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Chapter 1

Introduction

1.1 General context

1.1.1 The Neotropics and Amazonia

The Neotropics constitute one of the major biogeographic realms on the planet (Schultz,
2005). They encompass tropical areas from Central Mexico to Argentina, encompassing
different biogeographic area notably: the Carribean region, Amazonia, the Andes, the
Choc6 (Colombia), the Llanos (Colombia, Venezuela), the Pantepui (Venezuela, Guyana,
Brazil), the Caatinga (Brazil), the Chaco (Bolivia) the Cerrado (Brazil), and the Atlantic
forest (Antonelli and Sanmartin, 2011; Schultz, 2005). Even though this realm is char-
acterised by a tropical climate, precipitation regimes vary between regions, from almost
9,000 mm on average per year in western Colombia, to almost no precipitations at all in
the Atacama Desert in Bolivia. Within the Neotropics, Amazonia is the largest region
that covers about 7.5 million km? (about 40 % of South America) (Goulding et al., 2003).
It is bordered by the Cerrado to the east, the Andes to the west, the Llanos to the north-
west. It is characterised by the largest hydrological system on the planet, the Amazon
River, that flows along 6400 km from the Andes to the Atlantic. The main tributaries of
the Amazon River are, from west to east, the Napo, the Japurd, the Negro Rivers on its
left bank, and the Jurua, the Purus, the Madeira, the Tapajos, and the Xingu Rivers on
its right bank. The Amazon basin separates two main geological formations, the Brazilian
Shield to the south, and the Guiana Shield to the north. It is mostly covered by evergreen

tropical forest which covers about 5.5 million km?, making it the largest rainforest in the

11



world, but is also peppered with savannahs islands. Precipitations in Amazonia vary from
1,500 to 3,000 mm annually, with an average of 2,000 mm in central Amazonia (Salati

and Vose, 1984).

1.1.2 Biodiversity in Amazonia

One of the most spectacular features of biodiversity is the latitudinal gradient in its
distribution, with an increase of diversity toward the tropical regions (Dowle et al., 2013;
Gaston, 2000; Hillebrand, 2004). Among them, Amazonia is the largest, encompassing
about 40 % of tropical forests of the planet, and also the richest, harbouring about 40,000
species of plants, about 2,500 species of terrestrial vertebrates and around 3,000 species
of fishes (Antonelli and Sanmartin, 2011; Da Silva et al., 2005; Jenkins et al., 2013; Myers
et al., 2000).

Why there are so many species in the tropics, and especially in Amazonia, is a ques-
tion that has puzzled naturalists since the 19" century (Bates, 1863; de Humboldt, 1820;
Wallace, 1852), and still remains debated nowadays (Smith et al., 2014). Answering such
a question remains difficult because it involves the interplay of different mechanisms and
events that would have promoted speciation over the last 70 million years (Antonelli et al.,
2010; Bush, 1994; Hoorn et al., 2010). General principles have been proposed to explain
the higher diversity observed in tropical regions, such as the old age of the tropical biotas
and higher rates of diversification and lower extinction driven by their climatic stabil-
ity over long periods of time compared to temperate zones (Moritz et al., 2000; Pyron
and Wiens, 2013). Another aspect that have been invoked to explain the high species
richness of tropical areas is limited dispersal of species from tropical regions toward tem-
perate ones, and conversely more dispersal of temperate species toward tropical regions
dispersal (Pennington and Dick, 2004; Pyron and Wiens, 2013). Several hypotheses linked
to geomorphological (uplift of the Andes, marine incursions), hydrological (formation of
large river drainages), climatic (fragmentation of landscape triggered by cooler and dryer
climates) events have been formulated to explain the build-up of the Amazonian biodiver-
sity. The recent acquisition of geomorphological, hydrological and palaeoclimate data in
Amazonia and adjacent regions, as well as diversification patterns retrieved from molec-

ular analyses, enabled to test the concomitance of historical events and cladogenesis, and
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therefore discuss the relevance of the different hypotheses on the origin of diversification in
Amazonia. Paradoxically, even though Amazonia is the richest region on earth, it is also
one of the less studied region in terms of phylogeography (Beheregaray, 2008), resulting
in many gaps in our knowledge on diversification patterns, species limits, species ranges.
Therefore, data acquisition on different groups throughout Amazonia is needed in order

to formulate strong hypothesis for explaining the origin of Amazonian diversity .

1.2 Hypotheses for the origin of Amazonian diversity

The origin of the vast biodiversity observed nowadays in Amazonia has been highly
debated, notably whether it mostly stemmed from diversification triggered by Neogene
geomorphological events or by recent Quaternary climatic oscillations (Hoorn et al., 2010;
Moritz et al., 2000; Rull, 2008, 2011). Actually, most diversification events in Amazonian
lowlands happened in the last 20 million years (Hoorn et al., 2010). Molecular phylogenies
of different groups show that both Neogene geomorphological events as well as Quater-
nary climatic oscillations have played a role in Neotropical diversification (Rull, 2011).
The orogenesis of the central Andes that began in the early Miocene was a process that
triggered high rates of speciation in this region. A global cooling of temperatures that
occurred throughout the Miocene and the Pliocene would have favoured dispersal events
from the Andes to the neighbouring lowlands of Amazonia. Speciation within Amazonia
certainly resulted from different processes linked with the setting-up of the Amazonian
drainage about 10 mya, the formation of large rivers of the Amazon drainage, and by
formation of disconnected refugia. For example, it has been inferred that Charis butter-
flies diversified during the Miocene, through vicariance that occurred with the setting-up
of major Amazonian rivers (Hall and Harvey, 2002). On the contrary, other organisms
such as Saimiri squirrel monkeys or Psophia trumpeters birds have diversified more re-
cently, in the late Pliocene and during the Pleistocene (Lavergne et al., 2010; Ribas et al.,
2012). It has been hypothesised that diversification within Saimiri was influenced by loss
of connection between forest refugia induced by climatic oscillations during this period
(Lavergne et al., 2010), whereas river dynamic has been invoked as a driver to speciation

by successive dispersals in Psophia (Ribas et al., 2012).

Four main hypotheses (Andean uplift, marine incursions, riverine barriers, and forma-
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tion of refugia) have been formulated to explain the origin of the enormous diversity that
is observed nowadays in Amazonia, evoking events that happened from the Neogene to

the Quaternary.

1.2.1 Miocene marine incursions and Andean uplift in the early

Miocene

Repeated marine incursions in northern South America occurred since the late Eocene
(~40 mya), and culminated in the early Miocene (23-15 mya) with the Pebas forma-
tion in the western part of northern South America, that consisted of a large lakes and
drainage that ran from south to north (Fig. 1.1) (Hoorn, 1993; Hoorn et al., 2010). It
has been hypothesised that such large and long lasting wetland formations had an impact
on terrestrial organisms in fragmenting the landscape, thus leading to loss of connection
between populations over a long period of time (Lovejoy et al., 1998; Nores, 1999). It
is for example coincidental with the split between the two Neotropical frog families Al-
lophrynidae and Centrolenidae in the late Eocene and could have caused the isolation
of the proto-Andes from the rest of Amazonia, thus triggering the diversification event
in between both clades (Castroviejo-Fisher et al., 2014). Similarly, the role of marine
incursion has been evoked to explain diversification within the Neotropical snake genus
Corallus (Colston et al., 2013), as well as for Dendrobatid frogs (Noonan and Wray, 2006)
for example. The orogeny of central Andes began at the same period, around 20 mya.
Several studies showed that this geological event certainly played a major role in species
diversification during the Neogene, and the Andes are considered to be the centre of ori-
gin of many Neotropical clades that diversified mainly through vicariance of populations
that occurred on either sides of emerging mountains, or montane taxa separated by deep
valleys or impassable peaks (Antonelli et al., 2010; Antonelli and Sanmartin, 2011). It has
been suggested that subsequent dispersal of plants and animals from the Andes towards
adjacent zones in Amazonia was triggered by a cooling of temperatures that began during
the mid-Miocene (~15 mya), but became more important and rapidly fluctuating in the
last 3 my until the Quaternary (Antonelli et al., 2009; Castroviejo-Fisher et al., 2014; Elias
et al., 2009; Haffer, 1997; Hughes and Eastwood, 2006; Lynch and Duellman, 1997; Santos
et al., 2009). However, many diversified clades in Amazonia do not occur in the Andes

(e.g., Leptodactylidae, Microhylidae, Phyllomedusidae, Lophyohylinae, Amazophrynella,
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Scinazx). Therefore, their diversification cannot be directly linked to the orogeny of the

Andes via dispersal from higher elevation localities toward Amazonia.

Figure 1.1 — Evolution of the Amazonian landscape through time, from Paleogene to Quaternary
periods. (A) Paleocene and Eocene; (B) Oligocene; (C) early Miocene to late Miocene; (D) late Miocene;
(E) late Miocene to early Pleistocene (F) Pleistocene and Holocene. Figure taken from Hoorn et al. 2010.

1.2.2 Setting-up of the Amazon drainage in the late Miocene

The uplift of the central and northern Andes from in the Miocene had a profound
impact on the landscapes of northern South America, as it resulted in the retreat of the
Pebas system, and the formation of the Amazon basin during the late Miocene (10-7

mya) that ran nowadays from west to east (Fig. 1.1).

Naturalists who travelled in Amazonia in the 19" century observed allopatric distribu-

tion of species on opposite banks of three major rivers, the Amazon, the Madeira, and
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the Negro rivers (Wallace, 1852; Hellmayr, 1910). It has been hypothesised that the for-
mation of major Amazonian rivers during the Pliocene might have generated allopatric
speciation by limiting or preventing dispersion between contiguous regions separated by
large rivers through a riverine barrier effect (Antonelli et al., 2010). In such cases, di-
vergence between sister species should be reflected in their allopatric range along rivers,
as well as the setting-up of the Amazon drainage during the late Miocene. Several ex-
amples support this hypothesis, like the butterfly Charis cleonus species complex (Hall
and Harvey, 2002), as well as in primate genera (Cebus, Callicebus, and Cacajao) (Boubli
et al., 2015), and in the bird Myrmeciza hemimelaena species complex (Fernandes et al.,
2012). Other evidences of the riverine barrier effect on bird diversification have been
documented in Amazonia, for example in the Hypocnemis cantator clade (Tobias et al.,

2008), in Pteroglossus (Patel et al., 2011).

However, it has been argued that in some cases it is difficult to interpret if the river
was a location of primary diversification, or if it stands as a meeting point for species
that diverged elsewhere and then dispersed up to the river (Bates et al., 2004; Funk et al.,
2007b; Moritz et al., 2000). Also, some studies conducted on butterflies, frogs, and small
mammals failed at finding a barrier effect of some Amazonian rivers such as the Jurua
River in western Amazonia (Elias et al., 2009; Gascon et al., 2000; Patton et al., 1994,
2000). The physical characteristics of some rivers might actually explain such patterns,
as it has been hypothesised that large meandering rivers might be permeable to gene flow
through passive transfer triggered by river dynamics. In such cases, gene flow would be
possible through the formation of islands that can be connected to either one or the other
banks through time (Bates et al., 2004; Peres et al., 1996). On the contrary, fast-flowing
rivers that have a stable course over long time scales such as the Madeira or the Tapajos
rivers would have acted as barriers to gene flow and might have promoted allopatric
speciation (Bates et al., 2004). Such a pattern has been found for example in Psophia

along the Madeira and Tapajos rivers (Ribas et al., 2012).
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1.2.3 Climate cycles in the Pliocene and Pleistocene: The refu-
gia hypothesis

This hypothesis has been formulated in the late 1960’s by German ornithologist Jiirgen
Haffer (Haffer, 1969). In a first article published in 1969, Haffer stipulated that climatic
oscillations during the late Pliocene and Pleistocene induced fragmentation of the rain-
forest during cycles of cooler and dryer climates, resulting in a landscape of disconnected
forest patches scattered across interfluves. Populations were thereby isolated for long

periods of time, thus leading to genetic divergence, and eventually to speciation.

