.-
Legs and antennae present, well developed.
Anal ring with 6 hairs.
Antennae of six, six or seven, seven, seven or eight, eight, eight or nine, or nine segments. Terminal segment long, generally the longest.

The variation in the number of antennal segments may be
seasonal and constant, as in Dactopseudococous trifolii (Forbes), D. agrifoliae (Fssig), and Pseudococcus acericola (King), or the two varieties ray be found together in the same generation as in Pseudococcus aurilanatus (Maskell).

All the segments bear hairs more or less long, the longest beine usually on tic terminal segment. Length of body varies from 1 mm to 7.5 mm (Ps•grandis Hempel), but 2 mm to 4 mm is the nost common range. Body usually more or less oval, or elongate, but it may be somewhat sub-globular, the segmentation showing more or less distinctly through the mealy secretion. Mealy secretion usually white or whitish, but may be yellowish, or buff coloured. Amount of secretion varies considerably. Lateral and caudal filaments present or absent.

Colour of body, after secretion is removed, as after boiling in KOH , usually reddish, pinkish or purplish, but may be blackish or dark bluish green. Caudal tubercles more or less developed, each bearing a long seta and several shorter hairs, in addition to the two or more (usually two) short conical spines, and glandular pores.

Similar conical spines are usually found on the lateral margins of the segments, together with the ceriferous gland-pores. In the genus Tylococcus these lateral
spine areas are produced on conical or rounded tubercles.

Eyes generally present, simple, on the anterior lateral margins, sightly posterion to the insertion of the antennae.

Ovisac: A more or less complete ovisac is usually formed, which may be but Ionsely voven of cottony filaments, or may be densely felted; "glassy" filaments may be included in the ovisac. (e.E. P . virgatus CkII.) Some species, especially those which are viviparous, secrete merely a thin film of wax on the ventral surface, and do not form a true ovisac.

The completed ovisac may partially, or entirely, enclose the adult 9 , while other species rest upon the surface of the sac in such a manner as to suggest the appearance of a Pulvinaria. (e.E.P. vovae Nassonow.)

Some adult females (ㄹ. sacharifoliae freen, ) are said to drop off the plant and die when the ovisac is completed, i.e. When the full complenent of eggs has been deposited.

Adult $q$ usualiy stationary, but some are said to move about freely in the evenings. (Ph. aceris Sign.) occurrence: Commonly found on various parts of plants; on or under the bark of trees; clustered at the nodes or on the under side of leaves; in flowers or fruit clusters; on the lower stems near the surface of the
ground, or on the roots below the grourd. A few species are known to inhabit galls, rinion mey be nene yy the insects themselves, as in P. subterreneus Hempel, or by some other insect as is the case where P. cualatensis CkIl. is almays found in the galls constructed by the Coccid Akermes colimae.
Some again are only known from ants' nests, suoh es P. cockerelif King, $P$. claviger king, etc, while forms such as $P$. citri Risso, the common mealy bug, have also been found in olose relation with ants. (See King and Tinsley, Psyche VIII, p.297,1898.) $\sigma^{2}$ puparium.- usually small, elongate, closely felted; often mixed up with, or hidden beneath, the masses of ¢ ovisacs.
s.- The males of comparatively few species are known. © normally winged; legs nomal; antennae of 10 joints. wings (two), well developed, generally white, mealy. Caudal filaments usually two in number, but a few forms have four, which may be equal in length, or the inner pair may be longer than the outer ones, or vice versa. The tribe pseudocaccini, as above deined, vill include eight genera viz. Ripeisia Signoret, Pseudoripersia ckll. Ripersiella Tins., Dactopseudococcus gen.nov. Pseudococous Hestwood, Tylococcus Newst., Phenacoccus Ckll., and possibly Ceroputo Sulc.

Four of these, Ripersia, Dactopseudococous, Pseudococsus,
and Phenacoccus are established chiefly on antennel characters, while the remainder have additional striking characteristios to distinguish them.

These are $n$ riefly illustrated in the following Key.

Key to Genera.

Tribe Pseudococoini.

1. Adult 9 vitir 6- or 6- and 7-jointed antennae . . .

RJperaia Signoret.
Type: R. Gomrampont sich.
Iers very thick . . . . . . Fseudoripersia Ckll.
Type: P. turgipes Mask.
Antennae very close together. Ripersiella Tinsley.
Type: $\underline{R}$. maicis Mask.
2. Adult 9 vith 7- or 7- and 8-jointed antennae . .

Dactopseudococeus g.n. Type: I. btomeliae Banche? ).
3. Adult 9 with 8 - or 8 - and 9 -jointed antennae.

Pseudococcus Westw.
Type $P$. adonidur westw.
Lateral margins with projecting tubercles .
TyIococcus Newstead.
Type:Tradagascarjensisur
4. Adult 9 with 9-jointed antenne. FhenacocousickII. .

Type: $\underline{\underline{P} \cdot \text { aceris Sign. }}$
( 9 covered with waxy lamellae . - Ceronuto Sulc.)
Tyre $\underline{C}$. piloseliae Sulc.

It is interestine to notiee that Pseudoripersia, Ripersiella, Tylococous and Ceroputc are not distinguisned by cherecters which aryear orly in these genere, but represent rather, the extreme cases of development along the lines which are more or iess common to 2.11 the series. In Riversia, for instance, many of the species are subterranean, and it is in this genus that we find most cases of short, stout legs. In a few species of the genus Pseudococcus we find ? tendency in the same direction, too, but in the genus Pseudoripersia the character is deveiozed to an extreme. The shape of the body varies greatly in all the genera. The most common shape is elongate oral, but in some species the insects are short and thick, almost circular in outine, while others taper to the extremities. The distance betweer the antennae varies, of course, to some extent, with the shape of the body. In the sub-rlobular species they are generally further apart than in those which becone narrow towards the anterior extremity. Ripersielia represents the extrene in this particular direction. The orgincl description of the type species, R. mumicis Maskell, N.Z.Trans.,1891, gives the shape as irrecularly elliptical, but the figure shows that the body is considerably narrowed anterioriy.

In tylococcus the case is slightly different. Anal
tubercles sre present throughout the series, and are developed to a more or less degree in the larval forms too. The well developed lateral apinneret areas are confined to the adult forms, and these are much better developed in sore species than in others. These areas are furnished with numerous glanc openings, and usually bear two or more short thick spines. In Thlococous these areas are especially well developed, and are produced on lateral tubercles.

A single case of still further localised glandular areas is presented by the insect described by Mr. A. E. Green in the lim. Dent. Agr. India, 1908, under the name Phenacoccus insolitus Green. The $q$ has 9 -jointed antennae, but the 8 th and $9 t h$ segments are fused together. The body is oblong-oval, and has "a somplete marginal and three loreitudiral series of conspleuovs spinous tubercles, the median series absent on the abdominal segments, the spines short, stout and sharply pointed.. During oviposition the insect deposits first a mass of cottony filaments (upon which it rests), and constructs later an elongate white ovisac." This insect will nov stand as Tylococous insolitus (Green). The waxy lamellae as found in the genus Ceroputo, are easily derived from the mayy covering found throughout the series, through an intermediate stage such as is found in Dactopseudococcus nipae laskell.

Study of Specific Characters.

## Study of the Specific Characters used in

the Pseudococcini.
In the majority of the ciescriptions of species of the Pseudococcinf the adult $q$ only is given, and the facts recorded usually follow more or less closely the following plan:-

Size; shape; mealy covering; segmentation; lateral and cauriel filaments; colour in boiling KOH; antennae, of which a formula only is given; legs, usually comparative size, not actual measurements; anal ring; host plant; locality.

I propose to deal with each of these headings serarately, and endeavour to indicate the relative importance of each as a means of deteminationd
a. Size: As a rule, the size stated represents, I think, an average, rathor than an actual measurement, as it is most ofter expressed in terms such as "about 3 mm long", or "from 2.6 to 4 mm long" etc. 0uite often a range of variation is indicated, as in the latter example. It may be difficult to state with any degree of accuracy the precise measurements of Iiving insects, as they will not remain still for measuring, and the mealy covering, anc couce. filaments tend to obscure the extremities. It is desirable, of course, to be sure that the smaller specimens are really adult forms, and not merely second
stage nymphs, and for this reason only those which are srinning ovisacs should be reckoned as adults when dealing with the living raterial. In mounted specimens the number of joints in tie antennae obriate this difficulty. (except in 6-jointed Pirersia.)
ly own observations seem to show that a slight variation In size may be caused by difference of food plant, and also by the season of the year, so that I think it is desiranle, when describing new species, to give the date of collection, and merely to indicate, from the living material, the approxirete size of the largest specimens.

When dealing with old adult females which have completed oviposition, the measurements of the living specimens may be very misleading, as the bodies are often shmunken, and an insect which then measures 2 mm in length may be 4 or 5 mm long when cleared and mounted.

Some writers always give the length of the rostral loop after the measurement of the insect, but this appears to be quite useless as a character. As an illustration of this point $I$ give measurements of two $i f$ of Pseuciococous citri Risso, (nounted).

Length of body. Length of rostiral 100 p .

| 3.2 mm |  |
| :--- | :--- |
| 2.6 mr. | $390 \mu$. |

b. Shape : The descriptions of the shape of the body are generally given in such teme as elongate-oval, roundecoval etc. which are nearly synonymous.

The normal shape is elongate oval, and it is only in a few cases that there is any important variation from this. A few species are short, and more or less subglobular, while a few others are exceptionally long, with tapering extremities.

It, may be seen that such variations from the normal would assist in determination, where they are constant, especially as they are found in but a few of the species.
c. Golour: The descrintions of colour apply really to three distinct phases, (I) the colour of the mealy secretion, (2) that of the body through the secretion, and (3) that of twe body in boiling KOH. The colour of the meny seoretion is generally white, but it may be grayish white, or yellow, as in $\underline{D}$. nipae Mask., D. filamentosus CkIl, and D. aurilanatus Mask., or it may be decidediy buff, as in P . iceryoides Mask. The colour of the body through the secretion varies, of course, with the colour of the body, and of the mealy covering, and also with the amount of waxy secretion. Some dark-coioured species have such e dense coat of secretion that they appear quite white on the dorsal surface, and, until the secretion is removed, their
true colour is only seen on the ventral side, where the secretion is always scant. On first dropning into boiling KOH the time colour of the body is seen. This may change considerably in a few minutes, as some of the colours found in this group are rapidly changed by the action of any strong alkali. By far the most common colour in the Pseudococcinf is pinkish, or purplish pink, but the following variations are met with:-

Light yellow, P. omami Coq., and P. solani CkIl. etc. Pink: P. agrifoliae Fssig, $P$. Ioseotinctus Ckll. etc. Red: P. cocotis Mask.

Reddish brown: P. claviger King and Tins., etc.
Yellowish orown: P. formicarii Fhrh. etc.
OIIve brown: D. aphyllonis Ckll., P. olivaceus Ckll., eto.
Cardinal: $\underline{P}$. bakeri EssiE.
Light brown: ㄹ. ryani Coquillet.
Greenish brown: P. quercus Ehrh.
Dark grayish brown: D. quaintancii Tins.
Gray: P. Salinus CKll.
Lead gray: $\underline{P}$. andersoni Colenan.
Purplish gray: P. azaleae Tins.
Slate colour: P. muraltiae Brain.
Purplish black: D. filamentosua Ckll.
Dark green: D. aurilanatus Mask., etc.
Pale greenish: P. atriplicis.Ckll.

In writing on the colouring matter found in the Isebbek scale, D. perniciosus Newst., ( $=$ D.filamentosus Ckll.?) Mr. Hughes, Bull. Fnt. Res.I,p.141, writes:"A colouring matter of a reddish crimson is present. This can be extracted with water, or better, alcohol. In the latter solvent the absorption spectrum resembles, though it is not identical with, that of cochineal. Acids have little effect on the colour nor has ammonia. it is, however, changed to a brownish green by the addition of a large excess of alkali."

Most species clear easily by boiling in KOH , or merely leaving in a cold 10 p.c. solution for 24 hours, but some of the dark green or blackish forms are extremely difficult to clear.

As a means of determination the colour of the adult $f$ is quite inadequate, as may be illustrated by the fact that all the common forms in the British Isles are of the same pinkish hue, but, where the colour varies from the normal, it may, at least, furnish a very significant clue.
d. Segmentation: It is usual, for some reason or other, to state whether the secmentation of the body: is conspicuous or not. In the majority of cases this merely amounts to whether the mealy secretion is abundant or scant. The segmentation of the body is always more
distinct in the second nymphal stage than in the adult. The distinctness graduaily diminishes as the adult becomes replete. It varies, too, in the same species, on the position of the females, as insects sheltered from the wind usually have a more complete covering of meal than those in exposed positions. As a character for determination this is quite useless.

## e. Lateral and caudal filaments:

The rresence or absence of lateral and caudal filaments in the species in this series is a character which may assist considerably, in a preliminary way, in the determination. It would be better, perhaps, to say that the length and thickness of the filaments often give a clue to the identity of the species. There is a relation, of course, between these filaments and the glandular spine areas, which gives the point significance. The two cormon species, P. citri Risso, and P. adonidum Westw., which have now a world-wide distribution, may be readily distinguished from one another by the character of these filaments. In P. adonidum they are more slender, and the caudal ones are very long, sometimes reaching more than the length of the body. This insect vecame well known in many countries under the name of Dactylopius longispinus. A few species are described as having caudal, but no lateral filaments.

## f. Antennae:

The nurber of segments of the antennae is a generic character, so does not call for attention here, and I wish to draw attention to the usual practice of giving the antennal formula as a specific character. This is done in a large percentage of the original descrivtions, and it is only when one has endeavoured to determine specimens with the aid of them that the impossibility of the task is realised.
A formula is composed of numbers indicating the joints the largest, i.e. longest, being given first, the shortest last, with the others in order of their length. When several segments vary so much that the sequence may be altered the numbers are placed in brackets. The formula given by Newstead, (Monograph of British Coccidae, II.) for p. adonidum Westw. is as follows:(2.3.8.)(1.4.5.6.)7.

This indicates that joints 2,3 , and 8 , are longest, and any one may be longer than the other two, or that the three are of equal length. Joint 7 is shortest, and its position outside the brackets would indicate that it is always the shortest. I am inclined to think that many, if not most of the antennal formulae have been made on simple comparisons of the segments under the microscope, and not by actual measurements.

If we remember, too, that most of the descriptions are made from mounts which are merely boiled in potash, and. cleared, the difficulty of observing the comparative lengths of the segments rill be obvious. Under these conditions the dermis is colourless, and becomes very transparent in Canada balsam, and the exact point at which the segments begin, and terminate, is difficult to deternine.
With material which is suitably stained the task is much easier, and the results are, consequentiy, more reliable. Methods of staining are efven in the section on Methods and Technique.
Antennal formulae, constructed from stained specirens, however, are quite unsatisfastory for the determination of species. That this is the case may best be illustrated by a few measurements rith the formulae constructed from them. The following are made from specimens of $\underline{p}$.adonidum Westw., collected at the Edgaston Botanical Gardens in November 1913.

Antennal segments:-
I. II. III. IV. V. VI. VII. VIII.
65. 72. 76. 38. 42. 38. 46. 104.

Formula:- 8.3.2.1.7.5.(6.4.)
58. 65. 63. 36. 41. 38. 43. 96.

Formula:- 8.2.3.1.7.5.6.4.
74. 72. 74. 48. 62. 43. 43. 101.

Formula:- 8. (1.3.)2.5.4.(6.7.)

It will be seen that no two of the formulae are alike. It is not an uncommon occurrence for the two antennae of the same individual to give different formulae, and from this one collection of material, about 40 specimens, I constructed the given formulae of five distinct species. The measurements were made from specimens stained by the Carbol fuchsin method, with the Zeiss microscope, obj.D. and 7.5 measuring ocular. The results are more accurate by this method than plotting from camera lucida drawings. The lengths of the antennal segments are, nevertheless, of ereat immortance in the detemination of species if they are accurately made from stained specimens, and properly tabulated.

I have received several letters from workers in this eroup, expressing the usefulness of the scheme $I$ used first in my description of new South African species of Pseudococcus, in 1912, which gives the measurements, in $\mu$, in three lines, as follovs:-
a. Range of measurerents.
b. Most common measurements.
c. Average of 10,20 , or 30 measurements, according to the amount of material available.

This method has the disadvantage of requiring a good deal of time, but I think the results are sufficiently
useful to repay one for the time spent. The average measurements are then used by the writer in preparing the chart for detemination of species, which is described later.

## Ifegs:

The remarks concerning the uselessness of an antennal formula as a specific character apply equally well to general remarks on the legs, such as are commonly made in descriptions of species of Pseudococcini. In order to be of use, the measurements should be carefully made and tabulated, and use should be made of the three pairs of the same specimen. If only one set of measurements is to be given I would suggest that the mesothoracic leg be made use of, as this is usualiy a more or less reliable clue to the other two pairs. The scheme formulated by the writer (1912), gives the measurements, in $\mu$, in the following order:-

1. Length of coxa.
2. Breadth of coxa across base.
3. Length of trochanter plus femur.
4. Breadth of femur.
5. Jereth of tibia.
6. Breadth of tibia.
7. Length of tarsus plus claw.

This scheme was the outcome of an endeavour to obtain
neasurenents in direct lines from points which rerain fixed although the legs ane folded in different ways in mounting.
Considered aione, the character of the legs would not form a satisfactory character for specific determination, but taken in conjunction with the antennal segments, and the comparative lengths of the setae of the anal lobes and the anal ring, it is an important factor.
h. Anal ring:

The only mention of this character in the majority of the descriptions is to give the number of hairs which it bears. All the series which I now include in the Pseudococoini, however, have the anal ring with six hairs. It was observed that the length of the anal ring hairs remained fairly constant throughout all the $9 \%$ of the species, but this did not furnish a satisfactory specific character in itself, because there was not sufficient difference between the length in different species. The anal lobes are furnished with conical spines, glandular pores, and each bears one long seta. These also remain fairly constant in length for the species, so that the comparative length of the setae of the anal lobes with those of the anal ling, forms, I think, quite a good character if taken in conjunction with the antennal segments and the legs.
i. Host plant and Locality.

A few species, such as the common mealy bug, P. citri Risso, and the long-tailed mealy bug, P. adonidum Westw. are found on a great variety of host plants, and have a very wide distribution, but the majority of species yet described have only been found on a single host plant, and have only been recorded from the one locality. The species which are most commor on nursery stock are the ones which have been spread rost widely in recent years. An illustration of this is furnished by the conspicuous species $\underline{D}$. nipae laskell. This was first described in 1892 from Demerara, where it was found on Nipa fruticans. It became very common on palms of different kinds and was soon known as a nursery pest in Mexico and the United States. About 1903 it was found in Europe, and has since been sent on palms to many parts of the world. It was first noticed in greenhouses near Cape Town about 1906 or 1907, but it is quite corron there now. It has also been reported recently from India, Australia and New Zealand.

Dr. Signoret established a number of species apparently on this character (i.e. host plant) alone. A number of these will be found in the synonymy of $\underline{P}$. citri and $\underline{P}$. adonidum.

Development of the Pseudococcini.

## Develoyment of the pseudococcint.

Very IIttle attention has been given to the development of the mealy bugs. The majority of the descriptions refer only to the adult female; the males of few species are known, and the early stages of practioally all the insects have been entirely ignored.

I am able to record some personal observations on the $\ddagger$ series of Pseudococous oitri Risso, but unfortunately I have not had an opportunity to observe the $\delta$ transfomations.

Some observations on $P$. saocharifolif Green, which "ere made in India by Mr. Maxvell Tefroy, are added for comparison.

After hatching from the egg the $q$ of P. citri moults four times before the adult stage is reached, so that the following instars ere passed through:Pseudococcus citri Risso.

1. EgE, hatching in 8 to 13 days.
2. Ist larval stage, with 6-jointed antennae. First moult.
3. 2nd larval stage, larger, with 6-jointed antennae. Second moult.
4. Ist nymphal stace, xith 7-jointed antennae. Third moult.
5. 2nd nymy hal stage, antennae also 7-jointed.

Fourth moult.
6. Adult, vith 8-jointed antennae.

In $P$. saccharifolif Mr Lefroy did not find the two larval stages, so that it is probable that they do not oscur in that species. I observed them in $P$. muraltiae in a generation which hatched from eggs on 0ctober 25 , 1910, at Cape Town. .
Both $\delta$ and of were observed by Mr. Lefroy, so tiset I shall draw somewhat fully from his description given in the Memoirs of the Dept, of Agr. in India, II, p. 124, 1908. The $\sigma$ and $q$ are alike up to the second moult, when the $\sigma^{\prime}$, after the moult, enters a period of rest, during which it assumes a chrysalis form, while the $q$ passes through another instar before attaining maturity. P. saccharifolif Green.
I. Eggs laid, hatching in about 11 days.
2. First instar, in which botil sexes are similar and active, lasting 4 to 6 days.
3. First moult, occurring 15 to 27 days after the eggs were laid.
4. Second instar, in which both sexes are similar, and active on occasion, lasting about 4 days.
5. Second moult, 19 to 21 days after hatohing.
6. Third instar; of enter pupal stage; of remain as before and continue feeding, lasting 6 to 7 days.
7. Third moult; $\delta^{\circ} \sigma^{\circ}$ emerge winged.
8. $\therefore$ fertilise 99 , about 2 days after emerging.
9. ${ }^{\prime} \sigma^{\circ}$ die, usually within 2 days of emergence.
10. if lay eges and then die.

The total duration of iffe in this particular generation lasted 29 or 30 days for the 88 , and about 34 days for the $9 \%$. This represents the period from the tine the eges were laid until the insects died as adults. Other generations were observed in which the life of the $\rho \&$ occupied 41,35 , and 50 days respectively. Mr. Lefroy considered that there would be as many as eight distinct generations in the year, but as there Is a good deal of irregularity in the behaviour of the broods they overlap until all stages are found together. Little is known as to how the different species pass the winter, but in the comion forms of greenhouses, all stages may usually be found throughout the year. In Pseudococous capensis, vhich was extremely numerous on Phytolacca trees at Rosebank, (Souti Africa), adult females were always to be found in the cracks of the bark during the Cape winter.

Scheme for Description of Species, and

Chart to aid in Determination.

Suggested Sorome for the full deacription of Species, and a suggested Chart to facilitate the Rapid Comparison of one Species with others.

