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Resumo 
 

 

A SETD7 foi originalmente identificada como uma metiltransferase da 

histona 3, catalisando a monometilação da sua lisina 4, o que, por sua 

vez, provoca a abertura da cromatina e activação da transcrição genética. 

Recentemente, tem sido demonstrado que várias outras proteínas, tais 

como ER, HIF-, STAT3 e DNMT, são alvo de metilação pela SETD7. 

Devido à grande variedade de funções desempenhadas pelos alvos 

moleculares da SETD7, esta enzima é um potencial regulador de vários 

processos vitais para as células, isto é, do ciclo celular, resposta a danos 

no ADN, diferenciação e proliferação. De facto, SETD7 já começou a ser o 

foco de muitos estudos. Ainda assim, pouco se sabe sobre como SETD7 

influencia esses processos e sua contribuição para o desenvolvimento de 

cancro, facto que despertou a nossa curiosidade para o estudo do papel 

da SETD7 na proliferação e diferenciação celular. Aqui mostramos que 

SETD7 é regulada negativamente pelo EGF  e pela consequente activação 

da via de MAPK em células epiteliais mamárias. Além disso, SETD7 

também diminui o número de células epiteliais mamárias e a sua 

expressão parece ser induzida durante a diferenciação celular em 

resposta a hormonas lactogénicas. Adicionalmente, dois potenciais alvos 

de SETD7 (STAT3 e HOXB2) exibem padrões de expressão semelhantes a 

SETD7 em resposta ao EGF e hormonas lactogénicas, o que sugere que a 

SETD7 pode desempenhar um papel na sua regulação em células 

mamárias. 
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Abstract 

 
SETD7 was originally identified as a histone methyltransferase, catalyzing 

the monomethylation of histone 3 at its fourth lysine and, thereby, 

triggering the opening of chromatin and gene transcription activation. 

Recently, several other non-histone proteins, such as ER, HIF-, STAT3 

and DNMT, have been also shown to be methylated by SETD7. Due to the 

great variety of functions played by SETD7 molecular targets, this enzyme 

has the potential to arise as an important regulator of vital cellular 

processes, namely cell cycle, DNA damage response, differentiation and 

proliferation. In fact, SETD7 has now begun to be the focus of many 

studies. Still, little is known about how SETD7 influences these processes 

and its contribution to cancer development, a fact which has ignited our 

curiosity to study SETD7 role in cell proliferation and differentiation. Here 

we show that SETD7 is negatively regulated in proliferative mammary 

epithelial cells by EGF and the activation of the MAPK pathway. 

Furthermore, SETD7 also decreases mammary epithelial cell number and 

its expression seems to be induced during differentiation in response to 

lactogenic hormones. Additionally, two potential targets of SETD7 (STAT3 

and HOXB2) exhibit similar expression patterns to SETD7 in response to 

EGF and lactogenic hormones which suggests that SETD7 plays a role in 

their regulation in mammary cells.    
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1.1. Introduction 

Cellular differentiation is an essential biological process by which cells become competent and 

commit to a specific cell lineage, being important during both embryonic development and adult 

life (1). It is also now known as an important feature to have in consideration in the clinical 

evaluation of tumor aggressiveness and potential response to treatment. Generally, a high degree 

of differentiation is associated with a better prognosis.  In fact, differentiated cancer cells have a 

higher degree of similarity with each other and with their tissue of origin, are more cohesive and 

less invasive (2). 

Increasing evidence suggests that cell differentiation is deeply regulated by chromatin remodeling 

and histone post-translational modifications (1). Specifically, methylation of histone H3 at its 

fourth lysine (K4) is now established as an active mark for gene transcription (functioning as a 

distinctive signal for the recruitment of specific transcription factors) and cell differentiation (3-7). 

SETD7 is a H3K4 methyltransferase (8, 9) also known to methylate several other histone and non-

histone substrates involved in distinct cellular processes, including cell cycle regulation, DNA 

damage response, apoptosis, chromatin modulation, proliferation and differentiation (10-12). 

Thus, the potential of SETD7 as a regulator of these processes and, thereby, of cell’s homeostasis, 

is an interesting lead to follow. However, little is still known about SETD7 role in physiological and 

pathological processes. For this reason, we decided to study SETD7 expression in proliferation and 

differentiation of mammary epithelial cells. We believe this project to be of major importance as 

only by understanding how SETD7 influences these processes in normal cells, can one then 

establish its role in breast cancer development, progression and invasion.  

In summary, this project main goal is to establish the correlation between SETD7 and cellular 

differentiation and proliferation, as well as its function and regulation, in mammary epithelial 

cells. In addition, the expression and potential role of some of SETD7 molecular targets during 

these processes will also be explored.  

 

 

1.2. Mammary development 

1.2.1. Mammary development during Embryogenesis, Puberty and 

Pregnancy/Lactation  

The mammary gland is a specialized epidermal appendage, whose main function is to produce 

and provide milk to the newborn. This not only assures the nutrition of the baby during its first 

months but also the provision of immune factors, which helps to protect the baby from infections. 

On the other hand, it is also important for the development of unique bonds between mother and 

infant during nursing (13). 

This process of production and delivery of milk is called lactation, which is possible due to the 

existence of a complex network of branched ducts that constitute the mammary epithelium (14). 
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The ductal network is embedded within the mammary fat pad constituted by adipocytes. This 

stroma also comprises fibroblasts, immune cells and blood vessels (13).  

Mammary gland morphogenesis can be divided in five main stages: embryonic, pubertal, 

gestational, lactation and involution (or regression) (figure 1) (15). In the embryo, mammary 

development starts as a primary ectodermal thickening within the 4-6 months of gestation 

forming the mammary line, that then breaks up into individual placodes (a pair in humans) (16). 

At this stage, this primary bud contains two different cell populations: central and peripheral (or 

basal) (17). These placodes project into the underlying mesenchyme originating the epithelial 

buds (18). The epithelial buds then form branches and, at near term, the breast consists of a 

ductal tree of approximately five ducts embedded in the mammary fat pad and an external nipple 

that connects them to the body surface (13). Similarly to what occurs in the formation of other 

epithelial appendages, all of these changes rely on coordinated signaling between the epithelium 

and the underlying mesenchyme (19).  

Figure 1 – Different stages of mammary development and TEBs structure. Adapted from (14). 

After birth, the breasts involute and become quiescent until puberty (20), when, in females, the 

formation of secondary ductal branches takes place (17). In the pubertal stage, upon secretion of 

ovarian hormones like estrogen and progesterone, the mammary epithelium grows exponentially 

(21) and the immature ducts elongate, which leads to the formation of the terminal end buds 

(TEBs) (figure 1). Thereby, TEBs are structures that can be found at the end of the primary ducts 

and differ from them on three main features: they have an inner multilayer luminal epithelium (in 

contrast to the single layer present in the primary ducts) also delimited by an outer monolayer of 

myoepithelial cells, and own a large amount of mammary stem cells which, thus, allows them to 

have high levels of proliferation (22). It is important to notice that the primary TEBs, present in 

the beginning of the pubertal development, possess an outer layer of cap cells and an inner 

multilayer of body cells, which are highly proliferative and will give rise to the myoepithelium and 

luminal epithelium, respectively (23). Once deep in the fat pad, the TEBs bifurcate, forming new 

primary branches that then divide into secondary branches that will form a complex network of 

mammary branches through the entire fat pad. Simultaneously, stromal expansion can also be 
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observed in this phase (20). Moreover, lobular-alveolar structures, termed terminal ductal-lobular 

units (TDLUs) (figure 2), are formed at the end of these secondary ducts (19).  

During pregnancy, an extensive and accelerated proliferation of the epithelium takes place, with 

further branching, lobuloalveolar development and terminal differentiation (24), which is 

triggered by progesterone and prolactin (23). These structures (alveoli) contain milk-producing 

alveolar cells that are responsible for the synthesis and delivery of milk during lactation (13). The 

myoepithelium that forms the outer layer of these structures is very important at this phase, 

consisting of specialized, contractile cells that permit the release of milk through the ducts (14). 

Upon lactation cessation, the mammary glands involute, i.e., they suffer a coordinated apoptosis 

and remodeling process, reversing the previous growth. The breast structure is now similar to the 

existing one before pregnancy (24).  

Figure 2 – Schematic representation of the human breast. Adapted from (15). 

 

1.2.2. Mammary Stem Cells (MaSCs) and mammary epithelial hierarchy   

All of the changes described above, especially the ones that occur during pregnancy, and the fact 

that the human mammary gland maintains its regenerative capacity for decades, are thought to 

rely on the presence of mammary stem cells (MaSCs). As represented in figure 3, there is a 

hierarchy of stem and progenitor cells that ultimately give rise to the mature lobular and ductal 

structures (23).  

There are different cell-surface markers that can be used to discriminate between the different 

mammary cell subpopulations, like CD24 (heat-stable antigen), CD29 (1-integrin) and CD49f (6-

integrin) (25, 26). MaSCs have been shown to have higher levels of CD24, CD29 and CD49f and 

low levels of Sca-1, however, neither of these are exclusive of MaSCs which suggests that further 

research and discovery of specific markers is required (25). CD44 is a transmembrane receptor 
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that can serve as a stem cell marker as well, since it has been found to be highly present in MaSCs 

and continues to be expressed in myoepithelial cells, being involved in ductal outgrowth, cell-cell 

adhesion between luminal and myoepithelial cells and bilayer organization (27). It was also found 

that MaSCs don’t possess both estrogen (ER) and progesterone receptors (PR). However, as 

mentioned, it has been well established that these two steroid hormones are essential for 

mammary epithelial expansion and differentiation. Thus, these processes may be mediated by 

ER/PR positive (ER+/PR+) cells signaling to MaSCs via paracrine mechanisms. In other words, 

estrogen and progesterone stimulate ER-/PR-dependent gene transcription within the ER+/PR+ 

cells (that seem to be non-dividing cells from the luminal epithelium), promoting the release of 

certain factors. Then, these factors attach to specific receptors on the MaSCs surface and 

ultimately regulate MaSCs proliferation and differentiation (25). 

Figure 3 – Hypothetical model of the mammary epithelial hierarchy. The mammary cellular hierarchy is 

still poorly understood but it is hypothesized that there may exist a hierarchy of multiple stem and 

progenitor cells. MaSCs are multipotent, long-term, self-renewal adult stem cells that can differentiate into 

luminal and myoepithelial progenitor cells. Then, these progenitor cells commit to the luminal (ductal and 

alveolar) and myoepithelial lineages, respectively. ER, Estrogen receptor; LT-RC, Long-term repopulating 

stem cell; PR, Progesterone receptor; ST-RC, Short-term repopulating stem cell. Taken from (25). 

  

1.2.3. Proliferation and differentiation of the mammary gland 

All of the changes that occur during the different stages of mammary gland development are 

driven by different pathways, most of which are related to pituitary and ovarian hormones that 
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act in specific receptors located on the mammary gland. The following hormones are particularly 

relevant to guide and control the developmental changes occurring in puberty and adulthood 

(28). 

1.2.3.1. Estrogen and EGFR signaling  

Estrogen is a hormone released by the ovaries that has a major role in pubertal mammary growth 

during ductal morphogenesis through the activation of ER. However, ER is only expressed in a 

subpopulation of luminal cells (ER+ cells) and therefore it is thought that these cells drive 

proliferation of ER negative (ER-) cells through paracrine signals. In addition to its role in ductal 

morphogenesis, estrogen also promotes alveolar cells growth and maintenance during pregnancy 

(28).  