Even though this hypothesis has been criticised given molecular studies showed that
most diversification events in Amazonia largely predate the Pleistocene (Antonelli et al.,
2010; Bush, 1994; Hoorn et al., 2010), recently published data provided evidence of Pleis-
tocene diversification within Amazonia in mammals and birds (Lavergne et al., 2010; Patel
et al., 2011; Ribas et al., 2011, 2012). Quaternary glacial cycles certainly had major im-
pacts on Neotropical landscapes, as cooler and dryer climates during these glacial periods
may have had a major impact on Neotropical forest either through forest fragmentation,
forest composition, or species specific ranges modifications (Carnaval et al., 2009; Mayle
and Power, 2008). Also, even though the putative formation of refugia during the Pleis-
tocene may not be the primary cause of most speciation events in Amazonia, it may have
helped maintaining the genetic structure that is observed nowadays as rivers between

refuges served as meeting points for species that diverged elsewhere (Haffer, 1997).

1.2.4 In summary

Several evidences indicate that most of Amazonian biodiversity resulted from divergence
events that occurred in the last 20 million years (Hoorn et al., 2010), and that it originates
from both ex situ processes that happened in neighbouring regions such as the Andes,
and in situ processes such as formation of large rivers and formation of refugia during
the Neogene and Quaternary. Actually, these hypotheses are not exclusive, and it is
highly probable that an interplay of different factors actually helped shape the diversity
currently observed in Amazonia (Aleixo, 2004; Bush, 1994; Rull, 2011). One of the main
reasons why it is difficult to come up with a robust corpus of hypotheses that could be

tested to explain the origin of Amazonian diversity lies in the simple fact that diversity
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in Amazonia still remains vastly unknown and many species remain to be discovered or
described (Bush and Lovejoy, 2007; Hopkins, 2007). Also, the data on the distribution
of species is largely inaccurate, simply due to the fact that most areas of Amazonia
have not been explored, or that species are not well-defined, thus leading to an under- or
overestimation of species ranges. Such inaccuracies in our knowledge of species delineation
and distribution, respectively named Linnean and Wallacean shortfalls (Lomolino and

Heaney, 2004), hamper large-scale studies on diversity in Amazonia.

1.3 The Linnean and Wallacean shortfalls

The inventory of diversity on earth is far from being complete, and documenting all the
species that are currently living on the planet remains a colossal task. Still, estimations
of the total number of species of plant and animals on the planet have been attempted.
These estimates vary a lot according to sources, from 3 to 100 million species (May,
2010), and even up to one trillion when considering microbial species (Locey and Lennon,
2016), and only about one million species have been described (Mora et al., 2011). Also,
if distribution of species is rather well-known in temperate countries, at least for some
groups (e.g., terrestrial vertebrates, Odonata, Lepidoptera), the situation is very different
for tropical regions, where distribution are aften incomplete, when not completely lacking
(Lomolino and Heaney, 2004; Bini et al., 2006). Describing all species that inhabit earth
is a goal that will certainly never be reached, even though such a feat remains important
for conservation purposes (Mora et al., 2011). Therefore, it would be necessary to have
good estimates for some key groups that could then be used as models. Groups such as
amphibians would be good candidates as they are not too diverse (compared with wingless
arthropoda for example), they do not disperse a lot compared to birds for example, and
they are sensitive to variation in abiotic conditions. Getting a better resolution in species
delineation and species distribution in key groups is needed to enhance our knowledge
on the evolutionary history of species and on the processes of diversification. Such a
requirement is actually strongly needed in Amazonia as it is a vast and megadiverse region
in which a large part of the diversity remains to be described and for which biogeographical
and evolutionary histories of species and of assemblages are still not well understood. In

other words, the understanding of the basic structure of diversity is a prerequisite to be
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able to investigate the processes of diversification, as well as conservation biology.

1.4 Bioregions

Biogeographical regions (hereafter referenced to as “bioregions”) are defined as ‘ge-
ographically distinct assemblages of species and communities’ (Vilhena and Antonelli,
2015). Defining bioregions is a key component in evolutionary biology for understanding
the historical processes that helped shape diversity and the distribution of species (Harold
and Mooi, 1994; Vilhena and Antonelli, 2015). Bioregionalisation dates back from the 19"
century with the works of Alfred Russell Wallace (Wallace, 1876), who divided the whole

planet into six zoogeographical regions (Fig. 1.2).

Figure 1.2 — The six zoogeographical regions of the world as defined by Alfred Russel Wallace in his
book The Geographical Distribution of Animals published in 1876. Map taken from Kreft and Jetz (2010).

Since the classification of Wallace, other attempts of bioregionalisation of the planet
have been made, notably by Smith (1983) who defined ten bioregions based on the occur-
rence of mammal families. More recently, bioregionalisation at the scale of the planet was
carried out using large databases of distribution of terrestrial vertebrates (Holt et al., 2013;
Kreft and Jetz, 2010), that permitted to redefine some boundaries (for the Paleartic realm
for example in Holt et al. (2013)), and to add new realms (Panamanian, Sino-Japanese,
and Oceanian realms in Holt et al. (2013)). Bioregionalisation has also been attempted at
more local scales, for example in North America with mammals (Escalante et al., 2013),
in the Brazilian Atlantic Forest with amphibians and snakes (Moura et al., 2016; Vascon-
celos et al., 2014), as well as in Australia (Ebach et al., 2013). These studies used various

methods to characterise bioregions, and recently, various methodological frameworks to
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conduct bioregionalisation based on species distribution have been proposed (Kreft and

Jetz, 2010; Vilhena and Antonelli, 2015).

Bioregionalisation within Amazonia also dates back from the 19* century with the
works of Wallace. He was the first to report that species compositions between different
regions of Amazonia were not similar, and that large rivers might act as barriers between
regions with different species assemblages (Wallace, 1852). He thus defined four ‘districts’:
Guiana, Peru, Ecuador, and Brazil districts, whose boundaries were determined by three
main rivers, the Amazon, the Negro, and the Madeira (Wallace, 1852). Since Wallace’s
works, an updated bioregionalisation of Amazonia was attempted by examining the dis-
tribution boundaries of endemic birds, and nine Amazonian ‘areas of endemism’ were thus
identified (Borges, 2007; Cracraft, 1985; da Silva et al., 2002). One of these is the Guiana
area of endemism, that encompasses the lowlands of the Guiana Shield and is bounded
south by the Amazon River, west by the Rio Branco, and north by the Pantepui and the
Orinoco delta. Even though there was some other attempts to characterise bioregions
in the Neotropics (Vasconcelos et al., 2011), to our knowledge, no study explored biore-
gionalisation at the scale Amazonia using occurrences of large communities such as what
was done at a global scale using vertebrates. More recently, a study conducted on avian
distribution and endemism refined the definition of boundaries of the Guiana region, and
actually showed that the Rio Branco and the associated savannahs constitute important
boundaries (Naka, 2011). The implication of these findings is that the actual western
boundary of the Guiana area of endemism is not the Rio Branco, but rather the Negro—
Branco interfluvium, which constitutes a transition zone between an avifauna distributed

east of the Rio Branco and the other west of the Rio Negro (Naka, 2011).

1.5 The Guiana Shield and its diversity

The Guiana Shield is a vast geologic entity in northeastern South-America, ranging from
about 50° W to 74° W of longitude and 3° S to 9° N of latitude (Fig. 1.3). It is delimited by
the Orinoco River to the north and by the Amazon River to the south-east and the Japurd
to the south-west. Three main regions can be distinguished within the Guiana Shield:
(1) the Pantepui region to the west, characterised by highland habitats, (2) the western

lowlands in Colombia, and (3) the Amazonian lowlands of the eastern Guiana Shield
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(EGS). The Pantepui region covers about 48,700 km?, and is formed by tabular mountains
composed of Precambrian sandstones (the tepuis) occurring in Venezuela, Guyana, and
northern Brazil, and which altitudes range between 1,000 and 3,000 m a.s.l. (Lujan
and Armbruster, 2011; Mayr and Phelps, 1967). These highlands are faunistically very
distinct from the rest of the continent with many endemic lineages (Berry and Riina, 2005;
Désamoré et al., 2010; Kok et al., 2012, 2016a,b; Rull, 2004, 2005; Salerno et al., 2012).
On the contrary, the EGS is faunistically part of Amazonia and is mainly constituted
by lowland forests. It encompasses the states of Pard, Roraima, Amazonas, and Amapa

(Brazil), French Guiana, Guyana, and Suriname.

Figure 1.3 — Map of northeastern South America showing one of the commonly admitted limits of the
Guiana Shield (green line).

The Guiana Shield is a very diverse region, with about 3,000 species of vertebrates and
13,367 vascular plants (Funk et al., 2007a; Hollowell and Reynolds, 2005; Vari and Ferraris,
2009). Several endemic species characterise the assemblages within the Guiana Shield:
vascular plants (43 % of endemic species), birds (7.7 % of endemic species), mammals (11
% of endemic species), reptiles (29 % of endemic species), amphibians (54 % of endemic
species) (Hollowell and Reynolds, 2005). Many of these endemics are actually restricted
to the high elevations habitats of the Pantepui region (Huber, 2005; Berry and Riina,
2005; Désamoré et al., 2010; Kok et al., 2016a; Leite et al., 2015; Salerno et al., 2012).

21



1.6 Diversity of amphibians in the Guiana Shield

Northern South America is the most diverse region for amphibians worldwide (Pyron
and Wiens, 2013). The amphibian fauna is particularly rich in the Andean region, and
in western Amazonia (Duellman, 1999). In the Guiana Shield (lowlands and highlands
altogether), 263 species were known in the mid-2000’s, of which 253 were anurans, and
with 54 % of endemic species (Senaris and MacCulloch, 2005). Most endemic species
are only found in the tepuis (e.g. Ceutomanthis, Myersiohyla, Oreophrynella, Stefania,
Tepuihyla), and few endemic groups are distributed throughout the Guiana Shield such
as the Guianan clade of Adelophryne, and the genera Anomaloglossus, Otophryne, and
Synapturanus. The other frog lineages occurring in the EGS are nested within clades
diversified throughout Amazonia (Castroviejo-Fisher et al., 2014; Fouquet et al., 2007b,
2012b, 2015b, 2016; Peloso et al., 2014; de S& et al., 2014). Such a pattern indicates
both dispersal between the EGS and Amazonia, and diversification within the Guiana
Shield. Since 2005, several species have been described from the tepuis (Barrio-Amords
et al., 2010; Barrio-Amordés, 2010; Kok et al., 2006b, 2010; Kok, 2013) as well as from the
eastern lowlands (Castroviejo-Fisher et al., 2011; Fouquet et al., 2007a, 2015a,b, 2016;
Kok et al., 2006a; Peloso et al., 2014). Moreover, several recent molecular-based studies
suggested that the current diversity of frogs in the Guiana Shield (as well as in Amazonia
in general) is vastly underestimated (Fouquet et al., 2007¢,b; Funk et al., 2012; Kok et al.,
2012).