The unsatisfactory nature of many of the existing descriptions of the Pseudococcini cannot be denied. The fact that I have recelved letters from Entomologists in other parts of the world asking if I have a "workable" scheme for the determination of species proves that this is recognised. The reason for this cannot be shown to lie with the workers thenselves, but is to be found entirely in the characters which were most often used. Characteristics which we may consider essential now were not considered at all by the early workers, who, I imagine, were not entirely satisfied, nor am I sure that any single character used now is entirely satisfactory. All that can be done, at any time, however, is to endeavour to find the most constant characters for the species, and to consider these as the essentials for the time being. Characters such as can only be proved by breeding cannot always be awaited. Descriptions should be made, as far as possinle, on the same lines, at any rate care should be taken that all the more important characteristics are given. When given always in the same sequence the work of comparison is simpified.

A definite soneme, suited to the particular class of insects, has spropal arontages, one of which is that it ensures that no point of importance is omitted. For a full scheme, to be used in the description of the Pseudococcini, I would suggest the following:-

> Name:-

Ovisac: size, shape, colour, texture, wheticr aivlt of is enclosed or not.
Ova: sine, mape, colour, (hatch in . . . days.)
Larva: size, form, colour, waxy secretion, antennae, number of segments.

Male puparium: size, shape, colour, texture, emergence of adult ${ }^{\prime}$.

Male: sise, onlom, vincs, eyes, antennae, caudal filaments.

Female: size of largest specimens observed, shape, colour, waxy secretion, lateral and caudal filaments.
colour in boiling KOH , Iiquid stained?.
o. cleared and mounted:
size, shape, metioc of staining,
antennae: number of segments, range of measurements, most cormon measurements, average of 10, 20 , or 30 measurenonts, hairs.
legs: measurements in $u$, of
(a) length of coxa, ( $b$ ) breadth of coxa across
base, (c) length of trochanter plus femur,
(d) breadth of femur, (e) length of tibia,
(f) breadth of tibia, (g) length of tarsus
plus claw.
digitules:
setse of anal lobe: range of measurements in
$\mu$, mode
setae of anal ring: range of measurements in
$\mu$, mode.
distribution of spines, hairs, and chief clusters of glandular pores.
(Symbiont: position of rycetom, character of organism, infection of eges, cultural characteristics,etc.)

Parasites:
Relationship with ants:
Host plants:
Locejity:
Dete of colieation:
Possible:relationships:
Observations:

To obviate the necessity of referring to the descriptions of species in detail, as a preliminary step in determination, I make use of charts such as those given with the descriptions which follow. On receipt of material I make careful notes on the living insects, noting the ovisacs, ova, larvae, etc and on the adult insects.

After clearing and staining the specimens I proceed at once on the particulars required to complete the chart, making, the measurements of antennae, legs, anal lobessetae and anal ring setae, from the mounted specimens.

A curve is plotted for the entennal segments, red ink being used. This is the character which is first compared after the living material characters have been
considered. In some cases the first clue to the identity of the species is obtained from the fresh material, from its general size, colour, secretion, or perhaps the lateral or caudal filaments. Its colour in boiling KOH may give the first clue, but these are exceptional cases when dealing with species which have not been seen alive before, and most often the antennal curve is the first means of showing where the insect belongs. The similarity of antennal ourves is not conclusive evidence that the insects are identical, however, but the ease with which the character may be figured, and the figures compared, makes this method extremely valuable. The anal lobe and anal ring setae should also be compared, and finally the leg characters. If all these characters are found to approximately agree the full description should be consulted for the minor points.

Unfortunately the requisite details are not supplied in most of the original descriptions to enable one to complle charts for many species, and it takes a good deal of time to secure the type, or at best topotype material, and make the necessary measurements.

I add a number of copies of original descriptions, which are indicated by the use of inverted commas, and a number of others, abbreviated, but presenting all the main points mentioned, with charts wherever possible.

Descriptions and Charts of the Pseucococcini.

Piopria muntia Comern, ino.
P. Murantia CkII. Ann.Mag.Nat. Hist. (7), TITI, Y, 5I, IGO1.
"q.- Bright orange, with very littile meaiy powrer;
very convex, almost hemispherical.
Lone. 2 rr , lat. 1.5 mm .
Legs and antennae reddish brown. Antennae 6-jointed,
fifth joint cup-shaped; joints measuring as follows
in $\mu$ :- (1) 33 , (2) 39, (3) 48, (4) 18, (5) 30, (6)
80 .
Formula: 6.3.2.(1.5.)4.
Anel. ring with six bristles; caudal tubercles not
at all prociuced, each bearing a bristle about the
sise of the bristles of the ancl ring.
Heb. Las Vegas, New Mexico. April. Parely with
Lastus smericanus.
J have seen an ant wildy mushing about with one in its jaws.

By its convex shape, together with the orange solour, this species is very different from all the others. First found by W.P.Cockerell."

Chart for:- Ripersia aurantia CockepeII, 1901.

Size:-(a) Fresh material:- 2 rm long and 1.5 rm bioad.
(b) Mounted:-

Antennal curve:-

| III | I. | II. | III. | IV. | V. | VI. | VII. | VIII. | IX. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 130 |  |  |  |  |  |  |  |  |  |
| 120 |  |  |  |  |  |  |  |  |  |
| 110 |  |  |  |  |  |  |  |  |  |
| 100 |  |  |  |  |  |  |  |  |  |
| 90 |  |  |  |  |  |  |  |  |  |
| 80 |  |  |  |  |  |  |  |  |  |
| 70 |  |  |  |  |  |  |  |  |  |
| 60 |  |  |  |  |  |  |  |  |  |
| 50 |  |  |  |  |  |  |  |  |  |
| 40 |  |  |  |  |  |  |  |  |  |
| 30 |  |  |  |  |  |  |  |  |  |
| 20 |  |  |  |  |  |  |  |  |  |
| 10 |  |  |  |  |  |  |  |  |  |

$$
33 \cdot \quad 33 \cdot \quad 48 \cdot \quad 28 \cdot \quad 30 \cdot 80 .
$$

Legs:-

Measurements in :-

Setæ of Anal lobes:- About the same length as those of the ari i ring.
Setæ of Anal ring :-

Host plant:- In nerts of 1 ius merioan.

Locality:- Inas Tegas, New Meyico.

## Ripersia confusella Cockerell, 1901.


"s'.- Length of boovy 1300 to 25504 ; antennae 660u; wing 1150u; cottony tails about, 700u. Dull greyish brown to pale pink, antennae and legs alnost mite; corsun of thorax pale, with a yellowish tinge, no cistinct vittae; wings very white; mesosternum mitish; micide of abdomen pale. Heac seen frou above large, triangular, broadest behind the eyes, which are small and dark crimson. 9. pale pink, varying to pale yellowish, without lateral tassels; small cadial tassels present.

Adult (with eggs forming) about $n \mathrm{mr}$ long; antennae 6iointed, formula 6.3.1.?.5.s.; joints (1) 33, (2) 30, (3) 45, (4) 21, (5) 27, (6) 60. MidCle legs:- femur + trochanter $150 \mu$; tibia 105 ; tarsus $66 u$.
9. penultimate stage, (1) 36 , (3) 33 , (3) 39 , (4) 24 , (5) 33, (6) 75. Micile legs:- fomur + trochanter 132; tibia 65; tarsus 60ر. The antemae end tarsus of this stage are about as in the adult, but the femur and tibia are shorter. The antemal reasurements are variable to some extent, but on the whole remarkably constant in a considerable series.

Fge: vile ferrueinous, oval; 650u long.
Hab. Las Tegan, New Mexico, about 6400 ft.in nests of Lasius americanus."

Chart for: - Jiversi: goryonia Cookereiz, 190..

Size:-(a) Fresh material:- A out a mra long.
(b) Mounted:-

Antennal curve:-


Legs:36.33 .35 .34 .33 .35.

Measurements in $\mu$ :- hesotionaic leg:-
Ferur + troonnter 132u; tibia 65u;
tarsw 60u.(penuitinate stage.)
2501: j05u; arid 66u in adult.
Setæ of Anal lobes:- About 117a Ions.
Setæ of Anal ring :-
Host plant:- In nests of In: 110 . 0 .
Locality:- I's tregias, New ifexico, 6.40n ft.

Ripersia porterac cockerell, 1901.

"q.- Globose, very pale pinkish or sometimes yellowish; mounted specinen 2.4 ra long and 2.3 rm broad; enclosed in a snow-white sac just like that of Dactylopius lichtensioides.

Labium not elongateci hairs of anal ring remarkably short; legs ordinary, middle leg with femur + trochanter 135u, tibia 70u, tarsus 60u. Antennae 6-jointed: (J)

35-39, (2) 39 , (3) 42-45, (4) 24-27, (5) 33-36, (6) 60-66.

Hab. Las Vegas, on roots of grass, April 25. A very distinct species, with its y,ale colour and snow-white sac."

Chart for:- Pirersia porterie cockereil, .sol.

Size :-(a) Fresh material:-About .4 mr long and 2.3 mm brã.
(b) Mounted:-

## Antennal curve:-

| (1) | I. | II. | III. | IV. | V. | VI. | VII. | VIII. | IX. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 130 |  |  |  |  |  |  |  |  |  |
| 120 |  |  |  |  |  |  |  |  |  |
| 110 |  |  |  |  |  |  |  |  |  |
| $100$ |  |  |  |  |  |  |  |  |  |
| 90 |  |  |  |  |  |  |  |  |  |
| 90 |  |  |  |  |  |  |  |  |  |
| 80 |  |  |  |  |  |  |  |  |  |
| 70 |  |  |  |  |  |  |  |  |  |
| 60 |  |  |  |  |  | 1 |  |  |  |
| 50 |  |  |  |  |  |  |  |  |  |
| 5 |  |  |  |  |  |  |  |  |  |
| 40 |  |  |  |  |  |  |  |  |  |
| 30 |  |  |  |  |  |  |  |  |  |
| 20 |  |  |  |  |  |  |  |  |  |
| 10 |  |  |  |  |  |  |  |  |  |
| 10 |  |  |  |  |  |  |  |  |  |
|  | 36. | 39 | 44 | 36 | 35 | 64 |  |  |  |

Legs:-
Measurements in $u$ :- iesothomacic Les:-
Ferur + trousinter 135u; tibia rou;
taicus 60u.

Setæ of Anal lobes:-
Setæ of Anal ring :- About $72 u$ long.
Host plant:- On mots of grass.
Locality:- Las Vegas, Ner hexico.

## Ripersia trichura Cockerell, 1901.

R.trichura CKII.,Ann.Hag.N.H.(7),VIII, $2.55,1901$. "q.- Longer tian usul, ninkish, but covered with white mealy secretion. Skin unusually crowded with round glands; cephalic region somethat bristly; amin reaion very bristly; caudal lobes not prominent, their bristles are about $165 \mu$ long; six bristles on the anal ring, $135 u$ long; legs not unusually slender; anterior femur $105 \mu$; middle leg with femur + trochanter $138 \mu$ (femur alone $105 \mu$, width $36 \mu$ ), tibia $84 \mu$; tarsus $57 \mu$. Antennae 6-jointed. Joints: (1) 39-45, (2) 33-36, (3) $30-42$, (4) 25-27, (5) 30, (6) 60. Formulae 6.1.2.(3.5.)4. and 6.1.3.2.5.4. Hab. Las Vegas, April 29th, (w.P.Cockerell.) iny wife brought this in with the remark that it seemed to be new; but I thoueht it was confusella, until I saw the extraordinary long bristies of the anal ring and caudal tubercles. The caudal bristies of confusella measure about $117 \mu$, of trivittata $114 \mu$. The bristles of the anal ring in most of the species are under $100 \mu$;for instance, $72 \mu$ in porterae, $45 \mu$ in trivittata. The legs of $R$. trichura are similar to those of confusella."

Chart for：－Piersin trichura Cockerell，1601．

Size ：－（a）Fresh material ：－
（b）Mounted ：－

Antennal curve：－

Sn. 万r. 3月. 5. 30. 60.

Legs：－
Measurements in u：－Mesothorsie les：－

$$
\begin{aligned}
& \text { Porve + troohanter } 238 u \text {; tinia 84u; } \\
& \text { trisus } 57 u \text {. }
\end{aligned}
$$

Setæ of Anal lobes：－About 165 u Lons．
Setæ of Anal ring ：－About $335 u$ long．
Host plant：－
Locality：－Les Vegas，New Lexico．

## Ripersia trivittate Cockerell, 1901.

P. trivittata Ckll., Ann.Mag.N.H.(7), VIII, p. $55,1901$.
" ${ }^{3} .-$ Body 950-1050 Iong; antennae about 600k, 10-jointed, joints cylindrical, with short whorls of hairs; wings $1100 \mu$; two white caudal filaments, short, about $150 \mu$. General colour, including legs and antennae, light strawyellow; head, prothorax, extreme base of antennae, and abdomen suffused with lilac; mesothorax with three purplish brown longitudinal stripes; sides of thorax purplish brown; eyes black, relatively large, prominent, shiny; head seen from above widest in region of eyes. ¢.- About 1.5 mm long; of ordinary form. Pale yellowish, with a slight pink tinge, some decidedly pink; sparsely mealy; turning dark brownish red on boiling in KOH . Antennae and legs pale brown; antennae 6-jointed, 30 , (2) 30, (3) 30, (4) 18-24, (5) 24, (6) 72. Formula 6.(1.2.3.)5. Anterior tibia about 30 ; taneus $63!$. Hab. Las Vegas, under a rook with Lasius americanus. d' ${ }^{\prime}$ and of together in numbers, apparently copulating. This is known from confusella by the first three antennal joints being of about equal length; but I shoula have thought it only a variety but for the essentially different ${ }^{\circ} \cdot{ }^{\prime \prime}$

Chart for:- Fijersie trivittote cookereli, 1901.

Size:-(a) Fresh material:- About 1.5 rm long.
(b) Mounted :-

Antennal curve:-

| II | I. | II. | III. | IV. | V. | VI. | VII. | VIII. | IX. |
| ---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 130 |  |  |  |  |  |  |  |  |  |
| 120 |  |  |  |  |  |  |  |  |  |
| 110 |  |  |  |  |  |  |  |  |  |
| 100 |  |  |  |  |  |  |  |  |  |
| 90 |  |  |  |  |  |  |  |  |  |
| 80 |  |  |  |  |  |  |  |  |  |
| 70 |  |  |  |  |  |  |  |  |  |
| 60 |  |  |  |  |  |  |  |  |  |
| 50 |  |  |  |  |  |  |  |  |  |
| 40 |  |  |  |  |  |  |  |  |  |
| 30 |  |  |  |  |  |  |  |  |  |
| 20 |  |  |  |  |  |  |  |  |  |
| 10 |  |  |  |  |  |  |  |  |  |

30. 30. 30. 23. 24. 72. 

Legs :-

Measurements in $\mu$ :-

$$
\text { Anterior tibia about } 60 \text {; tarsur } 63 u \text {. }
$$

Setæ of Anal lobes:- About lisu Ione.
Setr of Anal ring:- Arout $45 u$ Iong.
Host plant:- Thder a rock with Lasius americanus.
Locality:- Las Yogas, New lexico.

Dactopseudococous filamentosus (Ckll.),1893.
D. filamentosus Ckll. Entom. XXYI,p.268,1893.
D. vastator Mask.N.Z.Trans.XXVII,p.74, 1894.
"9.- About 3 mm long, shape of cossos geoti, grey, but covered with white secretion. The $q$, boiled in KOH , turns black and gives off a purplish colour. By transmitted light it appears not black, but violet. The margin has a series of short hairs. The caudal tubercles emit the usual filaments, which, however, are very short. Between the tubercles, when the searetion is removed, four hairs, longer than the tubercles, can be seen. The legs are very smail. Tibia not nearly twice as long as tarsus. Claw slender with a very short knobbed digitule. Tarsus with two long knobbed hairs as usual. Inner side of tarsus with a long, rather stout hair, which extends as far as end of claw.

Femur as long, or nearly as long, as tibia and tarsus. Trochanter with a long hair. colour of legs brownish. Antennae very short, with only seven joints; 1 and 2 about equal; 3 and 4 equal, shorter than $2 ; 5$ and 6 subequal, shorter still; 6 shortest; 7 long. Larva reddish. Eggs oval, with contents partly of a verdis-green colour.

Hab. On a plant resembling a Vaccinium, Bahamas."

Chart for: - Dactonseudococous filamentosus (Ckll.), 2893.

Size:-(a) Fresh material:- About 3 mm long.
(b) Mounted:-

Antennal curve:-

| $\because$ | 1. | II. | III. | IV. | V. | VI. | VII. | VIII. | IX. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 130 |  |  |  |  |  |  |  |  |  |
| 120 |  |  |  |  |  |  |  |  |  |
| 110 |  |  |  |  |  |  |  |  |  |
| 100 |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |
| 90 |  |  |  |  |  |  |  |  |  |
| 80 |  |  |  |  |  |  | 1 |  |  |
| 70 |  |  |  |  |  |  |  |  |  |
| 60 |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |
| 50 |  |  |  |  |  |  |  |  |  |
| 40 |  |  |  |  |  |  |  |  |  |
| 30 |  |  |  |  |  |  |  |  |  |
| 20 |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |
| 10 |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |

40. 38. 35. 32. 38. 28. 78. 

Legs :-

Measurements in

Setæ of Anal lobes:-
Setæ of Anal ring :-
Host plant:- Citrus etc.
Locality:- Japan, Mauritius, Hawaii, South Africa.
I. neomexicanus var. indecisus Ckll. Can.Ent. XXYII, 0. 303. 390 I .
"9.p $12 / 3 \mathrm{~mm}$ long. Pink, varying to pale sage green; mealy; no lateral or caulal tufts; no well-defined ovisac; legs and antennae very pale.

Middle leg, with femur and trochanter I7AM; tibia 108 $\mu$, tarsus (without claw) $60 \mu$.

Antennae 8-jointed, varying to 7; one 9 full of eggs had one antemna with 8 joints, tis nther with 7 . Formulae:- 8.1.2.(3.7.)(5.6.)4. and

$$
8 \cdot 2 \cdot 1 \cdot(3 \cdot 7 \cdot) 6 \cdot(4 \cdot 5 \cdot)
$$

Measurements of joints in !:-
(1) 36-45, (2) 35-40, (3) 34-95, (4) 15, (5) 14-18,
(6) 18-21, (7) 24, (8) 63-59.

7-jointed form:- (1) 45, (2) 45, (3) 30, (4) 36, (5) 24, (6) 27, (7) 63.

Hab. In nests of Lasius americanus, Las Tegas, New Mexico. ApriI 2ん, (W.P.CockereII)."

Chart for:- Dactopseudococcus indecisus (CKII.),1901.

Size :-(a) Fresh material:- About 1.7 mm long.
(b) Mounted:-

Antenna curve:-

$\begin{array}{lllllll}45: & 45 \cdot & 30 & 36: & 24 \cdot & 27 \cdot & 63: \\ 40: & 38: & 24: & 15: & 16: & 20: & 24: \\ 466\end{array}$
Legs:-

Measurements in $\mu$ :- Mesothoracic leg:-

$$
\text { Femur + trochanter } 174 \mu ; \text { tibia } 108 \mu ;
$$

tarsus $60 u$;

Seta of Anal lobes :-

Setæ of Anal ring :-
Host plant:- In nests of Lasius americanus.
Locality:- New Mexico.

Dactopseuciococous missionum (ckII.), 1910.

Ps. missionum CKll., Fntom. XLII, V .113 , 1910.
"About 2 mm long, of ordinary form. Apparently with little mealy secretion; legs stout, lively ferrugineus; antennae 7 or 8 jointed. Anal ring ordinary, with six short hairs. Fenales studied full of eggs, which are $275 \mu$ long and $170 \mu$ broad.

The species is especially distinguished by its small robust red legs, and small pale antennae. The following measurements are in $u:-$ Hind leg: length of trochanter $105 \mu$; of femur 222; vidth of femur 92; length of tibia 182; of tibia 95, bristles of hind tibia 15. Apical bristle of trochanter about 62. Antennae 7 -jointed, joints (1) $37-50$, (2) 47-55, (3) 40-52, (4) 37-55, (5) 30-45, (6) 37-42, (7) 75-85. Antennae 8-jointed, (1) 50-55, (2) 52-55, (3) 50, (4) 22-30, (5) 32-42, (6) 30-35, (7) 32-42, (8) 87-90. The 7 and 8 joints do not indicate two species; in one case a specimen was 7 -jointed on one side and 8 on the other.

Hab. Santa Ana Misiones, Argentine, No.13,(Lanille)."

Chart for: - Dactopseudococous missionum (CkII.), 1910.

Size:-(a) Fresh material:- About 2 mm long.
(b) Mounted:-

Antennal curve:-

44. 50. 45. 48. 38. 40. 80. 52. 54. 50. 27. 38. 33. 37. 88.

Legs:-

Measurements in $\mu$ :- Mesothoraole Ler:-

$$
\begin{aligned}
& \text { Troohanter 105u; form 2, } 2 a l \text {; tinia 182u; } \\
& \text { tarsus } 95 u \text {. }
\end{aligned}
$$

Setæ of Anal lobes:-

Setæ of Anal ring :-
Host plant:-
Locality:- Argentine.

Dactopseudococcus quaintanci (Tinsley),1898.

ㅍ. quaintancif Tins. Can.Fint . XXX, p.220,1898.
" Adult q.- Length 2 mm . Width 1.5 mm . Shape, ellipsoidal, much flattened. Colour, tark grayish-brown, the body is so covered with white meal that its true colour only shows on the ventral surface, the colour of the dorsum appearing quite white. The white secretion mealy, projecting slightly on the lateral margins, but not forming well-marked filaments; posteriorly it is produced into two short, but well defined, caudel filaments; on the dorsum it is alightly raised into a longitudinal ridge. In addition to the mealy secretion, there is some waxy, threadilke secretion as in D. virgatus CKll. They produce no well-defined ovisac, only a fluffy mass of secretion.

Boiled in caustic soda they become, at first, almost black, and on further boiling they become purplish. Legs and antennae brownish, but much lighter than the body.

Antennae 7-jointed: 7 longest, slightly longer than $2+$ 3 (90-100 $)$; 2 and 3 next longest, usually subequal, but twice as long as broad; 1 and 6 next longest, often subequal, 1 sometimes the longer; 4 and 5 shortest and usually subequal. The antennae are fairly stout, espec-
lally joints 1,2 , and 3 ; all joints are hairy, the hairs being long and slender. Antennae of formula:-

$$
7 .(2.3 .)(1.6 .)(4.5 .)
$$

Legs.- Femur very stout, being only about twice as long as broad, with scattered, long, slender hairs; tibia stout, its width about $1 / 2$ that of the femur, with a few, long, slender hairs; tarsus stout, quite hairy, bearing a pair of long, slender digitules; claw stout, bearing a pair of knobbed digitules. Leg resembles that of a Ripersia.
$\delta$ unknown.
Hab. Lake City, Florida, Feb. 9th, 1898.
On Rhus copallina Linn., collected by Mr. A.L.Quaintance.
Remarks: The most prominent charaoteristics of this species are: 1ts small size, stoutness of legs and antennae, and the comparative great length of the terminal joint of the antennae."

