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Abstract—Unmanned Autonomous Vehicles (UAVs) are in- They should be self-managing in that they have to recover or
creasingly deployed for missions that are deemed dangerous or adapt to component failures and optimise performance tb bes
impractical to perform by humans. Collaborating UAVS need to \tijise available resources. Collaborating UAVs form afSel
adapt t_helr behaviour to current context. They should be sel_f- M d Cell (SMC) I3 hich is th | hi |
managing in that they have to recover or adapt to component fail- ".in"’}ge ell ( ) [ ].’ W ich Is the genera arC_ 't(?Ctura
ures and optimise performance to best utilise available resources. Principle we use for realising self management of individua
Our objective is to develop a framework which enables UAVs to and groups of UAVs. The SMC is an approach to support
manage themselves as an individual and as a team. We makeautonomic computing [2]. A SMC group tend to consist of
use of policy-based techniques to support adaptive management , 1tinje UAVs and at least one commander, which could be
We use three levels of specifications namely, policy specification, .
mission class specification and mission class instantiation spec-a human or a UAY, to effectlve!y control the.group. Therg
ification so that it enables us to reuse policies and the mission could be back-up commanders in case the primary one fails.
classes. The proposed architecture can be applied to systems withThe SMC is set up to perform a mission based on the mission
limited capabilities, suc_h as devices in a Pe_rsonal Area Network, specification received by the commander from its command
as well as to systems with more capable devices. The evaluation ofy55e  The mission specification defines how UAVs will be
our proposed architecture shows that the architecture is scaldbe . e oy
and also outperforms a centralised mission management scheme.ass‘,'gned to perform SpeC|f|(_:.roIeS W',th'_n the SMC, ba_sed on

their credentials and capability description. It also dedims
|. INTRODUCTION to when and how to adapt the mission to changes in context

Technological advances in engineering and communication failures. Multiple teams of UAVs may also collaborate to
have paved the way for increasing use of autonomous systealieve the overall mission. SMCs are defined so as to allow
Given high level objectives from administrators an autoitomthe composition of SMCs to form larger and more complex
computing system is able to self-manage. It is also able $MCs.
simplify the task of managing today’s complex computing UAVS need to manage themselves as an individual and
systems [1], [2]. Self-managing autonomous systems have &5 a team. Management of UAVs involves resource, task,
potential for providing the information needed to assistt® behaviour, communication and team management. The adap-
operations - by locating survivors, identifying affectegas, tive management of UAVS is achieved by using policy-based
and organising the collaborative efforts of the responaente techniques that allow dynamic modification of the manage-
members. They also find uses in disaster management, inclowent strategy without reloading the basic software withie t
ing earthquakes, forest fires and foods, unmanned vehiclddv. A UAV contains a capability description that describes
and military applications. In this paper, we focus on teanits resources and the services it can perform. A UAV may
of unmanned autonomous vehicles, since this is the testh®composed of various sensors for vision, sound, vibration
that we have been using. chemical detection, location and devices for communicatio

Unmanned Autonomous Vehicle (UAV) is a type of robotsually, not all capabilities are available in a single ohi
that due to its unique nature has various individual andabell and so one UAV may provide services to others in the team.
orative applications (as mentioned above). Recentlyethes  Although there have been various research on control archi-
been an increasing tendency to use UAVs in civilian disastictures for autonomous systems, the focus has largely been
relief missions and military scenarios to reconnoiter amvide in organising intelligence. We argue that if robots such as
sensing in areas which are dangerous or impractical fdAVs are to be used in real life applications then they should
humans. To achieve a particular mission such as survedlaraiso be able to manage their intelligence. The focus of this
of a specific area or search for specific targets, teams of UAWaper is distributed self-management of a group of UAVs.
may need to cooperate. A challenge in using UAVs for sudlfe use the Ponder2 [4] policy framework in our management
missions is enabling adaptive self-management so that tteghitecture. It is a generic object management systemhwhic
can adapt to changes in context and accomplish a missallows the dynamic loading, unloading, enabling and disabl
autonomously, i.e., without human intervention. of managed objects. Generally a Ponder2 managed-object is