Epidermal growth factor receptor (EGFR), a transmembrane ERBB/HER receptor tyrosine kinase 

present in both epithelial and stromal cells (28), has long been shown to be implicated in 

mammary gland development and to mediate estrogen proliferative effects (29-31). In fact, one 

of EGFR ligands, Amphiregulin (AREG), is a strong candidate for the factor that is released by ER+ 

cells (28, 32).  There is also evidence supporting a role for EGF as a mediator of estrogen paracrine 

signaling (30, 31, 33). In fact, EGF was shown to promote mammary epithelial cell proliferation in 

synergy with estrogen (33). Other members of the EGF-like family of growth factors include 

transforming growth factor- (TGF), heparin-binding EGF-like growth factor (HB-EGF), 

betacellulin (BTC), epiregulin (EPR), and epigen. All of these EGFR ligands are originally expressed 

as transmembrane precursors whose extracellular domain is proteolytically cleaved to release the 

mature growth factor that will activate EGFR (34). Activated EGFR can then activate multiple 

signaling pathways involved in cell proliferation and survival, such as the phosphoinositide 3 

kinase/protein kinase B (PI3K/AKT), Janus kinase/signal transducers and activators of transcription 

(JAK/STAT) and mitogen-activated protein kinase (MAPK) pathways (figure 4) (35-37).  
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Figure 4 – Main pathways activated downstream of EGFR. AKT, Protein kinase B; CCND1, gene encoding 

cyclin D1; CDKN1A, gene encoding p21; EGF, epidermal growth factor; EGFR, EGF receptor; ERK/MAPK, 

extracellular signal-regulated kinase; JAK, Janus kinase; MEK/MAPKK, ERK kinase; MKP1, MAPK phosphatase 

1; PI3K, phosphoinositide 3 kinase; PKC, protein kinase C; PLC, phospholipase C; PTEN, phosphatase and 

tensin homologue; STAT, signal transducers and activators of transcription; TGFα, transforming growth 

factor-α; VEGF, vascular endothelial growth factor. Taken from (38).  

1.2.3.2. Progesterone 

Progesterone is an ovarian hormone that contributes to the development of side-branches and 

alveologenesis during pregnancy. For that reason it is crucial for the formation of mature 

structures capable of producing and secreting milk (that holds nutrients vital for the newborn). PR 

is only expressed in a subpopulation of luminal cells (about 30% of them) and, similarly to 

estrogen, this suggests that progesterone promotes cell proliferation through paracrine signals 

(28). Between the several possible paracrine mediators of the progesterone function, the 

receptor activator of nuclear factor kappa B1 (NF-B1) ligand (RANKL) and the Wingless-type 

mouse mammary tumor virus (MMTV) integration site family member 4 (Wnt4) seem to be the 

more promising.  

1.2.3.3. Prolactin 

 Prolactin (PRL) is a hormone secreted by the pituitary gland that collaborates with progesterone 

in lobuloalveolar development, in order to generate a lactation-competent gland during 

pregnancy. It can also act indirectly by stimulating progesterone production in the ovaries. 

Prolactin binds to a member of the class I cytokine receptor superfamily, PRLR, which enhances 
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several signaling pathways such as JAK/STAT, MAPK and PI3K/AKT pathways. The interaction PRL-

PRLR triggers JAK2/STAT5 signaling pathway activation (28), enhancing transcription via the 

transcription factor STAT5 phosphorylation (by JAK2) and its nuclear translocation. This cascade of 

events lead to induction of RANKL (in synergy with progesterone), which ultimately triggers 

mammary epithelial growth and alveologenesis. PRL also induces insulin-like growth factor 2 

(IGF2), which accelerates alveolar growth (39). Prolactin, in association with insulin and cortisol, 

are also key factors in lactogenesis (that occurs from mild pregnancy to a few days before 

parturition), where the mammary epithelium differentiates and begins to produce all of the milk 

components. Further epithelial expansion and an increase in the expression of genes involved in 

milk secretion can occur after birth of the new infant as suckling begins (40-42). This process is 

also driven by STAT5 that appears to regulate the transcription and secretion of milk proteins 

(41). 

1.2.3.4. Insulin 

Insulin is essential for lactation since it enhances milk protein production in synergy with PRL. 

Recent data suggests that insulin increases the transcription of E74-like factor 5 (ELF5) and, thus, 

of STAT5 (since ELF5 is a co-regulator and amplifier of STAT5 activity), which furthers its 

phosphorylation in result to PRL signaling and leads to an increase in the transcription of milk 

protein genes such as -lactalbumin and -casein (40, 43). 

 

1.3. Tumorigenesis and cancer development  

Tumorigenesis is a multistep process, which depends on accumulation of DNA mutations. 

However, only a small portion of these mutations will contribute for malignant transformation 

and, therefore, for cancer initiation and progression. Also, to drive this transformation, these 

mutations may intensify cells proliferation rate, make them resistant to apoptosis and activate 

specific pathways involved in cell growth and division, giving these cells a selective proliferative 

advantage (44). Moreover, nowadays it is acknowledged that cancer cells main features are:  they 

are self-sufficient in growth signals, insensitive to anti-growth and pro-apoptotic signals, thereby 

having unlimited self-renewal potential. They are also capable of stimulating blood vessels growth 

(angiogenesis) and of invading other tissues and form metastases (45). Additionally, cancer 

development can be instigated not only by genetic alterations but also by dysregulation of the 

epigenetic machinery. Accordingly, epigenetic and genetic alteration can cause aberrant gene 

expression and genomic instability and, possibly, predispose to cancer (46).  

 

1.3.1. Cancer and Stem cells 

Considering the current knowledge about cancer pathology, it is thought that cancer originates 

from stem cells or cells that have acquired stem cell properties. One of stem cells’ key 

characteristics is the fact that they have a long lifespan, which makes them major candidates for 

the accumulation of mutations and subsequent malignant transformation. On the other hand, 
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cancer stem cells are non-differentiated cells that can give rise to specific cell lineages, thus 

perpetuating mutations through uncontrolled mitotic divisions. The cancer stem cells capacity to 

differentiate is also a probable cause for cancer heterogeneity and therapeutic resistance (44). 

Currently it is not established if cancer stem cells originate from normal adult stem cells or result 

from de-differentiation of cancer cells (47-49). 

 

1.4. Epigenetic modifications 

Epigenetic modifications are hereditable changes in the genetic expression patterns mediated by 

epigenetic regulatory mechanisms, without a change in DNA sequence. These mechanisms 

comprise DNA methylation, histone modifications and RNA silencing by noncoding RNAs (50). 

Most of these changes are generated during cellular differentiation and can be passed through to 

descendant cells, being maintained even after multiple cycles of cell division (51).  

DNA methylation, catalyzed by DNA methyltransferases (DNMTs), occurs on cytosine residues 

predominantly in the sequence CpG (52). This causes the silencing of the genetic material (genes 

and non-coding regions), which is particularly important during embryogenesis (50). On the other 

hand, histone modifications consist of enzyme-dependent histone residues posttranslational 

changes, including acetylation, phosphorylation, methylation, ubiquitylation and sumoylation (50, 

53). This kind of epigenetic modification will be further explained ahead. Lastly, RNA silencing 

consists of posttranscriptional mRNA silencing by small non-coding RNAs, commonly called 

microRNAs (50). MicroRNAs are partially or completely complementary to their target mRNA, 

which allows them to recognize and bond with specific mRNAs. Then, this may cause mRNA 

degradation or inhibition, preventing mRNA translation into proteins. This is important for the 

maintenance and control of the global gene expression patterns (51).  

Epigenetic changes play an important role in the regulation of gene expression and chromosomal 

stability. In other words, they ensure that the correct genes are transcribed, at the right time and 

amount within each specific tissue. For these reasons, it is plausible to assume that any 

perturbation of this process can lead to the dysregulation of gene transcription and of normal 

cellular processes and indirectly contribute to cancer initiation and progression. Moreover, 

alteration of the normal methylation patterns due to changes in the enzymatic activities of the 

histone methyltransferases (HMTs) and histone demethylases (HDMs) has been associated with 

breast, prostate, lung and brain cancers as well as leukemia (52).  

 

1.5. Histone methyltransferases 

In eukaryotic cells the genetic material is enclosed in the nucleus and packaged into chromatin, a 

complex structure composed of DNA and proteins. Moreover, in mammalian cells, chromatin is 

arranged into compacted and highly organized structures, the chromosomes (54). Chromatin’s 

fundamental unit is the nucleosome formed by 145-147 base pairs of DNA, wrapped around an 
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octamer of four core histones: H2A, H2B, H3 and H4. Each nucleosome core is then stabilized by a 

linker histone (e.g., H1), that in cooperation with other non-histone proteins further direct 

nucleosome packaging and organization into chromosomes (55, 56).  

Histones can suffer posttranslational modifications, including acetylation, phosphorylation and 

methylation. These modifications (that mostly occur on the N-terminal tail domains) are catalyzed 

by specific histone modifying enzymes and can alter the interactions between nucleosomes, DNA-

nucleosomes and nucleosomes/DNA-regulatory factors, leading to the regulation of chromatin 

organization, mitosis and DNA transcription, replication, recombination and repair (53, 55, 57).  

Histone methylation is catalyzed by HMTs that transfer a methyl group to a lysine or to an 

arginine. All the lysine methyltransferases (KMTs), except Dot1 that methylates H3 at K79, contain 

a Su(var)3-9-Enhancer of Zeste-Trithorax (SET) domain that is responsible for catalysis of cofactor 

S-adenosylmethionine (SAM), with subsequent transference of a methyl group to a lysine. 

Similarly, arginine methyltransferases (PRMTs) also catalyze the transference of a methyl group 

from SAM to an arginine residue within its substrates. Contrarily to other histone post-

translational modifications, methylation does not alter histone charge, having little to no effect on 

DNA-histone interactions. Methylation can rather serve as a distinctive signal for the recruitment 

of methylation “reader” proteins that can trigger transcriptional activation or suppression 

depending on the modified histone and residue position in the histone primary structure. Lysines 

and arginines can be either mono- or di-methylated. Additionally, lysines can also be tri-

methylated (6, 53, 58).  

Due to its involvement on gene expression and chromatin architecture regulation, epigenetic 

modifications can be implicated on cell malignant transformation and subsequent aberrant 

proliferation. Thus, the dysregulation of histone modifying enzymes’ activity may lead to aberrant 

histone modification and give rise to cancer through inhibition of tumor suppressors and/or 

oncogenes activation (51, 53). In fact, because of HTMs ability to control gene transcription, the 

correct regulation of HTMs expression and activity is crucial for the normal function and fate 

determination of cells. Therefore, dysregulation of HTMs is nowadays increasingly acknowledged 

as a hallmark for cancer development and progression, and therefore several HTMs are currently 

in the spotlight of cancer research because of their potential oncogenic or tumor suppressor roles 

(52, 59, 60). One example is SETD7 which has been found to be associated with but have 

divergent functions in various cancers (61-65).  

 

1.5.1. Histone H3 methylation at K4 

Epigenetic modifications, such as histone modifications, are responsible for the control of the 

genetic material expression or silencing, being crucial during the different development stages, 

apoptosis and aging. H3 methylation at K4 mark is enriched at actively transcribed regions, and 

has been shown to be important for an efficient control of normal development, nucleosomal 

function and homeostasis. Thereby, dysregulation of this modification can lead to impairment of 

normal cellular regulatory mechanisms and is related to cancer development. Furthermore, 
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H3K4me1/me2/me3 dysregulation may mediate anti-apoptotic, proliferative, tumor-induced 

angiogenesis and inflammation pathways activation (66). Currently, H3K4 methylation modifiers 

(methyltransferases and demethylases) are known to have a role in embryonic development and 

regulation of stem cells’ fates, being required for stem cells self-renewal or differentiation and 

important for future cancer stem cells studies (6, 7, 67).  

H3 methylation in its fourth lysine is often found near the promoters of actively transcribed genes 

(68). This is emphasized by the fact that H3K4me2 are often found in coding regions and about 

75% of all human promoters are marked by H3K4me3 (6, 69). H3K4 methylation is present in the 

intergenic regions within Homeobox (HOX) gene clusters, which are some of the most important 

genes regulated by H3K4 methylation (68). HOX genes encode a family of transcriptional 

regulators that are involved in embryonic development. During the initial stages of development 

HOX genes are downregulated, whereas it can become increasingly activated during embryogenic 

development, coordinating tissue-specific cell proliferation and differentiation (with HOX loss-of-

function resulting in embryonic lethality) (70-72). Similarly to embryogenesis, HOX expression 

during adulthood is tissue-dependent. In fact, the different HOX genes exhibit a tissue-specific 

expression pattern, regulating cell renewal (73), hematopoiesis (74), cell fate and differentiation 

and tissue homeostasis (75-77). Nonetheless, HOX genes dysregulation has been associated with 

cancer. Interestingly, HOX genes can either be upregulated or downregulated in cancer and either 

have an oncogenic or a tumor suppressor effect, depending on the tissue context and cancer type. 