Chart for: - Dactopseudococcus quaintanci (Tinsley), I898.

Size:-(a) Fresh material:- About 2 mm long, and 1.5 rm broad.
(b) Mounted:-

Antennal curve:-

| $\mu$ | I. | II. | III. | IV. | V. | VI. | VII. | VIII. | IX. |
| ---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 130 |  |  |  |  |  |  |  |  |  |
| 120 |  |  |  |  |  |  |  |  |  |
| 110 |  |  |  |  |  |  |  |  |  |
| 100 |  |  |  |  |  |  |  |  |  |
| 90 |  |  |  |  |  |  |  |  |  |
| 80 |  |  |  |  |  |  |  |  |  |
| 70 |  |  |  |  |  |  |  |  |  |
| 60 |  |  |  |  |  |  |  |  |  |
| 50 |  |  |  |  |  |  |  |  |  |
| 40 |  |  |  |  |  |  |  |  |  |
| 30 |  |  |  |  |  |  |  |  |  |
| 20 |  |  |  |  |  |  |  |  |  |
| 10 |  |  |  |  |  |  |  |  |  |

39. 45. 45. 37. 37. 34. 37. 

Legs:-

Measurements in $\mu$ :-
Trochanter $90 \mu$; ferur 165u; tibia 120 $;$ tarsus liou; claw 3Iu.

Setæ of Anal lobes:-
Setæ of Anal ring :-
Host plant:- Rinus copallina.
Locality:- Florida.

Dactopseudococcus sacchari (ckll.), 1895.
D. sacchari CkIl. Jn.Trin.Nat.Club.II, P.195,1895.
"q. in alcohol, pale olivaceous or pinkish, sparsely mealy, plump, length 4 , breadth 2 mm ; segmentation distinct.

Antennae 7-jointed, sometimes 6-jointed from the obscurity of the joint (i.e. suture) between 2 and 3 . Joint 7 much longest; 3, 4, 5 and 6 shortest and subequal; 2 distinctly longer than 3; 7 a little longer than $4+5$; joints with sparse whorls of hairs. Antennae pale brown, small. Legs small. Trochanter with three bristles; a very long hair at its tip, and a short spine behind; femur not swollen, longer than tibia. Tarsus about $2 / 3$ length of tibia. Femur and tibia with only a few bristles. Claw large, curved, without any denticle on inner side.

Digitules of claw filifom. Tarsal digitules ordinary. Posterior tubercles not noticeable.

Mentum dimerous.
Anogenital ring with 6 hairs.
Hab.- St. Anns, Trinidad, unier loaf axils of sugarcane."

Chart for:- Dactopseudococcus Saconari (CkJう.), 1895.

Size :-(a) Fresh material:- About 4 mm long and 2 mm broad. (b) Mounted:-

Antennal curve:-

| $\mu$ | I. | II. | III. | IV. | V. | VI. | VII. | VIII. | IX. |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 130 |  |  |  |  |  |  |  |  |  |  |
| 120 |  |  |  |  |  |  |  |  |  |  |
| 110 |  |  |  |  |  |  |  |  |  |  |
| 100 |  |  |  |  |  |  |  |  |  |  |
| 90 |  |  |  |  |  |  |  |  |  |  |
| 80 |  |  |  |  |  |  |  |  |  |  |
| 70 |  |  |  |  |  |  |  |  |  |  |
| 60 |  |  |  |  |  |  |  |  |  |  |
| 50 |  |  |  |  |  |  |  |  |  |  |
| 40 |  |  |  |  |  |  |  |  |  |  |
| 30 |  |  |  |  |  |  |  |  |  |  |
| 20 |  |  |  |  |  |  |  |  |  |  |
| 10 |  |  |  |  |  |  |  |  |  |  |

38. 40. 28. 34. 28. 36. 36. 

Legs:-

Measurements in $\mu$ :- Mesothoracic leg:-
Coxa 133u; femur + trochanter $236 \mu$; tibia
146u; tarsus 73u; claw 3011.

Seta of Anal lobes:-

Setæ of Anal ring :-
Host plant:- Sugarcane.
Locality:- Trinidad; Porto Rico.

## Dactopseurocosous zapotlanus (CKII.),1902.

Frium zapotlanum CkIl.Ann.Mag.N.H.(7), P. 465,1902. . . Fernald, Catalogile, p.113,1903.
"q. Gregarious on the leaves, in loose globular snowWhite sacs, about 3 mm diameter, which adhere to anything they touch. Boiled in KOH turns crimson, but only slightly stains the liquid. $q$ cleared and mounted about 1.8 mm long, and 1 mm broad. Anal ring with six bristles; dorsal surface with small spines (about $18 \mu$ long) in rows, far apart; sides with many minute glands; ventral surface with fewer but larger circular glands and a very few bristies.

Labium dinerous, about $100 \mu$ long, and $81 \mu$ broad; Iegs and antennae pale, no denticle on inner side of claw; antennae 7-jointed. Measurements of legs and antennae in $\mu:$ Femur + trochanter $186 \mu$; tibia $150 \mu$; tarsus $69 \mu$; claw $27 \mu$. Antennal joints (1) 30, (2) 30, (3) 33, (4) 27, (5) 25, (6) 27, (7) 66.

Hab. Zapotlan, July 7th, 1902, on "Huele de Noche." Remarks:- Allied to Erium eriogonum Ehrh. from California, but the $q$ is of a different colour, and there are other differences obvious on close comparison."

Chart for:- Dactopseudococcus zapotianus (CkII.), 1902.

Size:-(a) Fresh material :-
(b) Mounted:-About 1.8 mm long, and 1 mm broad.

Antennal curve:-

30. 30. 33. 27. 25. 27. 66.

Legs :-

Measurements in $\mu$ :-
Femur + trochanter $186 \mu$; tibia $150 u$; tarsus $69 \mu$; claw $27 \mu$; claw without denticle.

Setre of Anal lobes:-
Setæ of Anal ring :-

Host plant:-
Locality :-
"Huele de Nosle."
Mexico.

Pseudococous adoninun (Linn.) Yertmood,1839.

Cocous adonidum Linne, 1767, edit. YTI, 1.140.
Ps. acionidum Westrood.Mod. CIass.Ins.I, I.II8, I830.
T. Iongispinus Targ. Ceitalogue, r.32, 1869.
D. adonidum Signoret, Fssai, $1.306,1875$ •
D. hoyae Sien, ibid, p. 317.
D. İ.acermm Sír. ibici, 1. 319.
n. robinize sign. ibid, p. 3n2.
I. fuliparur Sign. ibid, p. 323.
D. zamiac Sign. ibid, I. 338.

Cocous laurinus Biv. Fnt. Hort. p.353, 1869.
Boiscumalia lauri Sign, Essai, p.338,1875.
n. Longifilis Const. Perort,, . 341,1881 .

This species has often been confused with Ps. citri, but may usually be readily distinguished by its sen ral dieerance. The waxy secretion is more evenly distributed so that there is no dorsal band as in citri. The lateral filaments are more siender and thus have the appearance of being further apart, while the caudal ones often attain a length equal to or even greater than the lengtin of the body. This apecies is rivinarous, while citil is oviparous. Adult 9 . In size the adult $q$ is sirilar to citri; the largent npecimen observed neasured when alive 4.1 mm , and had caudal filaments 5.5 mm lone.

The colour is purplish nink; and usually shows suite distinctily through the mhite secretion. Antonnae 3 -jointed, the average leneth of the segments from 30 messurements being as follows:- (1) 64, (2) 70, (3) 71, (4) 39, (5) 50, (6) 40, (7) 45, (8) 101. The setae of the anal lobes vary from 110 to 130 in length, with $124 \mu$ tine rost cormon length; those of the anal ring range from $12 \Omega \mu$ to $148 u$, with 134 the mode. Host plants: Like citri, this species has a large ramiety of food plants. Sore of the rost common are ferns, mango, guava, fig, Hum, Croton sip, Cyoas revoluta, Strangeria achizodon, Blecourtia separia, nd Nermodiur amplun. Distrinution:- The netural halnitat of this species is prohably Southern Furope, but it has gradually extended its range until it is nov a $\because$ : Il known vest in greenhouses and nurseries in all perts of the world.

Chart for: - Psemingoans adonidur (Iinn.) Westrood, I839.

Size:-(a) Fresh material:- Ismest apeairen seen vas 4. T mam Iong, and had caudai filments 5.5 rr Iole (b) Mounted:-

Antennal curve:-

64. 70. 7T. 39. 50. 40. 45. IOI.

Legs :-

Measurements in $u$ :- Ifesothoravic leg:-

$$
\begin{aligned}
& \text { Fermer + trochanter } 3.0 \mu \text {; tibia 230u; tarsus IO8u; } \\
& \text { olrvi 24u. }
\end{aligned}
$$

Setæ of Anal lobes:- About Insu Iong.

Setr of Anal ring :- About Tr5u. Ions.
Host plant:- Feims ete.
Locality:- Cape Tom. (has womp-ride distribution.)

Pseudococcus anamasae (Kumera), Isos.
"Acult \& . Brosdiv oral in form ;iedish brom in solour; aremo "ith white nomer; sborinal segments ristinot. Antenna very long; 8-jointed, icirt 8 the longeat, joint $]$
 with many strong hairs. Legs rub-equai, very rout, isiry; tarsus mon shorter tisn thin; caw loree, surved; sisitwles of tarsus long hairs, thore of daw could not be reoncine by the mriter.

Anl Iobes antinct, each lobe whan lowe and a forine hairs.

Anal ring rith aix porircrt neirs.
Dorsur: with fine hapg amimay mail ciroular rinnereta. Leneth about 3 to 4 rr , wiatio about to refre.

HEN. On pineapple, Jaiail.
Tutin peoies olosely reseroles in fom and eeneral chareters or antemase and legs nactyloyius pronoliae Boucne, but tie $2 a t+$ er is armaler."

## Pseuciococcus alkalinus cookrels, J!02.


 reslr-mite secretion, with short, thick, cottony caudal tasfels, and laterel tassels yosteriony; secretine a thin but, dense phite sac, wifh corem aII the binc and of the
 rellot.
o (after bojaing in meter and mountine in oil of aloves) wibat ornce; minenne ant legs yelionishmmom; no mponow cautal tuberoies I Ibius trou Ione and tbout you browic eves prorinent; ceudal mistles ahout $75 \mu$ lone; luistios rama ring about 66u; Iess quite stout, peactin of antorior tinis $36 \|$; Gav mith no denticle on incer side; alaw di\&itules rem slemer; ro sictinctir mobed temai Gieftules: Entomae 8-iointer.
licesurerents of legs and antennae in $u$ : Anterior lee:-

 mernents: (I) 45-54. (3) 48-T4. (3) 30-4T. (4) 24-30. (5) 34 ( 6 ) 2 $2-24$ • (7) 24-85. (8) 68-78. lab. Roswell, New lewioo, on a Low grass in an nlkaine srot, abuncint on the Inares and oters, Auswt st, too."

Chart for:- istuococeus alkaimis CockeleII, I902.

Size:-(a) Fresh material:- About 2.5 mm long and I. 25 mu uroad. (b) Mounted:-

## Antennal curve:-



Legs:-

Measurements in $l i=-$ Protinorauic Lee:-

$$
\begin{aligned}
& \text { Permi }+ \text { troonnter } 2 I O \mu \text {; tibia I354; } \\
& \text { tarens 70u. }
\end{aligned}
$$

Setæ of Anal lobes:- Ahnit, $75 \mu$ Iong.

Setæ of Anal ring:- NECut $66 \mu$ long.

Host plant:- Gress.
Locality:- Roswe İ, New Moxico.

## Psencococous americanus (cockerelI), T8EC.

Pereandiella americanus CkII. Pi.Acad.lot. Sci.MMI. U. 256, I85与.

Trionymus americanus (ckll.), FernaId, Cat. D.ef, Ioo3.
Orisac large, elongate, when corlyeted enclosing the adult $\bigcirc$.

Adult $9:$ About 3.6 mm long, and 1.05 mm broad, eyes istinct, caudal tubercles not, poduced, each vith many mall round ylenis and a pair of short, stout spines, and also about 15 siort he* rs and one long one. This is like the hairs of the anal ring, but longer.

The derm is covered oith gland its and soattered heirs; the rostral loop reaches to about midway hetween the first and second pair of legs.
lonturn rhout $92 \mu$ long and $104 \|$ ride. Jegs very sparsely nairy.

Antemme of 8 ioints, the joints reasuring:- (I) 52, ( $\quad$ ) $44-48$, ( 3 ) 26-32, (4) 20-24, (5) 32, (6) 22-24, (7) 28-32, (8) 76-88.

Fesotinnacic lef: coya llsu; femur + trochanter $240 \mu$;
tibia $168 \mu$; tsrsus $84 \mu$ : alfir 2, Width of ferur $72 \mu$; of
tibia $36 \mu$.
Host plant: A A .
Hocality: Washington D.C.

Chart for:- Peunocoocus amerisxins (Cockereii), I890.

Size :-(a) Fresh material :-
(b) Mounted:- 3.6 mm long and 1.35 min proti.

Antennal curve:-

52. 46. 30. 22. 32. 22. 30. 84.

Legs :-
Measurements in $\mu$ :- Ionotionacic Leg:-

$$
\begin{aligned}
& \text { Perme }+ \text { troohanter } 340 \mu \text {; tioia IGsu; tassus } 84 \mu \text {; } \\
& \text { slaw sou. }
\end{aligned}
$$

Setæ of Anal lobes:-

Setæ of Anal ring :-

Host plant:- Ash.

Locality:- Veshington D.C.

On March 9th, 1914, a tree of Viburnum was found badly infested with mealy bugs at Lydenburg, Transvaal. A number of twigs were collected and packed in tissue paper, and sent to me by Mr. Claude Fuller, Assistant Chief of the Division of Entomology. On arrival ar mas found that all the specimens were dead, and many had been devoured by parasites and predaceous larvae. Many ovisacs remained intact, but all ova had hatched and the Iarvae dead and dry.

The only living material found consisted of :-
Two Coccinellid larvae; two Iepidopterous larvae; and a number of dipterous puparia, of apparently two species. An attempt is being made to rear this material so that determination of species may be possible. Several large clusters of ovisacs were placed in boiling KOH and sufficient insects recovered to enable me to make up slides of many larvae, one adult $d^{\prime}$, and 3099. The male was observed, fortunately, almost as soon as the material was placed in potash, so this was mounted at once, while the remainder was cleared and stained. It may be mentioned that Dr. Signoret described a mealy bug from Viburnum sp. In France, in his Essai, $1875, \mathrm{D}$. 323. This insect was undoubtediy P. citri Risso, but as the Transvaal insect is entirely different I prefer not to adopt Signoret's name $\underline{P}$. viburni.

Description of Pseudococous burneri n.sp.

Ovisac: About 3 mm long and 2 mm broad, regular oval in shape, white, of a fine cottony texture. The adult if is entirely enclosed in the completed sac.

Ova: No ova were found in the material received, but numbers of dried Iarvae were still in the ovisacs. Larva: When cleared, stained, and mounted, the larvae were about $320 \mu$ long. The shape vas normal, and the antennae 6-jointed.
liale puparium: This was not found, and only one rale mas seen.

Male: as mounted from potash, purplish red in colour. The length of the boc: is 1 mm , While the width of the thorax, the widest pert of the body, is $320 \mu$. There are 4 caudal setae, but as the specimen was not seen alive it is impossible to say whether these were all covered with cotton or not.

Female: Length of largest mounted specimens about 2.5 mr , breadth 1.8 to 2 mm . The colour of the specimens in boiling $K O H$ was purplish pink, and the liquid became quite dark-coloured.

Antennae: alvays 8-fointed. Plate 1 , fig.2.
Range of measurements:-
J. II. 42-48.38-42.38-42.24-28.24-32.ก2-26.?8-34.88-94. Most common measurement:-
44. 40 . 40. 28. 30. 26. 34. 90.

Average of 20 measurements:-
44. 40. 40. 26. 30. 26. 34. 90.

Legs: The rieacurements for the legs are as follow:Prothoracic leg: 72. 96. 214. 56. 130. 30. 98. Mesothoracic leg:80. 110. 280. 64. 160. 30. 110. Metathoracic leg:84. 118. 234. 68. 286. 30. 120. Setae of anal lobes: These vary from $165 \mu$ to $200 \mu$; with about $190 \mu$ the most common length.

Setae of anal ring: These are usually about one half the length of the anal lobe setae, and vary from $88 \mu$ to $100 \mu$. Plate $I, f i g .3$.

The cistiribution of gland pores and hairs is normal, and regular over the body.
(Symbiont: This has not yet beer insesticeted es the material was not in a suitable conoition.)

Parasites: Among the material sent were puperia of two species of Diptera, two larvae of a lepicopteron, and two Coccinellid larvae.

Host plant: Viburnum sp.
Locality: Lydenburg District, Transvaal.
Date of Collection: March 9th, 1914.
The antennal chart will be noticed to show some likeness to that of $P$. irishi, $P$. neonexicanus, and $P$. steeli, but other characters do not agree.

This species is named in honom or riss 0 . Burner of New York, whose assistance has been invaluable.

Chart for:- Pseudocosous burneri n.sp.

Size :-(a) Fresh material :-
(b) Mounted:- About 2.5 mm long and 2 mm broad.

Antennal curve:-

44. 40. 40. 26. 30. 26. 34. 90.

Legs:-
Measurements in $\mu$ :- Mesotioracic leg:-
80. 110. 220. 64. 160. 30. 110.

Setæ of Anal lobes:- Ahout, $200 \mu$ Iong.
Setæ of Anal ring :- About $95 \mu$ Ions.
Host plant:- Yiburnum sp.
Locality:- Lydenburg District, Transvaal.

Pseudococous calluneti Lindings?, I912.

Ps. calluneti Ldgr. Die Schildaäuse, p.90, I92Л.
"Mien sem klein, onine Wachs rötich, 1 ry lang, eifömig, vor ler Ritte am breitesten, ziemlich flach, an Seitenrand ait undeution jättohenartigen, sehr kleinen Waohsfortsätzen, anfanfs freibeveglich, spater in ziemlich fester, weisser, lang-elliptischer oder eifömiger, I I/ 2 mm langer Hülle.

Unterirdisch an den Stärmehen und starkeren Wurzeln. n. v. Deutschland.

> Pseudococcus calluneti LAgr. sp. nov. I78.

Mikro.: Seitenrand Ser Abdominelsegmente rit je 2 kurren, kräfticen Domen. Analsegment mit senr zanlreichen, ventralen, runden, grossen Dr.r.

Unterlippe 3-8liedrig. Klane kura, kiaftis, ziemlich stark gekruimt, mit Zahn auf cer Innenseite nahe der Spitre. Fünler 8-gliedrig.

Aur caliuna vulgaris."

## Foudococous capensis Brain，IGTh．

Ps．capensis Brain，Ann．Ent．Soc．Amer．${ }^{\text {T }}$ ，2，p．182，1912．

Ovisac larce， 4.3 mm long and 3 mm hroad，white，fibrous． Oviscas often clustered tocetrer expecially in tine fruits of the nost jants．This ：ras especially noticeable in the case of Phytolacoa and grayes．

Ore，sbout $360 \mu$ long and $180 \mu$ broad，bricht orange yellow in colour．

Adult $9:$ largest specinen seen was 4.2 rm long and 3.4 rm broad．Waxy secretion usually scant；lateral filavents are short and slencer；caudal ones，（2），when the insect is in a sheItered position，sometimes attaining half the length of the body．

Antennae 8－jointed，the average lengths，from 20 measure－ ments：（1）68，（2）81，（3）81，（4）42，（5）59，（6）39，（7） 44，（8） 105.

The setae of the anal lobes varied from il 70 to $152 u$ ，with la8u the most ommon lencta；these of the anal ring were $154 \mu$ to $180 u$ ，with $160 \mu$ the mocie．

The reasurements of the resothoracic lee in the type olide were 98， $229,327,91,258,38$ ，eno 121．

Host plants：phytolacca dioica，Albizzia 10hnentia，Iva parviflom，Sonolus oleraceus，Senecio vulgaris，rinos，an Pun白的。

Locality：Western Province of Cape Colony．

Chart for:- Pseucococous ceyonsis Brein, IUIS.
$\underline{\square}==$

Size:-(a) Fresh material:- In rgent syecimen was 4.2 ram Iong, and (b) Mounted :-3.4 mr: broad.

## Antennal curve:-



Legs:-
Measurements in $u$ :- Mesoticzacio leg:-

$$
\text { U8. } 189 \cdot 387 \cdot 9 T \cdot 356 \cdot 38 \cdot 180 .
$$

Setæ of Anal lobes:- About I28u Ione.
Setæ of Anal ring :- irout I60u long. Host plant:- Pirtolacoa dicica etc. Locality:- Cape Peninsula, South Africa.

Pseuiococcus itri (Risso), I3I3.

Dorthesia citri Risso jussai Hist. Hat. des Orangers, 1813. Dactylopius vitis Niediel, Bull. Soc.d'Acclim,pl328,1870.
. alatemi Bienofssai, p.309, 1875.
.. citri Sign. ibic, p. 32.
fious Sign. ibid, 1.315.
indicus Sign. ibid, posi7.
Javandulae Sign.ibid, p.318.
viburni sign. jbide, p.523.
Boisduralia urricaudsta Sign.ibid, n .339 .

Dactylopius brevispinus Targ.Ann. Ai Agr.p.137,1881.
.. Gestructor const.pep.U.S.Dopt.Agr.n. $322,1881$.

Ovisas small, more or less spherical, at first covered byin the boily of the $q$. As the mass increases it is generally seen as a rounded mass protruding beneath, and in front of the insect.

Ova orange yellow, $320-350 \mu$ long, and about l50u broad. Adult 9 , with ovisac completed, hay attain. 4.5 mm in length and 2.7 mm broad. Colour usually purplish-pink but the colour is nore or less obsoured by the mealy white secretion. There is generally a istinct median dorsal band on which the secretion is less dense or finer, so that there is a longitudinal band mich appears
sliehty arker in colour. Tuere are distinct lateral filaments, wioh are commatively thick, and number sevent,een on each side. The caudal ones are longer, but are also thick; these never attain a length of more than half the length of the body.