UAVs need to adapt their behaviour to current contextan active object that is capable of receiving action command
location, activity, available resources such as battemyegpo and performing actions. Ponder2 supports two types of igslic
and available services such as quality of communicatideslin namely obligation and authorisation policies. We use @blig



tion policies (event-condition-action rules) to trigggresific team configuration has the ideal type and number of UAVs. A
actions to be performed when an event, such as the discovergsion starts execution when a team satisfying the minimal
of a new UAV occurs, or a UAV which is a member of theonfiguration can be formed. The team will expand when
team fails. Authorisation policies are used to specify whatdditional UAVs join until it achieves the reasonably-opmi
services and resources within a UAV can be accessed by otbenfiguration.
UAVs performing a specific role and under what conditions. This concept is illustrated using the reconnaissance sicena
Policies are interpreted; as a result they can be dynamicdl which the minimal configuration is one Commander, one
loaded, enabled or disabled at run-time without shuttingrdo Aggregator, and two Surveyors, where the Surveyor role is
a system in order to adapt the management strategy being uedprimary role; and the Relay and Hazard detection rolkes ar
within the system. To summarise, our management framewadcondary roles. The primary role is given priority withpest
addresses mission management, capability description d@adesource allocation and is also responsible for manathieg
distributed control and communication. other roles of the UAV.

The rest of the paper is organised as follows. SectionAs shown in Fig. 1, the Surveyor role is collocated with
Il presents the distributed mission management architectuother roles: Relay and Hazardous material detector. ThayRel
Section Il details the mission specification, while Seatiorole can be performed in parallel with either the Surveyor or
IV details the implementation of the proposed architecturthe detector role while the UAV has to switch between the
Section V details the experiments and the ensuing resuliirveyor and detector roles as only one of these can be active
Section VI details the work related to this paper, while ##ct at a time. Although the Relay role can run in parallel with
VIl concludes the paper and provides ideas for future workthese roles, it will potentially hinder the surveying orefgton

missions when trying to maximise communication link qualit
Il. DISTRIBUTED MISSION MANAGEMENT Hence this role is best placed in another UAV should there

A mission for a team of heterogeneous robots is specifie¢ one available. Detecting potentially hazardous objiecis
in terms of roles and role-missions. There are various efassnuch slower process than exploration which implies that the
of mission specifications. We broadly divide these classts i detection and surveying missions can be performed better by
three: (a) the domain they are targeted to: applicationiipecseparate but cooperating UAVs which share information.
[5] or generic [6], (b) the paradigm they use: plan based [7]
or specification (configuration) based [6], and (c) the numbe
of autonomic systems involved: e.g. single or multi-robot
missions. One can further divide these classes, for e.glt& mu
robot mission could support homogeneous or heterogeneous
robots and a heterogeneous-multi-robot mission could@tipp
static or dynamic task allocation. Based on the above dasse @ @

of mission specifications, the mission specification thatiae
is: generic, specification based, multi-robot and heteregas
with dynamic task allocation.

To illustrate our approach, we consider an example mission
consisting of determining whether an area is safe to be
entered by humans. The following main roles are identified:
Commander (C)controls the mission and allocates UAVS 0 A reasonably-optimal mission configuration consists of one
roles. Surveyor (S) explores the house and builds @ mapzommander, two Surveyors, two Hazardous material detec-
Hazardous material detector (Hommunication relay (R) tors, two Relays, and one Aggregator. The team started with
maintains communication among UAVS by forming an adne configuration shown in Fig. 1 and reached the configuratio
hoc network Aggregator (A) aggregates information from all o\ in Fig. 2 as new UAVs join the team in the mission area.

UAVs e.g. to produce a map showing the detected hazardegg, syrveyor roles which assigned the Relay and detector

materials. roles serve as commanders for those two roles. Should any
of the new UAVs fail or depart, the roles will revert to their

o . minimal configuration position.
A team of UAVs should be able to perform a mission with a

minimum number of UAVs with required capabilities althougt®- Conceptual Model

the configuration may not be optimal. When additional UAVs In this section, we present our model that uses the con-
become available the team should expand to make use of tiepts of team-mission, role and role-mission that allow for
new resources, thereby increasing performance. Shoutd thdistributed mission management of UAVS.

be a failure or departure of UAVs from the enlarged team, thel) Team Mission (M):A team-mission is a set of roles
team should contract but continue the mission. We definendere each role contains a set of policies that either gavern
minimal team configuratioas the fewest types and number othe behaviour of the role or handles the assignment of UAVs
UAVs needed to accomplish a mission. A reasonably-optimia roles.M = {R;, Ra, Rs, ... R;}.