1.7 Goals of this PhD

Identifying the processes that are responsible for the remarkable Amazonian diversity
remains challenging because species limits are not well-resolved and their distributions
are poorly known. During the course of my PhD project, I tackled to tackle such a vast
issue by focusing on one particular region, the Guiana Shield lowlands, and using anuran
amphibians as models. My dissertation is divided into three parts: (1) refining species
delineation and distribution in the eastern Guiana Shield (EGS) and propose a bioregion-
alisation in this area, (2) explore species delineation within the genus Anomaloglossus,

and (3) study the biogeographic history of this genus.
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The first aim was to test if the Eastern Guiana Shield as defined by Naka (2011)
based on the distribution of endemic birds represents an actual and relevant bioregion
for anurans. In order to achieve this goal, I estimated the number of anurans and their
distribution in the EGS, and explored bioregionalisation. Because of the importance of
the Linnean and Wallacean shortfalls in Amazonia, the first step was to collect as much
mtDNA data as possible on as much species of frogs as possible throughout the EGS in

order to provide a relevant input for the biogeographic analysis at a large scale.

Within the Guiana Shield, one frog genus, Anomaloglossus, is remarkable being the
only endemic group that has diversified importantly (26 species), both in the Pantepui
region and in the lowland forests of the EGS. What is even more striking is the diversity
of reproductive strategies found within this endemic genus, as four modes have been
documented until now: (1) phoresy and exotrophy (Grant et al., 2006); (2) phoresy
and endotrophy (Lescure, 1975); (3) maternal care in phytotelms and exotrophy (Kok
et al., 2006a,b, 2013); (4) nidicoly and endotrophy (Junca et al., 1994). Because of
these aforementioned characteristics, Anomaloglossus constitutes a very interesting model
to study diversification patterns and processes of diversification in the Guiana Shield.
Delineating species within this genus is challenging as it certainly harbours cryptic species
(Fouquet et al., 2007b, 2012a; Kok et al., 2012). The second aim of this PhD was to address
the question of species delineation by using an integrative approach, combining molecular,

morphological, bioacoustical, and data related to life-history traits.

The third and final aim of this PhD was to explore the spatio-temporal aspects of the
diversification of Anomaloglossus within the Guiana Shield. The questions addressed in
this chapter were to determine the centre of origin of Anomaloglossus, as well as testing if
the acquisition of different reproductive modes was linked to major diversification events.
I applied a phylogenetic approach generating data that would enable to yield a well-
resolved time-calibrated phylogeny (New Genereation Sequencing to produce mitogenome
sequences and multiple unlinked nuclear loci) to infer the evolutionary relationships within

the focal group, and also to explore the historical pattern of diversification.
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Chapter 2

Barcoding Amazonian amphibians
reveals vast underestimation of
species richness and allows
estimating biogeographical
boundaries and endemism in the

Guiana Shield

Foreword to Chapter 2

Biogeographical analyses of this chapter were conducted in collaboration with Guilhem

Sommeria-Klein (EDB-ENS) and Francesco Ficetola (CNRS-LECA).

2.1 Introduction

Amazonia encompasses about 40% of tropical forests of the world (Hoorn and Wessel-
ingh, 2010; Hubbell et al., 2008), and hosts the highest species richness on earth for many
taxonomic groups (Antonelli and Sanmartin, 2011; Jenkins et al., 2013). The processes
that have shaped this diversity have long intrigued biologists (Bates, 1863; Wallace, 1852),

especially due to the apparent homogeneity of the vast uniform extent of forest. However,
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the apparent homogeneity within this region is misleading as landscape, temperatures
and rainfall vary widely (Mayle and Power, 2008) as well as vegetation types (Anderson,
2012; Hughes et al., 2013). Moreover, Amazonia had a tumultuous climatological and
geological past, mainly caused by the Andean uplift and the setting-up of the Amazon
River watershed during the late Tertiary (Hoorn et al., 2010).

The distribution of species within Amazonia relates to this large-scale environmental
heterogeneity, and in groups such as forest birds and primates, congruence between geo-
graphic distribution patterns and major interfluves led to the definition of biogeographic
subregions (BSR) that were coined as “Amazonian areas of endemism” (Cracraft, 1985;
Haffer, 1974; Wallace, 1852). However, there is little agreement on how to best classify,
delimit, and name BSR, with many terms being used, often interchangeably (Vilhena and
Antonelli, 2015). In fact, the very existence of different BSR across Amazonia, as well as
the relative degree of endemism within them, have been largely understudied, with very
few unambiguous distribution data on large faunal assemblages using modern analytic
tools (e.g., Nelson et al. (1990); Morrone (2005) but see Naka et al. (2012)). Current
knowledge on the delimitation of Amazonian BSR is mostly based on birds, which cer-
tainly constitute the best-known taxonomic group in Amazonia. Yet, accepted limits of
Amazonian BSR vary substantially among bird groups (Da Silva et al., 2005; Morrone,
2005; Ribas et al., 2009) and the good dispersal abilities of birds can determine a lower
biogeographical structure compared to other taxa (Claramunt et al., 2011; Pigot and To-
bias, 2015). Therefore, the explanatory power of the Amazonian BSR remains limited
until their boundaries is proven to match across groups. Using assemblages of small
terrestrial vertebrates such as amphibians to delineate bioregions might produce differ-
ent/finer patterns, notably because of their limited dispersal abilities and their sensitivity
to environmental variations (Zeisset and Beebee, 2008). As a matter of fact, Amphibians
have proven to represent an ideal group for such an approach both at the continental
(Vilhena and Antonelli, 2015) and regional scales (Vasconcelos et al., 2014). One of the
rare studies unambiguously delimiting BSRs in Amazonia showed a strong correlation
between the distribution limits of birds across the Rio Negro and the Rio Branco but a
relative homogeneity within the Eastern Guiana Shield (EGS) (Naka et al., 2012). How-
ever, other studies on amphibians revealed a finer pattern with concordant distribution

limits of divergent lineages of at least 11 frog species within this region, and suggest a
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higher rate of endemism than what is currently admitted (Fouquet et al., 2012c, 2013,
2016).

Defining the basic geographical structure of the diversity within Amazonia is an im-
portant prerequisite for the study of the processes that gave rise to the current diversity.
Many hypotheses have been formulated to explain allopatric patterns of distribution across
Amazonia, involving landscape change induced by late Tertiary climate change (Haffer,
1969), the uplift of the Andes and continuous dispersal across large rivers (e.g., Hayes
and Sewlal 2004; Antonelli et al. 2010; Hoorn et al. 2010), or past environmental gradi-
ents (e.g., Colinvaux et al. 2000). These different hypotheses have been verified for some
taxonomical groups at different spatial and temporal scales (e.g., Hall and Harvey 2002;
Brumfield et al. 2007). However, there is still no consensus about the main drivers of
diversification within Amazonia partly because species boundaries and the basic struc-
ture of the Amazonian biodiversity remain very imprecise. Identifying BSRs in Amazonia
will help to detect the relevant barriers involved in the speciation processes, secondary
contacts, and dispersal limitations ultimately allowing formulation of strong hypothe-
ses that could then be tested with complementary data. Defining biogeographic regions
within Amazonia is also of crucial importance for conservation given the unique diversity
of Amazonia is under strong pressure from human disturbance, mainly via habitat loss
and climate change (Cox et al., 2004; Soares-Filho et al., 2006; ter Steege et al., 2015).
Bioregionalisation of Amazonia would enable to estimate regional rates of endemism and
identify areas of high priority for implementing conservation actions at a large scale, such
as the definition of conservation corridors, or the delimitation of protected areas (Da Silva

et al., 2005; Young et al., 2009).

One of the main challenges to improve our understanding of species boundaries and
distribution lies in the scarcity of occurrence data and the imprecision of species delin-
eation (Wallacean and Linnean shortfalls) in Amazonia. These shortfalls are particularly
obvious in most terrestrial organisms such as amphibians. Almost all amphibian species
supposed to have broad ranges in Amazonia that have been studied turned out to harbour
deep divergences when analysed with genetic tools, suggesting that they are actually com-
posed by several species each with restricted distributions (Fouquet et al., 2007b, 2015b,
2016; Funk et al., 2012; Gehara et al., 2014; Ferrao et al., 2016). These studies typically
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estimate that the actual species richness was at least twice what is estimated from mor-
phology only. Therefore, distribution ranges of Amazonian amphibians obtained from
broad biodiversity assessments such as the [UCN Red list are likely to be largely inaccu-
rate (Ficetola et al., 2014). According to IUCN, 427 amphibian species inhabit the 5.5
to 6 million km? of Amazonia, with at least 150 species (35%) with broad distribution
(> 1 million km?) (Fouquet et al., 2007a). However, as amphibians display low dispersal
capacities and often have small niches (Duellman and Trueb, 1994; Wells, 2010), such a
proportion is rather unlikely (Wynn and Heyer, 2001). This gap in our understanding
of the actual diversity and the distribution of the species could have consequences on
the many analyses made from I[UCN data (Foden et al., 2013; Jenkins et al., 2013, 2015;
Pimm et al., 2014; Feeley and Silman, 2016).

The overall aims of this study were (1) to obtain a new georeferenced dataset of Ama-
zonian anurans based on molecular diversity, with a focus on the eastern Guiana Shield
(EGS) (east of the tepuis, and north of Amazon and Negro rivers), (2) to provide es-
timates of the number of species and their distributions in this part of Amazonia, (3)
search for the spatial boundaries among BSRs as well as re-assess the rate of endemism
within this area. Given that amphibian species boundaries and distributions are plagued
with uncertainty in Amazonia and that ITUCN data are often out-dated and imprecise,
it is necessary to use occurrence records linked to taxonomic frameworks based on clear
criteria. Therefore, we collected an unprecedented DNA barcode database (16S rDNA),
representing the largest dataset of molecular diversity in Amazonia gathered so far, in
order to assess the actual number of anuran species, the spatial boundaries of BSR of the

EGS, as well as the rate of endemism within this area.

2.2 Material and methods

2.2.1 Field work

We undertook fieldwork in several localities throughout the Guiana Shield, notably
in southern Suriname, French Guiana, and the Brazilian states of Amapa and Roraima.
We collected specimens of as many anuran species as possible per locality by nocturnal

and diurnal active searches (visual and acoustic) and with pitfall traps. Specimens were
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identified and photographed, before being euthanized using an injection of Xylocaine®)
(lidocaine chlorhydrate). Tissue samples (liver or muscle tissue from thigh or toe-clip)
were removed and stored in 95 % ethanol, while specimens were tagged and fixed (using
formalin 10 %) before being transferred to 70 % ethanol for permanent storage. These
field surveys allowed us to cover the anuran communities of the EGS at an unprecedented
fine scale (Fig. 2.1). We completed these data with loans of material, notably from the
upper Madeira, lower Xingu, Abacaxis and Purus Rivers, allowing delimiting putative

BSR boundaries. Ultimately, the total number of newly analysed samples reached 4,681.

