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1 Introduction

Norway is the world’s largest producer of farmed salmon and the industry
is growing. Continued growth is, among other things, dependent on sustain-
able solutions to environmental challenges, change of regulations, increased
demand and innovations in feed production (Olafsen et al. [21]). If this is
achieved, salmon farming will become an increasingly important part of Nor-
wegian exports in the future.

Norway’s largest salmon farmer, Marine Harvest Norway, is a vertically
integrated salmon farmer with business ranging from egg production to pro-
cessing, distribution and sales of finished products. Salmon farmers are not
traditionally involved in feed production, but Marine Harvest is now aiming
to integrate both feed production and delivery. They will be the only salmon
farmer in Norway controlling the entire value chain. This allows for imple-
mentation of vendor managed inventory (VMI), as opposed to the order-based
feed delivery common in the industry. VMI is a popular business practice in
supply chain management, and can give benefits such as lower inventory and
transportation costs and reduced risk of empty inventories (Simchi-Levi et al.
[28]). Costs related to feed account for approximately half of the salmon pro-
duction costs. Another large cost driver is lost feed days. Marine Harvest aims
to lower costs and secure stable deliveries of feed by gaining control over this
critical part of the value chain.

Today, Marine Harvest has around 115 fish farms located along the Norwe-
gian coast, as illustrated in Figure 1. The figure also presents the location of
the new feed factory. The coast is divided into four regions; North, Mid, West
and South. At the moment, Marine Harvest has invested in two LNG-fueled
ships to deliver feed in bulk.

When an actor in a maritime supply chain has the responsibility for both
transportation of the cargoes and inventories at the ports, the underlying plan-
ning problem is called a maritime inventory routing problem (MIRP) (Chris-
tiansen et al. [11]). In maritime transportation, inventories are often located
at both loading and unloading ports, so the MIRPs are common problems
within the maritime business and are in general very complex problems to
solve. Therefore, MIRPs have attracted considerable attention during the last
fifteen years. The research and resulting publications have formed the basis of
several surveys: Papageorgiou et al. [22], Christiansen et al. [11], and Chris-
tiansen and Fagerholt [9], [10]. In addition, Coelho et al. [12] and Andersson
et al. [6] have been surveying both land-based and maritime inventory routing
problems.

The objective of the research presented in this paper has been to develop
a mathematical model and solution approach which can support the process
of planning feed deliveries to fish farms from the factory based on a VMI prin-
ciple. The model minimizes transportation costs and avoids inventories below
safety stock levels, resulting in a robust transportation plan. The model de-
cides on volumes loaded at the factory and discharged at each fish farm, as well
as the order of visits. Production capacity is not sufficient to supply all fish
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Fig. 1 Marine Harvest’s fish farms located along the Norwegian coast. The big circle rep-
resents the feed factory [20].

farms and as demands vary, the model gives an indication of how many fish
farms it is realistic to serve at a given time of the year. The model is flexible
to allow for future changes in Marine Harvest’s planning situation, such as an
increased number of factories, fish farms and ships. As opposed to many mar-
itime inventory routing problems, Marine Harvest’s problem includes several
consecutive deliveries and no tight time windows. Another complicating char-
acteristic is that they do not have capacity to supply all fish farms internally.
The real problem is very complex, and the real instances are big. Therefore,
the mathematical model is reformulated to either improve the efficiency of the
branch-and-bound algorithm or to strengthen the formulation. Furthermore,
the formulations are explored based on practical aspects of the problem to
propose matheuristics that derive good solutions quickly.
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Similarly to the problem studied here, many of the MIRPs described in
the literature are concerned with the transportation of a single product and
no allocation of different products to compartments needs to be considered.
For single product MIRP studies, see for instance Agra et al. [2], Engineer et
al. [14], Furman et al. [15], Goel et al. [16], Grønhaug et al. [17], Hewitt et
al. [18], Rocha et al. [23], Shen et al. [25], Sherali and Al-Yakoob [26], [27],
Song and Furman [30], and Uggen et al. [32]. We will assume constant and
fixed production and consumption rates during the planning horizon. In the
literature, a mathematical model based on continuous time is often used under
these assumptions. See for instance Christiansen [8], Al-Khayyal and Hwang
[5], and Siswanto et al. [29]. The model formulated in this paper is general
with regard to the number of production factories and fish farms. However,
the real case has just one production factory at the moment. Even though the
general MIRP concerns a network structure consisting of many production and
consumption ports, some real MIRPs studied in the literature include just one
central producer or one central customer. Such networks correspond to a clas-
sical vehicle routing structure with one depot and a set of customers. St̊alhane
et al. [31] present a real LNG MIRP for one central producer with inventory
considerations and many customers with contract requirements instead of in-
ventories. Furthermore, Dauzère-Pérès et al. [13] describe a MIRP for distri-
bution of calcium carbonate slurry for a central producer and many customers
with inventory considerations. In the literature, the solution approaches are
both exact methods such as branch-and-cut and branch-and-price and differ-
ent types of metaheuristics (e.g. genetic algorithms and large neighborhood
search). In addition, several approaches are mathheuristics combining exact
methods and heuristics (e.g. rolling horizon heuristics and various fix and re-
lax heuristics). Another study from the salmon farming industry is described
by Romero et al. [24]. They have developed a GRASP-based algorithm for de-
signing routes and schedules for a fleet of ships distributing salmon feed for a
salmon feed supplier in southern Chile. However, no inventory considerations
are taken into account.

Our contribution relies on the mathematical formulation of the problem
and on the discussion of several improvements, including the addition of valid
inequalities and the use of extended formulations. Although many of the tech-
niques used in the paper have been used in the past for related problems, the
aggregated version of the subtour elimination constraints is new according to
our knowledge. The model improvements take into account the particularities
of the practical problem. Such particular aspects are also used to derive two
matheuristics which are used to produce feasible solutions for all instances,
which include those instances where the solver fails to find feasible solutions
within the run time limit.

The remainder of the paper is organized as follows: Section 2 describes
the planning problem considered, while in Section 3 the formulation of the
problem is presented. Furthermore, several valid inequalities are developed to
strengthen the proposed formulation as well as other formulation improve-
ments, and these are described in Section 4. In Section 5, we discuss several
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practical aspects of the problem that can be utilized when solving the prob-
lem as well as suggest two matheuristics. Section 6 presents the computational
study. Finally, some concluding remarks follow in Section 7.

2 Problem description

In this section, we will describe the maritime inventory routing problem con-
sidered and formulated in Section 3. The problem is based on Marine Harvest’s
planning problem. We will include a discussion of the assumptions and gener-
alizations made.

The company has at the moment one factory for producing fish feed, but in
order to give the possibility of expanding the production capacity, we consider
a given set of factories. The company produces several fish feed products, but
we aggregate all products and consider a single product only. The product is
called fish feed or just feed in the following. This assumption is taken based
on insufficient information from the company regarding storage limits of the
separate products, how the different products are allocated on board the ships,
and the production rates of the various products. In Ivarsøy and Solhaug
[19], a multi-product model of the problem is presented. At each production
factory, there is a given capacity of the silos storing the feed, and the average
production rate is assumed constant during the planning horizon. If production
capacity is insufficient, feed must be bought externally to fulfill the demand
at one or several fish farms during the planning horizon.