Fig. 1. Reconnaissance mission minimal configuration

A. Our Approach



invoked via the external interfacel = {Ai, Ao, ... 4;}.

5) Tasks (T):Tasks are complex operations which the UAV
can perform e.g. move from A to B, follow a path, track
an object using video. Obligation policies in the mission

may invoke operations supported by a task or activate a
° task. The tasks in a role are usually inherent to the type

° of the role and hence are specified inside the role class.
T = {Th, T, ... Ty}
° ° 0 ° I1l. DISTRIBUTED MISSION SPECIFICATION
We use three levels of specifications, as shown in Fig.

_ _ o _ _ 3: (a) Policies are specified using the Ponder2 [4] policy
Fig. 2. Reconnaissance mission reasonably-optimal configora specification language and stored in a policy repository, (b
the XML mission class specification of the types of roles
_ ) ) , needed for the mission, the policies required from the polic
2) Role (R)'_A role is a place_holder_to_whlch dISCOVereo'repository, and (c) the XML mission instance specification
UAVs are assigned and for which, missions, tasks and aypicy defines the mission parameters and role cardinalities
thorisation policies are specified. The role is implemerded required to instantiate a mission class. The policy spexiéio

a set of three objects: role-mission (RM), authorisatioNs (i, the repository may apply to multiple mission classes and
and tasks (T), as described below. When a UAV is assigngghre can be multiple instances of a mission, instantiated
to a role the role-mission, authorisations and tasks as88ti i, gifferent parameters from a particular mission class.

with the role are loaded onto the UAV, unless already preseqy, . policy repository only contains policies and hence does
R S {RM’ A, T} ) not require a lot of memory. When using the architecture
A role in our model, has an external and a local interfaggy |ess capable devices such as PDAs, mobile phones etc.,
which provides a context for which role mission policies cafeq repository can be implemented in memory by the initial
be specified. Incoming events from the local or externakinte,ommander UAV and distributed to other UAVS over time.
face_can be used to trigger policie_s which invoke operatiof$ he proof of concept demonstration (Section IV-C), the
provided by the local and external interfaces. policy repository was maintained by the commander, which

2.A) External Interface: The external interface definesyas a laptop connected to the other UAVs through the ad-hoc
operations and events relating to interaction with externgetwork.

collaborating roles: (i) Management operations for logdin
missions, policies etc. which are common to all roles, (ii)
Operations from the local interface that are made visiblnid

can be invoked by other roles i.e. other UAVs. Accessibility
may be static or dynamic depending on the authorisation
policies. The operations are implemented by the tasks in the
role, (iii) Events generated from within the role, by thekss
inside the role or propagated from the UAV components such
as sensors, and published via an event bus for use by other
roles, (iv) Operations which are required by this role. Ehes

Policy
Repository

operations are expected to be provided by collaboratiresrol Mission cass i
and (v) Events required by this role, generated by collairga e Aaisannce Search & Rescue

roles, e.g. to trigger policies.

2.B) Local Interface:The local interface defines the opera-
tions and events provided by tasks within the local UAV and
used by the role-missions: (i) Events generated by the tasks
within the UAV or propagated from the UAV components such

as sensors. These may be used to trigger policies in theamissi Mission class Mission class
or mapped to the external interface, and (ii) item Operation instance: instance:
. . . Reconnaissance of Reconnaissance of
implemented by the tasks within the UAV. building A town B
3) Role-Mission (RM)A set of policies relating to a single
role that allows for controlling tasks and enabling/digadpl Fig. 3. Mission Specification Levels

other policies.