2.2.2 Molecular data

We extracted DNA from the 4,681 samples using the Wizard Genomic extraction proto-
col (Promega; Madison, WI, USA). We targeted a c.a. 400bp fragment of the 16S rDNA.
We used primers N16R and N16F (Salducci et al., 2005), to which we added NNN + 8-
nucleotides labels (hereafter designated as 'tags’) for sample identification as all resulting
PCR products were mixed into libraries: 32 tags for forward primer (N16R) and 36 tags
for reverse primer (N16F). PCRs were carried out in a final volume of 20 pl, and contained
2 pl of 50ng/ul DNA extract, 10ul of AmpliTaq Gold® 360 Master Mix (Life Technologies,
Carlsbad, CA, USA), 5.84 ul of Nuclease-Free Ambion Water (Thermo Fisher Scientific,
Massachusetts, USA), 0.25 uM of each primer and 3.2 ug of bovine serum albumin (BSA,
Roche Diagnostic, Basel, Switzerland). The PCR conditions were as follow: 95°C for 10
min, then 40 cycles of 95°C for 30 s, 46°C for 30 s, 72°C for 30 s, followed by a final
step of 72°C for 7 min. We prepared three complete libraries, each containing 1152 sam-
ples, including 72 blanks (6 blanks per plate). Libraries of mixed PCR products were
sequenced using 2 250 paired-end sequencing technology through MiSeq high through-
put sequencing (Illumina) at the Génopole (Toulouse, France). We generated 4,492 new
sequences, among which 3,148 were retrieved from MiSeq and 1,344 were retrieved from

Sanger sequencing.

Additionally, we retrieved all sequences of congeneric species occurring in the Guiana
Shield from GenBank (stopped on 1st August 2015), as well as sequences of Adelphobates
and Phyzelaphryne, two genera restricted to southern Amazonia (n = 6673). We examined

these sequences, and low quality and short sequences were removed as well as duplicates.
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We obtained approximate geographical coordinates for most of these records searching the
original papers, locality information, or collection databases. The final dataset contained
11,166 terminals, 10,254 of which were geotagged. This barcode dataset is probably the
most extensive in this region gathered so far for any vertebrate group: 8181 records are
from Amagzonia including 4634 from the EGS. The obtained sequences were aligned with
MAFFT v.7 (Katoh and Standley, 2013). We used the resulting alignment to generate a
neighbourg-joining tree using pairwise deletion and p-distance model with MEGA v.7.0.16
(Kumar et al., 2016).

2.2.3 Taxonomic framework

We used two different taxonomic frameworks that we applied to our sequence dataset.
First, we generated a conservative framework (TAXO1) based on the neighbour-joining
tree that we generated using all 16S sequences. Species identifications were in many cases
modified from the original fieldwork and GenBank assignments because many sequences
were unidentified to the species level (sp.), clearly misidentified or because taxonomic
changes occurred subsequently to sequences submission. In these cases, we assigned these
sequences to the closest nominal taxon based on genetic affinities, known range and the
location of the type locality of each taxon as indications. Many species remained also
polyphyletic, including some already pointed out as species complexes (e.g., Dendrop-
sophus minutus). We kept conservative identification when they formed monophyletic
groups. When paraphyly was ambiguous, we kept the original identification. Despite this
conservation rationale, many terminals could not be assigned to any nominal taxon, and
therefore we used “sp.”. In some opposite cases, two or more taxa were largely intricate
with shallow genetic distances among terminals and remained ambiguous even given the
distribution of the lineages. We then considered them as single taxon (e.g. Atelopus
hoogmoedi, A. flavescens). Ultimately, we think that our taxonomic framework reached a

conservative update of the current taxonomic knowledge for Amazonian anurans.

Secondly, we produced a less conservative framework (TAXO2) by applying the Au-
tomatic Barcode Gap Discovery (ABGD) species delineation method (Puillandre et al.,
2012) to our sequence dataset. We performed ABGD analyses from the source code with

default settings (JC69, Pmin: 0.001, Pmax: 0.1, steps: 10, Nb bins: 20) on each genus, and
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attributed a number for each candidate species retrieved in the analysis. Computations
were performed on EDB-Calc Cluster which uses a software developed by the Rocks(r)
Cluster Group (San Diego Supercomputer Center, University of California, San Diego and
its contributors), hosted by the laboratory “Evolution et Diversité Biologique” (EDB).
In 24 instances (17 concerning Amazonian taxa), different nominal taxa in TAXO1 were
lumped as a unique candidate species in TAXO2 because of shallow mtDNA divergence
between them (notably in Atelopus spp. and Osteocephalus ssp.). These were considered
as false negative, and the assignation that we applied in TAXO1 was then duplicated in
TAXO2.

Third, we used the amphibian species range data from IUCN!. In order to make this
dataset comparable with TAXO1 and TAXO2, we excluded 22 genera (433 species) that
are partly included in our focal area but out of the scope of our study being restricted to
western Amazonia, Northern Andes, Caatinga and Cerrados. One genus from the Tepuis
(Metaphryniscus) was also omitted given no sequences were available, as well as two
introduced species (Eleutherodactylus johnstonei and Lithobates catesbeianus). Overall,

51 genera were used in our analyses.

2.2.4 Study area and species distribution data

Our analyses focused on an area that included the whole central, eastern and northern
Amazonia (excluding most of the western and southern parts). The limits of our study
area were W 72° W 47° in longitude, and S 11° N 9° in latitude (WGS84 standard).
We applied a grid of 1° by 1° (500 cells) that covered the whole area. This includes the
Guiana Shield (as defined by (Lujan and Armbruster, 2011)), the central and eastern parts
of the Rio Amazonas drainage, and the northern parts of the Rio Purus, Rio Madeira,

Rio Tapajos, Rio Xingu, and Rio Tocantins drainages (Fig. 2.1A, B).

We then estimated the putative range of each species by creating convex polygons out
of our occurrences datasets TAXO1 (358 species total within the focal area) and TAXO2
(596 species) with the sp package implemented in R. We then generated the occurrences

of species in each cell of our study area for the three datasets, excluding species that

http://www.iucnredlist.org/technical-documents/spatial-data
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occurred in less than three localities and cells with less that five species in them. 118
species were discarded in TAXO1 and 318 in TAXO2. Finally, we considered 240 species
in TAXO1, 278 in TAXO2 dataset, and 440 in the IUCN dataset (Fig. 2.1C, D, E).

Figure 2.1 — (A) all the occurrences of the barcoding dataset and inset of the focal area; (B) Amazonian
areas of Endemism from Smith et al 2014; (C) species richness mapped from occurrences data from our
taxonomic framework, TAXO1 and 2 provide identical results; (D) and (E) species richness mapped from
TAXO1 and TAXO2 respectively after polygon transformation (F) species richness mapped from the
distribution data of IUCN considered in our analyses.
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2.2.5 Identification of BSR

We decomposed the species occurrence data into several assemblages using Latent
Dirichlet Allocation (LDA; see (Blei et al., 2003; Valle et al., 2014), Sommeria-Klein
et al. in prep.). One advantage of this method over classic clustering is that it allows for
modelling gradual changes in taxonomic composition over space. It is also more parsimo-
nious than clustering algorithms based on dissimilarity metrics. The method consists in
fitting a probabilistic model to the community matrix (i.e., the matrix listing the species
present in each grid cell). The probabilistic model assumes that several assemblages of
species coexist over the study area, the number K of which is fixed beforehand and can
be optimized by AIC minimization. The assemblages may partially overlap in taxonomic
composition, and a given grid cell may either be dominated by one assemblage or con-
tain a mixture of assemblages. The estimated value of the mixing parameter « indicates
whether the samples tend to be decomposed into an even mixture of assemblages (case

a > 1) or into an uneven mixture dominated by one assemblage (case a < 1).

We used the Variational Expectation Maximization (EM) algorithm implemented by
(Blei et al., 2003) and wrapped into the R package topicmodels (Griin and Hornik, 2011)
for parameter inference, with a convergence threshold of 1076 for the EM step and 1078
for the variational step. We assessed the reliability of the solution by comparing the
taxonomic composition of 100 realizations of the algorithm starting from random initial
conditions. We only interpreted the decomposition corresponding to the realization with
the highest likelihood value. We followed the approach described by Sommeria-Klein et
al. (in prep.) for optimizing the number of assemblages, assessing the reliability of the
decomposition, and representing the spatial distribution and taxonomic composition of
the assemblages. We also decomposed the datasets into K=3 assemblages so as to assess
the coarser biogeographic structure of the study area and test the correspondence with

the Jaccard dissimilarity index.

45



2.3 Results

2.3.1 Underestimation of species richness

Based on our analyses, among the 363 Amazonian species found in TAXO1, 53 genetic
lineages could not be associated with any nominal taxa. Most of these lineages occurring
in the EGS were already documented (e.g., Adelophryne sp., Scinazx sp. 2, or Pristimantis
sp. 1) (Fouquet et al., 2007b, 2012b). However, several other lineages are reported here for
the first time (e.g., Allobates sp. “Divisor”, Amazophrynella sp. “Acre”, Dendropsophus
sp. “Xingi”). These are mostly from southern and western Amazonia suggesting that
our sampling encompasses the large majority of the species occurring in the lowlands of
the Guiana Shield but not in the rest of Amazonia. Our datasets also provide evidence
of range extension for many taxa. This is for example the case of Scinax nasicus which
extends to the Sipaliwini savannah (Suriname), Pristimantis koheleri to the southern
part of the Guiana Shield or Synapturanus mirandariberot to the southern part of the
Amagzonas drainage. However, most of these cases of newly documented populations are
highly genetically divergent from the populations lying within the known range of the

species and are considered as independent species in TAXO2.

In fact, 246 TAXO1 species display splits leading to 568 species (x2.3) in TAXO2.
TAXO2 provides 1548 comparisons among species that are lumped as conspecific in
TAXO1. 39 % of these average pairwise distance (p-distance pairwise deletion) were
>6 % a threshold believed to conservatively delimit species (Fouquet et al., 2007a; Vences
et al., 2005) and 85 % were >3 % (Fig. 2.2A). In terms of taxonomy, 436 TAXO2 species
(considering the 310 nominal taxa in TAXO1) cannot be assigned to any nominal taxon
in TAXO2. These observations suggest that the TAXO1 framework remains overconser-

vative in many instances.
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Figure 2.2 — (A) Histogram of the average pairwise distances among TAXO2 species considered as a
single TAXOL1 species (white bars) and among TAXO2 species considered as different TAXO1 species
(red bars). This last distribution was randomly sampled to harbour the same number of comparisons
than in the previous one. (B-C) Examples of genetic and geographic patterns for two Panamazonian
single species in TAXO1 that provide drastically different patterns in TAXO2 (B) Leptodactylus petersii
is split in 16 candidate species in TAXO 2. (C) Hypsiboas calcaratus is only split in two candidate species
in TAXO2. The colours of the lineages on the tree correspond to the colours of the occurrence points
and areas on the map. T indicates candidate species that were discarded from the analyses in TAXO2
(less than three locality records).

