
A Policy-Based Management Architecture for
Mobile Collaborative Teams

Eskindir Asmare, Anandha Gopalan, Morris Sloman, Naranker Dulay and Emil Lupu
Department of Computing, Imperial College London, London,SW7 2RH, UK

Email: {e.asmare, a.gopalan, m.sloman, n.dulay, e.c.lupu}@imperial.ac.uk

Abstract—Unmanned Autonomous Vehicles (UAVs) are in-
creasingly deployed for missions that are deemed dangerous or
impractical to perform by humans. Collaborating UAVs need to
adapt their behaviour to current context. They should be self-
managing in that they have to recover or adapt to component fail-
ures and optimise performance to best utilise available resources.
Our objective is to develop a framework which enables UAVs to
manage themselves as an individual and as a team. We make
use of policy-based techniques to support adaptive management.
We use three levels of specifications namely, policy specification,
mission class specification and mission class instantiation spec-
ification so that it enables us to reuse policies and the mission
classes. The proposed architecture can be applied to systems with
limited capabilities, such as devices in a Personal Area Network,
as well as to systems with more capable devices. The evaluation of
our proposed architecture shows that the architecture is scalable
and also outperforms a centralised mission management scheme.

I. I NTRODUCTION

Technological advances in engineering and communication
have paved the way for increasing use of autonomous systems.
Given high level objectives from administrators an autonomic
computing system is able to self-manage. It is also able to
simplify the task of managing today’s complex computing
systems [1], [2]. Self-managing autonomous systems have the
potential for providing the information needed to assist rescue
operations - by locating survivors, identifying affected areas,
and organising the collaborative efforts of the response team
members. They also find uses in disaster management, includ-
ing earthquakes, forest fires and foods, unmanned vehicles
and military applications. In this paper, we focus on teams
of unmanned autonomous vehicles, since this is the testbed
that we have been using.

Unmanned Autonomous Vehicle (UAV) is a type of robot
that due to its unique nature has various individual and collab-
orative applications (as mentioned above). Recently, there has
been an increasing tendency to use UAVs in civilian disaster
relief missions and military scenarios to reconnoiter or provide
sensing in areas which are dangerous or impractical for
humans. To achieve a particular mission such as surveillance
of a specific area or search for specific targets, teams of UAVs
may need to cooperate. A challenge in using UAVs for such
missions is enabling adaptive self-management so that they
can adapt to changes in context and accomplish a mission
autonomously, i.e., without human intervention.

UAVs need to adapt their behaviour to current context -
location, activity, available resources such as battery power
and available services such as quality of communication links.

They should be self-managing in that they have to recover or
adapt to component failures and optimise performance to best
utilise available resources. Collaborating UAVs form a Self-
Managed Cell (SMC) [3], which is the general architectural
principle we use for realising self management of individual
and groups of UAVs. The SMC is an approach to support
autonomic computing [2]. A SMC group tend to consist of
multiple UAVs and at least one commander, which could be
a human or a UAV, to effectively control the group. There
could be back-up commanders in case the primary one fails.
The SMC is set up to perform a mission based on the mission
specification received by the commander from its command
base. The mission specification defines how UAVs will be
assigned to perform specific roles within the SMC, based on
their credentials and capability description. It also defines as
to when and how to adapt the mission to changes in context
or failures. Multiple teams of UAVs may also collaborate to
achieve the overall mission. SMCs are defined so as to allow
the composition of SMCs to form larger and more complex
SMCs.

UAVs need to manage themselves as an individual and
as a team. Management of UAVs involves resource, task,
behaviour, communication and team management. The adap-
tive management of UAVs is achieved by using policy-based
techniques that allow dynamic modification of the manage-
ment strategy without reloading the basic software within the
UAV. A UAV contains a capability description that describes
its resources and the services it can perform. A UAV may
be composed of various sensors for vision, sound, vibration,
chemical detection, location and devices for communication.
Usually, not all capabilities are available in a single vehicle
and so one UAV may provide services to others in the team.

Although there have been various research on control archi-
tectures for autonomous systems, the focus has largely been
in organising intelligence. We argue that if robots such as
UAVs are to be used in real life applications then they should
also be able to manage their intelligence. The focus of this
paper is distributed self-management of a group of UAVs.
We use the Ponder2 [4] policy framework in our management
architecture. It is a generic object management system which
allows the dynamic loading, unloading, enabling and disabling
of managed objects. Generally a Ponder2 managed-object is
an active object that is capable of receiving action commands
and performing actions. Ponder2 supports two types of policies
namely obligation and authorisation policies. We use obliga-

tion policies (event-condition-action rules) to trigger specific
actions to be performed when an event, such as the discovery
of a new UAV occurs, or a UAV which is a member of the
team fails. Authorisation policies are used to specify what
services and resources within a UAV can be accessed by other
UAVs performing a specific role and under what conditions.
Policies are interpreted; as a result they can be dynamically
loaded, enabled or disabled at run-time without shutting down
a system in order to adapt the management strategy being used
within the system. To summarise, our management framework
addresses mission management, capability description and
distributed control and communication.