The fish feed is transported by a heterogeneous fixed fleet of ships to fish
farms. The ships have a given capacity, speed and cost structure. The ships
have highly specialized equipment, so we assume that it is not possible to hire
capacity from elsewhere. It is assumed that the capacity of the ships are greater
or equal to the capacity of the storages of feed. A ship visiting the factory plant
will load feed such that the storage at the factory stock is cleared each time
the factory is visited. The loading rate at a factory depends on the factory and
the ship visiting the factory. A ship’s voyage is defined as a visit to a factory
for loading, followed by consecutive visits to fish farms before returning to a
factory.

The feed is unloaded at fish farms. It is assumed that the consumption of
fish feed is continuous. The ships are not dependent on visiting the factory or
fish farms during working hours. However, at many of the fish farms, maximum
silo capacity can only be utilized when there are people at work who can control
the unloading. Outside normal working hours, these silos can only be filled up
to a certain percentage of the storage capacity. The silos at the fish farms
should never run empty and to ensure this the company maintains a safety
stock equal to one day of feed. Hence, both lower and upper limits on the
feed storages at the fish farms have to be considered. However, the inventory
level can be below the lower limit at a penalty cost. For fish farms with a high
demand rate, it might be beneficial to deliver feed to a fish farm more than
once during a ship’s voyage.
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The ships are allowed to wait before starting loading at the factory or un-
loading at the fish farms. Due to limited production capacity, there must be a
certain number of days between departures if the ships are to leave factories
with close to full ship loads. Therefore, we also assume that ships cannot be
loaded simultaneously, even though this is physically possible. This is equiv-
alent to a berth capacity of one ship. To ensure evenly distributed deliveries
to fish farms, there should also be a certain number of days between feed
deliveries to a particular fish farm.

To summarize, this problem is to design ship routes and schedules where
each ship’s voyage starts by leaving the factory fully loaded or has as much
load on board as there are feed in the factory storage. Then the ship visits
a set of fish farms and unloads feed before returning empty to a factory for
a new loading operation. Figure 2 illustrates the current planning situation
of Marine Harvest with one production factory and two ships. Each fish farm
should either be supplied from the factory or externally during the entire
planning horizon. For the internal supplied fish farms, the unloading quantity
has to be determined at each visit. Finally, the inventories at the factories and
fish farms must be within the lower and upper limits. The typical planning
horizon in this business is two weeks.

Fig. 2 Illustration of Marine Harvest’s planning situation.
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The objective is to minimise costs, while ensuring in-time deliveries. Costs
related to both transportation and external supply must be considered. Trans-
portation costs include fuel consumption and other costs of operation that do
not incur when a ship is idle. Since we are dealing with a vertically integrated
supply chain, transportation will not affect inventory costs so these costs are
disregarded. External feed costs consist of transportation costs plus the sup-
plier’s profit margin.

3 Mathematical formulation

In this section, the notation and model of the problem described in Section 2
is presented.

3.1 Notation

The notation is based on the use of lower-case letters to represent subscripts
and decision variables, and capital letters to represent sets and parameters.
Capital letters are also used as literal superscripts to define mnemonic com-
posite letters defining either variables, sets or parameters.

3.1.1 Indices

i, j Locations (factories or fish farms)
o(v) Start node of ship v (factory or ship farm)
d(v) Dummy end node of ship v
m, n Visit numbers
v Ships
d Days

3.1.2 Sets

NP Set of factories
NC Set of fish farms
Mi Set of visit numbers for location i
V Set of ships
SP Set of factory visits (i,m) where i ∈ NP and m ∈Mi (includes all relevant o(v))
SC Set of fish farm visits (i,m) where i ∈ NC and m ∈Mi (includes all relevant o(v))
S Set of visits, S = SP ∪ SC
Sv Set of feasible visits for ship v, Sv = S ∪ {d(v)}
D Set of days within the planning horizon
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3.1.3 Parameters

CP Penalty cost for stock levels below the safety stock level
CT

ijv Transportation cost for sailing from location i to location j with ship v
CEQ Unit cost of buying feed externally
CET

i Transportation cost for external feed delivery to fish farm i

L0
v Initial load of feed on ship v

Kv Maximum capacity for ship v
Q

i
Minimum unloading quantity of feed at fish farm i

S0
i Initial inventory level at location i

SC
i Minimum inventory level at location i

Si Maximum inventory level at location i
Ai Reduction rate in storage capacity at fish farm i outside working hours
Ji Location type for location i, 1 for factories and -1 for fish farms
Ri Production rate at factory i or consumption rate at fish farm i

T Length of planning period
Tijv Sailing time from location i to location j with ship v

TQ
iv Loading or unloading time per ton of feed for location i by ship v
T d Start of service hours for day d
T d End of service hours for day d
TB
i Time between visits to location i

3.1.4 Decision variables

ximjnv 1 if ship v sails from visit (i,m) to visit (j, n), else 0
yim 1 if visit (i,m) is not made by any ship, else 0
wimv 1 if visit (i,m) is made by ship v, else 0
ui 1 if fish farm i is supplied internally, 0 if supplied externally
σimd 1 if visit (i,m) ∈ SC is within service hours on day d, else 0

qimv Amount of feed loaded/unloaded by ship v during visit (i,m)
limjnv Amount of feed on board ship v when traveling on arc (i,m, j, n)

sim Amount of feed in stock at the start of visit (i,m) ∈ S
sEim Amount of feed in stock at the end of visit (i,m) ∈ S
dim Amount of feed below Si at the start of visit (i,m) ∈ SC

tim Time for start of service for visit (i,m)
tEim Time for end of service for visit (i,m)

Parts of the notation are illustrated in Figure 3. The model will be called
an Arc-Flow formulation due to the ximjnv and limjnv flow variables.
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Fig. 3 Illustration of the Arc-Flow formulation.

3.2 Model Formulation

The problem is formulated as a mixed integer linear programming problem.
First, the objective function is presented. Then, the routing constraints are
given before the loading and unloading constraints. We continue with the
inventory constraints at both the production factories and fish farms, and,
finally, present the time aspects.

3.2.1 Objective function

min z =
∑

(i,m)∈S

∑
(j,n)∈S

∑
v∈V

CT
ijvximjnv +

∑
i∈NC

(CEQRiT + CET
i )(1− ui)

+
∑

(i,m)∈SC

CP dim
Ri

(1)

The objective function (1) minimizes transportation costs, costs of buying
feed externally and penalty costs related to low stock levels. A transportation
cost CT

ijv is included for each arc used. External feed costs consist of a margin

per unit of feed required, CEQ, and a transportation cost, CET
i . The penalty

cost, CP , is added for each unit of time that a fish farm is below the safety
stock level. The time is given by the fraction of underage over the rate of feed
depletion from stock.