Antennae of 8 joints, the average length of the segments from 30 measurements, aie as follows: (1) 63, (2) 64, (3) 64, (4) 40, (5) 43, (6) 43, (7) 47, (8) 106. The setae of the anal lobes wary in length from $280 \mu$ to $225 u$, with 2254 the most cummon length. Those of the anal ring vary from $108 \mu$ to $138 \mu$, with $115 u$ the rode. Intracellular siobiont: Cobsionvoes dactylopii Buchner lives in a definite myoetor, tine "corpo ovale" of Berlese. The oncanism is elongite, wualiy more or less siokleshaped, ten or twelve of which are enclosed in a cell, or "sferette". Infection of the orum takes place by means of several "sferettes".

Host plants: Orange, lenon, citron, coffee, towesoo, ivy, oleander, and large numbers of other plantis are nainy infected by this insect in different parts of the worio. Distribution: Southern Burone appears to be the original home of this species, hut oring to its wice range of foodplants, and the adaytability of the insect to different climatic conditions, itt is now found in all countries which have temperate or sub-tropical cliraten.

Chart for: - Pssulococous cinin (Picso), Tilz.

Size:-(a) Fresh material:- Laxost specinen seen was $\leq 4$ tm Iong and 2.6 mm mpad.
(b) Mounted:-

Antennal curve:-
 5. 64. 64. 40. 43. 43. 48. I08.

Legs:-

Measurements in $l$ :- Mesothorasis lep:-

$$
\begin{aligned}
& \text { nowur + trochenter } 340 \mu \text {; tibia } 3.30 \mu \text {; tarsus I00u; } \\
& \text { ohw } 36 \mu \text {. }
\end{aligned}
$$

Setæ of Anal lobes:- About $22 r u$ Iong.
Setæ of Anal ring:- Ajout Izou בong.
Host plant:- olemgen et,c.
Locality:- rave rom. (has worad-ride distribution.)

Pseudococcus coffeae (Nemstead), I508.
D. Coffeae Newst. Joum-Econ.Biol. III, $2, \mathrm{p} .37$, I908.
"Acult $q$ coverea witi Gelsely felted lates of white secretion, but this covering, was so much injured as to render it innossibie to give a correct description of its srrangement. Forri rather ehort, ovate. Antennae lone, setose, of eignt segments, teminal segrent much the longest onc some of the nairs upon it are longer and stouter than the rest.
Lees normal. Margins with an eruidistant series of sjines, usually ir pairs, Gach surpounced by a group of rather large spinnerets. Jemal spinnerets rinute; spines few and scattered. There are two rairs of large vertral gianas, the first pair are placed near the nargin imnediately beiow the insertion of the antennae, the other pair also am-merginal, are situatec a littie anterior to the ansl owening; each gland has a long transverse siit and a bileteral lunular patoh of chitine thickly stwaed with opinnerets and ninute hairs. Anal orifices with 6 hairs. Anal lobes nomal, each with a few short sine-iike hairs enc a single long stout heir. Hab. On Likejier coffee; dava, 7. I. 03.

This species may be distinguished chiefly by the dencely felted plates of mite secretion which cover the dorsum. In the form of the vaxy corering it resermies n. nivae, but it is a ruch larger insect."

Pseudococous oomstooki (Kuwana), 1902.
D. comstocki Kuw. Pr.CaI.Acad. Sci.(3)III,p.52,I902.

The wilt of is iong oval ir outilne, about 4 rr long and 2Inm broad. The colour of the body is purple, vitile the legs and antemae are brown.
The antennae are 8-jointed, the average lengths of four measurements beine:- (I) 44, (2) 56, (3) 51, (4) 3I, (5) 34, (6) 34, (7) 39, (8) 101. liouthparts large; rostrai looz long.

Legs nomal; coxa longer thai. wide, with several spines. Trochanter as usual, bearing one long, and several short hairs; ferm thick, with the outer rergin convex, with many scattered hairs; tibia as long as femur, teinering posterioniy, with many hairs.
Tarsal digitules fine and knobbed; those of the claw short, gradually widening into Iarge knobs. Dorsum with fine scattered hairs and round pits. Anal ring round, prominent, with six heirs. fost plants:- In cracks of the trunk of a rulberry tree, near the ground, and covered by a corering made by ants. Also :imilamiy on the timat of a kind of mavie. Iocality: Tokro, Jaicin.

Chart for: - Peutooscous constooki (Emmana),I902.

Size:-(a) Fresh material:-About 4 mr long and 2 nm broad.
(b) Mounted:-

## Antennal curve:-


44. 56. I. 3I. 34. 34. 39.. IOO.

Legs :-
Measurements in :- Mibia as long as the fermur, trous about one-tivir as long as the tibia.

Setæ of Anal lobes:-
Setæ of Anal ring :-
Host plant:- on trunk of rulberre tree.
Locality:- Japen.

## Pseudococous cualatersis cocrerell, 1903.

Ps. cualatensis CkII.,Fntom.XXXVI, p.47, 1903.
"Adult $\&$ about 2 mm long, entirely covered dorsally with dense white secretion; on boiling in KOH the colour is very pale pink, and the legs and antennae are lightbrown.

Dermis furnished with the usual glands and with many small hairs. The setae of the anal lobes are about l20 $\mu$ in length, while those of the anal ring measure about $75 \mu$.

Antennae 8-segmented, the measurements of the joints
being as follow:- (1) 39-48, (2) 36, (3) 28-30, (4)
15-18, (5) 18-27, (6) 21-24, (7) 30-33, (8) 57-60.
The prothoracic leg measures:- femur + trochanter 198 ;
tibia $90 \mu$, tarsus $51 \mu$.
The legs are rather stout and short, with the claws a little longer than is usual in the group; the tibia and tarsus bear numerous hairs; digitules fine hairs bearing small knobs."

This speoies was found inhabiting the same galls as tine Coccid described by Cockerell as Akemes colimae.

Ants, Azteoa longiceps, were found in association with these insects.

Locality: Cualata, Colima.

Chart for: - peuciocosou: cusiatensis Cockeroll, IS03.

Size:-(a) Fresh material:- About 2 rm Iong.
(b) Mounted:-

Antennal curve:-


$$
45.36 .30 . \text { I6. 24. 23. 30. 60. }
$$

Legs:-
Measurements in $\mu$ :- Prothoradic leg:-
Ferue + ticohantor IO8u; tibia bon; tarsus fou.

Setr of Anal lobes:- About I20u Iong.
Setr of Anal ring :- A $\quad$ out $75 u$ Long.
Host plant:- In galls nade by Komes ooinee.
Locality:- Cualata, colira.

## Peudococcus ovieri (signoret),I875.

## n. cyperi Signoret, Ersai,n.3I4, I875.

"Pesserble et est généralement confoniu arec le C.adonidum. D'un brun marron slair dans les vioux inivicius, d'un jane clair rour les jeunes; diune longueur atteignant ruelcuefois 4 mm sur 2.35 mm de large; les intennes proportionnellement ilus countos que cans les anpèes voisines. les ieuxierne, thonsièe et mitieno articles les ylus longs, se Gerniep le jlus longs de tous, jujs le 3 e et le ze; le se est tros-
 Les pattes ront courtes et ánisses; 10 tapre zrt très-sourt, a peine le tiers de la zoncleur des tibias. Tels sont les ainotim Ies yus froiles a ristinguer. L'abomen est léepponent jonctué, avec duelaus rares poils; Ies lobes latorave ot oux e lextrórité aorae nana snonidur: Th larre erbmonaire est comme les autres espeoes, ainsi aue la larve rale.
 snticulations segrentaires plus sinires. La thte est reste, avec 4 yeux et 4 ooelies. Les antannes sont trosslonguos, le 3 e article le plus long, Mis le IOe, les autres $\therefore$ peu prer écaux, très-ubersents."

Ind. France.

Pseudococous uasyipii (cockerell), 1896.
B. dasylirii Ckll. Journ. H.Y.Int.Soc. IV, T.202, IaS6. "̣. Lengtin 4 mm or sligitly less, dark olivaceous, covered with white meal. No latcral tufts, but sices very mealy; thick caudal tufts like those of $\Pi$.virgatus, not very long. Antennae very slender, 8-jointed. Formula 8.3.(I.ת.)(4.5.6.) 7. AII the juints longer than broad; 8 with three whorls of hairs; 3 very slencer, nearly as long as 8; 1 longer than its breadtis at base; 8 about, or nearly as long as 6-7. Joints with sparse whorls of long hairs. Colour of antennae irown.
Legs ordinary, srall, slender, pale-brown. Tarsus about $1 / 2$ as low as tibia. Claw short, moderately ourved. Taisal digitules extremely slender, filiform, with minute knobs. Digitules of claw about as long as claw, stout, bulbous at Gese. Tibia mith 4 strong bristles on outer margin. Cnurg tubercles low, roundea, withe rather long bristle, some short bristies, and a couple of short stout spines. The $q$ does not stain tine licuid in which it is boiled. Young larva light yellow.

Hab. Organ, New Mexico, 5,100 ft, in great numbers zt oases wf leaves of Dasylirion wheeleri.

The larvae live at the extreme base of the leaf, which is pallid; the adults a little further up."

Pseucononos epirarne (conuillet), 1890 .
D. ephedrae Coq. West Amer. Sci. YII, p. 43, 1890.

The adult is viviparous, and seoretes a layer of white cottony matter on the ventral surface, and this gradually extends upward until the whole insect is enclosed. Adult $q$ about 4 mm long, elongate, dark olive coloured, almost black. The mealy secretion is white, and the lateral filaments are only present on the posterior segments.

Antennae 8-jointed, the measurements varying as follow:(1) 68-75, (2) 86-95, (3) 84-95, (4)60-75, (5) 60-77, (6) 54-60, (7) 54-58, (8) 108-114.

The anterior leg measures approximately:- Femur + trochanter $344 \mu$; tibia $249 \mu$; tarsus $98 \mu$.

In the form described as a variety from Mexico, Cockerell found that the 4 th antennal segment was smaller, the range veing 60-75, while the sth joint of the specimen from California measured $75 \mu$. The mesothoracic leg of this variety measured : femur - trochanter $390 \mu$; tibia $300 \mu$; and tarsus without claw loou. The tarsal digitules in both forms are said to be simple hairs.

Host plant: Fphedra californica.
Localities: California and Mexico.

Chart for: - Iseudooocous ghediee (Comiliet), I390.

Size:-(a) Fresh material:- About 4 mm Iong.
(b) Mounted:-

## Antennal curve:-


70. 86. 85. 75. 77. 60. 56. II2.

Legs :-

Measurements in $\mu$ :- Prothorccic leg:-

```
Femur + troc;innter 344u; tivia 350u; tamous To0u.
```

Setæ of Anal lobes:-
Setæ of Anal ring :-
Host plant:- Fliecta califomioa.
Locality :-
Caifomia.

Chart for: - Psenvocoocus omedme (Coq.) var. CkIl.

Size:-(a) Fresh material:-About 3.5 mm lone 3 an 2 mm brose.
(b) Mounted:-

## Antennal curve:-



Legs:-
Measurements in $\mu$ :- Prothoracic 2s:-

$$
\text { Fomr + trochant } 3 I 5 \mu \text {; tibia } 250 u \text {; tarsus } 9611 .
$$

Setæ of Anal lobes:-

Setæ of Anal ring :-

Host plant:- Agave.
Locality:- liexico.

## Pseudococcus farnesianae (Tareioni),1888.

D. farnesicnce Targ.Annali di Agr. y. 436 , 1888.
" Corpo della femnina minuto, rosso villoso; mresini, lobi leterali, lowi anali teminati ce setole.

Antennae filiformi, alla hase ingrossate; larticolo discoidale, assai largo; 2 anulare piu stretto; 3 , 4 cilindrici, piu lunghi del 5, $6,7,8$ alcuanto piu lunghi dei precedenti, ultilo wena \&radatanente ingrossato verso I'extremite, Iungo quanto il 7 e I' 8 insiere, tutti lateralmente, verso 1 'estremo teminale, guarniti di una minuta placca on veli.

Zarpe robuste, dalla 1 alla 3 gradatamente piu luncio, Tioie, tarsi inneari, lungo il margine interno ed esterno rinulosi; tersi circa $I / 3$ delle tible.

Labro breve triangolare.
Lungh. del corpo .................. niliz. 2.6f.
Lungh. delle antenne ............... miコI. 0.87.
meudococcus formiceticola (irmstead), I000.
 n. formireticola remst. ibid, XXXYII, $1.86,1401$.
" o adult viviparous, rery shoit ovate, convex ebove, and flat beneath. colour mitish, thoracic and abdominal areas with several distinet mam, transwerse, yellow brown "ars, which are confluent, in the ridile forming a strong median line.

Antemae of 8 joints, tie vicith of about equal to the length of 8. Fommaia: 3.(1.2.)(6.7.) 3.(4.5.).

Dem thickily set with short stiff hairs, forming tufts at the margin of each segment; there are also numerous circular syinnerets, and near the anal opening two large eyelike glands.

Legs short and very stout, erual in length to the antennae.
Anal ring of 6 long hairs. Anal lobes abnomally large, licsed closely togetier, end thickly aet with long stifs hairs and spines.

Long, 2 to 3 rm .
Larva eloneote. iral lobes very sifhtiy indicotec, sne fumisher vith vemy lore hajr. Antennee of a jointa.

Hab. Matheran Hill, N. honkan, 2,000 ft eatitude, with Cresantogestor sy, ex coIr. "usuen."

Fseudococous fregilis Proin, IGI2.

Ps. fragilis Brain, Ann.Fnt. Soc.Amer. ${ }^{T}, 2, \mathrm{p} \cdot 186$, IOI2.

Adult $9:$ The largest specinen, mounted, measures 4 mm long and 2.4 mm broad. The integument, hairs and spines are unusually delicate, and the antennae long. The gland-pores are scant, and the hairs few in number, but some of the latter, on the dorsal surface, near the anterior part of the body, are exceptionally long, sonie reaching l60u or more.

Antennae 8-jointed, the averace lengths of segments, from ten measurements being:- (1) 66, (2) 80, (3) 90, (4) 57, (5) 70, (6) 53, (7) 55, (8) 114.

The setae of the anal lobes are about 230 u in length, while those of the anal ring are about l92u long. The mesothoracic leg measures: 129, $167,417,102,304$, 38, 144.

Host plant: Orange.
Locality: Cape Peninsular, South Africa.
This material was collected by Mr. C.P.Lounsbury, and I described the species from slide material, so that I mov nothing of the ovisac, and characters of the living insect, such as lateral and caudal filanents etc. I hore to complete these narticulars on ry return to the cape this year.

Chart for:- Pseuronoms regjlis mosin, Iota.

Size :-(a) Fresh material :-


Antennal curve:-

| 19. | I. | II. | III. | IV. | V. | Vi. | VII. | VIII. | IX. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 130 |  |  |  |  |  |  |  |  |  |
| 130 |  |  |  |  |  |  |  |  |  |
| , |  |  |  |  |  |  |  |  |  |
| 110 |  |  |  |  |  |  |  | 1 |  |
| 100 |  |  |  |  |  |  |  |  |  |
| 90 |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |
| 80 |  |  |  |  |  |  |  |  |  |
| 70 |  |  |  |  |  |  |  |  |  |
| 60 |  |  |  |  |  |  |  |  |  |
| 50 |  |  |  |  |  |  | , |  |  |
| 40 |  |  |  |  |  |  |  |  |  |
| 40 |  |  |  |  |  |  |  |  |  |
| 30 |  |  |  |  |  |  |  |  |  |
| 20 |  |  |  |  |  |  |  |  |  |
| 10 |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |
|  | 64 | 76 | 38 | 58 | 64 | 52 | 55 | II: |  |

Legs:-

Measurements in :- liferothoracic leg.
I29. I万7. 4I7. IOR. 372. 38. I44.

Setæ of Anal lobes:- Mout 2sAn Iong.

Setæ of Anal ring :- About, Iosu Ine.

Host plant:-
Locality :-
Cape paninsula, jouth spaisa.

I have one specimen which appears to me to be a male in an early stage. In outline it resembles a fersle, but the rostmun is absent, and at each side there is a protuberance which seems to me to be the miments of the wings. The abdominal segments overlap each other, tending to the form of abdonen of the male coscidae.

The antennae which are thiok have 6 joints. The claw of the foot is very small."

Donococous gutierreziae (Cookerell), IEsf.
 "Slate colour, srall, (vinen flattened under oorci ginds, after boiline in KOH , arm Ione end I rrerod.), forming a lone firr snow-wite ovisec, 4 to 6 rm long, no about, 1 mr: broad, on the nrmow leaves of the rutierrezia. 9. Elongate-oval, ©es not stain the licuis in mhich it is boiled; antemae and legs pele. Antennae 8-jointed, of the usual neetylopius tyre. Fompula б.I.o.(3.7.)(4.6.)5. 5 is brocier than long; 3 is onswiouously shorter than ? I is'remy lame; a han three whorls of haime. Anal ring witin tine worl 5 hairs. Caudal tubercles very low With the weual hairs, the longest a little longer than those of tho enal ring.

Legs ordinary. Trochnter with ather short bristle. Tibia alrost as long as ferme tarsus rather rore than $1 / 2$ as long as tibia. Claw small, not mon curved, ramel dieitules filiform, oithout knohs. Digitules of clem stout, but very short, shorter than clay.

Fsk. hesilla velley, between las cmber and omsan, abundant on Gutierresia sarothrae rar. Aiso sbudant on guticrreria sarotirae near the Iuscaleme Agency, at the trpe locality Icerya tomnsenti.

It has a Chaloi if parasite."

Pseudocococus hibernicus（rematead），I805．

＂I Adult oviparous，elongate－ovate，covered ith a sec at gestation．Antennae of 8 joints，of whicli 8 is the longest and about equal in length to 5，6，and 7 tocether； 1 and 2 ， about equal to 8 together；3，4，5， 6 and 7 shortest and subequal；aiI rith many fine hairs．

Hentum biarticulate；on either sire of apex several（？5） rather long hairs，smingod ciose together；rostral fila－ rents，unexpander，ahorter than onterior legs．

Legs long，posterior jair longest；tarsi with claw about half the length of tibiae，with four slencer digitules． Anal lobes large，stwied witil numpous short stiff spines and hairs，each terminated with a single long hair．

Anal rine of six hairs．
Demis with shodrattas rains and at margin in front rany scattered oircular discs．

Jone， 4.5 rm, ide， 1.55 rr •
Soc of of mite，olosely relted anc comilete，but easily ruptured．Long 4.5 rr ，wice $2.55-3 \mathrm{mr}$ ．
 on a chalk cliff close to tro sea，at Ballincton，county Antrin，Ireland．

Ore siecinon exwined vas briy prasitisere，but did not， differ from any of the nepfect exmiles．＂

Pseudococous inisia (Cockerell), 1900.
D. Irishi MrII., Car.Fnt vXXIT, 1.120, 2000 .

 ovisac ebout 3 mm long and 2.5 m lich, the sacs clustered on tie twies of the rients at the nodes, from two to ten at the nocies. Regs and noviy hatched larve paze yelow. Aduit of, after being boiler and flattened on the side, nearly circular, almost 2 mm long. The inseots do not stain the liouic on boiling, but the bory contains a duly crimson pigrent, jertiy retained in boiled specimens. Skin witin many smein rounc alands, which in latoral view look like truncate spines. Demal hairs very few and small. IIC Ieteral letone of sines. Caudal lobes completely obsolete, rarkeci only by a pair of short stout spines on each side. Hairs on anel ing oontaratively short and inconspicuous, muoh smaller than in D. tomnseai. Legs and antennae inle yellowish. Vinde leg measuring about as follows in $\mu$ :- Coxa 111; femur + trochanter 231; tibia l80u; tarsus u; claw 30u; midin of femur $57 \mu$. Antennae 8 -jointes, the joints measurine in $\mu$ :(I) $45-51,(2) 36-40,(3) 33-42$, (4) 18-27, (5) 25-87, (6)
「.6. to 8.ב.8.3.(5.7.) 4.6.

Heb. Tempe, Arizona, on Lerea tricentata, Det, $\therefore 360.1$

Chart for:- seudooocus imish (cockerali), ILOO.

Size :-(a) Fresh material:-
(b) Mounted:- niout a rti Iong.

## Antennal curve:-


48. 38. 38. 24. 25. 20. 27. 75.

Legs :-
Measurements in $\mu$ :- Mesotroreoic בeg:-
Ferur + trucherter $30 u$; tibia I80u; cIrv 30u.

Setæ of Anal lobes:-
Setæ of Anal ring :-

Host plant:- $\qquad$ tridentata.

Psendococcus juniperi (Finiomin), I906.
D. iunixori morhom, Cen.Fnt.XXXVIII,y. 333 ,ISO6.
"Ault $q$ oval, about 2 mm long and I rm broad, convex, sliginty bovered with secretion. Rgy-sac srail. Young larva reddish. Adult 9 , then boiled in KOH turns dark grirson. Nerm colourless, with numerous short, straight spines on the dorsum.

Antenaie e-jointed. Joint 8 longest, I and 7 sub-equal; 4, 5 and 6 about equal, and shortest. Formula:8.3.2.(土.7.)(4.5.6). Also 8.3.2.7.I.(4.5.6). Legs long and slender. Ferur nd tibia about equal. Tarsus about I/2 of tibia. Tarsal digitules fine knobbed hairs. Claw small, slenrer and curved, with curved club-like digitules reaching to en of 3 law: Measurenents of leg-joints in $\mu:-$ Coxa 96; trochanter 48; femur I92; tibia I92; tarsus 95; claw'24. Caudal lobes rounding, with one very long, stout bristle (200-2I2 4, and three short stout spines on the outer and one on the inner margin.

Fach lobe has nunerous round gland orifises. Anal ring large, oval, sbout 80 by $60 \mu$, with 6 long hairs, ebout $220 \mu$. Hab. On Juniperus virginiana, Asirorks, Arizona."

Preudococcus Kramiliae (Kwrena), 1902.

"Adult o. - Enclosed in a cottory sac of irrecular shape; colour recish brown. When boilec in KOH and spread out, under coverglass monures $? \mathrm{rr}$. in length and 1.5 mm in wiuth; broad uliztical in form. There is a transverse row of syines on the dorsal aspect of each segment; ventral aspect, witil fine hairs; corrum covered with small round nits. Antemae and legs larse, brown in colour. Anternae 8 -segmented, . 5 rm Ione, heiry. Formula 3.3.r.1.5.(1.6.7.). mesuratents of joints in $\mu:-$ (i) 65 , (2) $77-80,(3) 58,(4) 55$, (5) 56 , (6) $53,(7)$ 55 , (8) 111.