2.3.2 Distribution patterns

A number of distinct patterns of distribution emerge from the genotyped occurrence
data. We highlight three of them that segregate groups of species occurring in the Guiana

Shield: Guiana Shield endemic groups; Panamazonian allopatric groups; widespread
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species. The first pattern concerns five groups that are endemic to the Guiana Shield
and occur in both the highlands and the lowlands: Adelophryne (4 species in TAXO1 vs.
4 in TAXO2), Otophryne (3 vs. 3 species), Synapturanus (3 vs. 4 species), Anomaloglos-
sus (15 vs. 29 species), Vitreorana ritae clade (3 vs. 3 species), Hypsiboas benitezi clade (3
vs. 3 species). Among them, only Anomaloglossus seems to have substantially diversified
in the lowlands. Secondly, the vast majority of species occurring in the Guiana Shield
lowlands are nested in widespread Amazonian or lowlands Neotropical clades (Figure 2).
Most of these clades display deep divergence among populations (> 6% e.g., Leptodacty-
lus petersii, Fig. 2.2B) and contain several candidate species with more restricted ranges.
Finally, 78 species out of 358 (22%) with TAXOL1, 45 out of 596 (8%) with TAXO2 and
142 out of 440 (32%) with TUCN actually have broad distributions (>1 millions km?)
within our focal study area (e.g. H. calcaratus, Fig. 2.2C).

2.3.3 Bioregions

We decomposed the TAXO1, TAXO2 and IUCN datasets using LDA. AIC minimization
yielded an optimal number of species assemblages close to K=8 for all three datasets (Fig.
2.3). For comparison purpose, we chose to use K=8 for the three datasets. The retrieved
assemblages were found to be spatially segregated (mixing parameter ov much smaller
than 1: a;yeony = 0.021, araxor = 0.019, araxoe: = 0.016) and could thus be interpreted
as BSRs. The LDA decomposition was found to be reliable for the three datasets based

on its stability over 100 realisations (Fig. 2.3).

Even though not identical, the spatial boundaries of the eight BSRs retrieved for
TAXO1 and TAXO2 were very similar (Fig. 2.4A-B). The lowlands of the EGS were
clearly separated from the rest of the study area by the Amazonas River and the Pan-
tepui region. Moreover, the EGS was also found to exhibit some internal structure, since
this area was composed of three independent BSRs, both with TAXO1 and TAXO2 and
despite large differences in the distribution of the species considered (e.g., Leptodactylus
petersii, Lithodytes lineatus, Dendropsophus minutus). One of theses three BSR (#1 on
Fig. 2.4A-B) comprised the southern part of Guyana, Roraima and the Northern parts of
Para and Amazonas states (Brazil). A second one (# 2 on Fig. 2.4A-B and Fig. 2.4D-E)

comprised the northern part of Guyana and adjacent Venezuela. Finally, a third one (#3
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on Fig. 2.4A-B and Fig. 2.4D-E) comprised the state of Amapa (Brazil), French Guiana,
and Suriname. Nevertheless, the boundaries of BSR1 matched well the Rio Negro and
Rio Amazonas boundaries, while it extends somewhat further west, across the Rupununi
savannah in TAXO1. The boundaries between BSRs in this specific area were also much
sharper in TAXO2 than in TAXO1. In the rest of the study area, there is a striking match
between BSRs boundaries and Rio Madeira in TAXO1 that is already recovered for K = 3.
However, both TAXO1 and TAXO?2 yielded BSRs encompassing the Purus and Tapajos
Rivers. The distribution of BSRs using the IUCN database provided a completely dif-
ferent pattern, notably not matching the EGS boundaries. The three Guianas (Guyana,
Suriname, and French Guiana) were grouped together in one BSR, excluding the north-
western part of Guyana and including adjacent areas of Amapa and Para (Brazil). The
southern part of the EGS was grouped with the southern part of the Amazon drainage,
thus encompassing the Amazon River (Fig. 2.3C).

Figure 2.3 — Reliability of the LDA decomposition for 8 assemblages. Comparing 100 realisations of the
LDA algorithm with random initial conditions shows, for each of the three datasets, that all realisations
are similar to each other, and that they grow increasingly similar to the realisation with highest likelihood
as their likelihood increases. Hence the realisation with highest likelihood can indeed be regarded as the
best possible decomposition of the data.
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Figure 2.4 — Maps generated by interpolating the eight-assemblage Latent Dirichlet Allocation (LDA)
decomposition of the species occurrence data: (A) TAXO1; (B) TAXO2; (C) IUCN data. The white
dashed lines represent the approximate boundaries of the BSR for a three-assemblage LDA decomposition
(in panel [C], the north-western and south-eastern regions belong to the same assemblage). Dendrograms
showing the relationships between the eight assemblages recovered in the LDA decomposition using
average Jaccard taxonomic dissimilarity (based on the presence/absence of species in assemblages). The
numbers correspond to the numbers attributed to each assemblage for each dataset (D) TAXO1 species
delineation; (E) TAXO2 ABGD species delineation; (F) IUCN data.

2.3.4 Species richness and endemism

In terms of species richness and endemism, these three datasets are radically different.
The BSR1 of TUCN is composed of 119 species, 27.7 % of which are endemic (Table
2.1), and is geographically comparable to BSR2 and 3 altogether in TAXO1 and TAXO2.
However, despite encompassing a smaller geographical area, BSR3 of TAXO1 alone dis-
plays similar values of richness and endemism than BSR1 of IUCN. On the scale of the
three Guiana Shield BSRs, richness (184 species) and endemism (57 %) for TAXO1 are
much higher than the BSR1 of TUCN. These metrics increase to 250 species and 82.4 %
endemics for TAXO2 within the EGS (Table 2.1). BSR2 contains the highest number
of endemic species for both taxonomic frameworks, reaching 75 % endemism for TAX02
(Table 2.1), while the highest species richness (130) is found in BSR3 (eastern lowlands

of Suriname, French Guiana and Amapa).
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UICN TAXO1 TAXO2

Partition BSR SR ES END SR ES END SR ES END
K=3 1 - - - 184 105 o7 250 206 82.4
1 119 33 27.7 89 4 0.4 71 25 35.2
K=8 2 - - - 85 46 54.1 90 68 75.5
3 - - - 118 30 25.4 130 7 59.2

Table 2.1 — Species richness and endemism in each BSR covering the EGS. The figures presented in this
table include singletons (species with only one occurrence point) and species that occur in less than three
cells. BSRs numbers correspond to those displayed in Fig. 3. For K=3, assemble 1 actually corresponds
to the EGS. SR = species richness; SE = number of endemic species; END = endemism (%).

2.4 Discussion

2.4.1 Underestimation of species richness and regional endemism

in Amazonia

The species delineation analysis that we operated corroborates the previously high-
lighted perception that the actual number of anuran species occurring in Amazonia re-
mains vastly underestimated (e.g., (Fouquet et al., 2007a; Funk et al., 2012; Ferrao et al.,
2016)). The number of Amazonian species retrieved with the ABGD analysis (746) and
the level of divergence among them are particularly striking in some groups (e.g., 28 CS
within the Leptodactylus podicipinus species group in TAXO02). Our TAXO1 dataset com-
prised 363 species, which is close to the 440 species given by the ITUCN for the same study
area. However, our sampling remains low outside the EGS. TAXO1 notably does not in-
clude several nominal taxa that occur in the focal area but that are included in the IUCN
database, while it includes many undescribed species that are not in the IUCN database.
Therefore, the actual number of species is likely to be largely underestimated in TAXO1
outside the EGS. Moreover, the taxonomic list in TAXO1 remains over-conservative in
many instances given the level of genetic divergence within species. In fact, these subdivi-
sions have been already proven to be associated with morphologic or acoustic differences
in several groups that have been included in our dataset (Fouquet et al., 2015b, 2016).
For these reasons, the taxonomic framework used in TAXO2 takes into account finer sub-

divisions that certainly correspond to real species in many cases (see below). This dataset
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suggests the existence of more than twice the number of candidate species compared to
TAXO1, and thus much more than twice the current count for Amazonia. The problem of
the uneven sampling is even more significant in TAXO2 as many newly delimited species
remain sampled at a single or very low number of localities, suggesting that many lineages
have remained unsampled, particularly outside the Guiana Shield. Hence, comparisons
should be limited to the EGS where our sampling effort is the most effective. When
considering solely the EGS, the number of candidate species retrieved in TAXO?2 is 1.34
times higher than for TAXO1 (Table 2).

However, such a species delineation solely based on mtDNA divergence on such a broad
dataset remains overly simplistic and cannot reliably delineate the species occurring in the
region since it necessarily overestimates the actual number of species in some cases (false
positives) and underestimates in others (false negatives) (Hickerson et al., 2006). The
pitfalls inherent to the sole use of short mtDNA sequences for species delineation have
been already extensively discussed (Hubert and Hanner, 2015). Nevertheless, in most
groups for which the boundaries among species have been investigated using integrative
taxonomy, mtDNA divergence of similar magnitude than the one used herein to differ-
entiate between intra- and interspecific genetic divergence was generally associated with
phenotypic or acoustic differentiation as well (Funk et al., 2012; Fouquet et al., 2015b,
2016; Ortega-Andrade et al., 2015). Therefore, it is highly probable that the prevalence
of false positives remains low in our species delineation. In contrast, some false negatives
were detected since several nominal taxa were retrieved as a single candidate species using
ABGD (e.g., Atelopus flavescens and A. hoogmoedi, O. oophagus and O. taurinus). These
were corrected in TAXO2 but the prevalence of false negatives remains difficult to evaluate
in most groups where species boundaries have not been investigated using phenotypical
traits. Overall, the present work provides an important update to the documentation of
Amazonian anuran diversity, which will undoubtedly contribute to stimulate the process

of species delineation and description.

If the present work provides a glimpse at how far we still are from reaching a realistic
estimate of the number of species occurring throughout Amazonia, it also provides an
even more striking view at the degree of regional endemism. Our estimate of the rate of

endemism in frogs of the EGS reaches 57 % based on TAXO1 and 82.4 % based on TAXO2

52



datasets. This figure is two to four times higher than the estimates from a comparable area
according to ITUCN. It is also one to 1.4 times higher than the endemism of frogs estimated
in the whole Guiana Shield as geologically defined, which also encompasses Venezuela
and part of Colombia (Sefiaris and MacCulloch, 2005). In comparison, the estimates for
birds are 7.7 % of endemic species in the whole Guiana Shield, 29 % for reptiles, 11 % for
mammals (Hollowell and Reynolds, 2005). These figures are still certainly underestimated
(Lim, 2012), especially for reptiles (Geurgas and Rodrigues, 2010; Pellegrino et al., 2011;
Souza et al., 2013; de Oliveira et al., 2016; Moraes et al., 2016), but taxonomy has probably
reached a much more stable level for birds and mammals in the Guiana Shield than for

anurans.