3.2.2 Routing constraints ∑
(j,n)∈Sv

xo(v)jnv = 1 v ∈ V (2)
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wimv −
∑

(j,n)∈Sv

ximjnv = 0 (i,m) ∈ Sv\{o(v)}, v ∈ V (3)

wimv −
∑

(j,n)∈Sv

xjnimv = 0 (i,m) ∈ Sv\{o(v)}, v ∈ V (4)

∑
(j,n)∈Sv

xjnd(v)v = 1 v ∈ V (5)

∑
v∈V

wimv + yim = 1 (i,m) ∈ S (6)

yim − yim−1 ≥ 0 (i,m) ∈ S|m > 1 (7)

ui + yi1 = 1 i ∈ NC (8)

ximjnv ∈ {0, 1} (i,m) ∈ S, (j, n) ∈ Sv, v ∈ V (9)

wimv ∈ {0, 1} (i,m) ∈ Sv, v ∈ V (10)

yim ∈ {0, 1} (i,m) ∈ S (11)

ui ∈ {0, 1} i ∈ NC (12)

Constraints (2) ensure that each ship leaves its initial position and sails
towards another location or its dummy node, meaning the ship is not used.
The flow conservation constraints are given by (3) and (4), while constraints
(5) make sure that each ship ends in its designated end node.

Constraints (6) guarantee that at most one ship can make visit (i,m), and
the constraints also set the value of yim to one if the visit is not made. The
number of symmetrical solutions in the integer solution method is reduced by
including constraints (7), by ensuring that only the smallest subsequent visit
numbers are used. Furthermore, constraints (8) state that a fish farm is either
served by the internal factory (ui = 1) or supplied externally (yi1 = 1) during
the planning horizon. The variable ui is included in the presentation of the
model to facilitate the reading.

Finally, the binary restrictions for the variables are given in (9)-(12).
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3.2.3 Loading and unloading constraints∑
(j,n)∈Sv

lo(v)jnv − Jiqo(v)v = L0
v v ∈ V (13)

∑
(j,n)∈Sv

ljnimv + Jiqimv −
∑

(j,n)∈Sv

limjnv = 0 (i,m) ∈ Sv, v ∈ V (14)

limjnv ≤ Kvximjnv (i,m) ∈ S, (j, n) ∈ Sv, v ∈ V (15)

Q
i
wimv ≤ qimv ≤ Siwimv (i,m) ∈ SC , v ∈ V (16)

sim − Siyim ≤
∑
v∈V

qimv ≤ sim + Siyim (i,m) ∈ SP (17)

qimv ≥ 0 (i,m) ∈ Sv, v ∈ V (18)

limjnv ≥ 0 (i,m) ∈ S, (j, n) ∈ Sv, v ∈ V (19)

sim ≥ 0 (i,m) ∈ S (20)

Constraints (13) set the load on board each ship after its initial visit equal
to the sum of its initial load and the quantity loaded or unloaded. For all subse-
quent visits, ship loads are updated according to constraints (14). Constraints
(15) ensure that the load on board a ship cannot exceed the ship capacity. If
arc (i,m, j, n) is not used by ship v, the corresponding load-variable is forced
to zero.

The quantity unloaded at a fish farm has to be within certain limits and
these restrictions are given by (16). The quantity cannot exceed the fish farm’s
maximum storage capacity. The storage capacity is used as the bound, because
the ship capacity is much larger than the storage capacity at any fish farm. If
a visit is not made by ship v, the corresponding quantity-variable is forced to
zero. Visits to fish farms are required to be a certain amount of time apart,
ensured later by constraints (40). We can calculate the amount of feed con-
sumed during the smallest spread between visits, and use it as a lower bound
on the unloading quantity.

The company has specified that a ship visiting a factory should always
clear the stock, so constraints (17) ensure that the loaded quantity equals
the current stock level, if the visit is made. Here it is assumed that the ship
capacity is at least as large as the storage capacities, so the entire stock can
be loaded.

Finally, the non-negative requirements for the variables are given in (18)-
(20).
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3.2.4 Inventory constraints

sim − JiRitim = S0
i (i,m) ∈ S|m = 1 (21)

sim + JiRi(t
E
im − tim)− Ji

∑
v∈V

qimv − sEim = 0 (i,m) ∈ S (22)

sEi(m−1) + JiRi(tim − tEi(m−1))− sim = 0 (i,m) ∈ S|m > 1 (23)

sim ≤ Si (i,m) ∈ SP (24)

sEim ≤ (1−Ai)Si +AiSi

∑
d∈D

σimd +AiSiyim (i,m) ∈ SC (25)

sim + dim ≥ Siui (i,m) ∈ SC (26)

dim ≤ Siui (i,m) ∈ SC (27)

sEim +Ri(T − tEim) ≤ Si (i,m) ∈ SP |m = |Mi| (28)

sEim −Ri(Tui − tEim) ≥ Siui (i,m) ∈ SC |m = |Mi| (29)

σimd ∈ {0, 1} (i,m) ∈ SC , d ∈ D (30)

dim ≥ 0 (i,m) ∈ SC (31)

sEim, tim, t
E
im ≥ 0 (i,m) ∈ S (32)

Equations (21) set the stock level at the start of the first visit to factories
and fish farms as the initial stock plus the amount produced or consumed
before the first visit.

Constraints (22) ensure that the stock at the end of a location visit equals
the stock at the start of the visit, adjusted for the amount of feed produced or
consumed, and the amount (un)loaded during the visit. The end stock variables
sEim are included to facilitate the readability. Constraints (23) relate the stock
at the end of a visit to the stock at the start of the next visit by considering
the production or consumption that takes place between the visits.

Constraints (24) and (25) ensure that the stock level at the start of service
in a factory and at the end of service at a fish farm does not exceed the storage
capacities. Since loading and unloading rates are higher than production and
consumption rates, only these variables need to be constrained by upper limits.
Then, the stock variable at the end of service in a factory and the stock variable
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at the start of service in a fish farm will never be above the maximum stock
level. Constraints (25) take into account that the storage capacity is reduced
by Ai if start of service is outside the service time windows. If the visit is not
made (yim=1), the σ-variables are zero and the upper bound on the variable
is Si. The relationship between the y- and σ-variables will be stated in the
next subsection.

Constraints (26) ensure that the sum of the inventory level and the under-
age stays above the safety stock level. If a fish farm is supplied externally, the
constraint is not binding. Note that constraints (26) only apply to fish farms.
The lower inventory limit at a factory is zero, ensured by non-negativity re-
quirements on the factory stock variables. For fish farms served internally, the
underage cannot be larger than the minimum stock level, as stated by con-
straints (27). If a fish farm is supplied externally, the underage is forced to
zero.

Constraints (28) are added to ensure a feasible inventory level for factories
at the end of the planning horizon. This is done by ensuring that the sum of
the stock after the last visit and the production during the remaining time
is below the storage capacity. Similarly, constraints (29) are added to ensure
feasible inventory levels for fish farms at the end of the planning horizon. For
fish farms supplied by the internal factories, the inventory level at the end of
the last visit cannot be less than the safety stock level until the end of the
planning period. If an external supplier is given responsibility for a fish farm’s
feed supply, the constraint is not binding, because all the time variables for
externally supplied fish farms are forced to zero by constraints (36) presented
later.

