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Abstract

The use of heavy-tailed distributions is a valuable tool in devel-

oping robust Bayesian procedures, limiting the influence of outliers

on posterior inference. In this paper, the behavior of the posterior

density for a location-scale model is investigated when the sample

contains outliers. L-exponentially varying functions are introduced in

order to characterize the tails of the densities. Simple conditions on

the tails of the likelihood, using L-exponentially varying functions, are

established to determine the proportion of observations that can be

rejected as outliers. It is shown that the posterior distribution con-

verges in law to the posterior that would be obtained from the reduced

sample, excluding the outliers, as they tend to plus or minus infinity,

at any given rate.
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1 Introduction

The use of heavy-tailed distributions is a valuable tool in developing robust

Bayesian procedures, limiting the influence of outliers on posterior infer-

ence. Outlier rejection in Bayesian analysis was first described by De Finetti

(1961), where the simplest case with a single observation having mean θ was

considered. Theorical results were given by Dawid (1973) and Hill (1974).

O’Hagan (1979) considered outlier rejection in a sample and O’Hagan (1988)

considered more general Bayesian modeling based on Student-t distribu-

tions. Outliers rejection based on the notion of credence was introduced

by O’Hagan (1990). This paper was generalied by Angers (2000) and Des-

gagné and Angers (2007). Other authors approached outliers rejection, see

for instance Meinhold and Singpurwalla (1989), Angers and Berger (1991),

Carlin and Polson (1991), Angers (1992), Fan and Berger (1992), Geweke

(1994) and Angers (1996).

In this paper, we consider the location-scale model on the real line, and we

investigate the conditions to obtain robustness against outliers. In Section 2,

we define new classes of functions resulting from generalization and transfor-

mation of the known regularly varying functions. The result is the class of

L-exponentially varying functions. This family will be used to describe some

conditions of robustness in the next sections. In Section 3, the mathemat-
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ical context is given. We describe the location-scale model, in the context

of robustness. In Section 4, we give the main theorem, with the conditions

and results of robustness. We show that the posterior distribution converges

in law to the posterior that would be obtained from the reduced sample,

excluding the outliers, as they tend to −∞ or ∞, at any given rate. The

proofs are given in Section 5. In Section 6, a new density, named log-GEP,

is proposed for a robust modeling.

2 L-exponentially varying functions

One main condition for robustness is to use sufficiently heavy-tailed densities

for the conflicting information. To achieve it, we introduce a class of functions

called L-exponentially varying functions defined. Any function is assumed to

be continuous.

We say that f(z) and g(z) are asymptotically equivalent at ∞, written

f(z) ∼ g(z) as z →∞, if

f(z)/g(z)→ 1 as z →∞.

We begin with definitions of classes of functions defined on R. We say that

a function f is slowly varying at∞[−∞], written f ∈ E0,0,0(∞)[E0,0,0(−∞)],

if for ν > 0,

f(νx) ∼ f(x) as x→∞[−∞].

We say that a function f is regularly varying at∞[−∞] with index ρ ∈ R,

written f ∈ E0,0,−ρ(∞)[E0,0,−ρ(−∞)], if for ν > 0,

f(νx)/f(x)→ νρ as x→∞[−∞],
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or equivalently, if for x > 0[x < 0], f can be written as

f(x) = |x|ρS(x), with S ∈ E0,0,0(∞)[E0,0,0(−∞)].

We now introduce a new class of function which generalizes the regularly

varying functions as follows.

Definition 1. We say that a function f is exponentially varying at ∞[−∞]

with index (γ, δ, α), written f ∈ Eγ,δ,α(∞)[Eγ,δ,α(−∞)], if for x > 0[x < 0],

f can be written as

f(x) = e−δ|x|
γ

|x|−α S(x),

with S ∈ E0,0,0(∞)[E0,0,0(−∞)], γ ≥ 0, δ ≥ 0, α ∈ R.

By convention, we define γ = 0 iif δ = 0. This class of functions includes

the slowly varying functions when γ = 0, δ = 0, α = 0 and the regularly

varying functions with index ρ when γ = 0, δ = 0, α = −ρ. It is easy to

see that if f1(x) ∼ f2(x) as x → ∞[−∞] and f1 ∈ Eγ,δ,α(∞[−∞]), then

f2 ∈ Eγ,δ,α(∞[−∞]). Note that f(x) ∈ Eγ,δ,α(−∞)⇔ f(−x) ∈ Eγ,δ,α(∞).