Mouthpartis compratively large; rostral loop long, extending down to the first or second abdominal segment. Lecs subequal, heiry; coxa men wider than long; trocianter as usun , bearing a fer spiny heirs; remur thick, outer margin convex; tivia slichtly shorter thar femur, and three tiness as long as tersus; tarsei cigitules fine and knohied, Gigitules of clav stout, short and knobbed. clay as ucuri, curved.
Fach of the marginal lobes of the posterior segrent bears a single long hair witil two slines at the base.

Anal ring large, prominent, with 6 hairs.
Hak. On Kraunhis floribunca, Yokohama."

Chart for: - Pseudococous kraunhiae (Nuwana), I90』.

Size:-(a) Fresh material:-
(b) Mounted:- 2 lim long, and I.E im broad.

## Antennal curve:-



Legs:-

| Measurements in :- Coxa wider than lone; femur thicl: |  |
| ---: | :--- |
|  | ciev curved. |

Setæ of Anal lobes:-
Setæ of Anal ring :-

Host plant:-
Locality :-

Kraunhis rloribun -

Javan.

## Pseucococcus Iilacinus Cockerell, 1905.


" S globose, donsely sovered with mite real; mien mounted subglohular, about 1800 long; aftor mojuine tn roritu solour is lilas; legs farly mort, anterior lea with the ferur - trochenter $300 \mu$ iong, tinia $100 \mu$, taisus 65u. Hind leg with femur + trochanter $345110 n g$, tibie $150 \mu$, tarsus rou; widh of rerme 6su; oirn rtout, sirrle. Antennae 8-jointed, Iengtio of joints in 11 :- (1) 25-55, (2) $32-52$, ( 3 ) $37-50$, (4) $20-45$, (5) 25-4?, (6) 277-30, (7) 30 , ( 8 ) 80 .

In one instare joint 3 rcasured $73 \mu$, evidently being combined witin 4 .

Larva in body of 9 about 3 raulong.
Hab. Incban, Tayabas, Philimpine Isiands, on cultivated orance.

I sumposed at first that this species must be ps. filamentosus, but that is quite different by the hare-green pigment after boiling, and the antennae are also different. On account of the pierent it is equally excluded from Ps. alkjamiae. By the purplish pigment and general arpearance it resembles Ps. Maintarcii (Tinsley). The antemae are very variable, but the series 35,45 , $45,22,25,30,30,80$, expresses whet I take to be the nomal ienetins of the joints."

Chart for:- Pseudococous Iilacinus cokerels, I905.

Size:-(a) Fresh material :-
(b) Mounted:- About I. 8 Im Long.

## Antennal curve:-


35. 45. 45. 38. 25. 30. 30. 80.

Legs:- Fairly short.
Measurements in $\mu$ :- Fothorecic leg:-
Bernu + tronanter soou; tibia Ioou; tarsus 65u. Cav: steut, simple.

Setæ of Anal lobes:-

Setæ of Anal ring :-
Host plant:- Cultivted orange.
Locality:- Iucban, Turabas, P:inippine Islends.

## poeudococous Iobulatus (Maskell),I893.


"Adult $q$ yellowish-brown or sometimes redidish-brown, covered dorsaily rith mite cotton, and having a marginal fringe of white oottony processes which are somewhat longer on the abdominal aegments. Length variabie; the specimens seen areraga I/TI in. Antennae of 8 joints, of which the last is fusiform and the longest, the sequence of the rest being 2.3.6.4.5.7.7. Feet rather long; fenur strong; trochanter bearing one long hair;tibia cylindrical, witin several fine hairs, and oith t:ro apines at the extremity; tarsus tapering,pubescent; the tibia is $2 \mathrm{I} / 2$ times as long as the tarsus; upper digitules short fine hairs, the lower pair only very short fine bristles lying along the claw. Mentun conical, dimerous;the abomen is truncate, and terminates in four inconspicuous anal tubercles, each bearing onnical spines and short setose hairs; Anal ring large, compound, with 6 hairs.

Epidermis bearing some very small circular spinnerets and hairs; the spinnerets and hairs are more numerous near the margin.

Larva and ${ }^{6}$ not observed.
Hab. In Australia, under loose strips of bark of Fucalyptus globosus. Ify specinens were sent by Im. Frorgatt from Bendigo, Tictoria. E. globosus is a Tasmanian tree."
prowinco:

Ps• lounsburyi Brain, Ann.Ent. Soc.Aner. Y, $\mathrm{D} .179,1912$. Ovisac, when completed, entirely enclosing the edult ${ }^{\circ}$, 4.5 mm long, elongate, ovai, composed of threais which, under the microscope, have a "Elassy" appearance. Ova.- Closely surrounded by fibres of the ovisac, orangeyeliow, $340 \mu$ long.

Larva nearly transparent, $680 \mu$ long; antennae of 6 joints. $\delta^{8}$ puparium small, brownish white. Adult $\delta$ of the usual Psewoocoous type, antennas of 10 segrents. Adult 9 about 3.7 mm long, elongate, narrow, purplish in colour. There are no lateral filaments, but four caudal ones are generally present, of which the inner pair are slightly the longer.

Antennae of 8 joints. Arernee of 10 measurements in $\mu$ :(1) 61, (2) 69, (3) 47, (4) 28, (5) 42, (6) 28, (7) 37, (8) 92.

The setae of the anai lobes are from list to lom long, While those of the anal ring are 104 to $128 \mu$ in length. The measuremenst of the mesothoracic leg are as follow:
83. 121. 304. 76. 205. 40. 106.

Host plant: Agapanthus unbellatus L'Herit.
Remarks: This species was first found by Mr. C.P.Lounsbury on the leaf bases of this plant at Kenilmorth, S.A.

Chart for: - pseucocoocus Iounsouryi Brair, I9J2.

Size:-(a) Fresh material:-3.7 rms Long and T. 6 rm broad.
(b) Mounted:-

## Antennal curve:-


60. 68. 46. 28. 42. 28. 36. 92.

Legs:-
Measurements in $u$ :- Mesothor vic Leg:-

$$
83^{3} \cdot I 2 \mathrm{~T} \cdot 304 \cdot 76 \cdot 305 \cdot 40 \cdot 106 \cdot
$$

Setæ of Anal lobes:- About ISOu Iong.
Setæ of Anal ring :- Ahont, Izou long.
Host plant:- Agajentius wbellatus LHerit.
Locality:- rape Peningun, South Afrisa.
iseugogocous duffi (Nei terd), I90I.

"Orisac of 9 rether slomeiy -itted, lone, orinurical, anc of equal width thanout; s monaning uncoreided at the
 \& adult veiv aotivo, cositnoting ovisas at period of gestation; mealy, but without rarginal apmendaces; ssemertation distingt.; foin ratier shot, ovate, sn extrerity emarginate. maz lones imionter br a singie hair. Anel ring of six long wins. interening qaces with irre niar ovate bans. Memis thiokn net ith ciroulor spimenots, formine road hands on the anorirel segnents; theze are also numerous short haims wh these are fover in number thaz the suinnerets.

Antemas of 8 jaints of which the last is mush the lonest; fourula, 2. .2.3.4.(5.6.7.) ain the jointe fith fine hoire. Fentur niarticui-te, matur pointed, joints witin inute natios on otin mumaoer.
 thone of tersue singlo.

Hab. On the lomer stem anci roots of Lepigoman mpestre, Guemsat, "near the west soast of the island", S૯ュ九, I8se. niscormied ry lim. W.A. Imff."

## Pseudococcus macrozamiae (Fuller), 1897.

D. macrozamiae Fuller, Notes on Cocc. W. Austr.1. I0, I897. Tr.Ent.Soc. Lond.p.454, I899.
"Aduit $\&$ active; light yellowish-brown; elongate, flattish, segmented; with dorsal meal and short lateral tassels. Antennae of 8 joints, basal vide and stout, remainder cylindrical, apical longest and almost fusiform; sequence :-

$$
8.1 .3 \cdot(3.5 \cdot) \leqslant \cdot(6.7 \cdot)
$$

Legs ample, spined. Tubercles small.
Anal ring conspicuous with 6 strong hairs.
Dorsum clothed with many hair-like spines and with numerous multiocular pores and raised spinnerets.

Mentum conical, apex haired, monomerous (?).
Fyes sub-conical. Length 0.16 inch. Eges yellow, deposited in thin cottony webs.

Larva yellowish-brown. Antennae s-iointed, anal tubercles small.

On Macrozamia frazeri.
Locelity: Swan River, Western Australia.
Generally found at the bases of the fronds."

Preuriococan rar.jigigiae (Bouché). I844.

Coccus manillariae Bouche, Stett.Fint.Zeit., V, ${ }^{\text {I }}$. 302 , I844.

Pseudococous " Fernald, Catalogue, p.J06, I903.
Sumpet, loc. cit. writes:-
"C'est sur diverses pemilaria que I'on trouve cette espèse qui resemble beaucoup ai. D. adonicur, rais en ceénéral plus petite que lui, ce qui ne suffrait certainenent pas pour établir une espèce; mais nous trouvons aussi une différence dans l'antenne: ainsi, conposée de huit articles corve los cutres, elle ciffère par le 2nc article qui est le vius ione, trnis que c'est le $3 e$ cians I'adonidum; de plus, ies $5 e$, be, et 7 e sont les plus petits et le 4 e plus grand aue ceux-ci; Bans I'econidum, ce dernier est aussi court que les autres. Cotte difformen de longueur du 4 e article et le ond orticle plus Iong la distinguent aussi du D. pteridis; égalenent le Ae article dans $D$. oyperi est très-petit et le Be article Ie $\because$ us grand, ce qui fait qu'on ne peut les confondre enserble. De plus, l'antenne lci est plus courte en. général; ze reste conal dans les autres Dactylopius.
Avec les auteurs qui ont marlé de cette espèce nous trouvons la sécrétion moins abondante sur les côtés.

Nous ne connaissons yas lo $\pi$, que Bouché decrit comme suit: " ${ }^{\prime}$. D'un brun rouco foncé; ailes blanches, nervures fortement saillantes on arriepe; nettes pâles, filets blmes. Gorblable à l'aconidum, mais llus vetit et plus foncé."i

## Pseudococous mesembrianthemi n. sp.

Ovisac: eloneate oval, but more or less irregular in outIne, white, oottonv, loosely felted. Under the microscope the threads have a "glassy" appearance. When the ovisac is completed it contains large numbers of ova, and also the shrunken body of the $\$$.

Ora: elongate, oval, about $390 \mu$ long and $170 \mu$ in diameter. When seen in the ovisac they appear orange yellow, but under the microscope they are amber yellow in colour. Larvae, newly emerged: about 480 to $500 \mu$ long, elongate, seen under a low power the caudal extremity appears to be rather pointed. The colour of the body is orange yellov, but the legs and antennae are paler, almost colourless, in fact, and transparent. Antennae 6-jointed. $\sigma^{7}$ unknown. q adult: when taken from the ovisac, small, about 2 mm long and 1.25 mm broad, with the two extremities curved. inmards, ventrally, so that the dorsum is rounded. The colour is pinkish red and the waxy secretion scant. The lateral and caudal filanents are irregular and usually bent; they are of median length and thickness, and have a felted appearance.

When placed in boiling $K O H$ the colour is reddish, and the IIquid is only silentiy stained. After boiling the body becomes distended and straightened out. The largest $q$
then measured approximately 3 rm long and 2 mm broad. The cleared cemis shows the usual gland-pores and bristles; but near the anterior end are a number of scattered hairs the largest of which were found to measure $150 \mu$. The caudal tubercles showed develoment nomai for the genus -

Antennae 8-jointed. Plate I, fig. I.
Joints:- I. II. ITI. IV. V. VI. VII. VIII. Range of measurements:-
$78-82 \cdot 82-90.82-90.40-48.64-76.42-46.46-52.108-116$.
Most common measurements:-
80. 84. 86. 42. 68. 44. 48. 112.

Arerace of 10 measurements:-
79. 85. 86. 43. 72. 44. 48. 111.

Setae of anal lobe: 124 to $140 \mu$ long, mith $130 \mu$ as mode. Setae of anal ring:- 160 to $I 76 \mu$ long, with $164 \mu$ the mode. Legs: measurements according to the scheme given in the Annals of the Ent. Soc. of America, V. p.181,1912:Prothoracic leg:- 84. 144. 304. 100. 218. 40. 120. Mesothoracic leg:- 100. 150. 344. 112. 260.52.140. Hetathoracic leg:- 120. 170. 385. 118. 340.60.150. Intracellular symbiont: Coccidomyces sp. see p.l88. Host plant: Mesembrianthemum edule Linn. Locality: Rosebank, Cape Peninsula, South Africa, To material was collected by fr.C.V.Nally, Feb.2l, 1914.

Chart for:- Meudococcus mesembriantieni n. sT.

Size:-(a) Fresh material:- $: 1$ Iong and 1.35 mm hroad.
(b) Mounted:- Avout 3 a.. Zome and 2 ry biocici.

## Antennal curve:-


75. 85. 86. 43. 7コ. 노.

Legs :-

Measurements in ll :-
84. 144. 304. 100. 218. 40. I20.
100. 250. 214. 275. 260. 52. 110.
120. 170. 385. 118. 340. 60. 150.

Setæ of Anal lobes:-About 130 u Iong.

Setæ of Anal ring:- About $264 u$ long.

Locality:- Caye perinouif, Suti: frica.

## Penms, =un mualtine Brain, 10า?.

 Ovisen soneron, 2.3 m in cirneten, white, fibrous. The ovisass rere no romb singly, but aggregated in masses on the twige of the jisnt.

Ov: Orange yellov th colour, oval, avajegino R10u ionc and loou broad.

Jerve: Meviv hatoned apecinens are very actire, oval, of an orenge relioy colour, 353 long Antonime of $\varepsilon$ ionts. Tie d aras not obsemer.

Aduat of sman; Iupest gyearmen seen, with corpleted orisac 7as 1.9 mm Ione and 1.23 rr wide, siete-sir in coloun, with a scant rovirice of waxy secretione Leteral filaments mentive, caucal ones, usualy 4 , short. Colour in boiling nor blaro, tien murple.

Antennae 8-jointed. Avonace lengtin of segrients fris ten measurements : (1) 39 , (2) $38,(3) 31,(4) 20,(5) 23$, (6) 22, (7) $39,(8) 82$. Shtae of ancl loben varied fror 120 to l50u, withi $i 30 \mu$ tre rost connon lenctin; thoee or the anal ring were 0 to $120 \mu$, ritil 1030 t.u roce.
heanurdmes for the mesothomeic leg in $\mu$ :- 45,76 , 170, $90,98,30$, 98.

Hab. On pretiae heisteria n. C., crpe plets, near Cape To:m.

Chart for: - Tseunococous ruraltige Brein, TथT\%-
$\qquad$

Size:-(a) Fresh material:- Herert q with convleted ouisce aas ב.S mr long and i. 13 nr broad.
(b) Mounted:-

## Antennal curve:-


40. 38. 30. 30. 24. 22. 28. 82.

Legs:-

Measurements in 14 :- Fesothopecis Ieg:-
45. 75. I70. 60. 98. 30. 98.

Setæ of Anal lobes:- focint I3Ou Lorg.

Setæ of Anal ring:- Arent Io8a jong.

Host plant:- iuraltia heisteris I.C.

Locality:- Caye Perinsula, Souts ffrica.

## 


1).3I8.T8.8.



Oriseo ompact, ellintici, vein ljtitie lerger thaw the aduit 9 , pertiy encosine the $q$.
forit. s ebout is mr long ar i rr hroed, eIIpsoidel, and
 the doynur is sumely realy. Isteral ont oandel filaments wanting.

Antemae o-jointer, segrorts reasuring as follows:- (1) 39 ,
(3) 39 , (3) $37-35$, (4) 21-2, (5) 24-37, (6) 24-27, (7)
$\therefore 7,(8) 72$.
Setae of anal lobes ahout T80u lone, wille those of the anal ping ore shout ton in lencth.

Legs rather reler than in Kineii; ferur I30u Iong;
t,ibie about $140 \%$ one as terme rap.
Hairs and digitules alout as in Y. Yivi土.
Hab. On the roots of rutierreria sorotheae at sm atitude of about r, , oo ieet in the crean lits, Nev revico. The indeots were ir all cases atemoded br ants.

Ferarks: Cockerell rtates thet the nyisac or D. Rincij is a loose, fluffy, shapeless mass, wile tiat, of this species reserbles that of an mpiococous wom ruch.

Chart for: - Pseudococous neorexioanus (Tinsley), I898.

Size:-(a) Fresh material:- ibout 2 m Ione and I mre broai.
(b) Mounted:-

## Antennal curve:-

| $\mu$ | I. | II. | III. | IV. | v. | Vi. | VII. | VIII. | IX. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 130 |  |  |  |  |  |  |  |  |  |
| 120 |  |  |  |  |  |  |  |  |  |
| 110 |  |  |  |  |  |  |  |  |  |
| 100 |  |  |  |  |  |  |  |  |  |
| 100 90 |  |  |  |  |  |  |  |  |  |
| 90 |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |
| 70 |  |  |  |  |  |  |  | 1 |  |
| 60 |  |  |  |  |  |  |  |  |  |
| 50 |  |  |  |  |  |  |  |  |  |
| 40 |  |  |  |  |  |  |  |  |  |
| 30 |  |  |  |  |  |  |  |  |  |
| 20 |  |  |  |  |  |  |  |  |  |
| 10 |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |

Legs :-
Measurements in $\mu$ :- Mesothoracic leg :-
Pomur + trochanter I80u; tibia I:0u; tarsus 6su.

Setæ of Anal lobes:-

Setæ of Anal ring :-
Host plant:- Gutierperis Gerotmrae.
Locality:- Organ Its. Nem liexico, alt. 5,000 fit.

Pseudocosons ortestus (naskeñ), IEcs. D. whtectre laskez, N.Z.
"Adult o sheltering itself beneatin a leaf, or bud-scale of the fooc-isant; sycretine in this position ruch white cotton, in which the eges aro laid. Colour zed; hody eilintical, convox, segmenten, sirjveline ofter gestation; Iereth ourot I/30 ir.; the last segrent of the abomen is silightiy iroduced crincuicaijy, ith inoonspiowous setiferous anal tubercles. Mentur dimerous, $\quad$ th severai short hairs at the til.
 irregungry fusiform and zonger than ar two others. mocental mirs ow ount, vitn aix hairs. Sminnerets scattored all over the boiv - ame simle circuls orifices, others cnall aylincrioal twes. If second stace, ne larva, unknown. $\delta^{3}$ unknown.

Hab. It. inem Zealand, on Fagus fusca (hlack-birch), near Fuftor: empently only on the tivigs."

## Eseudococous olivaceus (cockerell), I8:5.

n. Oliveceus Ckll. Psyone, TII, Sup:N.I, P.IS,IBES.

```
"Honc. 3.5 mm, lat. 2.5 mm, alt. I.5 mm, (in alcohol.)
nam? olive brom, with mealr powier. Lega shorter than
tieir distance fror, one another, very stout, cove
extremely large, dieitules all filifom.
Antennae brom, slender, \beta-jointed, 8 rem long.
Tammla 8.(I.2.3.)(6.7.) 5.4.
Haizs uf anal ring very smalミ.
Posterior tubercles obsuicte.
On vucca, Ciniad, Pemfirio Niaz, lerico.
Pother line g. glaumus laskez."
```

Pseudooocous yoae (MestreII), I878. D. Noae lremell, N. Z. Trans. XI, p. 320, I878.

```
"n".is suecies is foume on the roots of the corron tussock
grass, or iather on the sters close to the sround. Tt Es
a zatmon lange insect, hright vink in colour, coverod
with a wiite meal, mo with a very regula: motine, flat
on tie ungerside, :onver above.
The mentum has a fom hairs at the tiy; the setee are long.
The antemme are very short; the second and third ioints
are the longest; the inst joint has a fev hairs.
The leus aso short; the osxae thick, the femur romemhat.
thinner, the tibine and tersi stiai Ioss and shout equal
in length. The umpei digitules are not Ione, the Iower
inconsricuous, if not wantine.
There are a fev hairs on the tarsus. The arni tubercles
are extremely sreli, scamoely verceptible; each has three
conical smmes iut ro havrs and a fer other spines are
visinle on the abdomen.
The eme. :ing has, I toink, six hairs.
AII ovel tho body are mumers of small ciroulal spinmemts.
I nave not seen the of of this species, which is, I think,
certainitr nev.
Ha`. On grass, New Zealmnd."
```

Pseudococous cuercus (Firhonn), Isoo.
D. quepous Elirh. Can. Frit. XXXII, W. $3 \mathrm{I} 5, \mathrm{I}$, 00 . " f siniutiy covered with white secretion, about 2.5 rm long anci. I. I m broad, tayering at botin ends. Colour of body greenish hrom, conceled more or less by secretion. Seerentation very cistinot. Fach segment bears a white filament on the rarein. Caudal setae qbout $I / 3$ as long as the body, wite and quite stout. Antennae and legs dark brown.

When placed in boiling KOH body turns crimson, deir? becomes colourless after boiling. Antenac 8-iointed. Toint 8 longest, joint 7 generally shortest. Formula amproximately : 8.3.2.(2.5.) 6.4.7. Each icint has a ring of stout hairs. Joint 8 las nunerous very long hairs. Legs long and stout, with nuserous long fine rairs. Femur about as long as tibia; tarsus about $I / 3$ as long as tioia; claw slender som well curved. Digitules long finc knobsed hairs. Anal ring srell, with six fine hairs. Caudal lobes well develoyed, With very long setse ( 280 u ). Groups of spinnerets, conical stines min long slender hairs soattered over the dorsure Hab. On guerous chrysoleris, on the leares and in the cracks of bark, California."

## Iseuchoconors roseotinctus (T. and "rockereli), 'OI.

D. roseotjnctus CkIIs. ran.pnt., XXYTr, D. 336 , inn. " 70 nn an: siee nout as in n. pini; distinctly secmented, With a sight covering of mes? rowner; caucs tsasels short hut well onveiofer; iateran fringe of tansels vey shove, ineerlain, but plainly visible in fresh specinena. ¢̣ fill of roung shou no viens of producing orisacs. Antence 8-joirted, joirts recourinc in 11 :-
(1) $45-65$, (2) $51-60,(3) 45-48$, (4) $35-45,(5) 40-45$
(6) 30-35, (7) 3-6, (8) 84-6.
vidile deg :- Famp + foshonter 340u; tinia plou; tarsus (without clew) rau. Breat in of fermi Ban.

Latiun, - levgth 135!, breadth Sou.
raudsi ristles and bristles or anc mine on the sate longth, 12011.
rojiad in roll the os trur inght red.
 ClosoIy alljed to n. salimus Ckll. (fror Celifornia), lut the femora are stouter, homon in hroder, and the caudal histles are ruch longer.