For example, HOXB13 was found to be upregulated in ER+ breast cancers from patients that had 

been treated with tamoxifen, being responsible for tamoxifen resistance and an increase in cancer 

cells proliferation, migration and invasion (77-79). On the other hand, HOXB13 is downregulated 

in colorectal and prostate cancers, functioning as a tumor suppressor (78). HOXB2 was also shown 

to function as a tumor suppressor (inhibiting tumor growth and promoting apoptosis) in breast 

cancer (80) and acute myeloid leukemia (AML) (81). In fact, HOXB2 is correlated with better a 

prognosis in breast cancer patients (80). Conversely, HOXB2 overexpression has been associated 

with cervical (82, 83), lung (84), and pancreatic (85) cancers progression, invasiveness and 

recurrence. On the other hand, H3K4 methylation antagonizes Enhancer of zeste homolog 2 

(EZH2) repression of Polycomb group (PcG)-regulated genes. EZH2 is the catalytic subunit of PcG 

repressive complex 2 (PRC2) (initially described as a repressor of the HOX genes by catalyzing 

H3K27 trimethylation) (86-88). PRC2 is essential for the regulation of transcriptional silencing 

during embryonic development, especially in the early stages, mediating lineage decisions (89, 

90).   

The forth lysine of H3 histones can be methylated by several SET-domain containing enzymes 

such as SET1A, SET1B, mixed lineage leukemia proteins 1 to 5 (MLL1 to MLL5), SET7/9, SET and 

Myeloid-Nervy-DEAF1 (MYND) domain-containing protein 1 to 3 (SMYD1 to SMYD3), Absent, 

Small or Homeotic 1-like protein (ASH1L), SET domain and Mariner transposase fusion protein 

(SETMAR) and Positive Regulatory-domain zinc finger protein 9 (PRDM9) (6, 91). These can 

methylate H3 at K4 into all three states, being involved in transcriptional activation (6, 69).  
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H3K4 demethylation is controlled by lysine demethylase 5/Jumonji adenine-thymine (AT)-rich 

interactive domain 1 (KDM5/JARID1) and lysine-specific histone demethylase 1 (LSD1), that act as 

transcriptional repressors (67). 

1.5.1.1. SETD7 and its histone and non-histone substrates 

SETD7 (also known as SET7 or SET9) is a lysine methyltransferase that comprises a SET domain 

and it catalyzes the transference of a methyl group to a lysine residue of various histones and 

non-histone subtracts. These potential SETD7 substrates are involved in distinct cellular 

processes, for instance, in cell cycle regulation, DNA damage response, RNA polymerase II 

dependent gene transcription, chromatin modulation and differentiation. Hence, SETD7 can play 

a critical role in several physiological and pathological processes (10-12). Moreover, SETD7 

knockdown has been shown to cause embryonic lethality, which indicated that it plays an 

important role in development. On the other hand, SETD7 was also shown to be important for -

cells’ function and skeletal muscle differentiation, as described below (92).   

Histone H3 can be monomethylated by SETD7 at its lysine 4, which can lead to transcriptional 

activation by preventing chromatin condensation and by facilitating transcriptional factors binding 

to the promoter regions of specific genes (figure 5) (93). For example, SETD7-driven methylation 

of H3 at K4 takes part in the expression of the tumor necrosis factor alpha (TNF-) gene by 

facilitating NFB-p65 subunit binding to gene promoters of NFB-dependent inflammatory genes, 

such as TNF, monocyte chemoattractant protein-1 (MCP-1) and interleukin 8 (IL-8) (whose 

dysregulation can give rise to several inflammatory diseases, including atherosclerosis, insulin 

resistance, diabetes and metabolic syndrome, as well as cancer). H3K4 methylation is also 

associated with RELA expression, which encodes for NFB-p65. Additionally, SETD7 also directly 

methylates p65 at K37, restricting p65 to the nucleus and promoting its association with NFκB-

dependent promoters, or at K315 and K316, resulting in negative regulation of p65 translocation 

to the nucleus (92, 94).  

A recent study suggests that SETD7 is required for skeletal muscle gene expression and myogenic 

differentiation by directly interacting with Myogenic differentiation (MyoD) protein, a 

transcriptional factor that binds to the regulatory region of muscle differentiation genes to 

activate gene expression. The interaction between MyoD and SETD7 facilitates SETD7 access to 

the silencing nucleosome and monomethylation of H3K4, leading to increased affinity of MyoD to 

the myogenic regulatory regions. SETD7 also prevents Suv39h1 (a methyltransferase that 

transfers three methyl group to H3K9) association with MyoD (by competing with Suv39h1 for 

MyoD association), preventing its inhibitory effect over differentiation genes through H3K9 

methylation (12).  



1. State of the Art 

14 
 

Figure 5 – SETD7 substrates and gene expression. H3K4 methylation by SETD7 prevents chromatin 

condensation (i.e., chromatin adopts an “open” conformation – euchromatin) and enhances gene 

transcription. SETD7 also methylates non-histone proteins, including transcription factor. Methylation of 

ER, p53 and TAF10 results in their stabilization, thereby improving their activity as transcriptional 

activators. ER, Estrogen receptor ; SETD7, SET domain containing lysine methyltransferase 7; TAF10, 

TATA-box-binding protein associated factor 10. Taken from (93). 

SETD7 is also required for normal pancreatic and duodenal homeobox 1 (Pdx1)-mediated insulin 

synthesis by pancreatic -cells, since the interaction between SETD7 and this transcriptional 

factor, Pdx1, leads to the recruitment of SETD7 and consequent H3K4 methylation in the 

promoter region of the Ins1/2 gene (with its subsequent activation and preproinsulin expression) 

(92, 95-97). Having this in mind, SETD7 may play an important role in development through 

cellular differentiation and tissue-specific gene activation (92).  

As described in Table 1, methylation of specific lysine residues on non-histone proteins (such as 

ER, p53 and TAF10) by SETD7 has also been described, improving their ability to serve as 

transcriptional activators (figure 5) (93). Recent studies have demonstrated that SETD7 also 

methylates several lysines of H2A and H1.4, as well as, the lysine K15 of H2B (92). 

These findings highlight the importance of SETD7 and H3K4 methylation in several physiological 

processes and the basis of its mechanism of action. Furthermore, one can question if this enzyme 

is also linked to pathological processes, like cancer, diabetes or inflammatory diseases. Therefore, 

it would be interesting to conduct additional research to further explore SETD7 importance and 

expression patterns in these diseases. 

 

Table 1 - SETD7 targets and respective effects upon SETD7-mediated methylation. 

SETD7 targets Effects Ref.s 

Histones  
H3 H3 methylation at K4, enhances transcriptional 

activation by preventing chromatin condensation. 
(93) 

H2A 
H2B 

Methylates histones H2A and H2B when in a free 
state. Little is known about the functional effect of this 
modification. 

(92, 98) 
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H1.4 H1.4 is methylated by SETD7 in six different lysine 
residues (K121, K129, K159, K171, K177 and K192) 
which can influence H1 binding to DNA and its 
function in chromatin compaction. 

(92, 99) 

Chromatin 
associated  

MeCP2 (Methyl-
CpG Binding 
Protein 2) 

MeCP2 is a nuclear protein that recognizes and binds 
methylated DNA, functioning as a promoter repressor. 
SETD7 was reported to methylate MeCP2 at K347, 
although the effects of this methylation are still a 
mystery. 

(92, 100) 

PPARBP 
(Peroxisome 
Proliferator-
Activated 
Receptor Binding 
Protein) or MED1 
(Mediator 
Complex 1) 

PPARBP has been demonstrated to be methylation by 
SETD7 at K1006, however, the functional purpose of 
this modification is still to be defined. PPARBP is a 
coactivator complex of the transcription machinery 
that is recruited in order to enhance the expression of 
RNA polymerase II transcribed genes, regulating the 
cell cycle, DNA repair, peroxisome proliferation, 
differentiation, proliferation and apoptosis. Med1 
gene was shown to be overexpressed in breast, 
prostate and hepatic cancer.  

(98, 101, 
102) 

CENPC1 
(Centromere 
protein C1) 

CENPC1-K414 monomethylation is catalyzed by SETD7. 
Little is known about the biologic effects of this 
modification, with the need to further study how 
SETD7 can influence CENPC1 function. CENPC1 
associate with centromeric DNA and assists the 
assembly of the kinetochore to the centromere. 

(92, 98, 
103) 

Transcriptional 
factors and Co-
activators / 
repressors 

p53 SETD7 methylation at K372 results in the stabilization 
of p53 and inhibition of p53 nuclear export, which 
leads to transcriptional activation of the p53 target 
genes. 

(92, 104, 
105) 

TAF10 (TATA-box-
binding protein 
associated factor 
10) 

TAF10 is methylated at K189, which increases TAF10-
RNA polymerase II affinity and, as a result, stimulates 
TAF10 mediated transcription. TAFs are transcription 
factors, part of the Transcription Factor IID (TFIID) 
complex, that bind gene promoters and trigger pre-
initiation complex formation (PIC), which regulates 
gene transcription initiation by RNA polymerase II. 
TAFs enhance transcription by interacting with 
transcriptional activators and as readers of epigenetic 
marks. 

(92, 93, 
106-108) 

TAF7  Similarly to TAF10, TAF7 is also monomethylated by 
SETD7 at K5. 

(92, 105, 
109) 

ER Enhances ER-driven transcription by altering ER 
recruitment and binding to target gene regulatory 
sequences through K302 methylation. 

(92, 93, 
110) 

E2F1 E2F1 is destabilized by methylation at K185 by SETD7, 
which prevents E2F1 accumulation during DNA 
damage and the activation of its pro-apoptotic target 
gene p73. This highlights SETD7 potential role in cell 
cycle regulation (and, by association, in cancer 
proliferation). However, other reports suggest that 
E2F1 methylation at K185 by SETD7 also enhances 
E2F1-dependent transcriptional activation (although it 
enhances E2F1 proteosomal degradation).   
 

(92, 111-
113) 
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MINT (Msx2-
interacting nuclear 
target protein) 

SETD7 methylates MINT at K2076. MINT functions as 
transcription repressor involved in the regulation of 
several processes such as cell cycle, craniofacial 
development, neural cell fate and apoptosis. Yet, 
MINT methylation function is still unknown. 

(98, 114) 

IRF1 (Interferon 
Regulatory Factor 
1) 

Lysine K126 of IRF1 seems to be methylated by SETD7. 
IRF1 is a transcription regulator of immune responses 
and hematopoietic development. Further studies 
should focus on the discovery of SETD7 modification 
effects over IRF1 function. 

(98, 115) 

HIV-Tat (Human 
immunodeficiency 
virus 
transactivator) 

By methylating Tat at K51, SETD7 enhances Tat-
dependent transactivation of several viral and cellular 
genes, contributing to viral replication and HIV-1 
pathogenesis. 

(92, 116, 
117) 

FoxO3 (Forkhead 
Box O3) 

FoxO3 is an activator of genes involved in several 
cellular regulatory pathways, such as stress resistance, 
cell cycle arrest, differentiation, apoptosis and 
metabolism. It also is described in the literature as a 
tumor suppressor. FoxO3 is methylated at K271, which 
leads to an increase in its transcriptional activity.  

(92, 118) 

NFB-p65 SETD7-driven methylation of H3 at K4 or of p65 at K37 

facilitates NFB-p65 subunit binding to gene 

promoters of NFB-dependent inflammatory genes, 

such as TNF-, MCP-1 and IL-8.  

(92, 94, 
119) 

AR (Androgen 
Receptor) 

SETD7 methylates AR (nuclear and cytoplasmic) at 
K630, which leads to enhanced transcriptional activity 
of AR and subsequent expression of PSA and NKX3-1. 

(92, 120) 

FXR (Farnesoid X 
receptor) 

FXR is a nuclear receptor that regulates bile acid 
homeostasis (by inhibiting its synthesis) and lipid, 
cholesterol and glucose metabolism in the liver and 
intestines. FXR also promotes liver regeneration and 
inhibits transcription of pro-inflammatory genes which 
may explain why FXR-knockout in mice significantly 
increases liver tumor incidence. SETD7-dependent 
methylation of FXR at K206 enhances transcription of 
two FXR target genes, SHP and BSEP. FXR lysines K210 
and K460 are also putatively methylated by SETD7, 
although this still needs to be proven.   