The rest of the paper is organised as follows. Section
II presents the distributed mission management architecture.
Section III details the mission specification, while Section
IV details the implementation of the proposed architecture.
Section V details the experiments and the ensuing results.
Section VI details the work related to this paper, while Section
VII concludes the paper and provides ideas for future work.

II. D ISTRIBUTED M ISSION MANAGEMENT

A mission for a team of heterogeneous robots is specified
in terms of roles and role-missions. There are various classes
of mission specifications. We broadly divide these classes into
three: (a) the domain they are targeted to: application specific
[5] or generic [6], (b) the paradigm they use: plan based [7]
or specification (configuration) based [6], and (c) the number
of autonomic systems involved: e.g. single or multi-robot
missions. One can further divide these classes, for e.g. a multi-
robot mission could support homogeneous or heterogeneous
robots and a heterogeneous-multi-robot mission could support
static or dynamic task allocation. Based on the above classes
of mission specifications, the mission specification that weuse
is: generic, specification based, multi-robot and heterogeneous
with dynamic task allocation.

To illustrate our approach, we consider an example mission
consisting of determining whether an area is safe to be
entered by humans. The following main roles are identified:
Commander (C): controls the mission and allocates UAVs to
roles. Surveyor (S): explores the house and builds a map.
Hazardous material detector (H). Communication relay (R):
maintains communication among UAVs by forming an ad-
hoc network.Aggregator (A): aggregates information from all
UAVs e.g. to produce a map showing the detected hazardous
materials.

A. Our Approach

A team of UAVs should be able to perform a mission with a
minimum number of UAVs with required capabilities although
the configuration may not be optimal. When additional UAVs
become available the team should expand to make use of the
new resources, thereby increasing performance. Should there
be a failure or departure of UAVs from the enlarged team, the
team should contract but continue the mission. We define a
minimal team configurationas the fewest types and number of
UAVs needed to accomplish a mission. A reasonably-optimal

team configuration has the ideal type and number of UAVs. A
mission starts execution when a team satisfying the minimal
configuration can be formed. The team will expand when
additional UAVs join until it achieves the reasonably-optimal
configuration.

This concept is illustrated using the reconnaissance scenario
in which the minimal configuration is one Commander, one
Aggregator, and two Surveyors, where the Surveyor role is
the primary role; and the Relay and Hazard detection roles are
secondary roles. The primary role is given priority with respect
to resource allocation and is also responsible for managingthe
other roles of the UAV.

As shown in Fig. 1, the Surveyor role is collocated with
other roles: Relay and Hazardous material detector. The Relay
role can be performed in parallel with either the Surveyor or
the detector role while the UAV has to switch between the
Surveyor and detector roles as only one of these can be active
at a time. Although the Relay role can run in parallel with
these roles, it will potentially hinder the surveying or detection
missions when trying to maximise communication link quality.
Hence this role is best placed in another UAV should there
be one available. Detecting potentially hazardous objectsis a
much slower process than exploration which implies that the
detection and surveying missions can be performed better by
separate but cooperating UAVs which share information.

C

S H

R

S H

R

A

Fig. 1. Reconnaissance mission minimal configuration

A reasonably-optimal mission configuration consists of one
Commander, two Surveyors, two Hazardous material detec-
tors, two Relays, and one Aggregator. The team started with
the configuration shown in Fig. 1 and reached the configuration
shown in Fig. 2 as new UAVs join the team in the mission area.
The Surveyor roles which assigned the Relay and detector
roles serve as commanders for those two roles. Should any
of the new UAVs fail or depart, the roles will revert to their
minimal configuration position.

B. Conceptual Model

In this section, we present our model that uses the con-
cepts of team-mission, role and role-mission that allow for
distributed mission management of UAVs.

1) Team Mission (M):A team-mission is a set of roles
where each role contains a set of policies that either governs
the behaviour of the role or handles the assignment of UAVs
to roles.M = {R1, R2, R3, ... Ri}.

C

S

H

A

R

S

H R

Fig. 2. Reconnaissance mission reasonably-optimal configuration

2) Role (R): A role is a placeholder to which discovered
UAVs are assigned and for which, missions, tasks and au-
thorisation policies are specified. The role is implementedas
a set of three objects: role-mission (RM), authorisations (A)
and tasks (T), as described below. When a UAV is assigned
to a role the role-mission, authorisations and tasks associated
with the role are loaded onto the UAV, unless already present.
R ⊃ {RM, A, T}.