4) Authorisations (A): The authorisation policies specify In the following sections, we describe the specification
how roles are permitted to interact with each other in ternsghemes in a bottom-up fashion. We start from policies which
of the events that can be triggered or operations that candre the units of the mission specification and go up to



mission class instantiation which is the highest level &f th
specification. Section IlI-A and Section 111-B describe ipyl
and mission-class specifications respectively and Settich

describes mission class instantiations.
A. Policy Specification

The policies specified for a role are broadly divided into
role assignment policy and operational management poli(z@

TABLE Il
MISSION CLASS SPECIFICATION

<I--Mssion Cass Specification-->
<xm >
<m ssi onC assPar anet er s>
<m ssi ond assNane>Reconnai ssance
</ m ssi onC assName>
m ssi onCl assPar anet er s>
onstrai nt s>

Role assignment policies are used to assign UAVs to roles <cardinality/>

based on their capabilities. Operational managementipslic
are used by roles to manage their own operational behavi

or operational behaviours of collaborating roles.

<col ocati on/ >

é(jFonst raints>

<M ssi onPar anet er s>
<I--A mssion class instance should provide val ues

Table | shows an example of a role assignment policy. In  for these paraneters-->

this policy the commander checks the capability of a newly

<conili meout > i nt </ conTi neout >
<fail ureTi meout >i nt</fail ureTi meout >

discovered UAV and authenticates it and determines whétheg, i ssi onPar anet er s>
can assume the role of a surveyor; if the capability is satsfi <conmander Behavi our >

the new UAV is given the role of a surveyor. Table Il shows

an example role re-assignment policy.

TABLE |
PONDER2 POLICY FOR ROLE ASSIGNMENT

policy event: /event/newJAv,
condition:[:|owevel Cap : uav|

root/di scovery uav: uav has:

#("rmotion" "video") cap: |owlLevel Cap

auth: credential];
action: [ :nanme :uav |

root print: "Received event:" + nane.

root print: "Checking low | evel capability".

root/di scovery full CapReq: uav rol e:"surveyor"].

TABLE I
PONDER2 POLICY FOR ROLE REASSIGNMENT

policy event: /event/UAVFail ure;
condition:[:role| rol e=="surveyor"];
action: [ :role :nane |
root print: "Received event:" + nane.
root/rol e/ cormander reassign:role
schene: "defaul t"].
root/policy at: "reAssignSurveyor" put: policy.

B. Mission Class Specification

<r ol eManagenent >
<manages>sur veyor </ nenages>
<manages>aggr egat or </ manages>

</ r ol eManagenent >

</ commander Behavi our >

<surveyor Behavi our >
<cardinality>int</cardinality>
<r ol eManagenent >

<mahages>hdet ect or </ manages>
<manages>r el ay</ nanages>

</ rol eManagenent >

</ surveyor Behavi our >

<aggr egat or Behavi our >
<cardinality>int</cardinality>
<r ol eManagenent / >

</ aggr egat or Behavi our >

<hdet ect or Behavi our >
<cardinality>int</cardinality>
<r ol eManagenent / >

</ hdet ect or Behavi our >

<r el ayBehavi our >
<cardinality>int</cardinality>
<r ol eManagenent / >

</ rel ayBehavi our >

</ xm >

C. Mission Class Instantiation

A mission class instance (which gives rise to the actual
team of UAVs performing the mission) specifies values for
cardinalities, mission parameters and URIs of policiescihi

Mission classes can be specified by describing what po|ici@gﬁne the role behaviour. Table IV shows a mission class in-
arole uses to manage itself and others (where hierarchigpxisstance specification for the reconnaissance scenario onexuti
A mission class effectively specifies a team by using rolg$eviously.
and showing the management relation among the particgpatin
roles as well as the cardinality of each role. A missiol- Management Tree
class specification for the reconnaissance scenario isdav ~ As a means of decentralising discovery and role manage-
in Table 1. In this specification, we have a commandenent, the UAVs in a mission are arranged in the form of a
role managing a surveyor and an aggregator role, wharmanagement tree during the role assignment process. €kis tr
the surveyor role in-turn manages an hDetector and relsyused for defining management hierarchies as well as data
roles. The cardinality and other parameters are instagtiaiggregation during execution of the mission. In this sectio
later. Mission parameters such as failure-timeout whiagh awe present a simplified version of the algorithm used to form
shared by all roles are also included in this specificatiothe management tree.
This specification can be used to instantiate different ;eam Each UAV runs the tree formation algorithm which starts
of the same configuration with different cardinalities, sidg by broadcasting a discovery message. UAVs receiving the
parameters and role behaviours. discovery-broadcast perform an authentication protddbiey