(121-
128) 

pRb 
(Retinoblastoma 
tumor suppressor 
protein) 

pRb is monomethylated at K873 by SETD7, which is 
necessary for Rb-dependent cell cycle arrest, 
transcriptional repression, and Rb-dependent 
differentiation. 

(92, 105, 
129) 

STAT3  STAT3, a transcription factor normally activated in 
response to several cytokines and growth factors 
involved in cell growth and survival, is dimethylated at 
K140 by SETD7 in response to IL-6 signaling, which 
inhibit STAT3 binding to DNA promoters. 

(92, 105, 
130) 

HIF-1 (Hypoxia-
inducible factor 

1) 

Under hypoxic conditions HIF is activated, inducing the 
transcription of genes involved in cell’s adaptation to 
cellular hypoxia. More specifically, it can alter cellular 
energy metabolism and promote angiogenesis, 
maintaining tissue integrity and homeostasis. Recent 

studies (65, 131) show that SETD7 stabilizes HIF-1 

and induces HIF-1-dependent gene transcription by 

(131-
133) 



1. State of the Art 

17 
 

methylating HIF-1 at K32 and inhibiting its 
ubiquitination and degradation. SETD7 also methylates 

H3K4 at the promoters of HIF-1-activated genes. This 
may suggest that SETD7 is involved in metabolic 
adaptation in hypoxic cancer cells. By contrast, a 
different study (132) states that SETD7 may negatively 

regulate HIF-1 transcriptional activity. Therefore, 
additional research must be conducted in other to 

clarify SETD7 effects over HIF-1 function.  

PGC-1 
(Peroxisome 
proliferator-
activated 
receptor-gamma 

(PPAR-) co-

activator ) 

PGC-1 is a transcription co-activator that interacts 

with nuclear receptors, including PPAR-, and 
transcription factors to facilitate gene transcription. It 
is required for the regulation of mitochondrial 
biogenesis, energy metabolism and adaptive 

thermogenesis. PGC-1 has also an anti-inflammatory 
role in muscle tissue.  

PGC-1 is methylated at K779, which is essential for 
the recruitment of Mediator and Spt-Ada-Gcn5-
acetyltransferase (SAGA) complexes and, thus, for the 

transcription of PGC-1 target genes. In fact, SETD7 

knockdown decreased PGC-1 capacity to bind MED1, 
MED17 and the SAGA complex component 
CCDC101/SGF29, which consequently impaired PGC-

1 capacity to stimulate transcription.   

(134-
137) 

YAP (Yes-
associated 
protein) 

YAP is a transcriptional coactivator of proliferation and 
anti-apoptotic genes, whose activity is inhibited upon 
activation of the Hippo signaling pathway by cell-cell 
contact. YAP is methylated by SETD7 at K494, which 
prevents YAP translocation to the nucleus, decreasing 
YAP target genes (Ctgf and Cdc20) expression. 
Moreover, SETD7

+/+
 mouse embryonic fibroblasts 

(MEFs) were more sensitive to contact inhibition of 
proliferation than SETD7

-/-
 MEFs, which may be related 

to YAP methylation and consequent cytoplasmic 
sequestration.  

(138, 
139) 

PDX1 (Pancreatic 
And Duodenal 
Homeobox protein 
1) 

PDX1 is a transcription factor essential for pancreatic 
development, promoting cells differentiation. PDX1 
also promotes pancreatic regeneration and regulates 

mature -cells function, proliferation and survival as 

well as -cell-related genes transcription (such as 
insulin). PDX1 has been associated with diabetes and 
cancer development, being overexpressed in several 
cancers, such as pancreatic and gastric cancer. 
Maganti et al. (2015) found that PDX1 is methylated at 
K123 and K131, with K131 been necessary for PDX1 
transcriptional activity. They then proposed that the 
methylation of these two lysines may be catalyzed by 
SETD7 as PDX1 transcriptional activity is significantly 
increased (by about 40%) by SETD7. However, there is 
not enough evidence to prove this hypothesis.  

(140-
147) 

YY1 (Yin Yang 1) YY1 is a transcription factor that is methylated by 
SETD7 at two lysine residues, K173 and K411. YY1 can 
either activate or repress gene expression, regulating 

(148-
150)  
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cell proliferation and differentiation, DNA repair and 
apoptosis. Evidence suggests that YY1 methylation by 
SETD7 promotes YY1-dependent transactivation of 
specific genes involved in cell cycle regulation and cell 
proliferation. 
Moreover, alike other SETD7 substrates YY1 plays a 
role in cancer development and progression. 
Interestingly, YY1 can function either as an oncogene 
(promoting cancer proliferation) or a tumor-
suppressor, depending on the type of cancer. 
Therefore, SETD7 is a putative regulator of YY1 
oncogenic or tumor-suppressor functions.  

Enzymes  
ZDHC8 (Zinc finger 
DHHC (Asp-His-
His-Cys) domain-
containing protein 
8) 

ZDHC8 is an S-acyltransferase that mediates the 
attachment of fatty acids on to cysteine residues (S-
acylation), which regulates their solubility, attachment 
to membranes, distribution over specific organelles, 
folding and stability. ZDHC8 methylation by SETD7 
occurs at K300. Up to now, no functional effect has 
been described.  

(98, 151, 
152) 

TTK (Dual 
specificity protein 
kinase) or MPS1 
(Monopolar 
spindle 1) 

It was verified that TTK is methylated by SETD7 at 
K708, however, the functional effects of this 
modification still need to be cleared. TTK is a dual-
specificity protein kinase that phosphorylates several 
proteins involved in DNA damage-induced cell cycle 
arrest, spindle pole duplication and chromosome 
alignment and segregation during mitosis. 
Dysregulation of this mitotic kinase may be involved in 
cancer development since it would result in 
uncontrolled proliferation. 

(98, 153, 
154) 

DNMT1 (DNA 
cytosine-5-
methyltransferase 
1) 

Methylation of DNMT1 (a maintenance DNA 
methyltransferase that specifically methylates DNA at 
CpG residues, normally involved in transcriptional 
repression) at K142 by SETD7 results in a decrease in 
DNMT1 by facilitating its polyubiquitination and 
subsequent proteasome-mediated degradation. 

(92) 

SIRT1 (Sirtuin 1) In response to DNA damage, SIRT1 methylation at 
K233, K235, K236 and K238 is catalyzed by SETD7, 
which inhibits SIRT1-p53 association and, 
consequently, enhances p53 acetylation and 
transactivation. This ultimately leads to apoptotic cell 
death, which indicates that SIRT1 is an oncogenic 
protein and in the absence of SETD7 protects cells 
from apoptosis.  

(92, 155) 

PCAF (p300/CBP-
associated factor) 

STED7 methylates six different lysine residues of PCAF 
(K78, K89, K638, K671, K672 and K692) – an 
acetyltransferase implicated in several cellular 
processes –, regulating PCAF localization (methylated 
PCAF was found to localize to the nucleus) and 
possibly its function. 

(92, 156) 

PARP1 (Poly-ADP-
ribose polymerase  
1) or ARTD1 (ADP-
ribosyltransferase 
diphtheria 

PARP1is a nuclear enzyme that transfers ADP-ribose 
from nicotinamide adenine dinucleotide (NAD

+
) to 

nuclear proteins (e.g., histones, transcription factors 
or PARP1 itself – auto-inhibition). PARP1 is best known 
as a DNA damage sensor, promoting DNA repair and 

(157-
163) 
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toxin‑like 1) maintenance of genomic integrity. PARP1 also 
regulates chromatin replication, transcriptional 
activation, differentiation, cell death and cell cycle 
arrest. PARP1 methylation at K508 by SETD7 was 
shown to enhance PPAR1 enzymatic activity in basal 
conditions and upon oxidative and DNA stress. 

Others  
LIN28A LIN28A is RNA-binding protein that inhibits RNA 

translation.  LIN28A is expressed in embryonic stem 
cells (ESCs) and cancer stem cells (CSC), conferring 
self-renewal properties and pluripotency to these 
cells. LIN28A also inhibits cell differentiation by 
preventing pri-/pre-let-7 maturation (a microRNA 
whose mature form promotes cell differentiation). 
LIN28A is methylated by SETD7 at its lysine K135, 
which promotes its localization to the nucleus. In fact, 
although LIN28A is predominantly located in the 
cytoplasm (blocking pre-let-7 maturation), methylated 
LIN28A (by SETD7) localizes to the nucleus. In addition, 
SETD7-mediated methylation stabilizes LIN28A and 
enhances its affinity to pri-let-7, maximizing the 
inhibition of let-7 maturation by LIN28A in the 
nucleus. 

(164-
166) 

AKAP6 (A kinase 
anchor protein 6)  

AKAP6 methylation at lysine K604 is catalyzed by 
SETD7. AKAP6 functions as an anchor protein that 
localizes signaling enzymes with their substrates, 
facilitating their interaction. In other words, AKAP6 is 
responsible for the spatial and temporal coordination 
of cellular signaling. Currently, little is still known 
about AKAP6 methylation effects.  

(98, 167, 
168) 

Cullin 1 Cullin 1, a protein required for ubiquitin-dependent 
protein degradation, plays an important role in cell 
cycle progression and early embryogenesis through 
ubiquitination of several proteins, such as p27 and p21 
(repressing their inhibitory effect over cyclin-
dependent kinases). Cullin 1 methylation by SETD7 
occurs at K73 but further studies need to be 
conducted in other to better understand its functional 
effects. 

(98, 169) 

 

1.5.1.1.1. SETD7 substrates and its potential association with cancer 

Numerous SETD7 substrates, such as ER (110), p53 (170) and FoxO3 (118), have been shown to 

play a pivotal role in carcinogenesis and cancer progression. In addition, studies using embryonic 

fibroblasts obtained from SETD7 heterozygous and null mice demonstrated that these are more 

susceptible to malignant transformation in comparison to cells from healthy mice (118). 

Furthermore, SETD7 knockdown in p53-negative cells increased colony formation, which can be 

an indicative of the potential SETD7 role in cells growth retardation and death, even in the 

absence of this pro-apoptotic factor (113). This may suggest that SETD7 acts as a tumor 

suppressor through the regulation of its substrates (118). However, conflicting results are 

described in the literature regarding STED7 function in physiological and pathological scenarios 

(61-65, 92, 139, 171, 172).  
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On the other hand, LSD1, a demethylase that usually counteracts the SETD7 effects over SETD7-

methylated substrates, was found to be present in high levels in prostate carcinoma, 

neuroblastoma and breast and colon cancers. Moreover, LSD1 knockdown led to breast cancer 

cells growth retardation (113). This finds may suggest that SETD7 pro-apoptotic activity may be 

highly counteracted by LSD1 (113, 118, 170).  

To conclude, the data presented above may suggest that SETD7 expression and its activity as a 

tumor suppressor or stimulator may be regulated on a tissue/cellular-context dependent basis, 

and that LSD1 possibly takes part in this regulation. 

1.5.1.1.2. SETD7 substrates 

1.5.1.1.2.1. Nuclear receptor ER 

ER is a nuclear receptor that, once activated, binds to specific DNA sequences, recruits co-

activators and functions as a transcriptional activator of several genes. ER is essential for 

mammary epithelial cells proliferation and ductal morphogenesis during puberty (28, 173, 174).  

Currently, ER plays a significant role in breast cancer prognosis and management. In fact, about 

two-thirds of newly diagnosed breast cancers are ER+ and will potentially respond well to 

endocrine therapy with anti-estrogens (93, 110). However, after a while some patients develop 

resistance and recur (175), which can be caused by posttranslational modifications that can affect 

ER-mediated gene transcription efficiency (176) as, for example, methylation by SETD7. A study 

by Subramanian et al. (2008) revealed that SETD7 methylates ER at K302 and is necessary for 

ER function. Moreover, they also proposed that SETD7 is involved in ER-dependent 

transcription regulation in breast cancer since the knockdown of SETD7 can lead to impaired 

recruitment of ER to its target genes and to a decreased estrogen-driven transcriptional 

activation in human breast cancer cells (110). This was supported by a recent study in which ER 

protein levels diminished after SETD7 inhibition or knockdown due to ER destabilization and 

consequent degradation (177). Thus, one can foresee a potential role for SETD7 as a key factor in 

ER regulation in cancer. For that reason, future research must focus on achieving a better 

understanding of ER regulation by SETD7 in cancer cells. SETD7 potential use as a cancer 

treatment’s target should also be explored.   