Finally, the binary and non-negative requirements for the variables not
declared previously are given in (30)-(32).

3.2.5 Timing constraints

tim +
∑
v∈V

TQ
iv qimv − tEim = 0 (i,m) ∈ S (33)

tEim +
∑
v∈V

Tijvximjnv − tjn + T
∑
v∈V

ximjnv ≤ T

(i,m) ∈ S, (j, n) ∈ S
(34)

tEim ≤ T (i,m) ∈ S (35)

tim ≤ Tui (i,m) ∈ SC (36)

TC
d (σimd − yim) ≤ tim ≤ T

C

d + (T − TC

d )(1− σimd + yim)

(i,m) ∈ SC , d ∈ D
(37)
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∑
d∈D

σimd ≤ 1 (i,m) ∈ SC (38)

∑
d∈D

σimd ≤ 1− yim (i,m) ∈ SC (39)

tim − tEi(m−1) ≥ T
B
i (1− yim) (i,m) ∈ S (40)

In order to relate the start and end time of a visit, constraints (33) are
added. They ensure that a visit ends when the loading or unloading operation
has finished. If no feed is loaded or unloaded, as when a visit is not made, the
end time is set equal to the start time. The end time variables tEim are included
to facilitate the reading.

Constraints (34) ensure consistency in timing of visits. If a ship sails di-
rectly between two visits, the start time of the next visit cannot be earlier
than the end time of the previous visit plus the sailing time between the two
locations. Here, waiting on arrival is allowed. The largest value (Big M) that
tEim − tjn can take is T . This big - M can be reduced by creating time win-
dows for the time variables, and, hence, the constraints can be tightened. See
Section 4.

In constraints (35) it is ensured that visits cannot end later than the end
of the planning horizon. Furthermore, constraints (36) set the start time of all
visits to a fish farm to zero if this fish farm is supplied externally.

If a fish farm visit starts outside the given service time windows, σimd is
set to 0 in constraints (37). Then, only a percentage of the storage capacity
can be utilized in constraints (25). If a visit is not made, the constraints are
not binding. For each visit, at most one of the time window variables can be
set to 1, ensured by constraints (38). If the extra capacity is not needed, the
σimd variables are not necessarily set to 0, even if the visit is within service
hours. Visits that are not made should all have σimd equal to 1, ensured by
constraints (39).

The company wants deliveries to their fish farms to be evenly spread
throughout the planning horizon. Due to production constraints, the facto-
ries cannot provide full ship loads every day and visits should be separated for
factories as well. By adding constraints (40), visits are separated by at least
TB
i hours for both factories and fish farms.

The Arc-Flow formulation (1)-(40) is denoted the AF formulation.

4 Formulation improvements

The Arc-Flow formulation presented in Section 3 is the one that has provided
better computational results for related problems, see Agra et al. [3]. Neverthe-
less this formulation still provides large integrality gaps which is common for
continuous time models. Agra et al. [3] compared continuous and discrete time
models for a maritime inventory routing problem and found that the discrete
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time models tended to provide better bounds, but the running times using the
discrete time models were in general worse than the running times using the
continuous time model. They concluded that, for the constant consumption
rate case, a continuous time model with valid inequalities was the best option
among all the tested ones to solve small real sized instances.

In this section we discuss some directions that have been tested either to
obtain better lower bounds than the one provided by the linear relaxation of
the AF formulation or to improve the efficiency of the branch-and-cut algo-
rithm based on such improved formulations.

4.1 Special ordered sets

A time window for working hours is given for each day of the planning horizon.
The implementation of soft time windows is done using the binary variables,
σimd. For each fish farm visit (i,m), at most one of the | D | time window
variables σimd can be chosen. Therefore, we have modeled the variables as
members of a special ordered set of type 1 (SOS1) for each farm visit (i,m). A
SOS1 is an ordered set of variables where at most one variable can have a non-
zero value. This means that there is one SOS1 for each fish farm visit (i,m)
and the set variables are ordered according to days. Generally, branching on
SOS1 variables leads to more balanced search trees and is more efficient than
branching directly on binary variables, as discussed in Beale and Tomlin [7].

4.2 Tightening timing constraints

In order to tighten the timing constraints we start by creating time windows
for the time variables tim and tEim. We introduce the following notation:

Aim Earliest start time for visit (i,m),
Bim Latest start time for visit (i,m),
AE

im Earliest end time for visit (i,m),
BE

im Latest end time for visit (i,m).

The following inequalities limit the value of a visit’s start and end time.

Aim(1− yim) ≤ tim ≤ Bim (i,m) ∈ S (41)

AE
im(1− yim) ≤ tEim ≤ BE

im (i,m) ∈ S (42)

If a visit is not made, the time variables are set equal to the end of the previous
visit and the lower bound should not apply.

The earliest start time for each first visit to a location is calculated as the
travel time from the nearest possible initial position. The earliest start time
for subsequent visits is set to the earliest start time of the previous plus the
minimum number of hours between each visit. The latest start time for the first
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visit to a fish farm is when its stock level reaches zero, while for the factory it
is when the maximum capacity is reached. The latest start time for subsequent
visits to fish farms is the latest end time of the previous visit plus the time it
takes to reach a stock level of zero, given that it was filled to maximum. For
the factory, the latest start time for subsequent visits is given by the latest
end time of the previous visit plus the time it takes to again reach maximum
capacity, given that the stock was cleared. The earliest end time of a visit to
a location is the earliest start time of the visit plus the loading or unloading
time of the minimum loading or unloading quantity. The minimum loading or
unloading quantity is given by the minimum number of hours between visits
to a location. The latest end time is set to the latest start time plus the time it
takes to load or unload the maximum quantity, given by the location’s storage
capacity. If any of the calculations give a value higher than the end time, T ,
the value is set to T instead.

Creating time windows for each visit, allows us to tighten constraints (34).
Instead of using T as the Big M, we use the difference between the latest end
time of visit (i,m) and the earliest start time of visit (j, n).

tEim +
∑
v∈V

(Tijv +BE
im −Ajn)ximjnv − tjn ≤ BE

im −Ajn(1− yjn),

(i,m), (j, n) ∈ S
(43)

4.3 Subtour elimination constraints

Subtour Elimination Constraints (SECs) are commonly used in vehicle routing
problems. These inequalities can be written as follows Adulyasak et al. [1].∑

(i,m)∈G

∑
(j,n)∈G

ximjnv ≤| G | −1 G ⊆ Sv, v ∈ V (44)

Another form of SECs has been used for selective vehicle routing problems,
that is, problems where there is a binary variable associated with each node
indicating whether the node is visited by a vehicle or not. Here that informa-
tion is given by wimv-variables. The following form of SECs is valid for the set
of feasible solutions, see Adulyasak et al. [1] and the references therein.∑
(i,m)∈G

∑
(j,n)∈G

ximjnv ≤
∑

(i,m)∈G

wimv−w`kv G ⊆ Sv, (`, k) ∈ G, v ∈ V (45)

Preliminary tests have shown that wimv-variables tend to be integer in the
fractional solutions for the particular instances tested here. So we will focus
only on (44).