Definition 2. We say that a function f is L-slowly varying at ∞, written

f ∈ L0,0,0(∞), if for ν > 0,

f(zν) ∼ f(z) as z →∞.

For example, log(log z) ∈ L0,0,0(∞).

Definition 3. We say that a function f is L-regularly varying at ∞ with

index ρ ∈ R, written f ∈ L0,0,−ρ(∞), if for ν > 0,

f(zν)/f(z)→ νρ as z →∞,
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or equivalently, if for z > 1, f can be written as

f(z) = (log z)ρS(z), with S ∈ L0,0,0(∞).

Definition 4. We say that a function f is L-exponentially varying at∞ with

index (γ, δ, α), written f ∈ Lγ,δ,α(∞) if for z > 1, f can be written as

f(z) = e−δ(log z)γ (log z)−αS(z),

with S ∈ L0,0,0(∞), γ ≥ 0, δ ≥ 0, α ∈ R.

By convention, we define γ = 0 iif δ = 0. This class of functions includes

the L-slowly varying functions when γ = 0, δ = 0, α = 0 and the L-regularly

varying functions with index ρ when γ = 0, δ = 0, α = −ρ. It is easy to see

that if f(z) ∼ g(z) as z →∞ and f ∈ Lγ,δ,α(∞), then g ∈ Lγ,δ,α(∞).

Since the vector (γ, δ, α) characterizes a L-exponentially varying function,

it can be useful to define the following notation.

i) If γ1 = γ2, δ1 = δ2, α1 = α2, we write

(γ1, δ1, α1) = (γ2, δ2, α2),

ii) if γ1 > γ2 or γ1 = γ2, δ1 > δ2 or γ1 = γ2, δ1 = δ2, α1 > α2, we write

(γ1, δ1, α1) > (γ2, δ2, α2),

iii) if γ1 < γ2 or γ1 = γ2, δ1 < δ2 or γ1 = γ2, δ1 = δ2, α1 < α2, we write

(γ1, δ1, α1) < (γ2, δ2, α2).

The following proposition concerns the integrability of functions of this

class.
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Proposition 1. For a function f such that f ∈ Lγ,δ,α(∞), (1/z)f(z) is

integrable on z > 1, if

i) (γ, δ, α) > (0, 0, 1),

ii) (γ, δ, α) = (0, 0, 1), with a L-slowly varying function S(z) having a decay

sufficiently “fast” (e.g. S(z) = (log(log z))−β, β > 1).

For two functions f1 and f2 L-exponentially varying at ∞, it is simple to

order the asymptotic behavior of their tails as follows.

Proposition 2. If fi ∈ Lγi,δi,αi(∞), i = 1, 2, and

i) if (γ1, δ1, α1) > (γ2, δ2, α2), then

f1(z)/f2(z)→ 0 as z →∞,

ii) if (γ1, δ1, α1) < (γ2, δ2, α2), then

f1(z)/f2(z)→∞ as z →∞,

iii) if (γ1, δ1, α1) = (γ2, δ2, α2), then the ratio of the L-slowly varying func-

tions determines the tails dominance.

The following proposition says that the asymptotic scale invariance is a

sufficient condition for the asymptotic location invariance.

Proposition 3.

f(σz) ∼ f(z), σ > 0⇒ f(z + µ) ∼ f(z), µ ∈ R, as z →∞.

In the next proposition, we give sufficient conditions to ensure that a scale

change has no impact on the tail of a L-exponentially varying function.
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Proposition 4. If f ∈ Lγ,δ,α(∞) and γ < 1, then

f(σz) ∼ f(z) as z →∞, σ > 0,

that is f is a slowly varying function.

A corollary of Propositions 3 and 4 is given by the following proposition.

Proposition 5. If f ∈ Lγ,δ,α(∞) and γ < 1, then

f(σz + µ) ∼ f(z) as z →∞, µ ∈ R, σ > 0.

Proof.
f(σz + µ)

f(z)
=
f(σz + µ)

f(σz)

f(σz)

f(z)
→ 1, as z →∞,

using Proposition 3 since σz →∞ and using Proposition 4.

A corollary of Proposition 5 is given by the following proposition.