Communication link O uxy

—-_—— Di
[ScOvery messages . UXV assigned to a role

_ Management link

Fig. 4. Management Tree Formation

are not already a member of the SMC and reply with Algorithm 1 Management Tree Formation Algorithm
summary of their capability description if they can be assity MGMT-TREE-FORM(IS_ACTING_CDR)

to a role, i.e., UAVs which are already assigned to a role mawput: IS_ACTING_CDR

ignore the broadcast message. Upon authenticating anig+ece1: BroadcasDISCOVERYMSG

ing the capability summary, the broadcaster decides whethe: ReceiveMSG

to request for a full capability description. The authesicn 3. Authenticate sender of MSG

protocol is based on the use of public keys and will not bes. if 1S ACTING_CDR == TRUE then
described in this paper. The final decision of assigning the: if MSG !'= DISCOVERY _MSG then
UAV to a role takes place after checking the full capability e: Append POLE-ASSIGNM SG) to C
description against the requirements of the role. If the UAV7:  end if

is assigned to the role the broadcaster will be the parent fag: else

the UAV that replied and the UAV will be listed as a child of 9: if MMSG == DISCOVERY_MSG then

the broadcaster (shown in lines 6 and 15 of Algorithm 1). Theo: if PARENT == NULL then

full steps are shown in Algorithm 1. Algorithm 1 makes usaa: Reply with capability summary

of Algorithm 2 for performing the role assignment. 12: Handle further communications, if any
13: end if

Fig. 4 illustrates a trace of the protocol in action. Fig. # (a4 if MSG == DISCOVERY REPLY then

shows the communication links between neighbouring nodeg;. Append R)LE-ASS|GI\(M§G) toC

In Fig. 4 (b) the top node broadcasts Discovery messages to . else

neighbours which eventually form a team with the top node;. if MSG == ROLE ASSIGNMENT then

as commander and the middle node as children assigned; o PARENT = sender of M SG

various roles. In Fig. 4 (d), the middle nodes broadcasted th 1. end if

neighbours but only the lower nodes respond as the other mig end if

dle nodes already have a parent. Fig. 4 (e) shows the rasultiy.  end if
tree with each node having a single parent. The notatiorss usg. end if
in the algorithm areDISCOVERYMSG requests the UAVS 3. return
to send a summary of their capability as well as providing
information, such as identity, about the UAV broadcastimg t
discovery messag®ISCOVERYREPLY message containing
a summary of a UAV's capabilitiesSROLE ASSIGNMENT Failure of a communication link and/or a UAV causes par-
message containing role assignment informatidturent: titioning of the team network as well as loss of functionalit
manager of the UAVC" list containing child UAVSs, i.e., UAVs we use a systematically defined identity for UAVs to factita
managed by the parent UAV,S_ACTING_CDR: boolean merging and re-joining of partitioned teams. The identity
value that shows whether this UAV is the acting commandef a UAV is defined asf = [M | H | S] where: M is the
for the mission and// SG: any message received by the UAVmission ID, H is the hierarchy level and is a numbering




TABLE IV
MISSION CLASS INSTANTIATION °

<l--Mssion-class instantiation specification-->
<xnl >
<m ssi onPar anet er s>

<conili meout >3000</ conli nmeout >

<fai |l ureTi meout >7000</ f ai | ur eTi meout >

</ m ssi onPar anet er s>

<commander >
<cardinality>1</cardinality>
<pol i cyReposi tory>

http://192.168. 0. 1/ pol i cy/ conmander
</ pol i cyReposi tory>

</ commander >

<surveyor >

<cardinal i ty>1</cardinality>
<pol i cyReposi tory>
http://192. 168. 0. 1/ pol i cy/ surveyor