A role in our model, has an external and a local interface
which provides a context for which role mission policies can
be specified. Incoming events from the local or external inter-
face can be used to trigger policies which invoke operations
provided by the local and external interfaces.

2.A) External Interface: The external interface defines
operations and events relating to interaction with external
collaborating roles: (i) Management operations for loading
missions, policies etc. which are common to all roles, (ii)
Operations from the local interface that are made visible toand
can be invoked by other roles i.e. other UAVs. Accessibility
may be static or dynamic depending on the authorisation
policies. The operations are implemented by the tasks in the
role, (iii) Events generated from within the role, by the tasks
inside the role or propagated from the UAV components such
as sensors, and published via an event bus for use by other
roles, (iv) Operations which are required by this role. These
operations are expected to be provided by collaborating roles,
and (v) Events required by this role, generated by collaborating
roles, e.g. to trigger policies.

2.B) Local Interface:The local interface defines the opera-
tions and events provided by tasks within the local UAV and
used by the role-missions: (i) Events generated by the tasks
within the UAV or propagated from the UAV components such
as sensors. These may be used to trigger policies in the mission
or mapped to the external interface, and (ii) item Operations
implemented by the tasks within the UAV.

3) Role-Mission (RM):A set of policies relating to a single
role that allows for controlling tasks and enabling/disabling
other policies.

4) Authorisations (A): The authorisation policies specify
how roles are permitted to interact with each other in terms
of the events that can be triggered or operations that can be

invoked via the external interface.A = {A1, A2, ... Aj}.
5) Tasks (T):Tasks are complex operations which the UAV

can perform e.g. move from A to B, follow a path, track
an object using video. Obligation policies in the mission
may invoke operations supported by a task or activate a
task. The tasks in a role are usually inherent to the type
of the role and hence are specified inside the role class.
T = {T1, T2, ... Tk}.

III. D ISTRIBUTED M ISSION SPECIFICATION

We use three levels of specifications, as shown in Fig.
3: (a) Policies are specified using the Ponder2 [4] policy
specification language and stored in a policy repository, (b)
the XML mission class specification of the types of roles
needed for the mission, the policies required from the policy
repository, and (c) the XML mission instance specification
which defines the mission parameters and role cardinalities
required to instantiate a mission class. The policy specification
in the repository may apply to multiple mission classes and
there can be multiple instances of a mission, instantiated
with different parameters from a particular mission class.
The policy repository only contains policies and hence does
not require a lot of memory. When using the architecture
for less capable devices such as PDAs, mobile phones etc.,
the repository can be implemented in memory by the initial
commander UAV and distributed to other UAVs over time.
In the proof of concept demonstration (Section IV-C), the
policy repository was maintained by the commander, which
was a laptop connected to the other UAVs through the ad-hoc
network.

Policy
Repository

Mission class
specification:
Reconnaissance

Mission class
specification:
Search & Rescue

Mission class
instance:
Reconnaissance of
building A

Mission class
instance:
Reconnaissance of
town B

Fig. 3. Mission Specification Levels

In the following sections, we describe the specification
schemes in a bottom-up fashion. We start from policies which
are the units of the mission specification and go up to

mission class instantiation which is the highest level of the
specification. Section III-A and Section III-B describe policy
and mission-class specifications respectively and SectionIII-C
describes mission class instantiations.

A. Policy Specification

The policies specified for a role are broadly divided into
role assignment policy and operational management policy.
Role assignment policies are used to assign UAVs to roles
based on their capabilities. Operational management policies
are used by roles to manage their own operational behaviour
or operational behaviours of collaborating roles.

Table I shows an example of a role assignment policy. In
this policy the commander checks the capability of a newly
discovered UAV and authenticates it and determines whetherit
can assume the role of a surveyor; if the capability is satisfied,
the new UAV is given the role of a surveyor. Table II shows
an example role re-assignment policy.

TABLE I
PONDER2 POLICY FOR ROLE ASSIGNMENT

policy event: /event/newUAV;
condition:[:lowLevelCap :uav|

root/discovery uav: uav has:
#("motion" "video") cap: lowLevelCap
auth: credential];

action: [:name :uav |
root print: "Received event:" + name.
root print: "Checking low level capability".
root/discovery fullCapReq:uav role:"surveyor"].

TABLE II
PONDER2 POLICY FOR ROLE RE-ASSIGNMENT

policy event: /event/UAVFailure;
condition:[:role| role=="surveyor"];
action: [:role :name |

root print: "Received event:" + name.
root/role/commander reassign:role
scheme:"default"].

root/policy at: "reAssignSurveyor" put: policy.