Proposition 6. If zf(z) ∈ Lγ,δ,α(∞) and if γ < 1, then

(1/σ)f((z − µ)/σ) ∼ f(z) as z →∞, µ ∈ R, σ > 0.

Proof. If we let g(z) = |z| f(z), then using Proposition 5, we have

(1/σ)f((z − µ)/σ)

f(z)
=
g((z − µ)/σ)

g(z)

∣∣∣∣ z

z − µ

∣∣∣∣→ 1 as z →∞.

Proposition 7. If f is a proper density defined on R, symmetric with respect

to the origin, such that the right tail of xf(x) is non-increasing and xf(x) ∈

Lγ,δ,α(∞) with γ < 1, then
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i) ∫ ∞
−∞

f(x− µ)f(µ) dµ ∼ f(x) as x→ ±∞.

ii)

2

∫ ∞
0

(1/σ)f(x/σ)f(σ) dσ ∼ f(x) as x→ ±∞.

Proof. Firstly, we note that a non-increasing right tail of xf(x) means also

a non-increasing right tail of f(x). It suffices to see that for x larger than a

certain positive constant,

d

dx
xf(x) ≤ 0⇒ f ′(x) ≤ −f(x)/x ≤ 0.

From Proposition 6 of article 1, we know that f(x) is also an exponentially

varying function with γ < 1. Then Proposition 7 i) of the article 1 is directly

used to prove point i) of this proposition.

For point ii), if we define h(σ) = 2σf(σ), we can verify, using the sym-

metry of f , that∫ ∞
0

(1/σ)h(σ) dσ = 2

∫ ∞
0

(1/σ)σf(σ) dσ = 2

∫ ∞
0

f(σ) dσ = 1.

Then Proposition 7 ii) of the article 1 can be used, and we have

h(x)−1

∫ ∞
0

(1/σ)h(x/σ)h(σ) dσ

= (2xf(x))−1

∫ ∞
0

(1/σ)2(x/σ)f(x/σ)2σf(σ) dσ

= f(x)−1 · 2
∫ ∞

0

(1/σ)f(x/σ)f(σ) dσ

→ 1 as x→∞.

By symmetry of f , the result is also true for x→ −∞.



Full robustness to outliers in a Bayesian location-scale model 9

3 Context

i) Let X1, . . . , Xn be n random variables conditionally independent given µ

and σ with their conditional densities given by

Xi | µ, σ ∼ (1/σ)fi((xi − µ)/σ),

ii) the joint prior density of µ and σ is assumed improper as follows µ, σ ∼

1/σ,

where x1, . . . , xn, µ ∈ R, σ > 0, and fi(x) are continuous, positive every-

where, symmetric (fi(−x) = fi(x)) and proper densities. The tails of |x|fi(x)

are assumed to be non-increasing, which necessarily means that the tails of

fi(x) are also non-increasing. It follows that the functions |x|fi(x) are sym-

metric, bounded above for all x ∈ R and they have a limit of 0 in their tails

as x → ±∞. The same is necessarily true for the density fi(x). Any other

parameters are also assumed to be known and are implicitly included in the

densities.

We study robustness of the inference on µ and σ in presence of extreme

observations xi. The nature of the results is asymptotic, in the sense that we

consider cases where some xi are going to ±∞. Among the n observations,

denoted by xen = (x1, . . . , xn), we assume that k of them, denoted by the

vector xek, form a group of non-outlier or fixed values. We assume that l of

them, denoted by the vector xe l, are considered as left outliers (smaller than

the fixed values) and r of them, denoted by the vector yer, are considered

as right outliers (larger than the fixed values), where 0 ≤ k, l, r ≤ n and

k + l + r = n.
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We define three binary functions li, ki and ri as follows. If xi is a left

outlier, we set li = 1, if it is a fixed value, we set ki = 1 and if it is a right

outlier, we set ri = 1. The functions are 0 otherwise. We have li+ki+ ri = 1

for any xi. Note that
∑n

i=1 li = l,
∑n

i=1 ki = k and
∑n

i=1 ri = r.

Let the joint posterior density of µ and σ be denoted by π(µ, σ | xen) and

the marginal density of X1, . . . , Xn be denoted by m(xen), with

π(µ, σ | xen) = m(xen)−1(1/σ)
n∏
i=1

(1/σ)fi((xi − µ)/σ),

m(xen) =

∫ ∞
−∞

∫ ∞
0

(1/σ)
n∏
i=1

(1/σ)fi((xi − µ)/σ) dσ dµ.