Tine Ertennae are iniously lite those of the Brarinian D. Sectuth Herrel. D. roneotinotus is alno vem sinilan to I. trufolif pirbes, mich has a lateral fringe, but, there ead ramious crail differerces, and the colour is not the sare."

Chart for: -Preutococus irseotinctus (T. and W.Coonveris), I90I.

Size:-(a) Fresh material:- Abnut 4 rua long and 2 ram broad.
(b) Mounted:-

## Antennal curve:-


54. 52. 46. 42. 42. 34. 34. 88.

## Legs:-

Measurements in $\mu$ :- hosothoracic leg.

$$
\begin{aligned}
& \text { Pemr + toononter } 240 \mu \text {; tinia 2IOん; tarsus, } \\
& \text { ritnout olow, 7Su. }
\end{aligned}
$$

Setæ of Anal lobes:- About, I20u long.

Setæ of Anal ring :- $\quad$ About I20 $\quad$ iong.

Host plant:- On roots of grass.
Locality:- Romonoville, Nev Moxico.

Proudococous sainus (Cocrerell), I909.
 "里. Giey, vith mine seoretion; 6 caulal tasseis and two cepialio ones. Boiles in anduay yotessee tums crimoon; legs and antennae fomginens. lowter specilen about 2.8 mm lone, and 1.35 rm broad. Skin vith numerous small round sicnus, and a very few haing no distinct caudal tubercles;
 rristles rery short, not, or harcly longer than the smines. Legs duite hairy; 3nem with no cienticle on inner side;claw digitules filifom.

Micrie Zeg: frium + twochanter $255 \mu$; thia $195 \mu$; tarsus 75u; wicth of ferme srii.

Leriun cirozus, long and namor; length 1354 , breadth $75 u$. Antennae 8 -jointed, about $285 u$ apart; messurenents of ioints: (1) 60. (2) 54-60. (3) 5-54. (4) 5月. (5) 30-42. (6) 30-45. (7) 36-39. (8) 75-78.

Larrae in 9 veir long and narrow; length 3664 , bradtin IG2u. rnif grown examies are still long and narrow. Tength ? . m, mocoth -66rm.

Hab. On grass on cliffs by the sea, Lé Jolin, Celifornia. Aveust fith, 190I.

A distinct spectos having the shape of a Pergandieina when young."

Chart for:- Pseudooosous salinus (coskereju), ison.

Size :-(a) Fresh material :-
(b) Mounted:- About 2.8 mm long and I. 35 m brosd.

## Antennal curve:-



Legs:-

Measurements in $\mu$ :- Ifesotinoracje בeg:-
Femur + trochanter :55u; tibia IS5u; tirens ryu.

Setæ of Anal lobes:- About 50il lons.
Setæ of Anal ring:- About $42 \mu$ lons.
Host plant:- Grass .
Locality:- Clires the sea at Lails, Coifona.

Pseudococous sorobimycmu Green, I896.

" In glanduiar pits at iosee of leaves of flaeocermus. Dark slety-eray, sparsely covered with whitish powier. Anominal segments only with stout whito processes, which protrude from the opening of the cell in which the insect Iives.

Lrasiter Punduloya."

" D. seeregatus was found on grass in Fast. Street, Kineston. It ls very close to n. ricstus, but smaller, (the adult o ritil eces 2.5 rm long, without countine the caunl filanents.), the back has a couple of longitudinal blakish inus, whila aro due to nionent. and are not, like the bands of virgatus, ares free from the mealy secretion.

Youncer nairicuals show two or three filaments corered with vite seretion, on each side of the long cauctal figerents.

Atenree ornse brom, 8-jointed. Joints; 4, 5, 6, and 7 su-0rual, 5 a little longest. 8 about as zone as 6 erci 7 together; 3 and 8 about equal, but if anything 8 is a littile longer; 2 shorter than 3 , but lonecr than 4 or 5 .

Tarsal monbed hairs, and digitules of claw both very slender, with alnost invisible knoks."

## nseudococcus sirilans (1inoett), I898. <br> D. similans Licge The Torbst, IIT, D. U?, I8G8.

"Advit o reddisn-brom in colour, powdemed win ine wite mal, so thick in most oses as to obscure the grount colour ari to leave the irprion that the insect is rure wito, body deeply and distinctly segmenter, elliptical; natiner ficitich. A mareinal fringe of eyinerical cottony filenonts rojects at each sice, eing halr as lone as the $\because$ irtin of the body, one such filement simireine fion each segment; the two on the last akconinal secnert beinc triee as lonc as the rest, and between them there is cercreliy much ootton.

Anal tubercles small and inconspicuous, forming st gestition a Inge mhite cottony ovisac containire brom oval eggs.

Fet lone ari slender, the senons air projecting beyond the worr when wallie, dark red in colour; upver digitules fine heirs, lower pair much shorter.

Antennae of 8 joints, sub-equal, oan joint bearing several hairs.

Length I/ 5 to I/5 inch. Witin I/I6 inch.
$\therefore$ mknown.
Hab. In rictoria, uneremun on poots of nathene, at Vrrione."

Pseudococous siminx (cookereIz), I883.
D. simplex Ckll., The Frtom. XXYI, p.267, I853.
"Forming scattered patches of wite secmetion, duite irregular in outline, on the upper side of leaf of pancratiun caribceur. q.-About $s \mathrm{~mm}$ long, oval, brorin, with mealy white secretion; segmentation distinct. No lateral processes or caudal filaments. Tivia neaily as long as femur; tarsus about $I / 3$ lengtir of tibia. Clay with knobbed digitules. Leg's broviish yellow, hairy; trocianter with two short hairs.

Antennae 8-jointed; 4, 5, and 6 sub-equal, and shortest; 7 next shortest, then $I$, then 2, 3 , and 8 Iongest. These differenves sre rather insignificant, except the decince shortness of 4, 5, and 6. Joint 8 emits sereral hairs, none as long as itself.

Boiled in soce they du nut colour it red or brown. $q$ after soda-treatment is yellovish red. The white secretion is in the fom or lone straigint timens.

Larva.- Elongate-oval, Tith parallel sirles; two caudal filaments, not so long as diameter of bory, and joined together by secretion. Colour of larva yellowisi bromn. This species was found by $n$. Stimoner, in his garien in Kingston, Jarnaisa, Aucust I89s."

Pseudococous steeli (ckil. and Towns.).J894.
Bergrothia steeli C. and T. Fint. Nems, ${ }^{\mathrm{T}}, \mathrm{r} \cdot 363$, I89.
.. townsendi var steelii rkll. ibid, p.282,I854.
Frium steelit CKII. Ann.itac.in.H.(7), X, D. $466, \mathrm{I} 902$.
.. .. Fernald, Catalogue, p.113, I903.

Orisac elongate, 5 to 6 rm long, felted, nearly enclosing the adult $\rho$.

Aciult \& elongate, of a 1 ight redich brown colour. Length about 4 rn ; widith about 2 rin.

Antennae 8 -jointed, the joints neasurine :- (1) $42-45$, (2)
$40-45$, ( 3 ) 36-42, (4) 21-27, (5) 21-33, (6) 27, (7) 3640 , (8) 84-87.

Derm with numerous round gland-erots. Anal ring with six hairs; mentum trirerous.

Hind legs with femur slightly longer than tibia; tarsus less than half the length of tibia. Claw fairly large, curved; trochanter with a long hair.

Posterior tubercles very inconspicuous, bearing a pair of short stout spines and a long hair. Larvae are of the sare colour as the adult, and have the antennae of six joints.

Food plant: This speciers wes found in large numbers on the leaves of the "creosote bush", Larea mexicana. Locaily: Las Cruces, Ney llexico.


Size:-(a) Fresh material:- Length about 4 mm , width 2 mm .
(b) Mounted:-

Antennal curve:-

| $\mu$ | I. | II. | III. | IV. | V. | VI. | VII. | VIII. | IX. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 130 |  |  |  |  |  |  |  |  |  |
| 120 |  |  |  |  |  |  |  |  |  |
| 110 |  |  |  |  |  |  |  |  |  |
| 100 |  |  |  |  |  |  |  |  |  |
| 90 |  |  |  |  |  |  |  |  |  |
| 80 |  |  |  |  |  |  |  |  |  |
| 70 |  |  |  |  |  |  |  |  |  |
| 60 |  |  |  |  |  |  |  |  |  |
| 50 |  |  |  |  |  |  |  |  |  |
| 40 |  |  |  |  |  |  |  |  |  |
| 30 |  |  |  |  |  |  |  |  |  |
| 20 |  |  |  |  |  |  |  |  |  |
| 10 |  |  |  |  |  |  |  |  |  |

4. 54.38 . 25. 38. 27. 38. s5.

Legs:-

Measurements in :-

Setæ of Anal lobes:-

Setæ of Anal ring :-

Host plant:- Lamew mexionn, ("Creosote bush").
Locality :-
Lss cruces, Net liexiso.
inourococous subterraneus (Hempel), 1001.
D. oubterranous Hermel, Arm.iee ret.Hist. (7)VII, p.388, 1001.
"s, probably irmature, cral-convex, length of prepared specinen 2.52 Lu: widtin 2.5 mm . Antennae of 8 joints, all bearing hairs; joint 8 longest. Length of antenna about , 3 B mm . Lencth of joints in $u:(1) 56$, (2) 42, (3) 56, (4) 31, (5) 31, (6) 35-38, (7) 38, (8) 84-91. Arproxirate formula: 8.(1.3.)2.(7.6.)4.5.

Two small conical eyes present. Postrum lazee, situated between the first pair of Legs. Rostral loop extending half way between the 2nd, and 3 rod pair of legs. Legs long. Length of joints of first pair of legs in $u$ : coxa 91, femur + trochanter 245, tibia 140, tarsus and claw 91. Claw small, well curver; botin pair of digitules small, with slightly expanded ends. Anal ring with six hairs. Anal tubercles inconswicuous, each ending in one seta. On the dorso-lateral surface of the body, includIng the anal tubercles, there is s series of 34 grouns of spines; . . .

Gall-producing, on roots of cultivated grapes. Gails irmegularly globoce, 3-5 mrs in diareter, forming a rass encircing the entire root. The interior is smooth and Inned witin a white powdei.

Hab. Ja Plata, Argentine Peroblic."

Chart for:- pseurococous cubterraneus (Hempel), I:02.

Size:-(a) Fresh material:- 2.5 mm lone and J. 5 rm brac.
(b) Mounted:-

Antennal curve:-

56. 42. 56. 3I. 3I. 36. 30. 88.

Legs:-
Measurements in $u$ :- Pothorsic leg:-

$$
\begin{aligned}
& \text { Pemur + trochanter } 245 \mu \text {; tiois I40u; tausus } \\
& \text { vith ciav } 61 .
\end{aligned}
$$

Setæ of Anal lobes:-

Setæ of Anal ring :-

Host plant:-Gall-foming or roots of graye-vines.
Locality:- Je Plata, Arrontine Perubiic.

Pobulococous gringe (haskeil), I897.

"Abult if enclosed in very loosely voven mow-mite sacs aceregated in a nass on the plant. d mujee in sirilar but smaller สasc.

Arnit $q$ vellov: length about $I / I 6$ inch. intennae of joints, the oth being the longest, and fusifom; the antomel onve is 8.2.I.3.(4.5.)(6.7.), tiere are 2 or 3 hairs on each joint. Peet momere the troohanter bears s long seta; the tibia and tarsus have a for hairs on the inner margins; the tarsal diitules ane fine mars, those of the cinw very slighty dilated. Anal tuberoles rather broad, but not vem pominent; each beer: a seta and several shomt conionl spines; anal ring with 6 hairs. Erideris sovered with numerous small sirmle circular spinnerets, and with a rotuer inse puressence, many of the hairs, especially on tie cephalic region, being lether strong and long. In two of tine speoinens examined there vere three transVonk elongated inegular wots on the dorsum, one on each of the anterioz abdominal segments.

Larva not obrerved.
Aduit $\sigma$ brom; wings eirer; length about I/20 in. Antemne and feet presenting no special chrocters. Abiominal spike short, anc conisal; setae and cottony "taisa" rather iong. Hab. In Jeian, on Syringa amurensis."

## Iseudococols t.4 : is cocker: 1905.

 "s. Corered with mesir secretion, distincti" serilentea, lookire, mhen dir, like minute speoinens of comercial oocincel; then mounter oras, about 1500 l lone; arter boizing, the wey is seen to contain much dull orirson wigent, tefciay in the embronic younc eyes well Gevelowe anal wite with six hairs, anc plaoed in a wide scuacea incision; literal mrgins of serrents"irojectire oo that the marin is strungy uncuistec, the projecting points bear stout suines, nout jau long; skin ereatly owomed with romn exans; labiun ione ard narrow, about I50u long anc $70 \mu$ whon; legs stout, length of tibia about $125 \mu$, trmue $75 \mu$; cien stout, sirple. Antennae s-iointed, ioint, newsuring in $u$ :(I) 50, (2) 50-62, (3) 50-58, (4) 25-51, (5) 33-40, (6) 40-45, (7) 37-40, (3) 87. Whe wrazes measuerent (50), for a sefra to be noirci. Is rua with longitudinel rone of bristle: (not mines), the inicize row doubse; fre stout hairs on anal ring; clam long, simpe; antennae 6-jointed, joints measurine (1) 30 , (2) $22,(3) 17$, (4) 17 , (5) 32, (6) 52, 55. Fab. Lucban, Tayrbas, piximine Islants, fpril, Ioo4, on cultivated cacao."

Chart for: - Pseudocojifi tayabanus cockerely, Ioos.

Size :-(a) Fresh material:- About I. 5 mirn Iong.
(b) Mounted:-

## Antennal curve:-



Measurements in $u$ :-

$$
\text { Iongth or tibis. I25 } \mu \text {; trmus } 75 \mu \text {. }
$$

Setæ of Anal lobes:-
Setæ of Anal ring :-
Host plant:- On cultiveted caceo.
Locality:- Tarahas, Philippine TsIands.

Pswaconcom theringes (nougins), I889.

"o acult. Broar-short-oval, slightyy nerrow in front, turic, Dnt-yonlowish, antennae and legs onnolorous; boity on the under swapace sorered viti fine whte powder, bus lewing the segnentation ishale; mein with shoit hairs and a series of lore, sur-conical, granulsr, phite vrojections all round; anal prosssses evicent, rovidec; hairs of anal ring nomai; onhti setae (demted) very fine, short. Antennae short, of 8 joints, $I$ reir stout, not short; 3 and 3 Ioreer, ir Ioreth surnen, strong, ? each conseoutively timner; 4 shortest of aII; 5 and 6 each a trifae lowes than $\therefore$, sub-equri; 7 a trifle loneer than $6 ; 8$ rointer, Joucest 0 all, wual to 5, 6, anc 7 together, ail aith fine mojectang hairs, the termiral ones on 8 longest.
regs strong, with fer projecting hairs; tarsi half the lenetis of tinzes; olaw rhort; digitules of tarsi and clar lone, very finc.

Lenctil 3 mm .
o unknown.
Hav. On Theobroma dano, in cardins of Porai Bot mic Societr (Engions).

Conecter by Mr. P.T.Lewis, April I88؟."

Pseutococcus rovie Hassonor, 1909.

Ps.(n.) vovae Nass.,Ann.Mus.Tool.Anad.Tr". Soi.st. Pet. YIII, P.AB4, I900.

The adulto with the completed ovisas looks ven ruch life a Pulvinaize, oving to the sinilar position of the insect on tie wite saa.
nout $q$ about $n \mathrm{~mm}$ long, brom in colour, or yellowish hrom, covered witimealy, rifte, secretion. Giands most munerous on the four oaudal segrents. Fres black, situated at the base or the antennae. Postrum biarticulate.

Antennae of 8 joints, the range af measurements, from s apecirens beine:- (I) 49-52, (2) 46-5?, (3) 44-50, (4) $29-35$, (5) $34-42,(3) 97-31,(7) 35-39,(8) 88-95$. Norly geren lare is oval in outine, the anterior end reing soremat thonote, while the posterior is bilober. Iencitil about 0.2 mm . Antennae with six joints, the Pumula beine $\therefore . ? .1 .(3.4 .5$.
ne $\sigma$ is not Wnorn.
Host plant: on the Ieaves of Juninera ommunis. Locelitu: Gkoliror, in the province of tarsoriersi. Colleoter June, 1906 •

Chart for:- Pocucococcus vovae Nasconor, I909.
$\therefore=-\quad=0$

Size:-(a) Fresh material:- Length about 2 ma .
(b) Mounted:-

Antennal curve:-

50. 50. 45. 35. 33. 30. 38. 90.

## Legs:-

Measurements in :-

Setæ of Anal lobes:-

Setæ of Anal ring :-

Host plant:- duni: a ormuris
Locality:- Pusia.

Pseudococous wachendorfiae Rrain, 202.2.

## PG. wachendorfiae Bain, Ann.Fnt. Soc.Amer. 7 , 1. .183, 1912.

Orisac: No Cefinite orisac was found although large numbers of adults were seen. There was a distinct layer of white vax on the plant beneath the insects. Adult o. Largest specimen found measured 4.1 mm when living, and was 2.9 rm broad. The body was finely covered with a witte powiery secretion, but segmentation was nevertheless conspiounc. Lateral filaments were absent, but there was generally a caudal tuft.

Antennae 8 -jointed. The average lengths of the segments, from 10 specimens, were as foIlon:- (1) 64, (2) 56. (3) $43,(4) 23,(5) 36 .(6) 24,(7) 31,(8) 78$. The setae of the anal lobes mere fron 154 to $180 u$ in length with $160 \mu$ the commonest lencth. Those of the anal ring varied from 115 to $141 \mu \mu$ in length, with $136 \mu$ the mode.

Mesothoracic leg: measurements in $\mu$ :-
106. 136. 342• 91. 335. 45. 98.

Hab. On Wachendorfia paniculata Linn., usually between
the leaf-bases below the surface of the soil.
Newlands Flats, near Cape Town.
A small black ant was always in attendance, and built up small mounds of sin mons the stems which held the insects.

Chart for: - imeudosocous wacherdorfise brain, IoIs.

Size :-(a) Fresh material :-
(b) Mounted:-
 and I. 9 rr broad.

## Antennal curve:-


64. 56. 44. 24. 36. 24. 32. 80.

Legs :-
Measurements in $\mu$ :- liesotioracio leg:-
J06. I36. 342. U2. 235.

Setæ of Anal lobes:- Ancut I60u Iong .
Setæ of Anal ring :- Abont $136 \mu$ iorg.
Host plant:- Wachendorfia Danioulata Linn.
Locality:- Caye Peninsula, South Africa.

## Pseudococous wilmattae (CKII.), I901.

 "q.-Brownish olivaceous; without lateral tasseis; no ovisac observed; surface sispely mealy; length when mounted 2.5 mm ; body pinkish after boiling in potash; legs and antennae pale brom; legs very sparsely hairy; middle leg with femur + trochanter $213 \mu$, widin of femur 87M; tibia $150 \mu$; tersus $89!$; claw with a small denticle on inner side near tip; hind tibia $180 \mu$ long, $42 \mu$ broad; hind tarsus $75 \mu$ lone, 211, broad. body not hairy; bristles of anal ring about $90 \mu$ long; caudal lobes not at all produced; rostral loop shoit, not nearly reaching to middle legs; 2nd joint of antennae conspicuously broader than 3 ra, and always longer.

Antennae: 9-jointed phase, formula 2.9.3.?.5.(4.6.7.8.) segments, (1) 39 , (2) 54, (3) 45, (4) 30, (5) 36, (6) 30, (7) 30, (8) 30, (9) 48.

8-jointed phase: formula: 8.2.(7.3.)(5.7.)(4.6.)
segments: (I) $42,(2) 54-60 .(3) 42,(4) 27,(5) 30-33$, (6) $27,(7) 27,(8) 81-87$.

Hab. Beulah, New Mexico. 8000 ft . on Viola aff. pedatifida, May II, (W.P.CKII.)

Chart for: - Psouciocose wilmattae (CKII.),1901.

Size :-(a) Fresh material :-
(b) Mounted:- About 2.5 mm long.

Antennal curve:-


Legs:- 39. 54. 45. 30 36. 30. 30. 30. 48.

Measurements in $\mu$ :- Mesothoracic leg:-
Fenur + trochanter $213 \mu$; tibia $150 \mu$;
tarsus $89 \mu$.

Setæ of Anal lobes:-
Setæ of Anal ring :- About 90u long.

Host plant:- Wioln sp.
Locality:- Beulah, New Mexico.

Chart for: - Peen ococens andersoni (Coienon), Is03.
$\qquad$

Size:-(a) Fresh material:- 3.3 rm long anci I. 6 rm broad. (b) Mounted:-

## Antennal curve:-



Legs:- Short and stout.

| Measurements in :- Tansus one-thiat as lorg as the |  |
| ---: | :--- |
|  | tivia. |

Setæ of Anal lobes:-
Setæ of Anal ring :-
Host plant:- Cupressus Goveniana.
Locality:- Califomie.

Chart for:- Pseugococcus azaiese (rinsiey). T898.

Size:-(a) Fresh material:- About 3 rm Long and a maide.
(b) Mounted:-

## Antennal curve:-


56. 62. 53. 34. 5I. 40. 45. II2.

Legs:-

Measurements in ! L :-
Pemun 2IEu; tibia $I 5 u ;$ tarsus II $2 \mu, ~ c l a v ~ 33 u$.

Setre of Anal lobes:- About 2501 long.
Setæ of Anal ring :- About I40u Iong.
Host plant:- Aralee.
Locality:- In Jupanese Nurserv, Celiforria,

Chart for:- Pseurosozes aiseolariae (Maskell).I8\%6.

Size :-(a) Fresh material :-
(b) Mounted:-

## Antennal curve:-



Legs:-
Measurements in $\mu$ :- Mesothoracic leg:-
Pern + trochenter 330u; tibia 2s3u;
tarsus $90 \mu$; clav $30 \mu$ :

Setæ of Anal lobes:-

Setæ of Anal ring :-
Host plant:- Suecroane.
Locality:- Floridia.

Chart for:- peudocoous grandis (Hermez), I900.

Size:-(a) Fresh material:-Ify attain 7.5 mm 10nc and 5 rm brocd. (b) Mounted:-

## Antennal curve:-


67. 7I. 49. 36. 53. 47. 49. 58.

Legs :-

Measurements in :-

Setæ of Anal lobes:-

Setæ of Anal ring :-
Host plant:- One of the IVMiace.

Locality:- Brazil.

Chart for: - Dseudo ujeus macholioida ("von Iher", King), I90:.