B. Mission Class Specification

Mission classes can be specified by describing what policies
a role uses to manage itself and others (where hierarchy exists).
A mission class effectively specifies a team by using roles
and showing the management relation among the participating
roles as well as the cardinality of each role. A mission
class specification for the reconnaissance scenario is provided
in Table III. In this specification, we have a commander
role managing a surveyor and an aggregator role, where
the surveyor role in-turn manages an hDetector and relay
roles. The cardinality and other parameters are instantiated
later. Mission parameters such as failure-timeout which are
shared by all roles are also included in this specification.
This specification can be used to instantiate different teams
of the same configuration with different cardinalities, mission
parameters and role behaviours.

TABLE III
M ISSION CLASS SPECIFICATION

<!--Mission Class Specification-->
<xml>
<missionClassParameters>

<missionClassName>Reconnaissance
</missionClassName>

</missionClassParameters>
<constraints>

<cardinality/>
<colocation/>

</constraints>
<missionParameters>
<!--A mission class instance should provide values

for these parameters-->
<comTimeout> int</comTimeout>
<failureTimeout>int</failureTimeout>

</missionParameters>
<commanderBehaviour>

<roleManagement>
<manages>surveyor</manages>
<manages>aggregator</manages>

</roleManagement>
</commanderBehaviour>
<surveyorBehaviour>

<cardinality>int</cardinality>
<roleManagement>

<manages>hdetector</manages>
<manages>relay</manages>

</roleManagement>
</surveyorBehaviour>
<aggregatorBehaviour>

<cardinality>int</cardinality>
<roleManagement/>

</aggregatorBehaviour>
<hdetectorBehaviour>

<cardinality>int</cardinality>
<roleManagement/>

</hdetectorBehaviour>
<relayBehaviour>

<cardinality>int</cardinality>
<roleManagement/>

</relayBehaviour>
</xml>

C. Mission Class Instantiation

A mission class instance (which gives rise to the actual
team of UAVs performing the mission) specifies values for
cardinalities, mission parameters and URIs of policies which
define the role behaviour. Table IV shows a mission class in-
stance specification for the reconnaissance scenario mentioned
previously.

D. Management Tree

As a means of decentralising discovery and role manage-
ment, the UAVs in a mission are arranged in the form of a
management tree during the role assignment process. This tree
is used for defining management hierarchies as well as data
aggregation during execution of the mission. In this section
we present a simplified version of the algorithm used to form
the management tree.

Each UAV runs the tree formation algorithm which starts
by broadcasting a discovery message. UAVs receiving the
discovery-broadcast perform an authentication protocol if they

Fig. 4. Management Tree Formation

are not already a member of the SMC and reply with a
summary of their capability description if they can be assigned
to a role, i.e., UAVs which are already assigned to a role may
ignore the broadcast message. Upon authenticating and receiv-
ing the capability summary, the broadcaster decides whether
to request for a full capability description. The authentication
protocol is based on the use of public keys and will not be
described in this paper. The final decision of assigning the
UAV to a role takes place after checking the full capability
description against the requirements of the role. If the UAV
is assigned to the role the broadcaster will be the parent for
the UAV that replied and the UAV will be listed as a child of
the broadcaster (shown in lines 6 and 15 of Algorithm 1). The
full steps are shown in Algorithm 1. Algorithm 1 makes use
of Algorithm 2 for performing the role assignment.

Fig. 4 illustrates a trace of the protocol in action. Fig. 4 (a)
shows the communication links between neighbouring nodes.
In Fig. 4 (b) the top node broadcasts Discovery messages to its
neighbours which eventually form a team with the top node
as commander and the middle node as children assigned to
various roles. In Fig. 4 (d), the middle nodes broadcast to their
neighbours but only the lower nodes respond as the other mid-
dle nodes already have a parent. Fig. 4 (e) shows the resulting
tree with each node having a single parent. The notations used
in the algorithm are:DISCOVERYMSG: requests the UAVs
to send a summary of their capability as well as providing
information, such as identity, about the UAV broadcasting the
discovery message,DISCOVERYREPLY: message containing
a summary of a UAV’s capabilities,ROLE ASSIGNMENT:
message containing role assignment information,Parent:
manager of the UAV,C: list containing child UAVs, i.e., UAVs
managed by the parent UAV,IS ACTING CDR: boolean
value that shows whether this UAV is the acting commander
for the mission andMSG: any message received by the UAV.