We also define

π(µ, σ | xek) = m(xek)−1(1/σ)
n∏
i=1

[(1/σ)fi((xi − µ)/σ)]ki ,

m(xek) =

∫ ∞
−∞

∫ ∞
0

(1/σ)
n∏
i=1

[(1/σ)fi((xi − µ)/σ)]ki dσ dµ.

Similarly, we can define

π(µ, σ | xe l) ∝ (1/σ)
n∏
i=1

[(1/σ)fi((xi − µ)/σ)]li ,

π(µ, σ | xer) ∝ (1/σ)
n∏
i=1

[(1/σ)fi((xi − µ)/σ)]ri ,

π(µ, σ | xe l, xer) ∝ (1/σ)
n∏
i=1

[(1/σ)fi((xi − µ)/σ)]li+ri .

We can interpret π(µ | xek) as a posterior density considering only the

fixed observations xek and m(xek) as the corresponding marginal density of
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Xe k, with 1/σ as the prior joint density of µ and σ. Similar interpretation for

π(µ | xe l), π(µ | xer) and π(µ, σ | xe l, xer) can be done. It can be seen that

σπ(µ | xen) ∝ σπ(µ | xek)× σπ(µ | xe l)× σπ(µ | xer)
or

σπ(µ | xen) ∝ σπ(µ | xek)× σπ(µ | xe l, xer).

4 Resolution of conflicts

Using the Bayesian context described in Section 3, the main theorem of this

paper is now presented. We denote

ω = min(−xe l, xer).
If we let ω →∞, it means that each component of the vector is going to ∞

at any given rate.

Theorem 1. If the following conditions are satisfied:

i) xfi(x) ∈ Lγ,δ,α(∞) with γ < 1, i = 1 . . . , n,

ii) k − (l + r) ≥ 2,

then we have the following results:

a) m(xen) ∼ m(xek)
∏n

i=1 [fi(xi)]
li+ri as ω →∞,

b) π(µ, σ | xen)→ π(µ, σ | xek), µ ∈ R, σ > 0, as ω →∞,

c) σπ(µ, σ | xen)→ 0, as |µ| → ∞ and/or |log σ| → ∞, ω →∞,
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d) µ, σ | xen L→ µ, σ | xek as ω →∞.

Result a) gives the asymptotic behavior of the marginal, as ω → ∞.

Result b) gives the asymptotic behavior of the posterior at any fixed value of

µ and σ. We see that the conflicting information is completely rejected and

the posterior considering the entire information behaves as the the posterior

considering only the non-conflicting values. Result c) says that σπ(µ, σ | xen)

converges to 0, if ω are going to∞ and if at least one of the following occurs:

µ → ∞, µ → −∞, σ → ∞, σ → 0, independently and at any given rate.

It means that σπ(µ, σ | xen) (and the posterior as well) converges to 0 for

any area around the conflicting values (xe l, xer), and that an eventual mode

at these values will also converge to 0. Note that π(µ, σ | xen)/π(µ, σ | xek),
as |µ| → ∞ and/or |log σ| → ∞, ω →∞, has a form of 0/0 and its limit can

be anywhere between 0 and ∞, depending on the relation between µ, σ and

ω. In result d), the convergence in law is understood as Pr[µ ≤ d1, σ ≤ d2 |

xen]→ Pr[µ ≤ d1, σ ≤ d2 | xek], for any d1 ∈ R, d2 > 0, as ω →∞.

5 Proof of Theorem 1

5.1 Proof of result a) of Theorem 1

From condition i), it follows that Propositions 5, 6 and 7 can be applied on

the right tail of fi. Note that by symmetry, we have fi(−x) = fi(x) and all

properties valid for the right tail of fi(x) are also valid for the right tail of

fi(−x).

More explicitly, Propositions 5 and 6 say that ∀ε > 0,∀λ > 0,∀τ > 1,
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there exist A1(ε, λ, τ) > 0 such that x > A1(ε, λ, τ),−λ ≤ µ ≤ λ, 1/τ ≤ σ ≤

τ ⇒

1− ε ≤ (σx+ µ)f(σx+ µ)/(xf(x)) ≤ 1 + ε

and

1− ε ≤ (1/σ)f((x− µ)/σ)/f(x) ≤ 1 + ε.