Size :-(a) Fresh material:-
(b) Mounted:-

Antennal curve:-

58. 3\%. 99. 79. 98. 60. 60. II6.

## Legs :-

Measurements in $\mu$ :-

$$
\begin{aligned}
& \text { Coxa I } 50 u \text { long and as } 8 u \text { wie; femur + tiochanter } \\
& \text { raou; tibia } 408 u \text {; tarsus I } 0, u \text {; elay } 40 u \text {. }
\end{aligned}
$$

Setæ of Anal lobes :-

Setæ of Anal ring :-

Host plant:-
Locality:- Brarid.

Chart for: - Pseudococous pini (Kumana), I90\%.

Size:-(a) Fresh material:- About 4 wim loits and 3 ran broad.
(b) Mounted:-

Antennal curve:-


Legs :-

Measurements in :-

Setr of Anal lobes:-
Setæ of Anal ring :-
Host plant:- pinus pentapidide.
Locality:- Javan.

Chart for:- Peuno30330: secretus (Hempel), I600.

Size:-(a) Fresh material:- About 2.25 min long and I. 25 mm broad. (b) Mounted:-

## Antennal curve:-



Legs:-
Measurements in 4 :- Mesothoracio leg.
Bomur I9Iu; tibia I82u; tarsus rith olav Ioßu.

Setæ of Anal lobes:-
Setæ of Anal ring :-
Host plant:- One of tis: Solanaseae.
Locality:- Yairona. BraziI.

Chart for: - Pseunoocovs setosus (Hempl), I900.

Size:-(a) Fresh material:- Largest specimens were 5 rm long, and 2.75 im broad.
(b) Mounted:-

## Antennal curve:-



## Legs:-

Measurements in ":- Mesothoraoio 5og.
Pemu 333u; tibia 3I2u; tarsus with caul Iふ5u.

Setæ of Anal lobes:-

Setæ of Anal ring :-
Host plant:- Pious sp.
Locality:- Sante Prua, Brazil.

Chart for: - Psoudococous teyensis (Ting Ioy), Tsoo.

Size:-(a) Fresh material:- Length ebout 3 rr , and nearly as wicie as long.

## Antennal curve:-

| ${ }^{4}$ | I. | II. | III. | IV. | v. | VI. | VII. | VIII. | IX. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 130 |  |  |  |  |  |  |  |  |  |
| 120 |  |  |  |  |  |  |  |  |  |
| 110 |  |  |  |  |  |  |  |  |  |
| 110 |  |  |  |  |  |  |  |  |  |
| 100 |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |
| 80 |  |  |  |  |  |  |  |  |  |
| 70 |  |  |  |  |  |  |  |  |  |
| 60 |  |  |  |  |  |  |  |  |  |
| 50 |  |  |  |  |  |  |  |  |  |
| 40 |  |  |  |  |  |  |  |  |  |
| 30 |  |  |  |  |  |  | $\square$ |  |  |
| 20 |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |
| 10 |  |  |  |  |  |  |  |  |  |

56.50 .55 .55 .33 .38 .35 .82.

Legs:-

Measurements in $\mu:-$

$$
\begin{aligned}
& \text { Ferui about l8isu long and sau ride; tibiá } \\
& \text { Is } 2 u \text { lone and } 35 u \text { wide; tarsus } 65 u \text { jong. }
\end{aligned}
$$

Setæ of Anal lobes:-

Setæ of Anal ring :-
Host plant:- Aciacia famesina, Winla.
Locality:- San Diego, Trxes.

Chart for:- Pseulozo33s viratus (Nockerell), I803.

Size:-(a) Fresh material:- 4.5 mm long; saudal filaments about 2 mane
(b) Mounted:-

## Antennal curve:-



Legs:-

Measurements in :-

Setæ of Anal lobes :-

Setæ of Anal ring :-

Host plant:-
on leares of a tree (si). iniet.)

Locality:- Jalaiea.

Phenacoccus cevaliiae Ckll., 1902 .

Pn• ceralifae Crin. Can.Fnt. XXXIT, n. 315, 1902.
"q. Ovel, 4 to 5 mm long, pale olive green, but covered with white secretion, witil lateral tassels and thick caudal tassels; placed in alcohol, they stain the liquid pale ereen; alcohoic specimens appear strongly segmented, with two loncitudinal blackish bands, best marked in rather immature specirens. Fyes prominent; skin with many small ciroular glanas; the lateral patches consist of about la glands easu, but are without spines; a few rather large bristies scattered over the body; legs and antennae reddish yelion; dentisie on inner side of claw rudimentary, just visible; antennae 9 -jointed, the club 2-jointed.

Heasurenents of antennae and legs in $\mu$ : Anterior legs, femur and trochanter 470, tibia 330, tarsus 130 ; hind legs: femm and tronenter 540, tibia 440 , tarsus 135. Antennal joints: (1) 45-60, (2) 108-111, (3) 63-66, (4) 60 , (5) 72-75, (6) 51, (7) 51, (8) 45, (9) 67. Newly hatched larva very pale lemon-yellow, about twice as long as broad; eyes conspicuous.

Hab. In enormous numbers on Cevallia sinuata, near Lea Lake, east of RosweII, Hen Mexico, AuE. 2I, 1902."

Chart for:- Purvocus eet, jee ~overell, 1902.

Size :-(a) Fresh material:- 4 to 5 mm Iong.
(b) Mounted:-

## Antennal curve:-


48. 108. 65. 60. 74. 50. 50. 45. 67.

Legs:-
Measurements in $\mu$ :- Prothoracic leg:-
Ponin + trochanter 470u; tibia 330u;
tersus $130 u$.

Setæ of Anal lobes :-

Setæ of Anal ring :-

Host plant:- Ceralina sinuata.
Locality:- Near Rosmell, Ne:r Mexico.

## Phemacoous eroynii Toms. and CkII.,1903.

Ph. gossypii var. psiclarum Ckll, Ann, Mag.N.H.(7), p. 164 , 1903.
"q. On leaves and bark; entirely covered by white cottony sacs about 4 mm long, not at all waxy in appearance. They look like an Eriococcus, except thet the sacs are more cylindrical with broadly rounded, instead of tapering ends. Boiled in KOH does not stain the liquid; eyes large and prominent; skin transparent, colourless, with many small round giands ( $1-5$. di am.) and rather numerous bristles, some fully $105 \mu$ long.

Lateral bristle patches small. Labiurn ordinary. Legs and antennae very pale brownish; legs cuite bristly. Claw with the usual denticle on the inner side. Femur + trochanter $360 \mu$ long, tibia $276 \mu$, tarsus $95 \mu$. Antennae 9-jointed, the joints measuring in $\mu:-(1) 60$, (2) 90 , (3) 81-84, (4) 45-51, (5) 57-63, (6) 45-48, (7) 33 , (8) 35, (9) 66. Larva (after boiling) bright magenta, elongate, long .405 mm , lat. . 180 mm. Legs, including femur, slender. The six bristles of the anal ring thick and yellowish brown, about $24 \mu$ long.

Hab. Zapotlan, Jalisco, Mexico, on wild guava, July 6, 1903."

Chart for：－Phenacoccus gossypii Towns．and Ckll．，1903．

Size ：－（a）Fresh material：－About 4 rm long．
（b）Mounted：－

Antennal curve：－


Legs：－

Measurements in $\mu$ ：－

```
Fenur + trochanter 350u; tibia 276u;
tarsus 95\mu.
```

Setæ of Anal lobes ：－

Setæ of Anal ring ：－

Host plant：－on wild guava．

Locality：－Zanotian，Mexico．

## Phenacoceus cbtusus (Newstead),1911.

n.(Fs.) obtusus Newst.Mit. $7001 . \mathrm{Mus.Berl.Y,p.164,1911}$. "甲 adult. Length 4, width 2.75 mm . Segmentation strongly pronouncer. Antennae (PI.I,fig.4.) of nine segments; proxinal end of last segment narrower than distal end of the penultimate; all the segments with long fine hairs; 7 th and 8 th each with a strong curved spine near the articulations; 9th with two similar spines near the apex, the rest of the apical hairs considerably shorter than those on the remaining segments. Marginal spines truncated forming large conspicuous groups on the thoracic and abdominal segments, but coalescing in front from the insertion of the anterior pair of spiracles.

Anal orifice with the nomal number of hairs; surrounding this organ is a conspicuous fold in the integument presenting a ringlike boundery within which are 10 similar long hairs. Lees normal, hairs extremely fine and very long.

Embryo larva: Hairs to anal lobes about two thirds the length of the boig; legs and antennae furnished with very long hairs.

Hab. On Baobabrinde. Geman East Africa."
This species is remarkable for the truncate spines, the terminal joint of tie mtennae, and the anal fold.

Parasites of the Pseudococcini.

## Parasites of the Pseudococcini.

The Coccidae, as a whole, are known to be preyed upon by a large number of insect enemies. A distinction must be made between the kinds which move about freely and devour the scale insects, or suck their juices, and those whose growth and development take place inside the Coccid body at the expense of the tissues or body fiuids. The first class might be called "predators", and the second parasites.

The predaceous enemies have received more attention than the internal parasites, and some have been shown to be of considerable economic importance. Vedalia, (Novius cariinalis), is a good example of a Coccinellid which proved of irmense importance in the control of Australian bug, Icerya purchasi. So great was the success with this insect in California, that it was later introduced into South Africa, where the results were equally satisfactory.

No other country in the world has taken such interest in the rearing and spread of beneficial insects as Colifornia has done, and the leac which this State obtained is being well maintained. For the introduction, breeding and dissenination of beneficial predaceous and lerasitic insects a special departrent has been creater in the office of the State

Commissioner of HorticuIture, known as the insectary division. The officers of this division are provided for by law, the chief of which is known as the Superinterdent of the State Insectary.

The State Insectary was constructed especially for tig rearing and breeding of beneficial insects, and is located in the Capitol Park at Sacramento. It is supported by appropriations of the State Legislature, and is, therefore, a free institution to all the citizens of the State.

The operations of the insectary are briefly as follows:Expert entomologists are maintained in the fields in Calffornia and in other states and countries, who collect the natural enemies of the destructive insects. These are sent to the insectary, where they are supplied with the proper host-insects, and are reared in large numbers, when they are distributed to sections of the country where the destmuctive pests, upon which they prey, are plentiful.

The work, to the present time, has been chiefly concerned with the check or control of such forms as Australian bug, San Jose Scale, the Soft and Black Scale of citrus trees etc.

Predaceous insects, chiefly Coccinellids, have receiver the greatest attention, possibly because of the ease with which they can be collected and bred.

Very little attention has been paid, so far, to the enemies of the Pseudococcini. Whe there are numerous references to parasites having been observed, these were, in the majority of cases, not determined, and no further attention given to them.

A study of these references, however, convinces me that this branch of the subject should receive attention, and my experience shows that predaceous and parasitic insects may, and co, at times, operate to control mealy bugs.

Newstead, Ent.Mon.Mag.XXXIV,p.99, 1898, records a case in which he received specinens of the common long tailed mealy bug, P . adonidum Westw. from Zomba, when he found that quite 90 p.c. of the females were parasitised. Unfortunately the parasite mas not determined. As mentioned previously, the best known species in the Pseudococcini is the common mealy bug, $\underline{P}$. citri Risso, which has a very wide range of food plants, and a very Wide distribution. Naturaily this species has received the greatest amount of attention, so I thought it would be interesting to make a careful study of the literature, and make a list of the predaceous and parasitic insects which have been found in connection with this mealy bug.

The following is the list obtained:-

Predaceous and parasitic enemies of P. Citri Risso. a. Predaceous insects:

Lady-bird beetles (Coccinelifae).
Cryptolaemus montrouzieri, introduced into California by Mr.A. Koebele; also preys upon P-adonidum and P. nipae. Rhizobius ventralis, which was introduced into California to combat the black scale of citrus trees, Saissetia oleae.

Indorus lophanthae, (Introduced into California). Scymins guttulatus, native of California; also preys upon P. adonidum.

Soymnus sordidus, native of California.
Scymnus marginicollis, native of California.
Cryptogonus orbioulve a native of the Philippine Is., introduced into California in 1910, also preys upon P. adonidum.

Hyperasnis lateralis, (California.)
Exochomus nigromaculatus and at least two other small species, which are native of Soutin Africa. An attempt was made to introduce these into the U. $\mathrm{I} . \mathrm{A}$. in 1901. (See Can.Ent. fra Jure, 1901, p. 183.)

Green lacewing.
Chrysona californica Coq., in California.
Brown lacewing.
Sympherobius angustus Banks, in California.
b. Parasitic insects:

1. Hymenopterous insects:

Chrysoplatycerus splendens Howard, in California.
Cheiloneurus dactylopii Howard.
Coccophagus flavoscutellum Ashmead.
Zarhopalus inquisitor Howard.
Leptomastrix dactylopil Howard.
2. Dipterous parasite:

Leucopis belia Loew. (Fam. Agromyzidae.)
It will be observed that no less than 18 different species are included in this list, and when it is considered that very littie attention has been paid to the subject, ercept in Callfornia, it will be realised that this number represents, probably, only a part of a much larger number.

No other species of mealy bug has been given so much attention as the one mentioned above, but the longtailed species, $P$. adonidum Westw. is the one which is almost equally wide spread, and well known. As one would expect, the enenfes of this insect are better known than are those of any insect except P . citri R .

In fact it is probably for only 1 or $2 \mathrm{p} . \mathrm{c}$. of the other species that enemies have been recorded or even mentioned.

The following list gives the names of the predaceous or parasitic insects which have been found in relation with the Pseudococcini, as far as I have been able to ascertain. Those which have been recorded only for $P$. citri are not included.

Enemies of the Pseudococcin土.(except P.citri.)
Predaceous insects:
Larva of Funlerra (Lepidoptera) sp.indet. preys upon D. nipae Mask. in India. Geocoris tricolor (Lygaeidae), preys upon D. nipae Mask. in India.

Larva of fly grub sp. indet, also feeds on the eggs of D. nipae in India.

A Hemerobiid sp. indet. preys upon the larvae and adults of this species in India.(See M.Lefroy, Mem. Nept.AEr. of India, II, $7,7.734,1908$.

The Zeдй cf a Syrphid fly, Bacca stenogaster Williston, preys upon Phenacoccus gossypii and Ph. gossypii var. psidiamm Ckll, in Mexico. (See Cockerell, 1903.)

## Coccinellidae.

Chilocorus bivulnemus Mulsant, the common "two stebbed lady beetle" of California, preys upon P. adonidum Westw.
and many other Cocoids.
Cryptogonus orimus sorn., a native insect of the Philippine Islands, preys upon P . adonidum Westw. Cryptolaemus montrouzieri Mulsant might be called the "Mealy bug destroyer". It preys upon a number of species, including P. oitri Risso, P. adonlcum Westw. and D. nipae Mask.

Scymnus guttulatus Lec. preys upon P. adonidum Westw. Scymnus neoulosus Lec. feeds on a number of species. Scymnus nobilis Mulsant, and

Scymnus xerampelinus Muls. both prey upon D. nipae Mask. in India,

Rhimobius ventralis TM. TNo Iarvae of this species are particularly beneficial, as their chief food consists of young mealy bugs of various species.

Parasitic insects: Chalcids etc.

Aphycus townsendi Howard has been bred from a species of Phenacoccus on cotton. (Ashmead, $1900, \mathrm{D} .388$.) Cheiloneurus dactylopii Howard, Signiphora dactylopil Ashmead, and Blepyrus phenacocci Ashmead, three distinct species of Chalcids, were reared by irr.H.H.Ashmead, from material of Phenacoccus cevalliae CkII, collectec at Roswell, New Mexico in October 1902. A hyperparasite, Tetrastichus
blepyri Ashmead, was further reared from one of these parasites, (Blepyrus phenacocol Ashm.) Can.Ent.XXXIV, 2, p.301, 1902.

Two Chalcics, one belonging to the genus Cerchysius, and the other to an apparently new genus, have been reared from Ripersia sp. (Newstead, Mon. Br. Coccidae, I, p. 32.)

Coccophagus orientalis Howard and
Eucomys (Encyrtus) albicoxa Ashmead have been reared from $P$. adonidum Westw., the former from Ceylon, and the latter from North America.

Aphycus dactylopii Howard, has been bred from material of D. filamentosus CKII, collected at Hong Kong. Signiphora dactylopil Ashmead, was reared from specimens of P. ephedrae Coq., collected in California. Blepymus texanus Howard, and Aphyous texanus Howard, were reared from P. virgatus from Texas.

Perissopterus mexicanus Howard, and
Blastothrix yuccae Coquillet mere bred from Ceroputo yuccae Coq., collected in Mexico and California respectively.

Coccophagus lecanif Smith, and
Phopus (Acerophagus) coccois F.A.Smith, were obtainec from Phenacoccus aceris Signoret.

From mealy bugs, probably Pseudococous spr, but spp. indet. the following have been reared:Coccophroctonus dactylopii Ashmead, from Australia. Aphycus angelicus Howard, from North America. Aphycus australiensis Howard, from Australia. Tetracnemoidea australiensis Howire, from Australia. Aphyous nigritus Howard, from California. Chrysoplatycerus splendens Howard, from California. An interesting, and important characteristic of some of these insects is that they will attack more than one kind of Coccid, and this makes them especially valuable from an economic point of vior. For instance, the larvae and adults of the Coccinellid, Chilocorus bivulnerus Muls. are voracious feeders upon the San Jose Scale, (Aspidiotus perniciosus), young of the black scale,(Saissetia oleae), mealy bugs, ( P . citri and aconidum), oyster shell scale, (Lepidosaphes ulmi), European elm scale, (Gossyparia spuria), and other scale insects. The small hymenopterous parasite, Aphelinus mytilaspidis Le Baron, (Fam.EuIophidae), preys upon a number of scale insects, among rinich are the oyster shell scale, (Lepidosaphes ulri), pine scale, (Chionaspis pinifoliae), San Jose Scale (A. perniciosus), anc Diaspis carueli. The fact that so littie is known concerning the predaceous and parasitic insects is probably due to the
obscure manner in which they work; to the small size of most of them; and to the great resemblance between the larval forms of the Coocinellidae and many of the insects upon which they prey.

Whilst working with the givision of Entomology in Cape Colony we often received letters from farmers and fruit growers, asking that a colony of Vedalia lady-bird beetle might be sent at once, is the Australian bug, Icerya purchasi, was becoming alarmingly numerous. This course was only adopted, however, after we had been assured that the Coccinellid was not already there, and the usual procedure was to ask that twigs bearing the pest should be sent to the office.

In rany cases the result was that we obtained splendid colonies of Vedalia, which couid be sent elsewhere. on several occasions I have been inviter to a farm to see what splendic results had been obtained by using some particular brand of tobacco extract against mealy bugs in vines etc., to find on examination that some hundreds of Coccinellid larvae and pupae, usually Exochomus nigromaculatus, had been killed. These beneficial insects had already brought the realy bugs down in number, and the waxy larvae had been mistaken for the pest they were devouring.

If good results are to be expected from predaceous and
parasitic insects they must be given an opportunity to breed, and artificial remedied must be resorted to with caution, and the time to apply such must be carefully chosen.

Intracellular Symbionts in the Pseudococcini.

## Intracellular Symbionts of tie Pseudococcini.

When we consider that it is only within the last four years that serious attention has been paid to the subject of the intracellular symbionts in the Insecta, and that this study really had its origin in the investigation of the so-called "pseudo-vitellus" in Aphides, it is not surprising that little is known relating to the symbionts of the Pseudococcini.

When it wis ascertsined that this "pseudo-vitellus" was of a distinctiy different nature from what the earlier workers suspected, and that it was found to present an entirely new field for investigation, it was natural that other bodies which had been referred to in insect anatomy, but whose function was not clear, should be regarded in a new light.

In "Revista di Patologia Vegetale", 1893, Dr. Berlese gives an excellent accout of the two common species of mealy bugs, P. oitri Risso, and p. adonidum Westwood. He refers, p.74, to a bociy which he names the "corpo ovale", a broadiy rounded mass richly supplied with tracheae. It was upon this that nr. Pierantoni norked in 1910. In the same year Dr. K. Suic investigated the similar body in phenacocous ferinosus, and the work of these two constitutes the foundatior of our knowledge of the intraceliuna sumbionts in this group.

The account given by Dr. Berlese is as follows:"Tutto il tubo digerente riposa (nelle femmine di qualunque stato) su un ammasso di forma ovale, di cellule rotonde di $35-36 \mu$ di diametro, con nucleo di IIーI2 $\mu$ di diametro, ed uno o più nucleoli che pero si dilatano 11 piu delle volte notevolmente, per infiltrazione di grasso, in gocciole.

Tutti questi elementi sono racchuisi nella guaina unica, sbbentanes discregati fra Ioro, e immersi in detriti granulosi gialli, che col camino si colorano intensamente, negli interstimif delle cellule. Questo corpo ovale è collocato in contatto della epidermide del ventre, e non srmbra contornato da membrana alcuna. Quale sia il suo ufficio, e cosa rappresenti, mi e ignoto. Certo e che esiste sempre, molto piu grosso nel D. citri, dove occupa gran parte del ventre, piu ridotto nel $\underline{D}$. Iongispinus. Numerose trachee, provenienti dal ramo longitudinale ventrale, che parte dall' ultimo stigma, vi penetrano, e colle tinture carminiche si colora abbondantemente, piu di tutti gli altri tessuti, eccetto i glanclulari. Non ho osservato che quest' organo sia in rapporto con alcuna apertura, oppure coll' intestino.

Questo vi si appoggia per cuasi tutto il suo decorso, ma non sembra avere altre relagioni. Quando il corpo
nell' adulto e pieno d'uova, queste si infossana entro le cellule del detto corpo ovale, che in questo caso ocoupano $i$ vani esistenti fra le uova stesse. E molto probabile che sia un ammasso di sostanza nutritiva, derivata dall' intestino, oppure abbia rapporti, di difficile rilievo, colla secreaione della cera. E certo, che non ne hanno tenuto parola gli autori, che mi hanno preceduto in queste ricerche."

This "corpo ovale" has been studied by Dr. Pierantoni, Who found it to be what Dr. Buchner terms a mycetom, in which are large numbers of elongate, sickle-shaped organisms.

The symbiont was named Coccidonyces dactylopil Buchner in 1911. It was fully described, and figured, by Dr. Pierantoni in the Archiv fur Protistenkunde, 1913. An organism living in a similar mycetom in Phenacoccus farinosus was described in "Sita.d. $k$ on.bohm.Ges.d.Wiss." for 1910, by Dr. Sulc. This wes named Saccharomyces pseudococci farinosi Sulc.