A simple and rough extrapolation based on the species richness and endemism we
obtained for the EGS (184-250 species with 57-82 % endemism) applied to the eight
Amazonian BSR retrieved in our analysis leads to ca. 1472-2000 species in our focal
area, which represent about three to five times the 440 species that are supposed to occur
according to the IUCN. Enhancing data coverage in order to refine these estimations
would require extensive field work in remote areas (compare to underestimation levels
from other works that are similar, about 1/4 (Funk et al., 2012) or (Vieites et al., 2009)).
Nevertheless, new predictive approaches based on detection of cryptic diversity (Espindola
et al., 2016) would permit to get a more precise estimate of species richness and endemism

in each BSR, and therefore would help targeting areas where to focus sampling.

2.4.2 Biogeographic divisions of the Eastern Guiana Shield

The extent of the BSRs retrieved for TAXO1 and TAXO2 are very similar in spite of the
use of two drastically different taxonomic frameworks. In contrast, the BSRs retrieved
from the IUCN database are very different and do not correspond to any hydrological
features. No barrier effect of the lower Rio Amazonas is even distinguishable. This is
most likely resulting from the artifactualy large distribution of many species contained in

this database on both sides of this river.

The location of the Rio Madeira matches well the boundary between BSR5 and 6 in

TAXO1, which is in accordance with what has already been shown for other groups of
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terrestrial vertebrates, such as birds (Fernandes et al., 2012; Ribas et al., 2012) and pri-
mates (Cortés-Ortiz et al., 2003). The sharpness of this pattern is not obvious in TAX02,
but this is unambiguously due to the removal of many singletons from the dataset after
the species delineation. Another interesting aspect is the lack apparent suture effect of
the Purus and the Solimoes drainages, also in accordance with what have been previously
found for other group of terrestrial vertebrates (Cortés-Ortiz et al., 2003; Fernandes et al.,
2012; Ribas et al., 2012). These rivers display a meandering behaviour associated with an
unstable course over time, thus enabling gene flow through connection between popula-
tions located on both their sides and dispersal of species from one interfluve to the other
(Aleixo, 2004, 2006; Bates et al., 2004; Antonelli et al., 2010). On the contrary, wide rivers
in the Brazilian shield such as Rio Madeira display a putatively more stable course over
time and are more likely to act as long lasting suture zones that might have promoted
diversification or at least been more efficient in preventing dispersal (Antonelli et al., 2010;
Moraes et al., 2016). Such characteristics are also found in rivers of the Guiana Shield
(Fernandes et al., 2012; Fouquet et al., 2012a, 2015a), but except for the Rio Branco
and Rio Negro, the impact of the Guiana Shield rivers on gene flow through limitation
of dispersal might not be as important as Amazonian rivers of the Brazilian Shield, due
to the smaller extent of the catchments and the smaller width of the rivers themselves.
This is reflected in our results, as the suture zones between the three BSRs of the EGS
do not correspond to any major drainage. In fact, it is more likely that the delimitation
of these assemblages resulted from combined influences of past climatic and landscape
changes. The current climatic characteristics of the EGS are heterogeneous, with a large
dryer corridor observed in the southern part (Mayle and Power, 2008), where patches of
savannahs are found today. This corridor also matches the suture zone between BSR1
vs. 2 and 3. The strong climatic fluctuations in the Neotropics during the Miocene and
Pliocene played a crucial role in the diversification of several organisms (Antonelli et al.,
2010). More recent climate fluctuations and associated landscape modifications during
the Pleistocene certainly helped maintain the diversity that resulted from diversification

events from the earlier Miocene/Pliocene period (Carnaval and Bates, 2007).

The outer limits of the three BSRs that constitute the lowlands of the Guiana Shield
matches well with the delimitation of the Guianan area retrieved for birds (Naka, 2011),

confirming the relevance of qualifying the eastern Guiana Shield as a biogeographic unit.
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Nonetheless, using anuran assemblages as models revealed biogeographic heterogeneity
within this region that could not be detected with birds assemblages, likely because birds
have much higher dispersal abilities than anuran amphibians (Pigot and Tobias, 2015).
The distinctiveness of the Guiana Shield BSRs compared to the remaining of the dataset
is also reflected in the structure of the dendrogram illustrating the level of taxonomic
similarity between assemblages (Fig. 4). The southern limit of BSR1 corresponds to Rio
Amazonas for both TAXO1 and TAXO2 datasets. This is congruent with previous studies
on terrestrial vertebrates indicating that Rio Amazonas is a strong barrier to gene flow
and that assemblages are not similar north and south of this river (Cortés-Ortiz et al.,
2003; Haffer, 2008; Ribas et al., 2012). The delineation of the western part of BSR1 differ
across datasets; it coincides perfectly with the lower Rio Negro, and the Rio Branco and
associated savannahs (Rupununi) in TAXO2 but extends further west in TAXO1. These
differences are inherent to the scarcer the sampling west and south west of the Rio Negro
and Rio Branco weakening the sharpness of the analysis in that zone which become even
more prevalent in TAXO2 because of the taxonomic subdivisions. Another reason could
be the inclusion of both forest and open habitats species in our analysis that could blur

the pattern in areas where savannah and forest are found.

It is interesting to note that the limits of the BSRs of the EGS are rather similar when
considering either a K=3 or a K=8 decompositions, for both TAXO1 and TAXO2. This
indicates that a strong co-occurrence signal underlies the delineation of these BSRs, es-
pecially in the case of the two northernmost ones (2 and 3) whose western and eastern

boundaries coincide perfectly with the ones retrieved in the three-assemblage decomposi-

tion (Fig. 3).

2.4.3 Conclusion

Despite being far from exhaustive our barcoding dataset is the largest ever gathered for
Amazonia, and we argue that it is close from exhaustive in the EGS. Of course, the pattern
we obtained needs to be confirmed in other taxonomical groups and even need to be
much improved for anurans outside the eastern Guiana Shield. However, our results help
understanding the spatial scale of sampling efforts needed to capture the actual diversity

in Amazonia. The magnitude of the Linnean and Wallacean shortfalls in Amazonia is
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so large that we could question the conclusions of large scale studies based on currently
admitted biodiversity data in Amazonia (Feeley and Silman, 2011; Foden et al., 2013). In
fact, even with very coarse data (IUCN), they estimated that Amazonian amphibians are
highly threatened by climate change. Considering that most species were not included
and that they actually harbour much narrower distributions, we can hypothesise that the
situation is even more worrying. If a degree of endemism similar to the one we estimated
within the EGS actually occurs across Amazonia, the impact of habitat loss could have
been underestimated. It is especially the case along the Arc of deforestation (Vedovato
et al., 2016), given entire faunal assemblages that may harbour a high degree of endemism

are at risk of extinction (Da Silva et al., 2005).
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Chapter 3

Cryptic diversity in Amazonian
frogs: Integrative taxonomy of the
genus Anomaloglossus (Amphibia:
Anura: Aromobatidae) reveals a

unique case of diversification within

the Guiana Shield

Foreword to Chapter 3

This work was the subject of an article that has been submitted to the journal Molecular
Phylogenetics and Evolution, and accepted for publication with minor revisions. It is co-
authored with Antoine Fouquet, Philippe J.R. Kok, Miguel Trefaut Rodrigues, Jucivaldo
Dias Lima, Andy Lorenzini, Quentin Martinez, Manon Fallet, Elodie A. Courtois, Michel
Blanc, Philippe Gaucher, Magél Dewynter, Rawien Jairam, Paul Ouboter, and Christophe
Thébaud.

68



3.1 Introduction

Most of the diversity of terrestrial extant organisms is found in the tropical mountains
and tropical forests (Antonelli and Sanmartin, 2011; Dahl et al., 2009; Jenkins et al., 2013;
MclInnes et al., 2013). However, in vast regions largely covered with forests like Amazo-
nia, estimates of basic metrics of biodiversity such as the number of species occurring at
the regional scale as well as data on the distribution of species still remain very vague in
many taxonomic groups (Bickford et al., 2007; Fouquet et al., 2007a; Vieites et al., 2009).
Overcoming the lack of knowledge on species identities and distribution is particularly
challenging in groups with apparently high levels of cryptic species diversity (i.e., two or
more species classified as a single nominal species) because they are at least superficially
morphologically indistinguishable (Bickford et al., 2007). Among vertebrates, amphib-
ians are a group in which the occurrence of morphologically cryptic species appears to be
rather common, as suggested by recent studies across the three extant orders (Fouquet
et al., 2007b; Diaz-Rodriguez et al., 2015; Fouquet et al., 2014; Funk et al., 2012; Gehara
et al., 2014; Kok et al., 2016a,b; Nishikawa et al., 2012; Stuart et al., 2006; Vieites et al.,
2009; Wielstra et al., 2013; Wielstra and Arntzen, 2016). Amphibians tend to show evolu-
tionary conserved morphologies, certainly promoted by the use of non-visual reproductive
signals (calls, pheromones) (Bickford et al., 2007; Cherry et al., 1982; Emerson, 1988), and
therefore some groups harbor few discernable morphological taxonomic descriptors. Inte-
grative approaches, especially those combining morphological, bioacoustic and molecular
data have proved to be particularly useful to clarify the taxonomic status of lineages con-
taining high level of cryptic species diversity and to reveal previously undetected diversity

(Padial and de la Riva, 2009; Simoes et al., 2013; Vieites et al., 2009).

The genus Anomaloglossus is one of these challenging amphibian groups in terms of
species delineation, due to large intraspecific morphological variability and the lack of
morphological characters allowing easy diagnosis among species (Grant et al., 2006; Kok,
2010). Recent molecular analyses have revealed several deeply divergent lineages within
currently recognized species (Fouquet et al., 2007b, 2012b; Kok et al., 2012), raising
the possibility that these species may harbor multiple morphologically cryptic species.
Anomaloglossus currently comprises 26 described species, and forms a well-defined clade

of terrestrial frogs endemic to the Guiana Shield (GS) (Fouquet et al., 2015; Frost, 2016;
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Santos et al., 2009). Five additional species reported from the Chocé region in Ecuador,
Colombia and Panama are still allocated in the genus even though they are not closely
related to any of the species currently recognized in the GS (Grant in Fouquet et al.
2015). While Anomaloglossus is endemic to the GS, most species (20) are found in the
highlands of the Pantepui region, in the western GS, whereas the remaining six species
are distributed outside Pantepui, mostly throughout the upland and lowland forests of the
eastern part of the GS (EGS) (Barrio-Amorés et al., 2010; Kok and Kalamandeen, 2008;
Lescure and Marty, 2000; Ouboter and Jairam, 2012). Compared to other amphibians,
Anomaloglossus seems to be the only genus to have significantly diversified throughout
the GS; all other groups restricted to the GS seem to have diversified more locally, either
in Pantepui (e.g., Oreophrynella, Stefania, Myersiohyla) or only within the Amazonian
lowlands. As a corollary, Anomaloglossus species generally have very small ranges, often
restricted to one or few mountainous massifs (e.g., Barrio-Amords et al. 2010; Barrio-
Amoros and Santos 2011; Kok et al. 2010, 2013; Senaris et al. 2014). This microendemic
distribution pattern is also displayed by two species outside the Pantepui region, A.
apiau (Serra do Apiau in Roraima state, Brazil) and A. leopardus (Apalagadi Mountains
in southern Suriname). In contrast, the four other species of the EGS are considered
to have broader ranges. Anomaloglossus degranvillei occurs in most of French Guiana
(Lescure and Marty, 2000), A. baeobatrachus in Suriname, French Guiana, and the states
of Pard and Amap4 in Brazil (Avila-Pires et al., 2010; Fouquet et al., 2012b; Lescure and
Marty, 2000; Ouboter and Jairam, 2012), A. surinamensis in Suriname and French Guiana
(Fouquet et al., 2012b; Ouboter and Jairam, 2012), and A. stepheni from the Amazonas
state in Brazil to Suriname (Avila-Pires et al., 2010; Fouquet et al., 2012b; Hoogmoed,
2013). Our current understanding of the distribution of these large range EGS species
might be erroneous because several deeply divergent lineages have been uncovered among
populations of A. surinamensis, A. degranvillei, and A. baeobatrachus (Fouquet et al.,

2007a, 2012b).