Since the densities fi are continuous and proper, it is easy to verify that

π(µ, σ | xek) and π(µ, σ | xen) are also proper densities. The following lemma

follows directly.

Lemma 1. ∀ε > 0, there exists a constant A5(ε) > 1 such that λ, τ ≥

A5(ε)⇒

i)
∫ λ
−λ

∫ τ
1/τ

π(µ, σ | xek) dσ dµ ≥ 1− ε,

ii)
∫ ∫

[R×R+]\[(−λ,λ)×(1/τ,τ)]
π(µ, σ | xek) dσ dµ < ε.

Now we define two functions as follows.

H(µ, σ, xen) = π(µ, σ | xek)
n∏
i=1

[
(1/σ)fi((xi − µ)/σ)

fi(xi)

]li+ri
(1)

and

M(xen) =

∫ ∞
−∞

∫ ∞
0

H(µ, σ, xen) dσ dµ. (2)

It is easy to verify that

m(xen)π(µ, σ | xen) = m(xek)π(µ, σ | xek)
n∏
i=1

[(1/σ)fi((xi − µ)/σ)]li+ri .

By dividing each side of this equation by
∏n

i=1 fi(xi)
li+ri and using equa-

tion (1), we obtain

H(µ, σ, xen) =
m(xen)π(µ, σ | xen)

m(xek)
∏n

i=1 fi(xi)
li+ri

. (3)
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Using equations (2) and (3) with
∫∞
−∞

∫∞
0
π(µ, σ | xen) dσ dµ = 1, we

obtain

M(xen) =
m(xen)

m(xek)
∏n

i=1 fi(xi)
li+ri

. (4)

Dividing (3) by (4), we see that

π(µ, σ | xen) = H(µ, σ, xen)/M(xen). (5)

Finally, from equations (1) and (5), it follows that

π(µ, σ | xen)

π(µ, σ | xek)
= (1/M(xen))

n∏
i=1

[
(1/σ)fi((xi − µ)/σ)

fi(xi)

]li+ri
. (6)

Equation (6) will be useful for the proof of result b) of Theorem 1. From

Equation (4), we see that Result a) is equivalent to M(xen) → 1 as ω → ∞.

And using Equation (2), Result a) can be written as follows. ∀ε > 0, there

exists A0(ε) such that

ω > A0(ε)⇒ 1− ε ≤
∫ ∞
−∞

∫ ∞
0

H(µ, σ, xen) dσ dµ ≤ 1 + ε.

Now choose any 0 < ε < 1. Note that if the result is true for 0 < ε < 1,

it is necessarily true for any larger ε ≥ 1. Then define

ε0 = min
[
1− (1− ε/3)1/n, (1 + ε/3)1/n − 1

]
λ1 = max [A5(ε0)] ,

τ1 = max [A5(ε0)] ,

A0(ε) = max [A1(ε0, λ1, τ1)] .

Note that 0 < ε0 < 1. The integral of result a) is divided into nine parts.

Firstly consider the integral on µ, σ ∈ [−λ1, λ1]× [1/τ1, τ1].∫ λ1

−λ1

∫ τ1

1/τ1

H(µ, σ, xen) dσ dµ ≥
∫ λ1

−λ1

∫ τ1

1/τ1

π(µ, σ | xek)(1− ε0)l+r dσ dµ
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≥ (1− ε0)l+r+1 ≥ (1− ε0)n ≥ 1− ε/3.

Note that the location-scale invariance of fi (Proposition 6) is used in the

first inequality since A0(ε) ≥ A1(ε0, λ1, τ1) and Lemma 1 is used in the second

inequality since λ1, τ1 ≥ A5(ε0). In a similar way, it can be shown that∫ λ1

−λ1

∫ τ1

1/τ1

H(µ, σ, xen) dσ dµ ≤ . . . ≤ (1 + ε0)
l+r+1 ≤ (1 + ε0)

n ≤ 1 + ε/3.

The proof is yet to be completed by showing that∫ ∫
R×R+ \(−λ1,λ1)×(1/τ1,τ1)

H(µ, σ, xen) dσ dµ ≤ . . . ≤ ε/3.

5.2 Proof of result b) of Theorem 1

From equation (6), it is clear that

π(µ, σ | xen)

π(µ, σ | xek)
→ 1 as ω →∞,

for any fixed µ ∈ R and σ > 0, using result a) of Theorem 1 and the location-

scale invariance (Proposition 6).