Algorithm 1 Management Tree Formation Algorithm
MGMT-TREE-FORM(IS ACTING CDR)

Input: IS ACTING CDR

1: BroadcastDISCOVERYMSG
2: ReceiveMSG
3: Authenticate sender of MSG
4: if IS ACTING CDR == TRUE then
5: if MSG != DISCOV ERY MSG then
6: Append ROLE-ASSIGN(MSG) to C
7: end if
8: else
9: if MSG == DISCOV ERY MSG then

10: if PARENT == NULL then
11: Reply with capability summary
12: Handle further communications, if any
13: end if
14: if MSG == DISCOV ERY REPLY then
15: Append ROLE-ASSIGN(MSG) to C
16: else
17: if MSG == ROLE ASSIGNMENT then
18: PARENT = sender ofMSG

19: end if
20: end if
21: end if
22: end if
23: return

Failure of a communication link and/or a UAV causes par-
titioning of the team network as well as loss of functionality;
we use a systematically defined identity for UAVs to facilitate
merging and re-joining of partitioned teams. The identityI

of a UAV is defined as:I = [M | H | S] where:M is the
mission ID, H is the hierarchy level andS is a numbering

TABLE IV
M ISSION CLASS INSTANTIATION

<!--Mission-class instantiation specification-->
<xml>
<missionParameters>

<comTimeout>3000</comTimeout>
<failureTimeout>7000</failureTimeout>

</missionParameters>
<commander>

<cardinality>1</cardinality>
<policyRepository>
http://192.168.0.1/policy/commander
</policyRepository>

</commander>
<surveyor>

<cardinality>1</cardinality>
<policyRepository>
http://192.168.0.1/policy/surveyor
</policyRepository>

</surveyor>
<aggregator>

<cardinality>1</cardinality>
<policyRepository>
http://192.168.0.1/policy/aggregator
</policyRepository>

</aggregator>
<hdetector>

<cardinality>1</cardinality>
<policyRepository>
http://192.168.0.1/policy/hdetector
</policyRepository>

</hdetector>
<relay>

<cardinality>1</cardinality>
<policyRepository>
http://192.168.0.1/policy/relay
</policyRepository>

</relay>
</xml>

Algorithm 2 Role Assignment Algorithm
ROLE-ASSIGN(MSG)

Input: MSG

Output: CHILD
1: Check capability summary
2: If the summary is viable, request for full capability de-

scription
3: If the description matches the requirement for one of the

roles, do role assignment
4: Add the assigned UAV toCHILD
5: return CHILD

system which helps to put all the UAVs in the management
hierarchy in a total order. The identity lasts throughout the
team configuration. It identifies a mission and the hierarchy
level of a UAV in a management tree. The ability to identify
this level is useful in handling intermittent link disconnections.
Due to the lack of space, failure management will not be
explored further in this paper.

Using the management tree algorithm described above, the
management tree for the mission class specification in Table
III will look like the tree in Fig. 5.

A S

H R

C

Fig. 5. Initial Management Tree

IV. I MPLEMENTATION

A. Mission management

The management architecture is implemented using the Java
based Ponder2 policy toolkit with Tasks, Roles and Missions
implemented as Ponder2 managed objects. An outline of the
framework is shown in Fig. 6.

Fig. 6. Mission Management Architecture

We use a connectionless communication mechanism for
most of the messages exchanged in our system and hence
the Communication-Manager is build upon the UDP proto-
col. However, although a connectionless communication is
sufficient enough for most of messages exchanged between
the UAVs, for critical messages such as role assignment and
capability description messages a reliable delivery is necessary.
The Message-Sender object serves this purpose.

The Message-Router handles messages for multiple roles
(and other objects) residing in a UAV. This object enables
registration of roles to receive packets of a certain type and/or
source as well as de-registration. In the case when a role
registers to receive packets of more than one type (or source)
that intersect, the registrations are aggregated. A separate
exclusion table is kept when a role de-registers if that role
and the registration it is de-registering to lies in an aggregate
registration. When a new packet arrives the dispatch table as
well as the exclusion table are checked before the packet is
passed to the registered roles.

The Role-Manager object is responsible for loading and
withdrawing a role in mission startup and reconfiguration
respectively.

B. Capabilities

The capability of a UAV is the set of operations which
the software and hardware in the UAV support as well as the
events it generates. This depends on the current set of software
tasks loaded into the UAV. The capability specification of
a UAV is generated dynamically by querying the tasks in
a UAV. The Capability module is responsible for querying
and preparing the description. Tasks support reflection so they
can be queried for their interface description. The Capability
module queries each task and produces the description based
on the reply it gets. A task implements a task interface with
a naming scheme where the interface name is the task name
suffixed by an ‘I’. For instance, anExplorer task implements
an interface calledExplorerI. To facilitate the capability de-
scription generation, we annotate task interfaces using two
annotations, namely@TaskInterfaceand @TaskEvent. The
@TaskInterfaceannotation is used to mark (and indicate the
name of corresponding task) that an interface is a task-
interface in that it has operations/events that can be included in
the capability description. This marking is used later on while
generating the capability description to differentiate between
the different interfaces a task implements. The@TaskEvent
annotation is used to mark events so that we can differentiate
between the tasks operations and its events.