A stronger variant of SECs is obtained by aggregating on the ships.∑
v∈V

∑
(i,m)∈G

∑
(j,n)∈G

ximjnv ≤| G | −1 G ⊆ S (46)



Maritime inventory routing in the salmon farming industry 17

A particular interesting case are the SECs involving pairs of fish farm visits,
(i,m, j, n) and (j, n, i,m), because preliminary tests have shown that between
pairs of fish farms with short travel times the routing variables are often set
to a fractional value close to one for both arcs connecting the two nodes.∑

v∈V
ximjnv +

∑
v∈V

xjnimv ≤ 1 (i,m), (j, n) ∈ S (47)

4.4 Dynamic cut generation of clique inequalities

Clique inequalities for maritime inventory routing problems were introduced
in Agra et al. [4]. These inequalities are created by finding conflicting routing
variables. This means finding a set of ximjnv-variables where at most one of
the variables can be one. We have considered the following conflicts:

ximjnv and xjnimw where (i,m), (j, n) ∈ S, v, w ∈ V
ximjnv and ximkow where (i,m), (j, n), (k, o) ∈ S, v, w ∈ V
xjnimv and xkoimw where (i,m), (j, n), (k, o) ∈ S, v, w ∈ V
xjnimv and ximjow where (i,m), (j, n), (j, o) ∈ S|n > o, v, w ∈ V
xjnimv and ximkow where (i,m), (j, n), (k, o) ∈ S, v, w ∈ V|v 6= w.

The first conflict coincides with the SECs (47) for two visits. The second says
that a ship cannot sail from a location to more than one other location, and
the third says that a ship cannot sail to a location from more than one other
location. The fourth conflict says that a ship cannot come from a location with
a visit number n and then leave to the same location with a visit number lower
than n. The last conflict says that the same visit has to be done by a single
ship.

These inequalities are added dynamically to the solver cut manager as they
are violated during the branch-and-bound search. A current fractional solution
is searched for conflicting variables and a conflict matrix is created. Finding the
maximum weight clique is an NP-hard problem. So, we use a greedy heuristic
approach to find maximal cliques. First, we find the pair of conflicting variables
with the largest total fractional value. Then other conflicting variables are
added in a greedy fashion. If the resulting clique of conflicting variables is
violated (meaning that the clique sums to more than one), a cut is added.

4.5 Multi-Commodity Flow Formulation

In order to further tighten the formulation, we derive a Multi-Commodity
Flow (denoted by MCF) formulation by introducing the flow variables fimjnkov

which are one if ship v travels from (i,m) to (j, n) in the route to farm visit
(k, o), where (i,m) ∈ S and (j, n), (k, o) ∈ Sv \ {o(v)}. Figure 4 illustrates
some of the notation of the MCF formulation.
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Fig. 4 Illustration of the Multi-Commodity Flow formulation.

The following set of constraints is included.∑
(j,n)S

fjnimkov −
∑

(j,n)∈Sv\{o(v)}

fimjnkov = 0

(i,m), (k, o) ∈ Sv \ {o(v)}, v ∈ V
(48)

∑
(j,n)∈S

fjnkokov = wkov (k, o) ∈ Sv \ {o(v)}, v ∈ V (49)

fimjnkov ≤ ximjnv (i,m) ∈ S,
(j, n), (k, o) ∈ Sv \ {o(v)}, v ∈ V

(50)

Constraints (48) are the flow conservation constraints at node (i,m) and ensure
that the flow entering into (i,m) is equal to the flow leaving (i,m) in the path
to farm visit (k, o). Constraints (49) state that if the visit (k, o) is made then
there must exist a flow of one unit entering into (k, o). Constraints (50) ensure
that if the arc (i,m, j, n) is in the path to (k, o), then ximjnv must be one.

The size of the MCF formulation gets too large for many instances. A
possible practical approach is to consider only a subset of variables, which is
known as an approximate extended formulation. For details on approximate
extended formulations and their relation to subtour elimination constraints
for the TSP, see Van Vyve and Wolsey [33]. Here, for each node (k, o) ∈ S, we
may consider only those variables fimjnkov where i and j are within a given
distance from k.

4.6 Route-Assignment Formulation

Currently, only one factory is planned to be operating, so | P |= 1. We denote
the factory by p in the formulation given in the following. For the tested
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instances we assume o(v) coincides with the factory. Thus all the ship routes
start at the factory, and each fish farm visit is assigned to a route which is
identified by the number of the factory visit, see Figure 5. The model can be
easily adapted for the general case.

Fig. 5 Illustration of a solution found for the largest instance solved.

The Route-Assignment formulation assigns each possible visit (i,m) to a
route, where a route r is defined by a factory visit (p, r). We define the set of
possible routes by R. This set coincides with the set of possible visit numbers
to the factory.

For this formulation we define the following binary variables ,zimrv, which
are 1 if visit (i,m) ∈ SC is associated with route r done by ship v, and 0
otherwise.

These variables are related to the original variables through the following
constraints. ∑

r∈R
zimrv = wimv (i,m) ∈ SC , v ∈ V (51)

zimrv ≤ wprv (i,m) ∈ SC , r ∈ R, v ∈ V (52)

xprjnv = zjnrv (j, n) ∈ SC , r ∈ R, v ∈ V (53)

ximjnv + zimrv ≤ 1 + zjnrv (i,m), (j, n) ∈ SC , r ∈ R, v ∈ V (54)

ximjnv + zjnrv ≤ 1 + zimrv (i,m), (j, n) ∈ SC , r ∈ R, v ∈ V (55)

Constraints (51) ensure that if a visit (i,m) is made by ship v then it must be
assigned to a single route of v. Constraints (52) ensure that a farm visit of ship
v can be assigned to a route if the corresponding route is done by that ship.
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Constraints (53) impose that if the ship leaves the factory after visit number
r and directly sails to a farm, then this farm visit belongs to route r. Finally,
constraints (54) and (55) ensure that if ship v sails from (i,m) to (j, n) then
both visits belong to the same route.

This formulation, which includes all the variables and constraints of the
AF formulation and includes additionally the zjnrv variables and constraints
(51)-(55), will be denoted the RA formulation (for Route-Assignment).