5.3 Proofs of results c) and d) of Theorem 1

The proof for result c) is yet to be completed. For the proof of result d), we

need first to write Result b) explicitly as follows. ∀ε > 0,∀λ > 0,∀τ > 1,

there exists a constant A6(ε, λ, τ) > 0 such that −λ ≤ µ ≤ λ, 1/τ ≤ σ ≤ τ

and ω > A6(ε, λ, τ)⇒

1− ε < π(µ, σ | xen)/π(µ, σ | xek) < 1 + ε.
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We want to show result d), which can be written as follows. ∀ε >

0,∀d1 ∈ R, ∀d2 > 0 there exists a constant A0(ε, d1, d2) > 0 such that

ω > A0(ε, d1, d2)⇒∣∣∣∣∫ ∞
d1

∫ ∞
d2

π(µ, σ | xen) dσ dµ−
∫ ∞
d1

∫ ∞
d2

π(µ, σ | xek) dσ dµ
∣∣∣∣ < ε.

Choose any ε > 0, any d1 ∈ R and d2 > 0, let λ = max(|d1| , A5(ε/3))

and τ = max(1/d2, d2, A5(ε/3)), where the constant A5 comes from Lemma

1, and let A0(ε, d1, d2) = A6(ε/3, λ, τ). Notice that λ ≥ |d1| ⇔ −λ ≤ d1 ≤ λ

and τ ≥ max(1/d2, d2)⇔ 1/τ ≤ d2 ≤ τ . Let

Z = [(d1,∞)× (d2,∞)] \ [(d1, λ)× (d2, τ)] .

Notice that

[(d1, λ)× (d2, τ)] ∈ [(−λ, λ)× (1/τ, τ)]

and

Z ∈
[
R×R+

]
\ [(−λ, λ)× (1/τ, τ)] .

Consider ω > A0(ε, d1, d2).

Firstly, using Lemma 1, we have∫ ∫
Z

π(µ, σ | xek) dσ dµ ≤
∫ ∫

[R×R+]\[(−λ,λ)×(1/τ,τ)]

π(µ, σ | xek) dσ dµ ≤ ε/3,

since λ, τ ≥ A5(ε/3).

Secondly,∫ ∫
Z

π(µ, σ | xen) dσ dµ ≤
∫ ∫

[R×R+]\[(−λ,λ)×(1/τ,τ)]

π(µ, σ | xen) dσ dµ

= 1−
∫ λ

−λ

∫ τ

1/τ

π(µ, σ | xen) dσ dµ



Full robustness to outliers in a Bayesian location-scale model 17

≤ 1− (1− ε/3)

∫ λ

−λ

∫ τ

1/τ

π(µ, σ | xek) dσ dµ
≤ 1− (1− ε/3)2 ≤ 1− (1− ε/3) = ε/3.

In the equality, we use the fact that π(µ, σ | xen) is a proper density. In the

second inequality, we used result b) since ω > A6(ε/3, λ, τ). In the third

inequality, Lemma 1 is used since λ, τ ≥ A5(ε/3).

Thirdly,∣∣∣∣∫ λ

d1

∫ τ

d2

π(µ, σ | xen) dσ dµ−
∫ λ

d1

∫ τ

d2

π(µ, σ | xek) dσ dµ
∣∣∣∣

≤
∫ λ

d1

∫ τ

d2

|π(µ, σ | xen)− π(µ, σ | xek)| dσ dµ
=

∫ λ

d1

∫ τ

d2

π(µ, σ | xek) |π(µ, σ | xen)/π(µ, σ | xek)− 1| dσ dµ

≤ ε/3

∫ λ

d1

∫ τ

d2

π(µ, σ | xek) dσ dµ ≤ ε/3.

Result b) is used in the second inequality since ω > A6(ε/3, λ, τ).