Moreover, Anomaloglossus species display striking variation in reproductive modes: en-
dotrophic and nidicolous in A. stepheni (Junca et al., 1994), endotrophic and phoretic in
A. degranvillei (Lescure, 1975), exotrophic with maternal care in A. beebei (phytotelm-
breeder), A.kaiei, and A. roraima (phytotelm-breeder) (Kok et al., 2006a,b, 2013), and

exotrophic and phoretic in other species that have been documented (Grant et al., 2006).
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In order to better understand the patterns of diversity, distribution, and reproductive
traits in lowland Anomaloglossus, we tested species boundaries combining molecular, mor-

phometric, bioacoustics and natural history data.

3.2 Material and methods

3.2.1 Collecting data in the field

We collected specimens during various trips in French Guiana and Suriname, as well as in
the Roraima, and Amapa states in Brazil. Specimens were searched actively during the
day, and caught by hand. They were euthanized by injection of a solution of lidocaine
immediately after being photographed, fixed in 10% formalin for 24 hours and then trans-
ferred in 70% ethanol for permanent storage. When possible, calling males were recorded
before collection (see below Bioacoustic data). Whenever possible, we also gathered data
on habitat (terra firme forest vs. stream banks), and on tadpole development mode by
collecting tadpoles and examining the buccal morphology in order to determine if they

were endotrophic or exotrophic.

3.2.2 Molecular data

We extracted DNA from liver tissue of 258 samples using the Wizard Genomic extraction
protocol (Promega; Madison, WI, USA), and we amplified a fragment of the 16S rDNA of
the mitochondrial DNA. PCR were conducted in a final volume of 25 ul each containing
2 pl of DNA template, 14.36 Mq water, 5 ul of 10 x PCR Buffer, 1.25 ul of each primer,
1.67 pl of MgCL2, 0.5 pl of ANTPs, and 0.22 ul of GoTaq (Promega, Madison, Wiscon-
sin, USA). The PCR conditions were as follows: 8 cycles of denaturation (45 s at 94°C),
annealing (60 s at 46°C), and elongation (90 s at 72°C), followed by 22 cycles of denat-
uration (45s at 94°C), annealing (60 s at 50°C), and elongation (90 s at 72°C). For 16S
rDNA, we used N16F and N16R primers (Salducci et al., 2005). Sanger sequencing of that
fragment of 16S rDNA of 183 samples was performed by Genoscreen (Lille, France). The
75 remaining 16S rDNA sequences were obtained through MiSeq sequencing (Illumina,
USA). We collated these sequences with all 16S sequences of Anomaloglossus available

from GenBank (n = 244). The final 16S dataset contained sequences of 502 specimens of
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Anomaloglossus.

Additionally, we amplified and sequenced three protein-coding nuclear loci (tyrosi-
nase - TYR; proopiomelanocortin C' -POMC; and recombination activating gene exon 1
-RAG1). PCR conditions were similar as for the 16S fragment. For TYR, we used tyrE
dendro5 and tyrE dendro primers (Fouquet et al., 2012b), for POMC we used POMC-1
and POMC-2 primers (Wiens et al., 2005), and for RAG1 we used MARTFL1 (Hoegg
et al., 2004) and RAG1-AD2R (Fouquet et al., 2014) for the first fragment and RAGI1-
810F and RAG1-1240R (Fouquet et al., 2014) for the second fragment. We completed the
dataset by adding 15 TYR sequences that were already available in GenBank.

3.2.3 Phylogenetic analyses

A first set of analyses was performed on 503 sequences of the 16S rDNA dataset alone,
which were aligned with MAFFT v.7 (Katoh and Standley, 2013) using default parame-
ters (gap opening penalty = 1.53; gap extension penalty = 0.123; progressive method =
FFT-NS-2). The resulting alignment was 418 bp long after exclusion of non-overlapping
regions. A XML File was generated with BEAUti v.1.8.0 with the following settings:
GTR+GHI substitution model, inferred as the best fitting model with PartitionFinder
v.1.1.1 (Lanfear et al., 2012) with a Bayesian information criterion (BIC), empirical base
frequencies, four gamma categories, birth-death process model, all codon positions par-
titioned with unlinked base frequencies and substitution rates. We then performed a
Bayesian analysis using BEAST v.1.8.1 (Drummond et al., 2012), with an uncorrelated
relaxed lognormal clock model under default parameters. The length of MCMC chain
was 50,000,000 sampling every 5000. Trace files were evaluated with Tracer v1.6.0 (Ram-
baut et al., 2014). Maximum clade credibility trees with a 0.5 posterior probability limit,
and node heights of target tree were constructed in TreeAnnotator v1.8.1 (Rambaut and
Drummond, 2012).

A second set of molecular analyses was performed using the three nuclear protein-
coding loci. These data were used to examine the congruence between mtDNA and
nuDNA given that reciprocal monophyly of the same sets of individuals can be seen
as evidence of reproductive isolation, particularly when there is an overlap among their
ranges. We used 48 samples, and missing data were limited to only one locus per terminal

(three terminals for POMC, five terminals for RAG1, and five terminals for TYR). MEGA
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v.7.0.16 (Kumar et al., 2016) was used to align sequences of each locus and to review
amino acid translations to ensure correct alignment with respect to reading frame. We
then used the program FASconCAT v.1.0 (Kiick and Meusemann, 2010) to concatenate
the three fragments because each locus was individually recovered as poorly informative in
preliminary analyses. The resulting alignment comprised three partitions of a total length
of 2524 bp (POMC 1-605, RAG1 606-2002, TYR 2003-2524). We inferred the best-fitting
model of molecular evolution with PartitionFinder v.1.1.1 (Lanfear et al., 2012) with BIC,
and conducted a ML analysis with RAxML v.8.2.4 (Stamatakis, 2014) using the GTR+I"
model. Support of nodes was investigated with 1000 bootstrap replicates using the fast
bootstrapping algorithm. For both analyses, Ameerega hahneli, Mannophryne collaris,
Rheobates palmatus, Allobates femoralis, Allobates olfersioides, and Aromobates saltuensis
were used as outgroups (Santos et al., 2009). Mean pairwise p-distances were calculated
among the main lineages with MEGA v.7.0.16 using pairwise deletion.

Computations were performed on EDB-Calc Cluster which uses a software developed
by the Rocks(r) Cluster Group (San Diego Supercomputer Center, University of Califor-
nia, San Diego and its contributors), hosted by the laboratory ”Evolution et Diversité

Biologique” (EDB).

3.2.4 Species delineation

Because our dataset was unbalanced in terms of number of specimen per species, we ap-
plied three different methods of DNA-based species delineation on the 16S rDNA dataset:
Automatic Barcode Gap Discovery (ABGD) (Puillandre et al., 2012), and two phylogeny-
aware methods, General Mixed Yule Coalescent (GMYC) (Monaghan et al., 2009; Pons
et al., 2006), and Poisson-Tree Process (PTP) (Zhang et al., 2013).

We ran the GMYC analyses with the ape (Paradis et al., 2004) and splits (Ezard et al.,
2009) packages implemented in R v.3.2.4 (R Development Core Team, 2016).

PTP is similar to GMYC, but it does not require an ultrametric tree and is supposed to
outperform GMYC when evolutionary distances between species are small (Zhang et al.,
2013), a bias which is expected in our dataset (Fouquet et al., 2012b). As a maximum
likelihood (ML) tree is required for this analysis, we subjected the 16S rDNA alignment to
phylogenetic inference using ML as implemented in RAxML v.8.2.4 (Stamatakis, 2014).

We inferred the best-fitting model of molecular evolution with PartitionFinder v.1.1.1
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(Lanfear et al., 2012) with a BIC. Support of nodes was investigated with 1000 bootstrap
replicates using the fast bootstrapping algorithm, as it produces almost identical values
as the standard bootstrap method but is faster (Stamatakis et al., 2008). Mannophryne
collaris, Rheobates pseudopalmatus, and Aromobates saltuensis were used as outgroups
(Santos et al., 2009). We then used the best ML tree (excluding the outgroups) obtained
with RAXML as an input for a PTP analysis that we ran on the online PTP server
(http://species.h-its.org/ptp/). We ran the PTP analysis using 100,000 MCMC
generations, with a thinning value of 100, and a burn-in of 0.1. We performed ABGD
analyses from the source code with two different distance metrics (JC69 and simple p-
distance) using default values for all parameters (Pmin: 0.001, Pmax: 0.1, steps: 10, Nb
bins: 20).

3.2.5 Morphometric data

We measured 89 male specimens assigned to the four nominal species of the A. stepheni
species group (A. apiau, A. baeobatrachus, A. leopardus, and A. stepheni) and 56 male
specimens assigned to two species of the A. degranvillei species group (A. degranvillei
and A. surinamensis). Two populations (Acari and Paru) were not included because
specimens were not available. We measured 17 variables: snout-vent length (SVL); head
length from corner of mouth to tip of snout (HL); head width at level of angle of jaws
(HW); snout length from anterior edge of eye to tip of snout (SL); eye to naris distance
from anterior edge of eye to center of naris (EN); internarial distance (IN); horizontal
eye diameter (ED); interorbital distance (IO); diameter of tympanum (TYM); forearm
length from proximal edge of palmar tubercle to outer edge of flexed elbow (FAL); hand
length from proximal edge of palmar tubercle to tip of finger (HAND); width of disc on
Finger III (WFD); tibia length from outer edge of flexed knee to heel (TL); foot length
from proximal edge of inner metatarsal tubercle to tip of toe IV (FL); width of disc on
Toe IV (WTD); thigh length from vent opening to flexed knee (ThL); length of Finger I
from inner edge of thenar tubercle to tip of disc (1FiL) following (Fouquet et al., 2015),
except TYM in species of the A. degranuvillei species group because the tympanum is
inconspicuous in these taxa. All measurements were taken on preserved specimens using

a digital caliper to the 0.1 mm.
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3.2.6 Bioacoustic data

We recorded specimens during various field trips in the EGS. Material used for call record-
ing includes Olympus LS11 and Zoom H4N digital recorders, attached to a Sennheiser
ME-66 supercardioid microphone powered with a K6P module. We analyzed call record-
ings of 55 males assigned to three nominal species of the A. stepheni species group (A.
baeobatrachus, A. leopardus, A. stepheni) and of 31 males assigned to two nominal species
of the A. degranvillei group (A. degranvillei and A. surinamensis). Anomaloglossus apiau
was excluded from this analysis because this species displays a temporal call structure
(long trills of paired notes) significantly different from the other species of the A. stepheni
group (short trills of single notes). No call recording was available for populations from
Acari and Paru. For species the A. stepheni group, which emit a train of pulsed notes, we
measured six call variables using Audacity v.2.1.1. Variables follow those standardized
in (Kok and Kalamandeen, 2008): Call rate (number of calls divided by their window
duration), call length, note length, inter-note interval, note repetition rate (note rate:
call duration divided by the number of notes in the call), and the dominant frequency
(Harm2nd freq). For the A. degranvillei group, which emits single note calls, we consid-
ered three variables (note length, internote length, Harm2nd freq). For each variable per

individual we used the mean value calculated across four different calls.