1.5.1.1.2.2. STAT3   

STAT3 is also a SETD7 substrate, whose function as a transcriptional factor is inhibited by SETD7-

dependent dimethylation at K140 (105, 130, 178). The STAT family of transcriptional factors is 

typically involved in biological processes like development, differentiation, immune response to 

pathogens and metabolism and is overexpressed in several diseases, including cancer. STAT3 is 

activated in the cytoplasm by JAK, becoming phosphorylated and prompted to translocate into 

the nucleus to transactivate anti-apoptotic (such as Mcl-1 and Bcl-xL), proliferative (like cyclin D1 

and c-Myc) and inflammatory genes, like it is illustrated in figure 6 (179, 180). STAT3 can also 

induce apoptosis in functionally differentiated mammary epithelial cells upon weaning (181), but 

it was also found to be constitutively activated and to have a critical role in breast cancer 
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initiation (179, 182), as well as in other cancer cell lineages (including colon, gastric, lung, head 

and neck, skin and prostate)(179). Therefore, one possible approach for cancer treatment is to 

inhibit STAT3 (179, 180), which could be accomplished through SETD7 methylation (105, 130).  

Figure 6 – STAT3 transcriptional targets and their effects during cancer development. Taken from (179).  

 

1.6. Future perspectives  

Nowadays, SETD7 is acknowledged as important for the regulation of different cellular processes. 

However, SETD7-driven methylation produces a great variety of results depending on the 

substrate methylated and possibly on the cellular context. We should also consider that most of 

the data presented here regarding SETD7 targets is qualitative and not quantitative. Therefore it 

would be interesting to explore if the methylation levels of each substrate by SETD7 is significant 

or not. Note that many of SETD7 substrates are inter-related, which means that though 

methylation of one of them, SETD7 may control several of its substrates. Moreover, while several 

SETD7 targets are master regulators of proliferation and differentiation, the physiological and 

pathological relevance of SETD7 is still unclear and should be investigated. 

Regarding H3 histone, some studies (92, 98) show that H3K4 methylation by SETD7 may be more 

efficient at a peptide level than the methylation of some of the SETD7 non-histone subtracts (e.g., 
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PCAF). The pointed reason for this variance is the SETD7 preference to methylate substrates that 

possess one of the following amino sequences: KSK, RSK and KAK (with K representing the target 

lysine). On the other hand, H3K4 methylation is a mark for transcriptional activation of genes 

involved in cellular differentiation and proliferation, thereby instigating our curiosity about 

SETD7’s relevance in these processes.   

In this work we intend to disclose SETD7’s relevance in regulating proliferation of undifferentiated 

and differentiated mammary epithelial cells; underlining a possible role for SETD7 in breast cancer 

growth regulation. 
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SETD7 has been found to methylate numerous substrates, including histones and non-histone 

proteins, which are involved in various cellular processes, such as apoptosis, cell cycle, DNA 

repair, gene expression and cell differentiation and proliferation. This highlights SETD7 role as a 

putative regulator of these processes. In fact, recent studies have started to focus not only on 

SETD7-mediated regulation of its various substrates but also on SETD7 importance to the different 

cellular mechanisms in which these substrates are involved. However, SETD7 role in mammary 

cell proliferation and differentiation is not established.  

Thus, the central aim of this work is to analyze if SETD7 affects proliferation of mammary 

epithelial cells in different stages of differentiation. 

The specific aims are: 

 To evaluate SETD7 expression through cell differentiation 

 To establish a correlation between SETD7 protein levels and expression of proteins known 

to regulate proliferation (ERalpha and STAT3), apoptosis (STAT3) and differentiation 

(HOXB2). 

 To characterize SETD7 subcellular localization and expression upon MAPKK/MEK 

inhibition. 

 To study if SETD7 has a role in mammary epithelial cell proliferation. 

 To study the effect of the SETD7 inhibitor (R)-PFI-2 over SETD7 expression. 
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In order to fulfil the objectives proposed above, the experimental design represented in 

Figure 7 was achieved. 

Figure 7 – Schematic representation of the methodology used throughout this project. EGF, Epidermal 

growth factor; ER, Estrogen receptor ; HOXB2, Homeobox b2; MAPKK, Mitogen-activated protein kinase 

kinase; STAT3, Signal transducer and activator of transcription 3; SETD7, SET domain containing lysine 

methyltransferase 7.  

 

3.1. Cell Culture 

3.1.1. Cell lines 

Throughout this project the HC11 cell line (ATCC CRL-3062, American Type Culture Collection, 

Manassas, VA, USA) was used. HC11 cells are non-tumorigenic murine mammary epithelial 

adherent cells widely used to study mammary epithelial cell differentiation as well as proliferation 

and signal transduction. HC11 cells routinely maintained in an undifferentiated stem cell-like state 

by culturing with high FBS concentration and 10 ng/mL EGF. HC11 are made competent for 

further differentiation by lowering FBS concentration and withdrawal of EGF. HC11 are 

functionally differentiated by incubation with lactogenic hormones, such as dexamethasone, 
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insulin and prolactin. These three hormones together form the DIP lactogenic differentiation 

cocktail (or DIP medium), normally used to induce differentiation of mammary epithelial cells 

(183, 184).  

To confirm our findings (in the HC11 cell line), we also used another mammary epithelial cell line 

known as EPH4 (ATCC CRL-3063), exposing them to the same experimental conditions as the HC11 

cells. EPH4 cells are mammary epithelial adherent cells derived from the IM-2 cell line, which was 

originally isolated from the mammary gland of a pregnant BALB/c mouse (185, 186), alike the 

HC11 cell line, that is a clonal derivative of COMMA-1D cells. Furthermore, also alike HC11 cells, 

EPH4 cells are responsive to lactogenic hormones, undergoing differentiation when exposed to 

DIP medium (184). 

 

3.1.2. Cell culture 

HC11 and EPH4 cells were grown at 37ºC (humidified atmosphere, 5% carbon dioxide) in T75 cell 

culture flasks in complete growth medium containing RPMI 1640 medium (PAA Laboratories, 

Pasching, Austria) supplemented with 10% fetal bovine serum (FBS) (Gibco by Life Technologies, 

CA, USA), 100 g/mL gentamicin (Gibco), 10 ng/mL EGF and 5 μg/mL insulin medium (Sigma-

Aldrich, St. Louis, MO, USA). The culture medium was renewed every 2-3 days. Cells were 

trypsinised once the culture reached about 80% confluence. Trypsinization was performed using 

2-3mL trypsin-EDTA (1x, 0.05%/0.02% in PBS; PAA Laboratories) for approximately 4 minutes at 

37ºC. 

 

3.1.3. Treatments  

3.1.3.1. Initial considerations 

(R)-PFI-2 (kind gift from Dr. Peter J. Brown, SGC University of Toronto) is a selective and potent 

inhibitor of the methyltransferase activity of SETD7, inhibiting SETD7 in vitro with an IC50 value of 

about 2.0 nM. (R)-PFI-2 competes with the substrate and prevents its binding to SETD7 by 

occupying the substrate lysine-binding groove of SETD7, thereby, inhibits SETD7 catalytic activity. 

However, (R)-PFI-2 has a cofactor-dependent inhibitory mechanism of action, i.e., it only binds to 

SETD7 and inhibits SETD7 methyltransferase activity after the binding of its cofactor (SAM) to the 

enzyme (187).  

U0126 (Tocris, Bristol, UK) is a selective, non-competitive inhibitor of MAPK/extracellular signal-

regulated kinase (ERK) kinase (MEK) 1 and MEK2 with an IC50 of about 70 nM and 60 nM, 

respectively (188). U0126 inhibits phosphorylation and subsequent activation of extracellular 

signal-regulated kinase ERK1 and ERK2.  

Both (R)-PFI-2 and U0126 were diluted in dimethyl sulfoxide (DMSO) and the same volume of 

DMSO was used as a vehicle control.  
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3.1.3.2. For Western Blot 

In order to analyze protein effect of EGF, DIP, U0126 or (R)-PFI-2 on protein expression, cells were 

plated in 60- or 100-mm plastic culture dishes and allowed to grow to 60% confluence in 

complete growth medium. Next, this medium was removed and the cells attached to the culture 

dish were washed twice with sterile PBS (PBS tablets by Gibco). Next, the following treatments 

were added to the cells:  

1. EGF deprivation: cells were incubated for 2h, 4h, 8h, 16h and 24h in RPMI 1640 medium 

supplemented with 2% FBS, 100 g/mL gentamicin and 5 μg/mL insulin (from now on 

designated EGF-free medium), with (controls) or without 10 ng/mL EGF.  

2. DIP medium (induction of differentiation): cells were incubated for 3h, 6h, 18h, 48h and 

72h in EGF-free medium and 1 μg/mL prolactin and 100 nM dexamethasone. 

Simultaneously, untreated controls (i.e., cells that were incubated in the same conditions 

and medium, without adding prolactin or dexamethasone) were prepared, to which 

ethanol was added (at the same volume as dexamethasone), since dexamethasone is 

dissolved in ethanol (vehicle).  

3. SETD7 methyltransferase activity inhibition: cells were incubated for 16h and 24h in EGF-

free medium with or without adding 10 ng/mL EGF, and 8 nM of (R)-PFI-2 (inhibitor of 

SETD7 methyltransferase activity) or equal volume of DMSO were added to the cells.  

4. MAPKK/MEK inhibition: cells were incubated for 16h in EGF-free medium with or without 

adding 10 ng/mL EGF, and 1 M of U0126 (inhibitor of MAPKK/MEK) or equal volume of 

DMSO were added to the cells.  

After the treatments, cell lysates were obtained according to the procedure described below. 

3.1.3.3. For immunofluorescence  

For immunofluorescence assay, cells were plated in 24-well plates and grown on sterile 18x18 mm 

glass microscope coverslides until they reached 70% confluence.  

1. MAPKK/MEK inhibition: The cells were initially grown in 0.5 mL/well of complete growth 

medium. After cells reached 70% confluence, the plate was washed twice with sterile PBS 

and incubated in 0.5 mL/well of EGF-free medium for 24h. Thereafter, cells were treated 

with EGF-free medium with or without 10 ng/mL EGF and with or without 1 M of U0126. 

The cells were incubated in these treatments for 16h. Then, they were washed twice with 

sterile PBS and fixed with 4% buffered formalin for 10 minutes at room temperature (RT). 

Following washes with PBS, cells were stored at 4ºC and stained (see the protocol for 

immunofluorescence staining described below) at the nearest suitable opportunity. 

3.1.3.4. For cell counting 

For the cell counting experimental procedure, about 2000 cells/well were plated in 24-well plates 

and treated according to the protocol described below:  
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1. EGF-deprivation and SETD7 methyltransferase activity inhibition: The cells were initially 

seeded for 24h in 0.5 mL/well of complete growth medium. After 24h, this medium was 

replaced with 0.5 mL/well of EGF-free medium, with or without 10 ng/mL EGF and with or 

without 1 nM, 8 nM and 10 nM of (R)-PFI-2 and the remaining 4 wells were treated with 

DMSO.  

2. DIP medium and SETD7 methyltransferase activity inhibition: cells were initially seeded 

for 24h in 0.5 mL/well of EGF-free growth medium. After 24h, this medium was replaced 

with 0.5 mL/well of experimental medium: EGF-free medium or DIP medium with or 

without with or without 1 nM, 8 nM and 10 nM of (R)-PFI-2 (4 wells for each treatment).  

The cells were incubated in the treatments described for 3 days and then counted (see cell 

counting assay protocol below). 

3.1.3.5. For BrdU assay 

For the BrdU assay, about 700 cells/well were plated in a 96-well plate and seeded in 100 L /well 

of complete growth medium for 24h. Then, 200 L/well of EGF-free medium and the following 

treatments were added (4 well for each treatment):  

1. DMSO; 

2. 8 nM of (R)-PFI-2; 

3. 10 ng/mL EGF + DMSO; 

4. 10 ng/mL EGF + 8 nM of (R)-PFI-2. 