Combining the three last inequalities, it follows that∣∣∣∣∫ ∞
d1

∫ ∞
d2

π(µ, σ | xen) dσ dµ−
∫ ∞
d1

∫ ∞
d2

π(µ, σ | xek) dσ dµ
∣∣∣∣

≤
∣∣∣∣∫ λ

d1

∫ τ

d2

π(µ, σ | xen) dσ dµ−
∫ λ

d1

∫ τ

d2

π(µ, σ | xek) dσ dµ
∣∣∣∣

+

∫ ∫
Z

π(µ, σ | xen) dσ dµ+

∫ ∫
Z

π(µ, σ | xek) dσ dµ
≤ ε/3 + ε/3 + ε/3 = ε.
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6 Family of D-GEP and log-GEP densities

The Generalized Exponential Power (GEP) density has been introduced by

Desgagné and Angers (2007). It is a symmetric density around the origin,

defined on the real line and made of a constant part in the center. Its interest

lies in its large spectrum of tail behavior. In this section, we propose two

families of densities, the D-GEP and the log-GEP densities. The D-GEP

density (D stands for double), defined on the real line, is built with the right

tail of the GEP density translated to the origin and doubled. The log-GEP,

defined on the positive real line, is simply given by a logarithmic/exponential

transformation of the D-GEP density. The D-GEP and log-GEP densities

are respectively exponentially (at −∞ and∞) and L-exponentially (at 0 and

∞) varying functions. These densities are then useful for robust modeling.

Definition 5. A random variable X has a D-GEP distribution, written X ∼

D-GEP (γ, δ, α, β, θ, τ), if its density is given by

f(x) =
K(γ, δ, α, β, θ)

2τ
exp[−δ(|x/τ |+ θ)γ](|x/τ |+ θ)−α(log(|x/τ |+ θ))−β,

where x ∈ R, γ ≥ 0, δ ≥ 0, α ∈ R, β ∈ R, θ ≥ 0. The scale parameter is

τ > 0. A part of the normalizing constant is given by

1/K(γ, δ, α, β, θ) =

∫ ∞
θ

exp[−δzγ]z−α(log z)−βdz. (7)

By convention, we set γ = 0 if and only if δ = 0. In order for f to be

strictly positive, continuous and proper, these additional constraints must be

satisfied: i) θ > 1 if β 6= 0, ii) θ > 0 if β = 0, α 6= 0, iii) α > 1 or

α = 1, β > 1 if γ = δ = 0.
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The D-GEP density is in general unimodal, except maybe if α < 0 and/or

β < 0. In this case, it suffices to choose θ large enough to guarantee uni-

modality. More precisely, θ must be chosen such that γδθγ +α+β/ log θ ≥ 0.

Furthermore, it can be verified that f(x) ∈ Eγ,δ,α(±∞). It suffices to choose

γ < 1 to satisfy the condition of robustness relative to the tails.

Definition 6. A random variable Y has a log-GEP distribution, written

Y ∼ log-GEP (γ, δ, α, β, θ, τ), if its density is given by

g(y) = K(γ, δ, α, β, θ)(0.5/τ)(1/y) exp[−δ(|log y| /τ + θ)γ]

× (|log y| /τ + θ)−α(log(|log y| /τ + θ))−β,

where y > 0, γ ≥ 0, δ ≥ 0, α ∈ R, β ∈ R, θ ≥ 0, τ > 0. The constant

K(γ, δ, α, β, θ) is given by equation (7). By convention, we set γ = 0 if and

only if δ = 0. In order for g to be strictly positive, continuous and proper,

these additional constraints must be satisfied: i) θ > 1 if β 6= 0, ii) θ > 0 if

β = 0, α 6= 0, iii) α > 1 or α = 1, β > 1 if γ = δ = 0.

The median of g(y) is 1. If a scale parameter σ is added to the den-

sity, the median of (1/σ)g(y/σ) is σ. We can see there is a symmetry

with respect to the median, in the sense that (y/σ)g(y/σ) = (σ/y)g(σ/y)

or yg(y) = (1/y)g(1/y) if σ = 1. The left tail of the density g(y), as

y → 0, can be anything from 0 to ∞. More precisely, it is i) a positive

constant if (γ, δ, α, β) = (1, τ, 0, 0), ii) 0 if (γ, δ, α, β) > (1, τ, 0, 0) and iii) ∞

if (γ, δ, α, β) < (1, τ, 0, 0).



Full robustness to outliers in a Bayesian location-scale model 20

7 Conclusion

In this paper, the behavior of the posterior density of a location-scale model

has been investigated when the sample contains outliers. The families of

L-exponentially varying functions have been introduced. Simple conditions

on the tails of the likelihood, using L-exponentially varying functions, are

established to determine the proportion of observations that can be rejected

as outliers. We have shown that the posterior distribution converges in law

to the posterior that would be obtained from the reduced sample, excluding

the outliers.
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