As discussed in the previous section, tasks extend the Task
class which supports our algorithm for capability description
generation of a single task. The algorithm reads the interfaces
implemented by the task reflectively and decides whether to
consider the interface in general or the methods of the interface
in particular by using the annotations. The pseudo code of this
algorithm is shown in Table V.

C. Proof of Concept Demonstration

The distributed mission management architecture detailed
in Section II was implemented on the Koala robots [8]. The
Koala robot is a mobile robot which has 16 infrared proximity
sensors around the body of the robot, and a camera. The Koala
robot is controlled by an Asus EEE PC running windows and
Java through an USB to serial cable. The scenario chosen
for the demonstration was a search and rescue mission of a
wounded soldier. The soldier is assumed to posses a wear-
able computer and a body sensor network that monitors the
soldier’s condition. The wearable computer was another Asus
EEE PC, while the commander was a laptop and two robots
were used as the unmanned vehicles. None of the wireless
devices were connected to the infrastructure and all the devices
were part of the same ad-hoc network.

The steps are as follows: (i) Soldier is wounded in the
battlefield, (ii) Wearable computer sends a distress signalto the
base reporting on the soldier’s condition, (iii) The Commander
assembles the mission for assistance, comprising unmanned
vehicles capable of navigation, communication, surveillance

TABLE V
PSEUDO CODE OF REFLECTIVECAPABILITY DESCRIPTION GENERATION

ALGORITHM

Determine, reflectively, all interfaces implemented
by the task
FOR all interfaces implemented by the task
Check for a @TaskInterface annotation
IF the annotation is detected THEN
Check if the task matches the task indicated
in the annotation
IF it matches THEN

FOR all methods in the interface
Check for a @TaskEvent annotation
IF the annotation is detected THEN
Add the method to the description as
an event

ELSE
Read the argument types reflectively
Add the method as an operation

ENDIF
ELSE

Return error
ENDIF

ELSE
Return empty description

ENDIF

and hazard detection. In this scenario, two roles are assigned:
the surveyor and the aggregator, (iv) The surveyor robot starts
to move towards the soldier and detects a hazard along the way,
(v) On detecting the failure (through timeouts), the surveyor
role is re-assigned to the aggregator by the commander. Also,
the last position of the previous surveyor is relayed so thatthe
new surveyor can avoid the “hazard”, (vi) The new surveyor is
able to avoid the hazard using the information provided, (vii)
The new surveyor reaches the soldier and delivers assistance,
as necessary. This proof of concept demonstration was shown
as part of the Annual Conference of the ITA, 2008 (ACITA
2008) [9]. A snapshot of the demo is shown in Fig. 7. The
first surveyor robot stops on detecting the “hazard” (which is
a yellow cylinder). The second surveyor (which used to be the
aggregator before the role re-assignment) avoids the obstacle
and reaches the soldier.

Fig. 7. Snapshot of Proof of Concept Demonstration

V. EXPERIMENTS AND RESULTS

In this section, we will detail the experimental setup,
the experiments and the ensuing results while analysing our
distributed mission management architecture.

A. Experimental Setup

The implementation of the distributed mission management
architecture was carried out using Java based Ponder2 policy
toolkit (Section IV). This allowed us to use a testbed that was
made up of generic Linux machines running Java. The set of
tests were conducted to find out the effect of our distributed
tree management system versus a centralised scheme. We
chose to conduct these sets of tests because they test the
ability of the architecture to scale and also test the advantage
of using a distributed mission management architecture. Atthe
beginning of the simulation the number and types of roles are
changed in the mission class specification and the requisite
number of SMCs are started on various machines.

B. Results

The depth of the tree for this mission is assumed to be4. We
measure the time taken for the mission to be started (which
includes the UAV discovery, role assignment, downloading the
policy from the repository and loading the policy and the time
taken to start the role). The result of this experiment is depicted
in Fig. 8. From the figure, we can see that when the number
of roles is relatively small, the centralised scheme works best.
Once the number of roles increases, the distributed scheme
significantly outperforms the centralised scheme. Anotherfact
worth noting is that the time taken for mission setup does not
increase very much, even when the number of roles required
in the mission is high. This augurs well for our architecture,
since it shows that the architecture is scalable.