The RA formulation is not tighter then the original AF formulation but
it includes additional information that can and will be exploited when solving
the problem. This formulation can be strengthened in different directions using
the new Route-Assignment information. Next we introduce a type of valid
inequalities which relates the start time of visit (j, n) to the time that ship
leaves the factory in that visit.

tEpr +
∑
v∈V

(Tpjv +BE
pr −Ajn)zjnrv − tjn ≤BE

pr −Ajn(1− yjn)

(j, n) ∈ SC , r ∈ R
(56)

Another approach to tighten the formulation is to add the multi-commodity
reformulation to the RA formulation. In this case one may define an MCF
formulation for each route. Thus a variable frimjnkov with the same meaning
of fimjnkov is created for each r ∈ R. The set of constraints becomes as follows.∑

(j,n)S

frjnimkov−
∑

(j,n)∈Sv\{o(v)}

frimjnkov = 0

(i,m), (k, o) ∈ Sv \ {o(v)}, v ∈ V, r ∈ R
(57)

∑
(j,n)∈S

frjnkokov = zkorv (k, o) ∈ Sv \ {o(v)},

r ∈ R, v ∈ V
(58)

frimjnkov ≤ ximjnv (i,m) ∈ S, (j, n), (k, o) ∈ Sv \ {o(v)},
r ∈ R, v ∈ V

(59)

frimjnkov ≤ zimrv (i,m) ∈ Sv \ {d(v)}, (j, n), (k, o) ∈ Sv \ {o(v)},
r ∈ R, v ∈ V

(60)

frimjnkov ≤ zimrv (i,m) ∈ Sv \ {d(v)}, (j, n), (k, o) ∈ Sv \ {o(v)},
r ∈ R, v ∈ V

(61)

Constraints (57)-(59) have the same meaning as (48)-(50). Constraints (60)
and (61) ensure that the nodes (i,m) and (j, n) are in route r when the arc
(i,m, j, n) is used in that route.
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5 Practical solution approaches

As we report in Section 6, the tested instances based on the real problem are
not solved to (proven) optimality, within reasonable running times, using the
branch-and-cut algorithm from a commercial software based on the models
discussed in the paper. Thus, the branch-and-cut acts as a heuristic. So it
makes sense to explore the formulations derived so far based on practical
aspects of the problem in order to propose matheuristics that derive good
solutions as quickly as possible.

5.1 Practical aspects

Here we discuss some assumptions based on practical reasoning and some
preliminary tests not reported here.

5.1.1 Sets of fish farms

In order to reduce the size of the mathematical model, the fish farms have been
split into two sets and each of the two ships is fixed to one set. The splitting
results in a less flexible model, but it helps reducing the number of symmetric
solutions arising from the fact that we have two homogeneous ships. This is
also in accordance with the companies view of operation, where each ship most
likely will serve partly separate areas.

Two alternative splits, a full split and a partial split, were tested. In the
first splitting approach, the fish farms farthest north are served by one ship,
while the ones farthest south are served by the other and the two sets are
disjunct. The partial split includes the fish farms closest to the factory in both
sets, because it will not be a significant detour for a ship sailing in either
direction to visit them. Preliminary results showed that the partial split was
the best alternative. This is a reasonable simplification, due to the geographical
situation of the fish farms along the Norwegian coast, see Figure 1. Moreover,
fish farms that are farthest north or farthest south can be assigned to the same
ship route.

5.1.2 Reduced number of visits

Preliminary results showed that most fish farms are only visited once within
a planning horizon of 10 days. By setting this visit limit tight, the reduction
in number of variables is significant. Reducing the number of visits limits the
model’s flexibility. Therefore we allow two visits per fish farm for the smallest
test instances. For the larger test instances, the number of visits is set to one.

5.1.3 EOH

A common characteristic of maritime inventory routing problems is the un-
wanted End Of Horizon (EOH) effects, that essentially consists in having all
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the stock levels reaching their extreme values at the end of the planning hori-
zon. To avoid the EOH effects there are several alternatives. One is to create
tighter inventory bounds at the EOH. Another alternative is to impose (large)
minimum delivering quantities. Here, we opted to include a minimum stock
level at the EOH, which implies, a minimum delivery quantity corresponding
to the net consumption (the total consumption minus the initial stock level)
plus the minimum stock level for those instances where at most one visit is
made. Additionally, we test heuristics that include a final step that maximizes
the delivered quantity to the fish farms.

5.2 Matheuristics

The practical instances considered here can hardly be solved to optimality
using an exact algorithm such as the branch-and-cut. Our computational ex-
periments have shown that, for some instances, the branch-and-cut based on a
tight AF formulation could not obtain any feasible solution after five hours of
running time. Thus, in this section we present a robust heuristic strategy that
uses the mathematical models discussed before to provide feasible solutions.

After running the branch-and-cut for a limited time, two cases can occur,
either a feasible solution was found or not. If the feasible solution was found
and the branch-and-cut algorithm could not terminate with proven optimality
(which happened for all the run tests) then we improve the solution in order
to obtain a local optimum. For this case we derive Algorithm 1 that converts
the solution from the AF formulation into a solution of the RA formulation.
Then, for each route r ∈ R, we solve the TSP problem with time windows
by fixing the delivered quantities and adding the corresponding (un)loading
times to the sailing time. The time constrained TSP is denoted TSPTW (r)
and results from the inventory routing problem restricted to the set of fish
farms served in route r. The time windows are computed from the inventory
levels.

Algorithm 1 A local search Matheuristic to improve the routings.
1: Set X to the best feasible solution known
2: Decompose X into a set of | R | single vehicle inventory routing problems
3: Fix all (un)load variables
4: for route r ∈ R do
5: Solve the TSPTW(r) for β seconds using branch-and-cut
6: Update the solution X
7: end for
8: Fix the routing variables and free the (un)load variables
9: Solve the model in order to maximize the quantity delivered

In case the branch-and-cut has terminated with no solutions found we
propose a new heuristic, Algorithm 2, that builds up a feasible solution by de-
termining a route in each iteration. The algorithm solves the RA formulation,
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tightened with an approximate MCF formulation (48)-(50), where only vari-
ables corresponding to visits between farms within a distance K are kept. The
routing variables ximjnv are relaxed to continuous variables, but the assign-
ment z-variables are kept binary. In each iteration the problem is restricted to
the first unsolved route, that is, the problem is restricted to the set of nodes
that are visited by the ship leaving the first unexplored factory visit. So the
restricted problem has only one ship and a smaller set of nodes to be visited
at most once. The end time of the visit to the factory and the load quan-
tity are fixed. Once the restricted problem is solved, the routing variables of
that route are fixed and the relaxed problem is solved again, until no further
routing problems are left to be solved.

When solving the restricted problem, we may have farm nodes that need
to be supplied externally. To select those nodes to be supplied by the factory
we first solve the subproblem by maximizing the external feed cost, that is, by
identifying those farms whose penalty for external supply is higher. Then, the
subproblem is solved again, but restricted to the set of farms served by the
factory, identified previously, in order to minimize the transportation cost and
the penalty cost for low stock levels. If those nodes are distant from the factory
(they belong only to one of the two fish farms set), we fix the corresponding u-
variable to zero. If the nodes belong to both sets, that is, if the nodes are close
to the factory, and there are more routings to be explored we simply ignore
then and leaves them open to the next iteration.