The cells were incubated in these treatments for 2 days and then renovated, adding 10 M BrdU 

(Cell Proliferation ELISA, BrdU (colorimetric) kit, REF. 11 647 229 001, version 14, Roche, 

Mannheim, Germany) to each well. 

 

3.2. Western Blot analysis protocol  

3.2.1. Preparation of cell lysates  

After removal of the culture medium, the cell monolayer was washed twice with ice-cold PBS (137 

mM NaCl, 2.7 mM KCl, 1.8 mM KHPO4 and 10 mM Na2HPO4, pH 7.4). Using a cell scrapper, cells 

were scraped off the culture dish and the resulting cell suspension was pipeted into a 1.5 mL 

microtube and placed on ice and later centrifuged at 14000 rpm for 1 minute. The supernatant 

was discarded and the resulting pellet stored at -70ºC. Thereafter, the pellets were placed on ice 

and then suspended in 100 μL per 1x106 cells of RIPA lysis buffer (150 mM NaCl, 1% Triton X-100, 

5 mM EDTA, 1% sodium deoxycholate, 0.1% SDS, 25 mM Tris–HCl pH 7.6) plus proteinase inhibitor 

cocktail (1:100), phosphatase inhibitor 2 cocktail (1:100), phosphatase inhibitor 3 cocktail (1:100) 

and 1M DTT (1:1000) (to lyse the cells and preserve the integrity of the samples). The resulting 

suspension was vortexed and incubated on ice for 10 minutes and then vortexed again and placed 

on ice for other 10 minutes. Next, the samples were centrifuged at 14000 rpm for 15 minutes at 
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4°C to pellet the cell debris. The supernatant was transferred to a new microtube and then stored 

at -70ºC. 

 

3.2.2. Protein quantification  

In a 96-well plate, the samples were diluted 1:4 with distilled water (dH2O). In parallel, dilutions of 

bovine serum albumin (BSA) (used as a protein standard to obtain a standard curve) in dH2O were 

prepared to obtain final concentrations of 0.3, 0.6, 1.25 and 2.5 mg/ml of BSA, using of a stock 

solution of 10 mg/mL of BSA (Sigma). From the resulting solutions (samples and BSA diluted in 

dH2O), 5 L were pipetted to two clean wells (duplicates). Also, 2 wells were prepared with 5 L 

of dH2O (blank standard). Then, 25 μL of Bio-Rad DC protein assay reagent A + reagent S (20 μL of 

reagent S for each 1mL of reagent A) and 20 μL of reagent B were added to each well. After 

incubating the plate for 15 minutes at RT, absorbance was read at 750 nm. Next, a standard curve 

was obtained using the absorbance values of the standards and the protein concentration of each 

sample was determined. 

 

3.2.3. Preparation of samples for Western blot analysis  

Using the protein concentration values obtained, the volume of each sample required to load an 

equal amount of protein into the wells of the gel was calculated and then mixed with Laemmli 

buffer 5x (60 mM Tris-Cl pH 6.8, 2% SDS, 10% glycerol, 0.01% bromophenol blue and 16% β-

mercaptoethanol) at a ratio of 1:4 (or if 2x at a ratio of 1:1). The protein samples were always 

kept on ice throughout this process. After short spin, the protein samples were denaturated at 

100°C for 5 minutes and then placed on ice. 

 

3.2.4. Protein separation by SDS-PAGE, blotting and detection  

The proteins were separated according to their size by Sodium dodecyl sulfate - polyacrylamide 

gel electrophoresis (SDS-PAGE). The electrophoresis was performed at a continuous voltage of 

200V using the Bio-Rad Mini-Protean 3 Electrophoresis System, in running buffer (192 mM  

glycine, 25 mM Tris, 3.5 mM SDS). Then, proteins were transferred from the gel to the Immobilon-

P polyvinylidene fluoride (PVDF) transfer membrane (previously activated in methanol) with the 

Trans-Blot Turbo System (Biorad; 30 minutes transfer at 25 V and 1.0 A) in transfer buffer (192 

mM  glycine, 25 mM Tris, 20% methanol). After the transfer, membranes were stained with 

Ponceau S to verify if the transfer was performed correctly. The membranes were washed several 

times with dH2O until the bands were no longer visible and then 5 minutes with Tween-TBS 

(20mM Tris, 150 mM NaCl, pH 7.6 and 0.05% Tween-20) before incubating the membranes with 

blocking solution (5% dry milk in Tween-TBS) for at least 1 hour. The membranes were then 

incubated with the primary antibody [anti-SETD7 (ab14820, Abcam; dilution: 1/1500), anti-HOXB2 

(ab86386, Abcam; dilution: 1/1000), anti-STAT3 (sc-482, Santa Cruz Biotechnology; dilution: 
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1/300), anti-ER (sc-542, Santa Cruz Biotechnology; dilution: 1/300)] in Tween-TBS for at least 2 

hours. After incubation with the primary antibody and washing the membranes three times with 

Tween-TBS for 10 minutes, the membranes were incubated for 1 hour with the secondary 

antibody [anti-mouse and anti-rabbit IgG (Sigma, dilution: 1/5000)] diluted in Tween-TBS. 

Afterwards, the membranes were washed twice with Tween-TBS and once with TBS for 10 

minutes. Detection was performed using WesternBright ECL HRP substrate and LucentBlue X-Ray 

films (Advansta, CA, USA). 

To reassure that equal amounts of protein were loaded into the wells we used alpha-tubulin as a 

housekeeping protein reference that would later serve to normalize the results obtained for the 

target protein. Membranes were stripped in mild stripping buffer (200 mM  glycine, 3.5 mM SDS 

and 1% Tween-20, pH 2.2) for 10 minutes (twice) and washed twice with PBS for 10 minutes and 

then twice with Tween-TBS for 5 minutes. Afterwards the same protocol as the described above 

was used (starting from the blocking step), using anti-alpha tubulin (NB600-506, Novus 

Biologicals, CO, USA; dilution: 1/5000) as the primary antibody and anti-rat IgG (Sigma, dilution: 

1/5000) as the secondary antibody. 

Lastly, the X-ray films were digitalized and the relative intensity of the bands was determined by 

densitometric analysis performed using Quantity One Basic Software version 4.6.6 (Bio-Rad). 

 

3.3. Immunofluorescence analysis protocol 

After fixation and storage at 4ºC in PBS (as described), the cells were washed twice in PBS (0.5 

mL/well) for 5 minutes and permeabilized with 0.5% Triton-X-100 in PBS (250 L/well) for 10 

minutes. Then, the cells were washed three times with PBS (1 mL/well) for 5 minutes and 

incubated for 30 minutes in blocking solution (0.01% tween and 15% FBS in PBS, 250 L/well). 

Afterwards, cells were incubated overnight with the primary antibody in PBS [anti-SETD7 

(ab14820, Abcam; dilution: 1/300), 150 L/well]. The next day, the cells were washed three times 

for 5 minutes in PBS (1 mL/well), incubated for 30 minutes to 1 hour with the secondary antibody 

[anti-mouse IgG, Alexa fluor 568, Life Technologies, CA, USA (dilution: 1/300)] diluted in 150 

L/well of blocking solution and then washed again with PBS (1 mL/well), three times for 5 

minutes. To counterstain the nuclei, 0.1 μg/mL DAPI (Sigma) was added. After an incubation of 10 

minutes with DAPI, the cells were washed in PBS for 10 minutes and the coverslides were 

mounted onto microscope slides with Prolong Gold anti-fade reagent (Life Technologies). The 

slides were then analyzed under an inverted microscope (Nikon, Eclipse Ti-U) and the images 

acquired using the same settings with the NIS-Elements D imaging software. The fluorescence 

intensity was also measured with NIS-Elements D software. Subsequently, the images where 

equally edited with Adobe Photoshop CS6, applying the same adjustments to all images. 
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3.4. Cell counting protocol 

The experimental medium was removed and the cells washed with 250 L/well of sterile PBS. The 

cells were incubated in 250 L/well of trypsin-EDTA for 4 minutes (or until completely detached 

from the plate) at 37ºC. Then, 10 L of FBS was added to each well and the cells counted using a 

Neubauer improved counting chamber under a phase contrast microscope. Each treatment was 

carried out in quadruplicates. Experiments were repeated at least twice. 

 

3.5. BrdU labelling and detection protocol 

For this assay the Cell Proliferation ELISA, BrdU (colorimetric) kit (REF. 11 647 229 001, Roche) was 

used. As mentioned, after 2 days, the treatments were renewed and the cells simulated with 10 

M BrdU and incubated overnight in this labelling medium. Then, 100 L of FixDenat (fixation 

solution) were added to each well. After an incubation of 30 minutes at RT, this solution was 

removed and the cells incubated for 90 minutes with 70 L/well anti-BrdU-POD working solution 

(dilution: 1:100) at RT. Afterwards, the wells were washed three times for 5 minutes with 200 

L/well PBS 1X and then 70 L/well of substrate solution were added. The cells were incubated in 

this solution from 5 to 20 minutes and the absorbance was measured at 370 nm (and 492 nm – 

reference wavelength). Values used were in the linear range. Each treatment was carried out in 

quadruplicates. 

 

3.6. Statistical analysis  

Data was analyzed using GraphPad software. Differences between control and treatments was 

analyzed using One-Way ANOVA and Dunnet´s post-test. Differences between two groups were 

analyzed with Student´s t test. Differences were considered significant if p < 0.05. 
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Previously, we found that when HC11 cells enter the differentiation program (48h of EGF 

withdrawal) SETD7 mRNA is upregulated and continues to be high in functionally differentiated 

cells (72h treatment with DIP) (189). Therefore, in this section, we aimed to establish at which 

time point after EGF depletion SETD7 protein is increased.  

 

4.1. SETD7 protein levels increase in response to EGF deprivation  

In order to study SETD7 expression in undifferentiated mammary epithelial cells, we used HC11 

cells grown with EGF and depleted of EGF for the indicated time points. 

At the early time points (2, 4 and 8 hours) no significant changes could be observed in SETD7 

levels (figure 8). However, SETD7 expression increased after 16h of EGF removal and this effect 

was maintained for the 24h time point, with an increase of 21% and 13% in SETD7 expression, 

respectively.  

Figure 8 – Effect of EGF on SETD7 expression. HC11 cells were depleted of EGF for the indicated time 

intervals. Afterwards, SETD7 protein levels were analyzed by Western Blot. (a) SETD7 expression 

throughout the different treatment periods with and without EGF. (b) Relative quantification of the 

intensity of the bands in the blot. For each treatment period, -EGF intensity values were related to those 

obtained for proliferating cells (+EGF controls), which were set to one.  

 

4.2. SETD7 protein levels increase upon MAPK inhibition  

The objective of this experiment was to study if the MAPK pathway (that can be activated by EGF 

and linked to cell growth and proliferation (190)) is responsible for SETD7 downregulation 

observed previously in undifferentiated mammary epithelial cells. Therefore, we compared SETD7 
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protein levels in HC11 cells co-treated with EGF-containing medium (EGF-free medium + 10 ng/mL 

EGF) and 1 M U0126 for 16h. 

As it is shown in the blot (and respective relative quantification) on figure 9a and 9b, we found 

that SETD7 slightly increases (by about 17%) upon MAPK inhibition in undifferentiated HC11 cells 

(+EGF). This was corroborated by immunofluorescence (figure 9c,d). In fact, upon treatment with 

U0126, we can observe a significant increase in SETD7 expression in HC11 cells treated either with 

+EGF or -EGF medium, in comparison to controls (not treated with U0126). Furthermore, U0126 

reverses EGF negative effect on SETD7 protein expression.    

SETD7 localization is also evident on figure 9d. Indeed, independently of the treatment that the 

cells were subjected to, SETD7 localizes predominantly in the nucleus but can also be found in the 

cytosol (figure 9d). Furthermore, the intensity of SETD7 cytoplasmic fluorescence seems to be 

higher in the undifferentiated cells (+EGF) treated with U0126 than controls.   
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Figure 9 – U0126 effect on SETD7 expression. (a) and (b) HC11 cells were co-treated with EGF-free medium 

+ 10 ng/mL EGF (+EGF) and 1 M U0126 (or DMSO – control) for 16h. Afterwards, SETD7 protein levels 

were analyzed by Western Blot. (a) SETD7 expression in undifferentiated cells treated with U0126. (b) 

Relative quantification of the intensity of the bands in the blot (the +DMSO/-U0126 control was set to one). 