It migit be mentioned that Dr. Buchner named an organism
which ras found in the mycetom of Icerya purchasi Mask. as Coccidomyces pierantonii in 1911, but this is not similar to the one found in P. citri Risso, while the one from Ph. farinosus is quite similar, except that the nucleus was distinct in the latter symbiont.

Coccidomyces rosee Buchner, 1917, is an organism which IIves in the body cavity of Lecaniur corni Bouche. It does not occupy a definite mycetom, and is obviously different from those which have been found in the Pseudococcini.

It appears that $\underline{C}$. rosae is the first species described in the genus coccidonyces so that a new genus should be made for the forms found in the Pseudococcini. Dr. Sulc named the symbiont of Phenacoccus farinosus as Saccharomyoes pseudococci farinosi in 1910, but the facts that (a) the production of endospores is never indicated, and (b) the infection of the egg takes place by sferettes containing ten or more organisms, and not by single individuals, show that the organism is not a Saccharomyces.
The Iife history of a symbiont, which seems to be typical for the Pseudococcini, may be illustrated by the form found in Pseudococcus citri. Plate III refers to this species.
The mycetom ia a large, roundly oval mass of tissue occupying a ventral position in usually the first rive abdominal segments. When dissected out in fresh material it is generally of a greenish yellov colour, and is seen to be richly supplied with tracheae. Examined under a high power it is seen to be composed of large numbers of large rounded cells.

Figure 2, of Plate III, shows a transverse section of an adult of of citri, mon anout the third abdominal segment. It will be seen that the mycetom is a comparatively large body, in fact it is much larger in $P$. citri than in any of the other species I have examined. Figure 3 shows a portion of the mycetom further enlarged. The large cells, or sferules, contain a number of smaller rounder sferettes, wich in turn contain a number of elongate bodies as shown in Figure 4. These sickleshaped bodies stain readily with water eosin. The most remarkable fact conceming thi type of symbiont seems to be that the sferettes, and not the individual organisms, act as the units. It is the sferettes which infect the developing ova.(Figs. 5 and 6.)

I have made observations on the intracellular symbionts of the following species:-

Pseucocosens citri Risso.
Pseunomens arairun $\%=t$.
Pseudococcus oapensis Brain.
Pseudococcus mesembrianthemin.sp.
These studies are not yet completed, hut I hope to have them ready to include in a paper dealing with the symbionts of the Coccidae to be published shortly.

Literature dealing witin tine Symbionts of tine Pseudococcini.
1893.- Berlese, Ant.: Le cocoiniglie italiane viventi sugli agrumi. Parte I: Dactyiopius. Riv. Patol. Veget. II,p.I.
1911.- Buchner, P.: ther intracellulare Symbionten bei zuckersaugenden Insekten und ihre Vererbung. Sitz.-Ber. Ges. Homph. Phys. Munchen.P.1.
1912.- --: Studien an intraceIlularen Symbionten. I, Die intracellularen Symbionten der Hemipteran. Arch. Protistenk. Bd. 26,P.1.
1910.- Pierantoni, U.: Origine e struttura del corpo ovale del D. eitri, e del compo verde dell' Aphis brassicae. BoII. Soc.Natur.Napoli, XXIV,P.I.
1911.: : --Sul corpo ovale del I. oitri. Boll. Soc. Natur. Napoli. XXIV, p.303.
1990.--:- :Struttura ed evoluzione dell'organo simbiotico Ci P. citri Ris:so, e ciclo biologico del Coccidomyces dactylopii Büchner. Arch. f. Protistenk. XXI, pp. 300-316.P1. 3.

Cataiogue of Species of the Pseudococcinf.

Catalogue of Species of the Pseudococcini, giving Host-plants and Localities.

Genus Ripersia Sienoret, 1875 .
Ripersia agasawarensis Kumana, 1909.
On Miscanthus sp. Japan.
Ripersia anomala Newstead, 1908.
Under bark, accompanied
by Pheidole megacephala. Kilimandjaro.
Ripersia arizonensis Ehriorn, 1899.
In nest of ants.
Arizona.
Ripersia aurantia Cockerell, 1901.
In nest of Lasius americanus. New lexico.
Ripersia blanchardi King and CKII., 1897.
In nest of Lasius cleviger. Massachusetts.
Ripersia confusella Cockerell, 1901.
With ants, sp.indet, and
In nest of L . americanus. Nem Mexico.
Ripersia corynephori Signoret, 1875.
on Corynephorus canescens, France. Agrostis alba, Grass, sp. Indet.

> Denmark.

Guernsey,
Ripersia donisthorpei Newstead, 1907.
In nest of Ponera contracta. England.
Ripersia europea Newsteen, 1897.
In nests of ants. Europe.
Ripersia fagi Maskell, i890.
On Fagus menzlesii. New Zealand.
Ripersia festucae Kwone, 1901.
On Festuca soknaliz. California.
Ripersia filicicola Newstead, 1898.
On Trichoranes spicatum. England.
Ripersia finhmiatula CKlı., and King. 1901.
In nest of I . anericarns. Mow Mexico.


Ripersia mymeoophila haskell, 1897.

Ripergia oryzae Kuwana, 1907. On roots of rice etc. Japan.

Ripersia porterae Cockerell, 1901. On roots of grass. New Mexico.

Ripersia pupifera (Liohtenstein), 1879. France.
R1pers1a saochar1 Green, 1900. On sugarcane.

India.
Ripersia salmonacea Cockerell, 1901. On roots of grass,

New Mexico.
Riperaia sardiniae Leonardi, 1908. In nests of ants. Sardinia.
$\frac{\text { Rlyersia }}{\text { e }} \frac{\text { serrata }}{\text { ?. Tinsiey, } 1900 .}$
R1persia smithil Essig, 1910. On Elymus condensatus. California.

Ripersia sporoboli Cockerell, 1902. on Sporobolus deporperatus. New Mexico.

Pipersia subterranea Newstead, 1893. On roots of Nardus stricta. In nests of F. flava.

England.
Ripersia tenuipes Cockerell, 1901. On roots of grass.

New Mexico.
Pipersia trichura Cookerell, 1901. On roots of grass.

New Mexico.
Ripersia trivittata Cockerell. 1901. In nest of L. americanus. New Mexico.

Ripersia tumida Newstead, 1897. In nest of Camponotus sp. Algeria.

Ripersia villosa Ehrhorn, 1899. on Querous agrifolia. California.

Ripersia viridula Cookerell, 1901. In nest of $L$. americanus. New Mexico.

Rinersia wasmanni Newstead, 1900.
In nest of L. allenus. France.

Genus Ripersiella Tinsley, 1899.
Ripersiella kellogg1 Ehrh., and Ckil.,1901.
on roots of bunch-grass. California.
R1persiella 1euoosoma Cockerell, 1901.
In nest of L . americanus. New Mexioo.
Ripersiella maritima (Cockerell), 1894. on roots of Spartina.

Long Is. N.Y.
Ripersiella mumicis (Maskell), 1891.
on Rumex acetoselia. New Zealand.

Genus Pseudoripersia Ckli.,1899.

Pseudoripersia turgipes (Maskell),1892. On Casuarina suberosa. Australia.

Genus Dactopseudococous n.g.
Dactopseudococous acactae (Maskell),1891.
on Acacia 11nearis, and
Acacla Iophantha.
Australia.
Dactopseudocoocus agrifollae (Essig), 1909.
On Querous agrifolia.
California.
Dactopseudococous albizziae (Haskell), 1891.
On Albizzia lophantha.
Australia.
Daotopseudocooous aphylionis (CkIl.),1895b.
On Aphylion fascioulatum. Washington State.

Dactopseudocoocus arecas (Maskel1),1889. On roots of Areaa sapida. New Zealand.

Dactopseudocoocus artemisiae (Fssig), 1909. On Artemisia oalifornioa. California.

Dactopseudococcus aurilanatus (Mask.),1889. on Araucaria excelsa, New Zealand, Arauoaria bidmilli, California, South Africa.
Dammara ovata, and D. Vitiensis California.

Dactopseudococous australiensis (Gn. and Lidg.)1900. On Loacla dealbata. Australia.

Dactopseudococcus boninsis (Kuwana), 1909. on sugaroane. Japan.

Dactopseudococous bromeliae (Bouche), 1833.

On pineample, Canna, mulberry andHibiscus,

Zanzibar, India, S. Af, and Hass.

Dactopseudococous californicus (Ehrhorn), 1911. on Festuoa sp. California.

Dactopseudoooccus olaviger (King and Tins.).1897. In nests of L . olaviger, and of L . amerioanus.

Dactopseudocooous odgeworthiae (CkIl.),1897. On Fdgeworthia papyrifera. Japan.

Dactopseudococous ericicola (Mask.),1892. on Friaa autumnalis.

Australia.
Dactopseudococous eriogoni (Ehrhorn), 1899. on roots of Eriogonum sp.

Callfornia.
Daotopseudocoocus f1lamentosus (CK11),2893. On a plant resembling Yeacinum. on citrus trees.

On Albizzia lebbek, Gossypium spp., Zizyphus spina-ohrista, and Aoaola arabica.

Bahamas. Jamaica, Japan, Mauritius and South Afrioa.

Egypt.

nactopseudocoocus orientalis (Maskell),1897. on frass. Cinina.

Daotopseudoooccus pseudonipae (CkIl.), 1897.b. On Kentia and Cooos Pains. New Mexico, and Callfornia.

Daotopseudooocous quaintanci (Tinsley),1898. on Rhus oopalilna. Florida.
nactonseudocoocus sacchari (CKll.),1895.c. on sugarcane.

Trinidad and Porto Rico.

Daotopseudosocous theaecola (Green),1897. On roots of tea plants. India.

Dactopseudococous townsendi (Ckll.),1893.b. On leaves of Fouquiera. New Hexico.

Dactopseudococous trifolil (Forbes), 1885.
On clover. U.S.A.
Dactopseudococous tumida (Newstead), $185 \%$ In nests of Camponotus etili. Alceria.

Dactopseudococous V1olascens (CkII.),1913. On Agropyron sp. Colorado.

Dactopseudococous viridis (Newstead), 1894. On Hygrophylia spinosa. India.

Dactopseudococous wheeleri (King),1902.
In nests of Camponotus maculatus var. sansabeanus Buokton.

Dactopseudococcus zapotianus (ckil.),1902.b.
On "Huele de Noche". Mexico.

Genus Pseudooocous Westwood, 1839.


| $\frac{\text { Pseudococous }}{\text { On Previpes }}$ (Cockereli), 1893. | Jamaica. |
| :---: | :---: |
| Pseudoo000us burneri n. sp. on Tiburnum sp. | Transvasi. |
| Pseudococous osloeolariae (Kaskell),1878. |  |
| On Caloeolarla sp. |  |
| Traversla sp, and |  |
| Cassinia sp. | New Zealand. |
| Pseudococous oalifornious Ehrhorn, 1911. |  |
| Pseudococcus calluneti Lindinger, 1912. |  |
| Psoudoooocus oapensis Brain, 1912. |  |
| On Phytolacaa diolea, |  |
| Albizzia lophantha. |  |
| Solanum sodomaeum, |  |
| Clematis vitalba, |  |
| Polargonium sp. |  |
| Sonchus oleraceus, |  |
| Senecio vulgaris. |  |
| Mazva parviflora, |  |
| oxalis cormua, |  |
|  |  |
| Apples and Pear. | Cape Colony. |
| Pseudocoocus oltri (R1sso), 1813. |  |
| On Orange, lemon, oitron, |  |
| Coffee, tobacco, cotton, |  |
| lvy, peony, Ipomoea sp, |  |
| Solanum spp. Callstemon |  |
| Ianceotatur, and |  |
| Habrothammus sp. |  |
|  | Sandwion Islands Mauritius, S. Af. |
|  | Brazil, U.S.A. |
|  | Canada, and |
|  | Austraila. |
| Pseudooocous cooolneus (Newstead), 1908. |  |
| Pseudococous cocotis (Maskell), 1889. |  |
| Pseudooocous cookerelil King and tins.,1898. |  |
| In nests of f . flanus. | Massachusetts. |



| On Gutierreala sarothrae. | New Mexico. |
| :---: | :---: |
| Psoudoooocus $\frac{\text { nibernicus (Newstead), } 1895 . ~}{\text { on }}$ (Nass. |  |
|  |  |
| Pseudococous hirsutus (Newstead), 1897. |  |
| In nests of Cremastogaster sp | ndia. |
| Pseudococous ioeryotdes (Maskell),1891. |  |
| on Fagus fusca. | New Zeeland and India. |
| $\frac{\text { Paeudococous }}{0 \text { 1rish1 }}$ (Cockerell), 1900. | Arizon |
| Pseudoo0cous funiperi Enrhorn, 1906. On Juniperus virginiana. | Arizona. |
| Pseudococcus Kraunhlae (Kuwana), 1902. On Kraunhia floribunda. | Japan. |
| $\frac{\text { Pseudococous }}{\text { on } \frac{11201 n u s}{\text { orange. Cockere11, }} 1905 .}$ | Philimine Is. |
| Pseudococcus lobulatus (Maskel1), 1893. on Eucalyptus globosus. | Australla. |
| Pseudococous longipes Leonard1, 1909. on Alocasia maororica. | Italy. |
| Pseudooocous lounsburyi Brain, 1912. |  |
| On Agapantmus umbellatus L 'Hes | Cape Colony. |
| Pseudococcus luffi (Newstead), 1901. |  |
| Pseudococous maorozamiae (Fuler), 1897. |  |
| Pseudooocous magnoliolde (King), 1902. |  |
| Psoudococcus mamillariae (Bouche), I844. |  |
| Pseudococous marchail Vayssière, 1912. |  |
| Pseudoooccus maritimus (Enrhorn), 1900. on Friogonum latifolium. | California. |

Pseudococous mendozinus Leonardi, 1911. On Hyalis argentea.

Argentine Rep.
Psoudococous mesembrianthem1 n. sp. on Mesembrianthemum edule L. Cape Colony.

Pseudooocoug minor (Haskell), 1896. On roots of gress. Mauritius.

Pseudococous muraltiae Brain, 1912. On Muraltia neisteria n.r. Cape Colony.

Pseudocoocus mymmecarius Leonardi, 1909. In nests of Camponotus sp. Sardinia.

Pseudoooocus neomexicanus (Insley), 1898. On roots of Gutierresia sarothrae. New Mex100.

Preudococous obsourus Essig, 1909. On Sambuous glauca. California.

Pseudococous obteotus (Maskell), 1899. On Fagus fusca. New Zealand.

Pseudocoocus olivaceus (Cookere11), 1895. On Yuoca. New Hexioo.

Pseudococous osborn1 (Sanders), 1902. on Platanus occidentalis. Ohio.

Psoudocooous panciani (Cookerell), 1895. on Pandanus ap.

Washington Is.
Pseudococous peroerosus Leonarii, 1911. on Courliea deoortloans. Argentine Rep.

Pseudococous perrissi (Signoret), 1875. on Calamaerostis sp, and Sphagnum sp.

France.
Pseudooocous pini (Kuwana), 1902. on pinus sp. and Pinus pentaphy11a. Japan.

Pseudocooous poae (Maskell), 1878. on Grass.

New Zealand.
Pseudooocous prosopidis (Cookerell), 1896. on Prosopis sp.

New líexico.

Pseudocooous pulverarius (Newstead), 1903. On Afrostis vulgaris, and Agrostis intermedium.

Europe.
Pseudococous quercus (Bhrhorm), 1900. On Querous chrysolepie.

Galiformia.
$\frac{\text { Psoudococous }}{\text { Foseotinotug (in and in. CkII.), 1901. }}$ On roots of grass. New Mexico.
Pseudococous ryani (Coquillet), 1889. on Cupressa maorocarpa, Thuta orientalis, and Arauoaria excelsa. California.

Pseudooocous sacoharifolil (Green), 1908. on Sucaroane. India,
$\frac{\text { Pseudococous salinus }}{\text { on Grass. }}$ (Cookerell), 1902. On Grass. California.

Pseudococcus sorob10ularum Green, 1896. on Eleocoarpus sp. India.

Pseudococcus seoretus (Hempel), 1900. on one of the Solonaceae. Braz11.

Pseudococous segrezatus (Cockere11), 1893. on Grass.

Jamaica.
$\frac{\text { Pseudococous }}{\text { onequolae (Coleman), } 1901 .}$ on Redwood.

California.
Pseudococous setosus (Hempel), 1900. On Fious sp. Brazil.

Pseudococaus similans (Lideett), 1898. On roots of Daphne.

Australia.
Pseudococous simplex (Cooksrel1), 1893. on Panoratium caribaeum. Jamaioa.

Pseudocooous solant (Cookerell), 1894. On Solanum tuberosum.

New Mexico.
Pseudooocous sorghiellus (Forbes), 1385. On P. In nests of Lasius americanus and Le olaviger. Massacnusetts.

Pseudococcus steel1 (CKll. and Towns.),1994. on Lamea mexioana.

Ty 1000004 B Insolitus (Green), 2908.on sida cordifolia.Indıa.
Genus Phengoocous Cockerell, 1893.
Fhenacocous acericola (King), 1902.on maple, hornbear, 2ime,and horse chestnut U. U.A.Phenacocous oneris (Signoret), 1875.Europe.
Phenacocous americanae King and Ckil. 1897.
In nests of $\underset{\sim}{\text {. }}$ americanus. Hassachusetts.
Phenacoocus artemiaiae thrhorn, 1900.
On Artemisia callfornica. Califormia.
Phenacocous astellae (Maskell), 1883.on Abtelia sp.Nev Zealand.Phenacoocus brunnitargis (Signoret), 1875.on Borage. Furove.
Phenaoooous oasuarinae (fiaskell), 1392.On Casuarina sp.
Australia.
Phenacoocus cevalliae, Cookerell, 1902.
on Cevalila sinuata. New Mexico.
Phenacocous colemant Ehrhorm, 1906.on Rubus EP .California,
Phenacocous comari (Kunory), 1880.on Comarum palustre.Gsrmany •Phenacocous farinosus (Modeer), 1778.on Alder.FuropePhenacooous formioarum Leonardi, 1908.In nests of Pheidole pallidula.
Italy.
Phenaoocous glaoialis (Newstead), 1900.
"Assoolated with ants". ..... Italy.

> Phenaoocous goseypil Towns, and Ckil., 1898. on cotton and other Ualvaceous plants.

Phenaoocous gossypil var. picilamum cril.,1903. On wild Euava. Hexicc.

Phenacocous graminis (Reuter), 2503. on phlewn pratense. Europe.

Phenacoocus hellanthi (Cookerell), 2893. on Hellanthus sp .

Ner Mexico, and Arizona.

Phenacocous h1rsutus areen, 1908. ?. with ants. India.

Phenaoocous hystrix (Bärensprung), 1849. on Pinus syivestris. Furone.

Phenaoocous Iceryoldes Green, 1908. on mango,
Boswelila sp, Capparis horrida. India.

Phenacocous kuwanae Coleman, 1903. on ilohen on picea breweriana.Callformia.

Phenacoocus mangiferae (Green), 1896. on Manglfera indioa. India, and Ceyion.

Phenacoccus mespili (Signoret), 1875. on medlar.

Europe.
Phenaoocous minimus cinsley, 1898. on Plcea pungens.

Colorado.
Phenacocous obtusus (Newstead), 191i. on Baobabrinde sp.

Ger.f.Africa.
Phenacocous parietariae (Lichtenstein),1881. on Parietaria offiolnails. Europe.

Phenacoccus pergandel cookere11, 1896. on nlospyrios kaka. Japan.

Phenaooccus ploeae (Loew),1883. On Ables excelsa. Austria.
Phenacocous ripersioides T.and w.CkIl.,1903. In nests of Lasius niger. New Mexico.

Phenacoccus mubivorus Cookerell, 1901.
Phenacocous simplex King, 1902. On Atriplex sp.

New Hex100.

California.
Phenacocous solenopsis Tinsley, 1808.
In nents of Solenonsis ceminata Fab. New Iterico.
Phenacocous epiniferus Hempel. 1500.
?. BramiI.
Phenacoccus staohyos Enrhorm, 1900.
on stachyos bullata. callformia.

Genus Ceroputo SuIe, 2897.

Geroputo ambigua Fulamay, 150\%.

Ceroputo bahiae (Riviorm), 1900. on Bahia sp. Galifcrnia.
Ceroputo barberi (cookerell), 1895. on Thunborela erandiflora. Aliamande sp, Coleus and Croton, Antigua, and New Iexico.

Ceroputo oalaltectus (Cookerell), 1901. On Grass, New Mexico.

Ceroputo lasiorm Cockerell, 1901. In nests of L. Interjectus. New Mexico.
Ceroputo orthez1o1des Cookere11, 1903. On rootis of dockiteed. Mexico.
Ceroputo plioseliae Sula, 1897
on Hiergolum pilosella. Europe.
Ceromuto volynious Nassonow, 1909.
On Dactylidis glomerata. Tussiz.

0n wor uhtiolel, Lantarat, inulus autinosu.
 ralifornia, Anticua.

Ceroputo moxicanus (Conkerell). 1893. hexioo.

PLATES.

## PIIATE I.

1. Antenna of Ps. mesembrianthemi n.sp. (p.126)
2. Antenna of Ps. burneri n.sp., same magnification as Fig.I. (ps6)
3. Caudal extremity of ps. burneri, showing comparative lenctil of setae.
4. Antenna of Pi. obtusus (Newst.), showing truncate spines on derm. (p.172)


PLATE I.


## PLATE II.

## Genus $\underset{(\text { See } p .34 .)}{\text { TYLOCOCCUS. }}$

1. Antenna of T. madagascariensis News.
2. Ventral view of adult of of same species.
3. Marginal tubercle of same insect, further enlarged.
4. Spinous tubercle of T. insolitus (Green).
5. Antenna of T. insolitus (Green).
6. Ventral view of T. cycliger (Leonardi).
7. Marginal tubercle, further enlarged.
8. Antenna of I. cyoliger (Leonardi).
9. Le of adult $f$ of T. cycliger, with claw further enlarged.
10. Caudal extremity of T - oycliger.
(Figs. 1 - 5 after Newstead, 6-10 after Leonardi.)


## PLATE III.

1. Pseudococcus citri (Risso), dorsal view of adult q. $\times 15$. (Seep. 1s7)
2. Transverse section truough 3re abdominal segment of Ps. oitri, showing position of nycetom. ry
3. Portion of : Woctom further enlarged, showing each sfemule with nucleus and sferettes.
4. Sferettes containing Coccidomyces Cactylopii Büchner. (SSe p. 185)
5. Early stage in the infection of the ege with sferettes.
6. Later stage; sferettes within the egg.
(Figs. I and 2 original, others after Pierantoni.)