Algorithm 2 A constructive matheuristic.
1: Consider the RA formulation tighten with an approximate MCF formulation
2: Relax the routing variables and solve the branch-and-cut for α seconds
3: Set X to the best solution obtained
4: for route r ∈ R do
5: Fix the time ship leaves the factory and the load quantities to the values given in X
6: Solve the restricted problem with a single ship and the set of nodes in route r for β

seconds
7: if the subproblem is infeasible or no solution is found then
8: Solve the restricted problem with selection on the visited nodes to maximize the

external feed cost
9: Solve the subproblem restricted to the selected nodes

10: Fix ui variables to zero for the far distant farms not visited
11: end if
12: Fix the routing variables for route r
13: Relax the remaining routing variables (for routes k ∈ R, k > r) and solve the branch-

and-cut for α seconds
14: Update solution X
15: end for
16: Fix the routing variables and free the load/unload variables
17: Solve the model in order to maximize the quantity delivered

Both algorithms include a final step where the routing variables are fixed
and the amount to be delivered is maximized. This step aims to provide better
solutions from the practical point of view by minimizing the EOH effect.
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6 Computational results

In this section we report the computational results obtained on 9 instances.
The formulations described were written in Mosel and implemented in Xpress-
IVE Version 1.24.00, 64 bit. We have run all tests on a computer with 16GB
RAM and an Intel(R) Core i7 CPU using the Xpress Optimizer Version 25.01.05.
A preliminary study that supports some of our modeling choices can be found
in [19].

6.1 Test Cases

We consider two homogeneous ships, one factory, and three test cases with 20,
40 and 60 fish farms. We use realistic data provided by Marine Harvest for
Region North, Mid and West during high season. For the test cases with 20
and 40 fish farms, the production rate and the storage capacity of the factory
and ships are downscaled to one-third and two-thirds, respectively. The test
case with 60 fish farms use full-scaled values and includes all fish farms from
Region North, Mid and West that have fish during the period from which the
demand rates were calculated.

The production rate is an estimation given by Marine Harvest, since the
factory was not yet operating during the project period. The rate will vary
throughout the year, but kept constant at an estimated maximum level of 45
tons per hour during high season. Maximum storage capacity of the ships,
factory and fish farms are known. The ships and the factory have an equal ca-
pacity of 3000 tons. The hourly consumption rates for fish farms are calculated
from historical monthly data.

The following table summarizes the hourly consumption rates and maxi-
mum storage capacities of fish farms.

Number of fish farms + factory 21 41 61

Consumption rates
Minimum 0.18 0.06 0.03
Maximum 1.56 1.77 1.77
Average 0.81 0.48 0.75

Storage capacity
Minimum 4 2 1
Maximum 38 43 43
Average 20 20 18

Table 1 Statistics concerning hourly consumption rates and maximum storage capacities
of fish farms.

The safety stock level is set to one feed day for each fish farm. The service
hours at fish farms are from 8:00 a.m. to 4:00 p.m. every day. Outside working
hours, storage capacity is reduced with 10% for all fish farms. Visits to the
factory and fish farms should be separated by 24 hours. This enables us to
calculate minimum unloading quantities for fish farms by finding the amount
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of feed consumed during this period of time. The loading rate is 270 tons per
hour, while the unloading rate is 180 tons per hour.

Travel distances between all locations are estimations provided by the com-
pany and travel times are calculated using a constant speed of 13 knots. The
travel times range between 1 and 43 hours. The transportation cost is 1600
NOK per hour. The cost is based on LNG consumption per hour and is de-
pendent on LNG prices. The cost of external supply is divided into two parts,
a fixed transportation cost of 4400 NOK for each fish farm and a profit margin
of 250 NOK per ton of feed. The external transportation cost is parameterized
relatively to the internal transportation cost, while the profit margin is an
estimation based on the company current cost of standard feed. The penalty
cost per hour of being below the safety stock level is parameterized to make
cost-effective plans, while avoiding low stock levels. It has been set to 400 NOK
per hour and is equal for all fish farms.

The planning period was set to 10 days. This allows to plan for the coming
week, while also accounting for three more days of production and consump-
tion. For each test case the different scenarios for the initial stock levels have
been considered, which will be denoted by A, B and C. In the first (A), fish
farms have initial stock levels of six feed days, in the second (B) and third
(C) scenarios the initial stock level is randomly generated from four to eight
and from two to ten feed days, respectively. These instances are denoted by
nx where n indicates the number of nodes (factory and farms) and x is the
letter A,B, or C identifying the initial stock level. The initial stock level at the
factory is set to half capacity. Both ships are assumed to start at the factory
and are initially empty.

The average size of the three test cases for the AF and MCF formulations
are given in Tables 2 and 3, respectively.

Number of fish farms + factory 21 41 61

# of variables
Before presolve 4130 4302 8464
After presolve 3946 4011 8092

# of constraints
Before presolve 17170 50384 107436
After presolve 5170 5111 10078

Table 2 Average size for the AF formulation.

Number of fish farms + factory 21 41 61

# of variables
Before presolve 38698 44300 138596
After presolve 36946 39754 135215

# of constraints
Before presolve 41977 49685 147557
After presolve 38773 44301 138695

Table 3 Average size for the MCF formulation.
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6.2 Computational experiments and results

In order to solve the instances we first tested the AF model. Preliminary
results showed that best results were obtained by defining σimd as SOS1.
However, clique inequalities were ineffective because many of them would be
included and the branch-and-cut gets much slower at each branching node.
So we discard them. SECs inequalities (47) were included and the timing
constraints were strengthen with the time windows. Then we have tested the
resulting improved formulation which was run for 5 hours for each instance.

In order to test the lower bound provided by the linear relaxation of the
AF formulation, we compare it with the one obtained at the end of the running
time limit of 5 hours; the one resulting from the linear relaxation of the MCF
formulation; and the one obtained with the RA formulation strengthen with
the MFC formulation and with the routing variables relaxed at the root node
of the branch-and-cut. The corresponding lower bounds (columns LB) and
integrality gaps (columns Gap), are given in Table 4 where the columns identify
the corresponding formulations AF, AF(5h), MCF, and RA. The last column
BFS gives the value of the best feasible solution known for each instance. All
the results reported are values obtained by the solver to solve the problem
by branch-and-cut, so they include the preprocessing step with variable and
constraints reduction. We can see that the integrality gaps are quite large.

Table 4 Lower bounds and integrality gaps for the tested instances.

AF AF(5h) MCF RA
Instance LB Gap LB Gap LB Gap LB Gap BFS

21 A 107.1 23.9 124.3 11.7 108.5 22.7 108.8 22.7 140.7
21 B 108.3 42.6 118.0 37.4 109.9 42.4 108.6 42.4 188.6
21 C 108.4 75.1 137.4 68.5 113.5 72.4 120.4 72.4 436.1
41 A 133.3 41.7 152.9 33.1 136.8 40.1 135.7 40.1 228.6
41 B 138.7 60.1 147.7 57.5 141.1 39.5 244.7 29.5 347.2
41 C 136.0 84.3 256.4 70.4 352.6 84.4 135.5 84.4 866.6
61 A 132.3 41.8 167.5 26.3 157.8 29.7 159.9 29.7 227.4
61 B 132.2 84.4 164.6 80.6 157.8 81.6 156.6 81.6 849.2
61 C 132.0 83.4 159.8 79.8 159.8 79.8 160.0 79.8 792.9

For the small size instance cases with 21 nodes the improvement in the lower
bound by using reformulation techniques is not as good as for the remaining
cases. A possible explanation is due to the fact that the reformulations used
are based on classical vehicle routing problems which are more similar to the
larger sets of instances where each farm node is visited only once.