For the immunofluorescence assay [(c) and (d)], HC11 cells were co-treated with EGF-free medium or +EGF 

medium and 1 M of U0126 and incubated in this medium for 16h before fixation. DMSO was used as a 

vehicle control. SETD7 staining was then analyzed. (c) Fluorescence intensity of SETD7 staining. Mean  SD 

of the values obtained is shown. a and b, p  0.0001 vs. -EGF +DMSO; c, p  0.05 vs. +EGF +DMSO. (d) 

Analysis of SETD7 expression in HC11 cells by immunofluorescence. In blue are the cell nuclei stained with 

DAPI and in red is SETD7 staining. Representative of one experiment. 
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4.3. SETD7 activity inhibition by (R)-PFI-2 increases cell number 

As previously stated we found that SETD7 protein levels increase upon removal of EGF which is an 

important factor needed for the proliferation and survival of HC11 cells (191). This suggests that 

SETD7 may negatively influence cell proliferation. In order to further characterize how SETD7 

influences cell proliferation, we analyzed if its inhibition by (R)-PFI-2 would be translated in an 

increase in cell number of undifferentiated HC11 and EPH4 cells. For this, cells were treated with 

EGF-free medium and different concentrations of (R)-PFI-2 (1 nM, 8 nM or 10 nM) or DMSO. 

Controls to assess the response of the cells included EGF-free medium plus 10 ng/mL EGF (figure 

10).  

In cells treated with either +EGF or –EGF medium, cell number increased following SETD7 

inhibition (figure 10). Moreover, although the number of cells is significantly lower (by 30% and 

27% in HC11 and EPH4, respectively) in untreated cells incubated in –EGF medium (-EGF+DMSO) 

in comparison to cells incubated in +EGF medium (+EGF+DMSO), this is reversed upon SETD7 

inhibition by 8 nM and 10 nM (R)-PFI-2, resulting in cell number values similar to +EGF treated 

cells (40% and 25% increments in HC11 and EPH4 cells, respectively).  Thus, SETD7 

methyltransferase activity seems to be necessary for cell transition from a highly proliferative 

state to low proliferative state. It is important to notice that similar results were obtained in both 

HC11 (figure 10a) and EPH4 cells (figure 10b) which indicates that the effect that we are observing 

is reproducible in more than one experimental model, and therefore biologically relevant.  

Figure 10 – HC11 and EPH4 cell counting assay. Cells were treated with EGF-free medium, with or without 

10 ng/mL EGF, and different concentrations of (R)-PFI-2 (1 nM, 8 nM and 10 nM). After 3 days, cells were 

counted in a Neubauer improved counting chamber and the relative cell number variation was calculated 

by setting untreated +EGF control values to 1. Mean  SD from one experiment carried out in 

quadruplicates is shown for (a) HC11 (a and b, p  0.0001 vs. +EGF +DMSO; c, p  0.0001 vs. –EGF +DMSO 

and no significant differences vs. +EGF +DMSO) and (b) EPH4 (a, p  0.0001 vs. +EGF +DMSO; b, p  0.05 vs. 

+EGF +DMSO; c, p  0.05 vs. –EGF +DMSO and no significant differences vs. +EGF +DMSO) cells. Both graphs 

are representative of 2 independent experiments. 
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4.4. Cell proliferation is not significantly affected by (R)-PFI-2 

In order to determine whether the later results concerning (R)-PFI-2 effect on cell number in 

undifferentiated and competent cells (figure 11) were caused by an increase in cell proliferation, a 

BrdU assay was then conducted. The assay was conducted using the same mammary epithelial 

cell lines (HC11 and EPH4) as the cell counting assay (figure 11). No significant differences in BrdU 

incorporation could be observed between cells treated with (R)-PFI-2 and controls (figure 11). This 

applies to both proliferating and non-proliferating cells from both cell lines. In other words, 

according to our results (R)-PFI-2 had no significant effect on cell proliferation in both HC11 

(figure 11a) and EPH4 (figure 11b) cell lines. Furthermore, these results suggest that the augment 

in cell number previously reported for cells treated with (R)-PFI-2 did not result from an increase 

in cell proliferation.  

Figure 11 – BrdU labeling of HC11 and EPH4 cells. HC11 and EPH4 cells were cultured in EGF-free medium, 

with or without 10 ng/mL EGF, and 8 nM of (R)-PFI-2 or DMSO (vehicle control) for 2 days. Then, these 

experimental media were renewed and supplemented with 10 M BrdU. Cells were incubated overnight in 

these media, proceeding then with the Brdu assay.  Absorbance was measured at 370 nm and 492 nm 

(reference wavelength). Mean  SD from one experiment carried out in quadruplicates is shown for (a) 

HC11 and (b) EPH4 cells. No significant differences were found between treatments for either experiment. 

Both graphs are representative of 2 independent experiments. 
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4.5. SETD7 levels increase upon inhibition of its methyltransferase 

activity by (R)-PFI-2 

In this project we also tested the impact of (R)-PFI-2 on SETD7 expression. For this purpose, HC11 

cells were co-treated with or without EGF and 8 nM of (R)-PFI-2. We found that, although (R)-PFI-

2 is an inhibitor of SETD7 methyltransferase activity, when we add (R)-PFI-2 to the cells for either 

16h or 24h the quantity of SETD7 increases (figure 12). In fact, SETD7 protein levels increase 

about 28% and 21% in cells co-treated with or without EGF and (R)-PFI-2 for 16h, respectively, and 

about 19% in –EGF+(R)-PFI-2 treated cells for 24h. 

Figure 12 – (R)-PFI-2 effect on SETD7 expression. (a) and (b) HC11 cells were co-treated with or without 

EGF and 8 nM (R)-PFI-2 (or DMSO – vehicle control) for 16h and 24h. Afterwards, SETD7 protein levels were 

analyzed by Western Blot. (a) SETD7 expression in proliferative (+EGF) and less-proliferative (-EGF) cells 

treated with (R)-PFI-2 for 16h and 24h. (b) Relative quantification of the intensity of the bands in the blot. 

Intensity values obtained for cells treated with (R)-PFI-2 were related to those obtained for untreated cells, 

which were set to one. Representative of 2 experiments. 
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4.6. ER, STAT3 and HOXB2 expression in response to  EGF – 

correlation to SETD7 protein levels 

Next, we investigated if expression of two of SETD7’s non-histone substrates that are known to 

induce proliferation (ER (110, 192, 193) and STAT3 (35, 36, 178)), apoptosis (STAT3) (181) and 

one involved in differentiation (HOXB2) (194) were associated to SETD7 protein induction 

following EGF removal. Accordingly, the cellular lysates obtained for the western blot analysis of 

SETD7 expression were used to study ER, STAT3 and HOXB2 protein levels.  

Figure 13 – Effect of EGF on STAT3, ER and HOXB2 expression. HC11 cells were stimulated with or 

without EGF for the indicated time intervals. Afterwards, STAT3, ER and HOXB2 protein levels were 

analyzed by Western Blot. (a), (c) and (e) show STAT3, ER and HOXB2 expression (respectively) throughout 

the different treatment periods with EGF-free medium in comparison to +EGF controls. (b), (d) and (f) show 

the relative quantification of the intensity of the bands in the corresponding blot. For each treatment 

period, -EGF intensity values were related to those obtained for proliferating cells, which were set to one.  

As it can be observed on figure 13a and 13b, STAT3 protein levels are fairly maintained when we 

remove EGF from the medium for 2h, 4h and 8h. However, as it happens with SETD7, STAT3 
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protein levels rise 23% after an incubation of 16h with EGF-free medium. Therefore, we found an 

association between SETD7 and STAT3 protein increase following EGF depletion. However, this 

effect is not maintained after 24h. On the other hand, EGF seems to have a strong short-term 

positive effect on ER protein levels (as it can be seen on figure 13c and 13d at the 2h mark), and 

no significant differences can be detected in ER expression in HC11 cells treated for 8h, 16h and 

24h with or without EGF. Consequently, we did not find an association between ER and SETD7 

protein increase. Finally, HOXB2 levels vary through the different incubation periods (figure 13e 

and 13f), being higher in cells that were deprived from EGF for 4h and 16h (increases of 35% and 

9,5%, respectively) but slightly lower (about 6%) at the 8h incubation period in comparison to the 

values obtained for cells treated with EGF. Therefore, although we observed an association 

between HOXB2 and SETD7 increase after 16h EGF depletion, there are clearly other factors 

modulating HOXB2 protein.       

Thereafter, we also studied STAT3 protein levels upon inhibition of SETD7 methyltransferase 

activity by (R)-PFI-2. HC11 cells were treated with EGF-free medium and 8 nM of (R)-PFI-2 or 

DMSO. Controls consisted of cells also treated with EGF-free medium and 8 nM of (R)-PFI-2 or 

DMSO, adding 10 ng/mL EGF.  

Figure 14 – (R)-PFI-2 effect on STAT3 expression. (a) and (b) HC11 cells were co-treated with or without 

EGF and 8 nM (R)-PFI-2 (or DMSO – vehicle control) for 16h and 24h. Afterwards, STAT3 protein levels were 

analyzed by Western Blot. (a) STAT3 expression in proliferative and competent (lower proliferation) cells 

treated with (R)-PFI-2 for 16h and 24h. (b) Relative quantification of the intensity of the bands in the blot. 

Intensity values obtained for cells treated with (R)-PFI-2 were related to those obtained for untreated cells, 

which were set to one. 
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As it is shown on figure 14, STAT3 protein levels did not suffer a significant change in HC11 cells 

treated either with or without EGF and (R)-PFI-2 for 16h; therefore, it seems that SETD7 

methyltransferase activity is not necessary for STAT3 increase and stability at 16h.  

 

4.7. SETD7 is regulated by lactogenic stimuli 

The main objective of this project was to test if SETD7 protein levels are regulated in functionally 

differentiated cells. Therefore, we analyzed SETD7 expression in HC11 cells that were exposed to 

a lactogenic hormone cocktail of dexamethasone, insulin and prolactin (i.e., DIP medium) to 

induce differentiation. Controls were treated with EGF-free medium.  

Following DIP-treatment for 6h, there was a marked increase (of 45%) in SETD7 protein levels 

(figure 15). However, before (i.e., in cells treated with DIP medium for 3h) and in the following 

hours, no significant differences can be observed in SETD7 protein levels in comparison to 

controls. 

Figure 15 – Effect of lactogenic stimuli on SETD7 expression. HC11 cells were stimulated with DIP medium 

(+DIP) for the indicated time intervals. Controls were treated with EGF-free medium (-DIP). Afterwards, 

SETD7 protein levels were analyzed by Western Blot. (a) SETD7 expression throughout the different 

treatment periods with DIP medium in comparison to –DIP controls. (b) Relative quantification of the 

intensity of the bands in the blot. For each treatment period, +DIP intensity values were related to those 

obtained for cells treated with –DIP medium, which were set to one. 
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4.8. (R)-PFI-2 is capable of reversing the negative effect of 

lactogenic hormones on cell number  

Subsequently, we studied how (R)-PFI-2 affects cell number in functionally differentiated HC11 

cells, which do not normally proliferate. Here, we compared (R)-PFI-2 effect on cell number upon 

treatment with EGF-free medium and DIP medium. In this case, untreated cells that were 

incubated in EGF-free medium (-EGF+DMSO) were used as controls (figure 16). In this experiment, 

cell number was increased by about 70% when cells were treated with 8 nM of (R)-PFI-2 in DIP 

medium compared to cells only treated with DIP medium and DMSO, which indicates that (R)-PFI-

2 is also capable of reversing DIP-mediated cell differentiation and that if SETD7 is inhibited in this 

cellular stage it can result in aberrant proliferation.    

Figure 16 – HC11 cell counting assay. Cells were treated with EGF-free or DIP medium and different 

concentrations of (R)-PFI-2 (1 nM, 8 nM and 10 nM). After 3 days, cells were counted in a Neubauer 

improved counting chamber and the relative cell number variation was calculated by setting untreated -EGF 

control values to 1. Mean  SD from one experiment carried out in quadruplicates is shown. a, p  0.05 vs. –

EGF +DMSO; b, p  0.0001 vs. –EGF +DMSO; c, p  0.0001 vs. +DIP +DMSO and no significant differences vs. 