</ pol i cyReposi t ory>

</ surveyor >

<aggr egat or >
<cardinal i ty>1</cardinality>
<pol i cyReposi tory>

Fig. 5. Initial Management Tree

http://192. 168. 0. 1/ pol i cy/ aggr egat or IV. | MPLEMENTATION
</ pol i cyReposi t ory> o
</ aggr egat or > A. Mission management
<hdet ect or > . .. .
<cardinal i ty>1</ cardi nal i ty> The management architecture is implemented using the Java
<pol i cyReposi tory> _ based Ponder2 policy toolkit with Tasks, Roles and Missions
2} Lgi{@%big?i 2; ;Lpo' I cy/ hdet ect or implemented as Ponder2 managed objects. An outline of the
</ hdet ect or > framework is shown in Fig. 6.

<rel ay>
<cardinality>1</cardinality>

<pol i cyReposi tory>

http: {/ 192. 168. 0.1/ policy/rel ay Mission Manager

</ pol i cyReposi tory>
</rel ay> -
</ xni > | rolewansger | | Gereniy | T ] e

Team Manager
Algorithm 2 Role Assignment Algorithm ‘ — ‘ ‘ T — ‘
ROLE-A SS|G|\(.Z\/.[SG) Communication Manager
Input: MSG Fio. 6. Mission M t Architect
. 6. n Management Ar r

Output: CHILD ig ission Manageme chitecture

L Check capability summary We use a connectionless communication mechanism for
2: If the summary is viable, request for full capability de-

e most of the messages exchanged in our system and hence

scription o . .

3: If the description matches the requirement for one of tﬁge Communication-Manager is bu.'ld upon the UD.P proto'-
roles, do role assignment col._ I_—|owever, although a connectionless communication is
4 Add the assigned UAV t€HILD sufficient enoug_h_ for most of messages exchanged between
5 return CHILD the UAYS, for cpupal messages such as roI<=T ass!gnment and
capability description messages a reliable delivery iegsary.

The Message-Sender object serves this purpose.

The Message-Router handles messages for multiple roles
system which helps to put all the UAVs in the manageme(dnd other objects) residing in a UAV. This object enables
hierarchy in a total order. The identity lasts throughowt thregistration of roles to receive packets of a certain typ#am
team configuration. It identifies a mission and the hierarcRyurce as well as de-registration. In the case when a role
level of a UAV in a management tree. The ability to identifyegisters to receive packets of more than one type (or spurce
this level is useful in handling intermittent link discormtiens. that intersect, the registrations are aggregated. A separa
Due to the lack of space, failure management will not bexclusion table is kept when a role de-registers if that role
explored further in this paper. and the registration it is de-registering to lies in an aggte

Using the management tree algorithm described above, tegistration. When a new packet arrives the dispatch table as
management tree for the mission class specification in Tallell as the exclusion table are checked before the packet is
[l will look like the tree in Fig. 5. passed to the registered roles.




. . . . TABLE V
The Role-Manager object is responsible for loading angseypo cope oF REFLECTIVECAPABILITY DESCRIPTION GENERATION

withdrawing a role in mission startup and reconfiguration ALGORITHM
respectively.

s Determ ne, reflectively, all interfaces inplenented
B. Capabilities by the task

The capability of a UAV is the set of operations whicHXR all interfaces inplemented by the task
eck for a @asklnterface annotation

the software and hardware in the UAV support as well as thi¢ t he annotation is detected THEN
events it generates. This depends on the current set ofeseftw Check if the task matches the task indicated
tasks loaded into the UAV. The capability specification of i the annotation

. . . . IF it nmatches THEN
a UAV is generated dynamically by querying the tasks in " gor a1 nethods in the interface

a UAV. The Capability module is responsible for querying Check for a @askEvent annotation

; inti ; I F the annotation is detected THEN
and preparing the desc_rlptlon. Tasks suppprt reflectlorhl'sp.t Add the method to the description as
can be queried for their interface description. The Cajigbil an event
module queries each task and produces the description based ELSE _
on the reply it gets. A task implements a task interface with Read the argument types reflectively