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 2 4 6 8 10 12 14 16 18 20

T
im

e
(m

s)

Number of roles

Centralised
Distributed

Fig. 8. Measure of time taken for mission setup versus the numberof roles

VI. RELATED WORK

Mackenzie et. al [6] present a mechanism for mission
specification by specifying the organisation or set up of a set of
primitives to obtain a sophisticated system which can perform
complex tasks. The authors have developed a language called
Configuration Description Language (CDL) and one can use

this language to specify the configuration of a robot or group
of robots. The configuration of a group of robots is the
specification of the components, connections and structureof
the control system. The lowest level this language goes to is
calling the primitive modules, otherwise it does not specify
how an actual action is performed. This makes the language
robot-implementation independent.

The mechanism is developed for behaviour based robots.
The authors define an agent asa distinct entity capable of
exhibiting a behavioural response to stimulus. Using this
definition enables mapping each primitive capability of a robot
to an agent. These agents are called atomic agents. The authors
then recursively define assemblage agents asa coordinated
society of agents. The agents could be atomic or assemblage.
Coordination determines how the society behaves (i.e. how it
will react to a stimulus). The coordination can be competitive,
temporal sequencing or cooperative. In competitive coordina-
tion a subset of the society is selected to do the activation.The
selection is based on some metrics. In temporal sequencing a
Finite State Machine which uses each agents behaviour as a
state will be constructed. The behaviour of this machine is then
the behaviour of the society. In cooperative coordination each
agents behaviour will be assigned a vector and weight then
the vector sum represents the society’s behavioural consensus.

Using CDL a designer can define assemblage agents for
different tasks and instantiate the primitives. Agents canbe
reused for a different task. The authors have developed a devel-
opment environment (tool) called MissionLab which enables
writing CDL and compilation. The executable can be loaded to
a robot or a simulator. Also the tool enables graphical design of
a mission and simulating the mission. However, the approach
used to describe a mission, finite state machine is suitable
only for low level components such as tasks and not easy for
specifying multi-robot missions with many participants.

In [10], the authors build on the work in [6] and present
a mission specification system with a case based reasoning
approach for generating mission plans and a Contact Net
Protocol [11] based task allocation.

Iocchi et. al. [12] present an approach for coordination of
robots based on dynamic role assignment. The architecture
of the system is layered with a coordination protocol run-
ning on top of a communication protocol. The basis of the
communication protocol is the publish-subscribe paradigm.
The coordination protocol is based on utility functions. A
utility function is defined for each role. The robot with the
highest value for a certain role will take that role. Formation
is selected using a voting system. Compared to other works of
coordination (e.g [13]), which tie the robot control architec-
ture to the coordination architecture (mechanism), the authors’
architecture is more general in that robots of different control
architectures can coordinate.

In [11], the authors present the Contract Net protocol for
distributing tasks through negotiation. Each node in the net
takes one of the two roles, namely manager or contractor.
Managers announce tasks, potential contractors submit bids
to the managers, the managers then evaluate the bids and

award contracts to the bidders. The contents of the negotiation
messages are problem-domain dependent and the user is
responsible for specifying the content.

In [14], the authors present a paradigm for cooperating
robots. In their approach, each robot has a hybrid automaton.
Hybrid automata are used to represent roles, role assignments
and discrete variables related to each robot. The composition
of these automata is used to model execution of cooperative
tasks. They define a role as a function one or more robots
perform during the execution of a cooperative task and use
utility functions to decide when to change roles.

Likhachev et. al. [15] have proposed an approach to au-
tomatic modification of behavioural assemblage parameters
for autonomous navigation tasks. Their approach is based on
Artificial Intelligence in that it uses case based reasoning.
We try to solve a similar but more generic problem using
a different approach, i.e., policy.

In [16], the authors present a general framework, called
MURDOCH, for inter-robot communication and dynamic
tasks allocation for cooperation. Communication takes place
through a publish/subscribe system. MURDOCH offers a
distributed approximation to a global optimum of resource
usage. As a result of a completely distributed task assignment
scheme, MURDOCH suffers the same problem as the greedy
algorithms problem - equivalent to an instantaneous greedy
scheduler, where decisions are made based on only the current
and/or local situation without taking into account how the
decision might affect the future and/or the global situation.
In effect these types of algorithms may not always give the
best solution. Although our approach does not take the global
and/or future situation into consideration, in the window of
time that every role assignment is done the architecture allows
for optimisation on the set of discovered UAVs.

In [17], the authors present a distributed Constraint Pro-
gramming (CSP) solution for assigning tasks to robots. They
try to minimise remote task dependencies by creating a task
dependency graph, which they call distributed organisational
task network (DOTN), and search for minimal dependency
solutions. The search for minimality is done during run time
and it is done by trading tasks. They present an algorithm,
called SOLO, for task reallocation.

Keoh et. al. [18] have proposed an approach to establish
and manage mobile ad-hoc networks using policies. They
introduced a community specification calleddoctrine which
defines the roles of the participants in the community, the
characteristics that participants must exhibit in order tobe
eligible to play a role, as well as the policies governing their
behaviour within the community. However, whiledoctrine is
focused on security our work deals with both security mission
specification and task allocation.