The objective function values obtained from the two different approaches
are presented in Table 5. The second column reports the best solution objec-
tive function value obtained after a run limited to five hours using the AF
formulation. An asterisk means no feasible solution was found. Columns Time
BFS, # FS, and # Nodes give the time at which the best value was found,
the number of feasible solutions found, and the number of branch and bound
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nodes, respectively. The last two columns Value and Time BFS report the ob-
jective function and running time of the heuristic procedure. This procedure
run the same AF formulation for one hour. If a feasible solution was found
we apply Algorithm 1 with β = 600 seconds, otherwise we apply Algorithm 2
with α = 500 and β = 1500 seconds. The objective function value of the so-
lutions obtained by Algorithm 2 are much higher than the values of the other
solutions. Also, the integrality gaps are large. This happens because these so-
lutions include several farms that must be supplied externally which increases
the cost greatly.

Table 5 Objective function values for the branch-and-cut and the Matheuristic approach.

Branch-and-cut Heuristic Approach
Instance Value Time BFS # FS # Nodes Value Time

21 A 141.7 597 10 267000 140.7 3602
21 B 196.6 2018 12 313000 188.6 3605
21 C * * 0 88000 436.1 5733
41 A 240.1 5273 27 365100 228.6 4202
41 B 386.8 17143 30 313200 394.5 4207
41 C * * 0 318000 866.6 8526
61 A 228.4 3023 31 290800 227.4 4421
61 B * * 0 323000 849.2 8913
61 C * * 0 186000 792.9 13656

The results show that when the initial inventory levels measured in number
of feed days vary the instances become harder. That could be justified by the
fact that time aspects become more relevant. As inequalities (56) are weak,
the fractional solutions have, in general, feasible time assignments for all the
farm visits. Thus, in those fractional solutions there is no need for external
feed supply and the corresponding variables are set to zero.

In Table 6, we provide the value of the branch-and-cut after 5 hours, 1 hour
and 30 minutes represented by columns AF(5h), AF(1h), AF(30min) for those
5 instances for which the branch-and-bound could identify a feasible solution.
Columns AF(5h)+I., AF(1h)+I. and AF(30min) + I. give the value obtained
by applying the improving matheuristic to the corresponding solution. The
asterisk means that no feasible solution was found within the given time limit.

Table 6 Objective function values for different run times of the branch-and-cut with and
without routing improvements.

Instance AF(5h) AF(5h)+I. AF(1h) AF(1h)+I. AF(0.5h) AF(0.5h) + I.
21 A 141.7 140.7 141.7 140.7 141.7 140.7
21 B 196.6 188.6 196.6 188.6 196.6 188.6
41 A 240.1 230.2 243.3 228.6 252.3 241.1
41 B 386.8 347.2 442.1 394.5 * *
61 A 228.4 227.4 228.4 227.4 234.6 234.1
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Finally in Table 7, we present details of the best feasible solution obtained
for each instance. The objective function value given in column BFS is decom-
posed into its components: transportation cost (TC), external transportation
cost (ETC), external feed cost (EFC), and penalty cost (PC) in the following
four columns. Columns Ship 1 and Ship 2 give the number of loads at the
production factory (columns loads) and list the number of unloads at the fish
farms in each route (columns unloads) by ship 1 and ship 2, respectively. In
the list, unloads of zero means that the ship has returned to the production
factory to load in order to ensure the farm storing capacity is obeyed.

Table 7 Characterization of the best feasible solution found for each instance.

Ship 1 Ship 2
Inst. BFS TC ETC EFC PC loads unloads loads unloads
21 A 140.7 139 0 0 1.7 3 [10, 1, 0] 1 [10]
21 B 188.6 173 0 0 15.6 3 [5, 6, 2] 1 [10]
21 C 436.1 172 22.1 242 0 3 [7, 1, 1] 2 [6, 0]
41 A 228.6 210 0 0 18.6 2 [8, 9] 3 [2, 21, 0]
41 B 347.2 255 4.3 56.1 31.7 2 [10, 10] 3 [12, 6, 0]
41 C 866.6 235 34.8 595.2 1.6 3 [14, 1, 0] 2 [10, 7]
61 A 227.4 186 0 0 41.4 3 [24, 8, 0] 1 [28]
61 B 849.2 223 59.8 562.7 3.7 3 [19, 1, 0] 2 [20, 6]
61 C 792.9 256 34.1 450.2 52.5 3 [15, 7, 0] 2 [19, 11]

7 Concluding remarks

Norway’s largest salmon farmer is involved in the value chain from egg produc-
tion to sales of finished salmon products. Recently, they have been building
a factory for feed production and bought two specialized ships to take the
responsibility for the feed production and feed delivery as well. This allows for
implementation of vendor managed inventory (VMI) as opposed to the order
based feed delivery common in the industry.

We have developed a mathematical model and solution approach for a
combined ship routing and inventory management problem including several
characteristics from the salmon farming industry. Compared to most existing
maritime inventory routing problems described in the literature, the problem
studied here includes many fish farms compared to production factories re-
sulting in relatively long routes. The time windows derived from the network,
loading quantity- and inventory limits are wide. Another complicating charac-
teristic is that the company has not sufficient production and ship capacity to
supply all fish farms internally, so some of the farms have to be supplied exter-
nally. Finally, the storages at the fish farms cannot be fully loaded if the farm
is visited outside working hours. Our study shows that the resulting problem
is very complex to solve for large real instances.

The mathematical formulation clearly defines the problem, and the process
of developing the model has been important for the company and the project
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team in order to understand the complex issues of the problem. The mathemat-
ical model is strengthened by tightening the timing constraints and including
subtour elimination constraints. To further tighten the model, extended formu-
lations, such as a Multi-Commodity Flow formulation and a Route-Assignment
formulation, are developed. The mathematical models and the extended for-
mulations have in addition been the basis for the development of matheuristics
to solve larger instances of the problem. The matheuristics are based on im-
proving an existing solution (or building a feasible solution if no solution is
found) by using the mathematical formulations with partially fixing variables
in an iterative procedure.

The computational results show that feasible solutions can be found so the
company has the possibility of introducing VMI with their new plant and two
ships. The improved mathematical formulation can find feasible solutions for
most of the instances, but the first matheuristic can find better solutions in a
limited number of time. The second matheuristic that builds a solution in case
none is found by the mathematical model is useful for some of the instances.
This heuristic constructs a solution by solving smaller routing subproblems in
sequence. This approach can be easily extended to other maritime inventory
routing problems. However, the quality of the heuristic could not be properly
evaluated given the poor quality of the lower bounds derived.
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