. . . Add the nmethod as an operation
a naming scheme where the interface name is the task name g\pF P

suffixed by an ‘I'. For instance, aBxplorertask implements  ELSE

an interface calledExplorerl. To facilitate the capability de- ENge}:”r“ error

scription generation, we annotate task interfaces usiny tw) e

annotations, namely@ TaskInterfaceand @TaskEvent The Return enpty description

@TaskInterfaceannotation is used to mark (and indicate thEND'F

name of corresponding task) that an interface is a task-

interface in that it has operations/events that can be dieclun

the capability description. This marking is used later orilevh and hazard detection. In this scenario, two roles are asgign

generating the capability description to differentiatéw®en the surveyor and the aggregator, (iv) The surveyor robotssta

the different interfaces a task implements. T@elaskEvent to move towards the soldier and detects a hazard along the way

annotation is used to mark events so that we can differentig) On detecting the failure (through timeouts), the suorey

between the tasks operations and its events. role is re-assigned to the aggregator by the commander, Also
As discussed in the previous section, tasks extend the Tals& last position of the previous surveyor is relayed so tiat

class which supports our algorithm for capability desaoipt new surveyor can avoid the “hazard”, (vi) The new surveyor is

generation of a single task. The algorithm reads the integfa able to avoid the hazard using the information provided) (vi

implemented by the task reflectively and decides whether The new surveyor reaches the soldier and delivers assistanc

consider the interface in general or the methods of thefatter as necessary. This proof of concept demonstration was shown

in particular by using the annotations. The pseudo codeisf tlas part of the Annual Conference of the ITA, 2008 (ACITA

algorithm is shown in Table V. 2008) [9]. A snapshot of the demo is shown in Fig. 7. The

first surveyor robot stops on detecting the “hazard” (whih i

a yellow cylinder). The second surveyor (which used to be the
The distributed mission management architecture detailedgregator before the role re-assignment) avoids the absta

in Section Il was implemented on the Koala robots [8]. Thand reaches the soldier.

Koala robot is a mobile robot which has 16 infrared proximity

sensors around the body of the robot, and a camera. The Koala [SRsERiagis

robot is controlled by an Asus EEE PC running windows and

Java through an USB to serial cable. The scenario chosen

for the demonstration was a search and rescue mission of a

wounded soldier. The soldier is assumed to posses a wear-

able computer and a body sensor network that monitors the

soldier’s condition. The wearable computer was anothersAsu

EEE PC, while the commander was a laptop and two robots

were used as the unmanned vehicles. None of the wireless | = = -

devices were connected to the infrastructure and all theeegv o~

were part of the same ad-hoc network. L
The steps are as follows: (i) Soldier is wounded in the niss

battlefield, (i) Wearable computer sends a distress sigrthle

base reporting on the soldier’s condition, (iii) The Comumian

assembles the mission for assistance, comprising unmanned

vehicles capable of navigation, communication, survedé& Fig. 7. Snapshot of Proof of Concept Demonstration

C. Proof of Concept Demonstration




V. EXPERIMENTS AND RESULTS this language to specify the configuration of a robot or group

In this section, we will detail the experimental setup®f robots. The configuration of a group of robots is the
the experiments and the ensuing results while analysing ciecification of the components, connections and structire

distributed mission management architecture. the control system. The lowest level this language goes to is
calling the primitive modules, otherwise it does not specif
A. Experimental Setup how an actual action is performed. This makes the language

The implementation of the distributed mission managemeiot-implementation independent. _

architecture was carried out using Java based Ponderaypolic Theé mechanism is developed for behaviour based robots.
toolkit (Section 1V). This allowed us to use a testbed thas wa N€ authors define an agent asdistinct entity capable of
made up of generic Linux machines running Java. The set@fhibiting a behavioural response to stimulugsing this
tests were conducted to find out the effect of our distributégfinition enables mapping each primitive capability of laab
tree management system versus a centralised scheme. Q@ agent._These agents are called atomic agents._Therautho
chose to conduct these sets of tests because they test!#gg recursively define assemblage agents apordinated
ability of the architecture to scale and also test the acagent SOCiety of agentsThe agents could be atomic or assemblage.
of using a distributed mission management architecturenét Coordination determines how the society behaves (i.e. fow i
beginning of the simulation the number and types of roles afdll react to a stimulus). The coordination can be compsiti
changed in the mission class specification and the requidf@Poral sequencing or cooperative. In competitive coardi

number of SMCs are started on various machines. tion a subset of the society is selected to do the activalibe.
selection is based on some metrics. In temporal sequencing a
B. Results Finite State Machine which uses each agents behaviour as a