VII. C ONCLUSION

In this paper we have presented a distributed policy-based
management architecture for mobile collaborative teams. We
have also presented the models, concepts and implementation
details for the management architecture. The management

architecture is policy-based and uses three levels of specifica-
tions, namely, policy specification, mission class specification
and mission class instantiation specification so that it enables
us to reuse policies and the mission classes. A proof of concept
demonstration of the proposed architecture was also achieved.

To ensure that the UAVs comprising the SMC perform
their tasks correctly, it is important to cope with different
types of failures. Also, it is sometimes desirable to make sure
that the members of the team that form the SMC maintain
communication links with the other members of the team. We
will focus on failure and communication management as part
of our future work.

ACKNOWLEDGEMENTS

The work reported in this paper was funded by the Systems
Engineering for Autonomous Systems (SEAS) Defence Tech-
nology Centre established by the UK Ministry of Defence.

REFERENCES

[1] P. Horn, “Autonomic computing: IBMs perspective on the state of
information technology,” IBM Corporation, October 2001.

[2] J. O. Kephart and D. M. Chess, “The vision of autonomic computing,”
IEEE Computer, vol. 36, no. 1, pp. pp. 41–50, 2003.

[3] J. Sventek, N. Badr, N. Dulay, S. Heeps, E. Lupu, and M. Sloman, “Self-
managed cells and their federation,” inWorkshop Proceedings of the 17th
Conference on Advanced Information Systems Engineering. Springer-
Verlag LNCS, 2005.

[4] Ponder2, “http://ponder2.net.”
[5] I. Roman-Ballesteros and C. Pfeiffer, “A framework for cooperative

multi-robot surveillance tasks,”Electronics, Robotics and Automotive
Mechanics Conference, 2006, vol. 2, pp. 163–170, Sept. 2006.

[6] D. C. MacKenzie, R. C. Arkin, and J. M. Cameron, “Multiagent mission
specification and execution.”Auton. Robots, vol. 4, no. 1, pp. pp. 29–52,
1997.

[7] I. Rachid Alami and S. S. da Costa Bothelho, “Plan-based multi-robot
cooperation,”Advances in Plan-Based Control of Robotic Agents, vol.
Volume 2466/2002, pp. 65–95, Sept. 2002.

[8] k-team, “http://www.k-team.com.”
[9] “Policy-based management in dynamic communities,”Annual Confer-

ence of the ITA, (ACITA), 2008.
[10] P. Ulam, Y. Endo, A. Wagner, and R. Arkin, “Integrated mission specifi-

cation and task allocation for robot teams - design and implementation,”
Robotics and Automation, 2007 IEEE International Conference on, pp.
4428–4435, April 2007.

[11] R. Smith, “The contract net protocol: High-level communication and
control in a distributed problem solver,”Computers, IEEE Transactions
on, vol. C-29, no. 12, 1980.

[12] L. Iocchi, D. Nardi, M. Piaggio, and A. Sgorbissa, “Distributed co-
ordination in heterogeneous multi-robot systems,”Autonomous Robots,
vol. 15, no. 2, pp. pp. 155–168, 2003.

[13] L. Parker, “ALLIANCE: An architecture for fault tolerant multirobot
cooperation,”Robotics and Automation, IEEE Transactions on, vol. 14,
no. 2, pp. pp. 220–240, 1998.

[14] L. Chaimowicz, V. Kumar, and M. Campos, “A paradigm for dynamic
coordination of multiple robots,”Autonomous Robots, vol. 17, no. 1, pp.
pp. 7–21, 2004.

[15] M. Likhachev, M. Kaess, Z. Kira, and R. C. Arkin, “Spatio-temporal
case-based reasoning for efficient reactive robot navigation,” Mobile
Robot Labaratory, Georgia Institute of Technology, 2005.

[16] B. P. Gerkey and M. J. Mataric, “Principled communicationfor dynamic
multi-robot task allocation,” inISER ’00: Experimental Robotics VII.
London, UK: Springer-Verlag, 2001, pp. 353–362.

[17] Salemi, B. and Shen, Wei-Min, “Distributed and dynamic task re-
allocation in robot organizations,”Robotics and Automation, 2002.
Proceedings. ICRA ’02. IEEE International Conference on, vol. 1, 2002.

[18] S. L. Keoh, E. Lupu, and M. Sloman, “PEACE: A policy-basedestab-
lishment of ad-hoc communities,” inACSAC ’04: Proceedings of the
20th Annual Computer Security Applications Conference (ACSAC’04).
Washington, DC, USA: IEEE Computer Society, 2004, pp. pp. 386–395.