-EGF +DMSO. Representative of 2 experiments.  

 

4.9. STAT3 and HOXB2 regulation by lactogenic hormones 

In order to further explore an association between STAT3 and HOXB2 protein levels and SETD7, 

STAT3 and HOXB2 were analyzed by western blot (figure 17) using the same cellular lysates that 

were obtained for the analysis of SETD7 expression upon exposition to lactogenic hormones.  

Alike SETD7, STAT3 is increased (by 48%) in cells treated with DIP medium for 6h (figure 17a and 

17b). The lactogenic cocktail also seems to positively regulate STAT3 after 72h (which then suffers 

an increase of 14.5%). During the remaining treatment periods, we did not observe a significant 

change in STAT3 protein levels. Consequently, we observe an association between STAT3 and 

SETD7 protein levels.  
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On the other hand, although HOXB2 protein levels are 32% lower in the extracts treated with DIP 

medium for 3h, but it increases after 18h and up to 72h exposure to lactogenic hormones (figure 

17c and 17d). Therefore, we did not observe any association between HOXB2 and SETD7 protein 

levels.  

Figure 17 – Effect of lactogenic stimuli on STAT3 and HOXB2 protein levels. HC11 cells were stimulated 

with DIP medium (+DIP) for the indicated time intervals. Cells treated with EGF-free medium (-DIP) were 

used as controls. Afterwards, STAT3 and HOXB2 protein levels were analyzed by Western Blot. (a) and (c) 

show STAT3 and HOXB2 expression (respectively) throughout the different treatment periods with DIP 

medium in comparison to –DIP controls. (b) and (d) show the relative quantification of the intensity of the 

bands in the corresponding blot. For each treatment period, +DIP intensity values were related to those 

obtained for cells treated with –DIP medium, which were set to one. 
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Cellular differentiation is an essential biologic process by which cells become competent and 

commit to a specific lineage, being important not only for embryonic development but also during 

adult life (1). For example, cellular differentiation is crucial during pregnancy for the terminal 

differentiation and the formation of alveolar structures necessary for the production and delivery 

of milk during lactation (13, 23, 24). Furthermore, de-regulation of differentiation is commonly 

found in cancer (2, 195, 196). 

Recent studies have demonstrated that differentiation is deeply regulated by chromatin 

remodeling and histone post-translational modifications (1). Specifically, H3K4 methylation has 

been associated with gene transcription (functioning as a distinctive signal for the recruitment of 

specific transcription factors) and cell differentiation (3-7). Moreover, over the years increasing 

evidence suggests that SETD7 (a H3K4 methylase) may be involved in cell differentiation through 

the methylation of H3K4 or other of its substrates (12, 139). For that reason we decided to study 

SETD7 expression in proliferation and differentiation of mammary gland epithelial cells, with focus 

on protein targets that are transcription factors and regulate these biological processes. For this 

purpose, we used a well-established model of mammary epithelial cell differentiation: HC11 cell 

line (183, 184). These cells are routinely grown with EGF to keep them in an 

undifferentiated/highly proliferative state and are induced to differentiate by depletion of EGF 

followed by addition of a lactogenic stimulus. 

Before we go on with the discussion of our findings, it is important to notice a small problem that 

we had in some of our western blot assays. During this project we used alpha-tubulin as a 

housekeeping protein reference to normalize the results obtained for the target protein. 

However, it was not possible to obtain good results for tubulin due to flaws during the stripping 

step (the mild stripping solution did not work). Nevertheless, before each western blot we 

quantified the total protein amount in each sample in order to assure that equal amounts of 

protein were loaded into the wells of the stacking gel. Moreover, increasing evidence shows that 

the housekeeping protein used nowadays are susceptible to suffer variations depending on the 

tissue, experimental conditions and treatment being tested and may even prejudice the accuracy 

of the analysis taking place (197, 198). Having that in mind, although it is not the ideal situation, 

we believe it is not indispensable to use these housekeeping proteins for our analysis. Therefore, 

when the data concerning the amount of tubulin present in the loaded samples was unavailable 

we assumed it to be equal for all wells.   

EGF is a growth factor well-known for promoting cell growth, survival and proliferation and for its 

involvement in breast cancer development and metastasis (35, 190, 199). In fact, HC11 cells are 

dependent on EGF and insulin to proliferate and survive (191). Hence, in order to investigate if 

there is any biological association between SETD7 and mammary epithelial cells proliferation we 

examined how EGF influences SETD7 expression. SETD7 protein expression was not immediately 

induced after removal of EGF. Nevertheless, our findings show that SETD7 protein levels increase 

after 16h of EGF depletion and are maintained for 24h. Therefore, we can associate SETD7 

expression to a diminished cell number. In fact, in a subsequent experiment, both EPH4 and HC11 

cells exhibited a clear increase in the number of cells after the inhibition of SETD7 activity by (R)-

PFI-2, whether they were co-treated with or without EGF. Cell number is the result of two 
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biological processes: proliferation and apoptosis. We did not observe any significant difference in 

proliferation in cells treated with (R)-PFI-2, therefore, the increase in cell number is possibly a 

result of reduced apoptosis. Thus, our study suggests that SETD7 promotes apoptosis, supporting 

the results of a study by Hu et al. (2013) in which SETD7 was associated with the induction of 

apoptosis of U266 multiple myeloma cells in response to treatment with berberine (171). The 

methylation of pRb at K873 by SETD7, which is necessary for pRb normal function, including 

inhibition of cell entry into S-phase of the cell-cycle and stimulation of apoptosis by interacting 

and controlling E2F1 (129), can also explain the observed cell number increase. In addition, E2F1 

is also methylated by SETD7 at K185 which enhances E2F1-mediated apoptosis (113). Our results 

are also in agreement with the inhibition of STAT3 by SETD7 (178), since STAT3 is a transcription 

factor activated downstream of EGF that positively regulates anti-apoptotic and proliferative 

genes (35, 36, 179, 180). In fact, we also showed that there is a correlation between the 

expression of STAT3 and SETD7 after EGF depletion. However, (R)-PFI-2 had no significant effect 

over STAT3 protein levels.  

On the other hand, SETD7 was also reported to have no effect over the apoptosis rates of human 

hepatocarcinoma cells (61), which does not corroborate our hypothesis. In addition, SETD7 role in 

cell proliferation is also controversial. Opposing evidence shows that SETD7 can either promote 

(61, 172) or inhibit (62, 63, 139) cell proliferation. Furthermore, ER is methylated and stabilized 

by SETD7 (110), which could indicate that SETD7 positively regulates cell proliferation. In fact, 

SETD7 knockdown or inhibition by cyproheptadine reduces the amount of ERα in MCF7 cells (but 

not its mRNA expression levels) due to ER destabilization and subsequent degradation (177). 

Nevertheless, we did not find an association between ER and SETD7 protein increase. 

EGF acts on a receptor tyrosine kinase, EGFR, which then activates multiple intracellular signaling 

pathways involved in cell survival and proliferation, including the PI3K/AKT, JAK/STAT, MAPK 

pathways (35, 36, 190). In order to verify if the observed negative regulation of SETD7 by EGF is 

mediated by the MAPK pathway we decided to study the effect of the MEK1/2 inhibitor U0126 

[which was shown to diminish the capacity of HC11 cells to proliferate in response to EGF (190)], 

on SETD7 expression. As expected, SETD7 increased in cells treated with U0126, supporting our 

hypothesis that EGF downregulates SETD7 through the MAPK pathway. Moreover, the same 

outcome could be observed even in cells deprived of EGF, with a significant increase in SETD7 

protein levels in cells treated with U0126 in comparison to controls. These results may indicate 

that this effect may be independent of EGF and give emphasis to MAPK pathway as a potential 

regulatory pathway for SETD7 gene expression. 

Next, in order to study SETD7 expression patterns during cellular differentiation, HC11 cells were 

exposed to a cocktail of lactogenic hormones. Since SETD7 protein levels are increased after 6h 

DIP treatment but this is not maintained we hypothesize that SETD7 may be required during the 

early stages of differentiation. In corroboration with our findings, a recent study showed that 

SETD7 is downregulated in human embryonic stem cells and is then induced during 

differentiation. Additionally, they also found that SETD7 knockdown resulted in differentiation 

defects (200).            
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We also analyzed HOXB2 protein levels in HC11 cells either treated with or without EGF or DIP 

medium. HOXB2 is an inducer of differentiation and well-known to inhibit breast cancer cells’ 

growth (194) that may be regulated by SETD7 since H3K4 methylation is known to be present at 

the promoters of HOX gene clusters. In fact, several other H3K4 methyltransferases have been 

established as positive regulators of HOX genes (7, 201), and in this study we expected to find 

similar results for SETD7. However, we did not find an association between HOXB2 and SETD7 

increase in both cells depleted of EGF (except after 16h) or treated with DIP medium, which 

suggests that there are other factors modulating HOXB2 protein. Nonetheless, our results show 

that HOXB2 exhibits a clear tendency towards a higher levels in cells treated with DIP medium 

which, since HOXB2 is overexpressed during cell differentiation (194), indicates that we 

successfully caused HC11 cells to differentiate by adding lactogenic hormones to the medium.    

Since previously we found a correlation between STAT3 and SETD7 protein levels after EGF 

depletion, we also felt impelled to investigate if the same could be observed after treatment with 

lactogenic hormones. In fact, a correlation between SETD7 and STAT3 increase could be observed 

and therefore, of all three SETD7 molecular targets here analyzed, STAT3 protein levels seems to 

correlate more strongly with SETD7. 

Finally, we also explored the effect of (R)-PFI-2 and DIP medium on cell number. DIP medium 

alone (+DIP controls) caused cell number to decrease 58% comparatively to –EGF controls. 

However, relatively to +DIP controls, we observed a 70% increase in cell number after the 

addition of 8 nM of (R)-PFI-2, which suggests that (R)-PFI-2 can reverse the negative effect of DIP 

on cell number. Furthermore, having into account that DIP medium induces differentiation in 

HC11 cells, these results may indicate that (R)-PFI-2 negatively regulates cell differentiation and 

allows proliferation; therefore, these results suggest that loss of SETD7 methyltransferase activity 

could be implicated in the carcinogenic process.     
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During this study we successfully linked SETD7 to the regulation of cell number and possibly of 

apoptosis, having found that cell number (but not cell proliferation) was lower in cells that 

expressed SETD7 in comparison with the ones treated with (R)-PFI-2. In fact, we found that EGF (a 

growth factor essential for mammary epithelial cells proliferation and survival) negatively 

regulates SETD7 and that this regulation may be mediated by the MAPK pathway. We also 

confirmed that lactogenic hormones, after an incubation period of 6h, are capable of inducing 

SETD7 expression which can indicate that SETD7 is involved in the initial stage of cell 

differentiation. However, more studies should be conducted to confirm these findings and to 

verify if the effects here reported can be observed in a different cell line and in vivo. The next 

logical step would be to analyze the expression of SETD7 as well as its molecular targets through 

RT-PCR and to confirm if SETD7 induces apoptosis of mammary epithelial cells through, for 

example, a TUNEL assay. An immunohistochemical analysis of SETD7 expression in mammary 

tissue is also mandatory. Thus, our future perspectives are to further clarify SETD7 expression and 

role in physiologic processes such as mammary gland proliferation, survival and differentiation 

and in breast cancer. We are certain that the study of SETD7 in normal mammary epithelial cells is 

vital for the understanding of alterations occurring in breast cancer. Furthermore, SETD7 is now 

known to methylate numerous histone and non-histone substrates, many of them acknowledged 

as important players in cancer. Although in this study we could not find a very strong correlation 

between SETD7 and HOXB2 and STAT3 expression levels (and none with ER), we highlight the 

importance of studying SETD7 role in the regulation of the expression and function of its 

substrates, in both normal and transformed cells. Undeniably, the link between SETD7 and its 

substrates, as well as its role in cancer, is an exciting lead to follow. Indeed, we believe that due to 

its characteristics SETD7 has the potential to be of significant importance for cell’s homeostasis 

and, thereby, a major player in breast cancer. 

In summary, in this study we successfully established SETD7 as a regulator of mammary epithelial 

cell proliferation and opened the door for future studies of SETD7 role in cell proliferation and 

differentiation and in the regulation of multiple pathways. 
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