The depth of the tree for this mission is assumed td.hfe  State will be constructed. The behaviour of this machinbesit

measure the time taken for the mission to be started (whilf}¢ behaviour of the society. In cooperative coordinatiache
includes the UAV discovery, role assignment, downloadire t 2gents behaviour will be assigned a vector and weight then
policy from the repository and loading the policy and thegimthe vector sum represents the society’s behavioural csnsen
taken to start the role). The result of this experiment iscted ~ Using CDL a designer can define assemblage agents for
in Fig. 8. From the figure, we can see that when the numpéfferent tasks and instantiate the primitives. Agents ban
of roles is relatively small, the centralised scheme wowsth reused for a different task. The authors have developedel-dev
Once the number of roles increases, the distributed scheffgnent environment (tool) called MissionLab which enables
significantly outperforms the centralised scheme. Anotaer Writing CDL and compilation. The executable can be loaded to
worth noting is that the time taken for mission setup does ndfobot or a simulator. Also the tool enables graphical desfg
increase very much, even when the number of roles requirgdnission and simulating the mission. However, the approach
in the mission is high. This augurs well for our architecturéised to describe a mission, finite state machine is suitable
since it shows that the architecture is scalable. only for low level components such as tasks and not easy for
specifying multi-robot missions with many participants.
—— In [10], the authors build on the work in [6] and present
ol P a mission specification system with a case based reasoning
Fa approach for generating mission plans and a Contact Net
1 Protocol [11] based task allocation.
1200 | 1 locchi et. al. [12] present an approach for coordination of
ool . | robots based on dynamic role assignment. The architecture
K of the system is layered with a coordination protocol run-
B0 - P 1 ning on top of a communication protocol. The basis of the
oo - T e communication protocol is the publish-subscribe paradigm

e The coordination protocol is based on utility functions. A
1 utility function is defined for each role. The robot with the
L - . ) highest value for a certain role will take that role. Forroati

Number of roles is selected using a voting system. Compared to other works of
Fig. 8. Measure of time taken for mission setup versus the nuofeles  coordination (e.g [13]), which tie the robot control areluit
ture to the coordination architecture (mechanism), thbamst
architecture is more general in that robots of differentticzn
architectures can coordinate.

Mackenzie et. al [6] present a mechanism for mission In [11], the authors present the Contract Net protocol for
specification by specifying the organisation or set up oftate distributing tasks through negotiation. Each node in the ne
primitives to obtain a sophisticated system which can perfo takes one of the two roles, namely manager or contractor.
complex tasks. The authors have developed a language caMahagers announce tasks, potential contractors submit bid
Configuration Description Language (CDL) and one can use the managers, the managers then evaluate the bids and
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b
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award contracts to the bidders. The contents of the negutiatarchitecture is policy-based and uses three levels of fpeeci
messages are problem-domain dependent and the usetioiss, hamely, policy specification, mission class speatifin
responsible for specifying the content. and mission class instantiation specification so that iblsa
In [14], the authors present a paradigm for cooperatings to reuse policies and the mission classes. A proof of gince
robots. In their approach, each robot has a hybrid automatdemonstration of the proposed architecture was also asthiev
Hybrid automata are used to represent roles, role assigesmenTo ensure that the UAVs comprising the SMC perform
and discrete variables related to each robot. The compnositiheir tasks correctly, it is important to cope with diffeten
of these automata is used to model execution of cooperattypes of failures. Also, it is sometimes desirable to make su
tasks. They define a role as a function one or more robdigt the members of the team that form the SMC maintain
perform during the execution of a cooperative task and usemmunication links with the other members of the team. We
utility functions to decide when to change roles. will focus on failure and communication management as part
Likhachev et. al. [15] have proposed an approach to aof our future work.
tomatic modification_ of.behavioural qssemblage _parameters ACKNOWLEDGEMENTS
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