3.2.7 Data visualization and statistical analyses

We examined independently morphometric and bioacoustic data for the two species group
through principal component analysis (PCA), in order to visualize relationships among
data (James and McCulloch, 1990). To control for variation in body-size among individu-
als, we additionally performed subsequent analyses on a size-corrected dataset obtained by
linear-regressing the original morphometric measures of each variable with SVL (Strauss,
1985). For bioacoustics characters, we repeated the analyses considering solely the groups
of individuals that were overlapping in the preliminary analyses and removed A. apiau
because its call has a temporal structure distinct from calls of other species in the A.
stepheni group.

In order to test if the variable “species” would explain the variance of the data, we
performed a permutational non-parametric multivariate analysis of variance (Anderson,

2001) on each set of data (morphometrics and bioacoustics for both species groups). All
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analyses were conducted with the software R v.3.2.4 (R Development Core Team, 2016)
with the packages ade4 (Dray and Dufour, 2007) and vegan (Oksanen et al., 2016).

3.2.8 Integrative solution

In order to reach a diagnostic species delineation [i.e., classify each candidate species
(CS) as a confirmed candidate species (CCS), unconfirmed candidate species (UCS), or
deep conspecific lineage (DCL)]|, we followed the framework presented by (Padial et al.,
2010). We considered as “confirmed” any CS for which there was at least one congruent
difference in any other character than the primary molecular divergence criterion between
close relatives, and as “unconfirmed” any CS for which additional data was lacking. When
we observed only molecular divergence even though additional data were available, we

considered these CS as “deep conspecific lineage”.

3.3 Results

3.3.1 Phylogenetic analysis

Bayesian analysis of the 16S rDNA resulted in a poorly resolved tree for deep divergences,
but unravelled previously undocumented diversity within described species (Fig. 3.1A).
Low resolution at the base of the tree probably explains the position of Anomaloglossus

stepheni apart from the lowland species.

One clade contains species from the Pantepui region, and the other clade is formed
by species from the EGS (A. apiau, A. leopardus, and A. baeobatrachus). Anomaloglossus
baeobatrachus is recovered paraphyletic with respect to A. leopardus. Also, five geograph-
ically distinct and well-differentiated lineages currently assigned to A. baeobatrachus are
recovered. These lineages are represented by the populations from Serra do Acari in
Para, Brazil (p-distance > 6.8%), Paru (p-distance > 3.9%), Mitaraka in French Guiana
(p-distance > 3.4%), Bakhuis Mountains in Suriname (p-distance > 6%), and Brownsberg
in Suriname (p-distance > 3.9%) (Fig. 3.1B).
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Figure 3.1 — (A) Maximum credibility clade tree obtained with BEAST. Posterior probabilities are
indicated above nodes (*=0.99 or 1; not indicated when <0.7). Branches within main lineages were
collapsed to indicate major clades and corresponding colour codes. (B) Map of the Eastern Guiana Shield
showing the distribution records of the main lineages recovered from the phylogenetic analysis within the
A. stepheni group and ranges of A. stepheni, A. baeobatrachus, A. sp.1, and A. sp. “Mitaraka”. (C) Map
of the Eastern Guiana Shield showing the distribution records of the main lineages recovered from the
phylogenetic analysis within the A. degranvillei group and ranges of the A. surinamensis 1 and A. sp.
“north FG” lineages. Inset: location of the Eastern Guiana Shield in South America.

The A. degranvillei group is strongly supported (pp > 0.99), as well as two subclades
within it represented by A. degranvillei and A. surinamensis populations (respectively pp
= 0.84 and pp > 0.99). The divergences within A. surinamensis are deep, in particular
for A. surinamensis 5 in Fig. 3.1A from Bakhuis Mountains (Suriname), which forms a
well-differentiated lineage (p-distance >6.6%) recovered as the sister group of all other
representatives of this clade with good support. The remaining populations assigned to
A. surinamensis form at least four well-differentiated lineages (p-distances 2.7-6.4%).
These lineages are distributed allopatrically throughout Suriname and French Guiana
(Fig. 3.1C). The divergences within A. degranvillei are lower but three lineages are

discriminated (p-distances 1.9-2.6%). These lineages are only found in French Guiana
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and on very localised massifs, except one lineage slightly more broadly distributed in
north-eastern French Guiana (A. sp. “north FG” in Fig. 3.1C).

Even though less complete than the mtDNA dataset, the nuDNA data provides in-
formative results about deeper relationships and species boundaries in the two species
groups. Species from the Pantepui region and species from the EGS form two weakly
supported clades, but the monophyly of both A. degranvillei and A. stepheni groups is
strongly supported (respectively 100% and 99% bootstrap support) (Fig. 2).

Within the A. stepheni group, most of the candidate species are also recovered as
forming independent lineages. Anomaloglossus stepheni and A. apiau form a clade well
differentiated from the rest of the species group, which forms a strongly supported clade.
Within this clade, A. sp. “Bakhuis”, A. sp. “Brownsberg”, A. leopardus, and A. sp. “Mi-
taraka” represent clearly segregated lineages. Populations assigned to A. baeobatrachus
form the remaining clade.

Within the A. degranvillei group, the two subclades formed by populations assigned to
A. surinamensis and A. degranvillei are also strongly supported (both with 100% boot-
strap support). Anomaloglossus degranvillei and A. sp. “north FG” are also distinguished
on nuDNA. Within A. surinamensis, the most divergent population, A. surinamensis 5
from the Bakhuis Mountains, is well differentiated from its relatives. However, Anoma-

loglossus surinamensis 1 is recovered paraphyletic with respect to A. surinamensis 2.
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Figure 3.2 — Maximum likelihood tree obtained from concatenated nuDNA loci POMC, RAG1, and
TYR. Colour codes denoted after labels correspond to the codes used in Fig. 1. Bootstrap values are
indicated above nodes (* >99%; not indicated when <70%). For the A. stepheni group, we indicated
*exotrophic tadpole; **endotrophic tadpole; ? tadpole development mode unknown. The coloured circle
and triangle symbols correspond to the ones represented on the maps in Fig. 3.1B and 3.1C. Outgroups
are not shown.
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3.3.2 Species delineation

Using ABGD, a constant number of CS (31) is observed using initial partitions with a
range of prior intraspecific divergence value (P=0.0046-0.001 for p-distance, P=0.0046-0.0028
for JC69) (Table 3.1). Recursive partitions were discarded as they provided unrealistic
species delineation, notably with many singletons. For the GMYC analysis, both single
and multiple threshold models outperformed the null model (Table 3.2), indicating the
presence of several CS in our dataset. The result of the single threshold model (30 enti-
ties) was adopted as the fit was not improved by the multiple threshold model (chi2=2.28,
df=6, p-value=0.89). The tree resulting from PTP with best-fit ML recovered 29 clusters
and four singletons, resulting in a total of 33 entities. These results are summarized in

Fig. 3.3.

Prior intraspecific divergence (P)

Subst. X Partition 0.0359  0.0215 0.0129 0.0077 0.0046 0.0028 0.0017 0.001

model

Simple 1.5 Initial 0 13 13 16 31 31 31 31
Recursive 14 18 20

JC69 1.5 Initial 0 13 13 27 31 31 120 120
Recursive 19 16 29 36 36

Table 3.1 — Number of delimited species resulting from the automatic barcode gap discovery analysis
(ABGD) with different substitution models and initial or recursive partition. X= relative gap width.

Anomaloglossus apiau, A. stepheni, and A. leopardus were identified as single CS in
all analyses. However, populations currently assigned to A. baeobatrachus are identified
as seven CS (Fig. 1B). Within these CS, two of them, A. baeobatrachus and A. sp. 1,
remained indistinguishable using our nuDNA dataset (Fig. 3.2).

Eight CS were identified in the A. degranvillei group. Three of these CS are nested
within a clade formed by populations currently assigned to A. degranvillei, all occurring
in French Guiana (Fig. 3.1C). The remaining five CS are found in a clade formed by
populations currently assigned to A. surinamensis, and are distributed in Suriname and

French Guiana (Fig. 3.1C).
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Analysis  Clusters Entities Likelihood,, Likelihoodgmyc Likelihood Threshold

(CI) (CI) ratio
Single 25 (17-33) 30 (22-39) 2965.783 2990.261 48.95%H* -2.37
Multiple 35 (18-36) 40 (22-43) 2965.783 2991.401 51.23%%* -1.68; -0.79;

-0.15

Table 3.2 — Results of the General Mixed Yule-coalescent (GMYC) analyses for the Bayesian tree under
the birth-death process model. Clusters, OTUs delineated by GMYC with more than one specimen; Enti-
ties, clusters and singleton OTUs delineated by GMYC; CI, confidence interval; Likelihoody,;, likelihood
of the null model; Likelihoodgnyc, likelihood of the GMYC model; Threshold, the threshold between
speciation and coalescence processes. Single, single-threshold model; Multiple, multiple-threshold model;
% P<0.001.
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Figure 3.3 — Multiple evidence species delimitation of Anomaloglossus. Results of 16S analyses in
ABGD, PTP, and GMYC (from left to right, first three columns) represented on the BEAST tree,
summary of all examined evidences (next five), and integrative species delimitation solution (last column).
All are presented in one single topology Bayesian tree obtained with MAFFT alignment, using the birth-
death process model in BEAST. Black squares represent Pantepui species (not treated here). CCS =
confirmed candidate species; UCS = unconfirmed candidate species; DCL = deep conspecific lineage.
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3.3.3 Morphological analyses

For both species groups, the raw morphometric data have limited discriminative power
because most individual candidate species overlap with at least another one in the mul-
tidimensional space (Fig. 3.4). However, in many instances they allowed to detect some
differences in body size among pairs of closely related species. Analyses performed on
the size-corrected dataset confirmed the overall lack of differences among groups in their

body proportions, confirming that closely related species differ mainly in their body size.

PCA on data from the A. stepheni group showed that two components with eigenvalues
>1.0 accounted for 81.97% of the total inertia. Coefficients of the first component, which
explains 67.53% of the variation (Fig. 4A), are highly and positively correlated (Fig. 3.4A,
Supplementary Table S6). The second component explains 14.44% of the variation (Fig.
3.4A). Except A. apiau, which is well differentiated along the second axis, individuals are
spread along the first axis segregating large-bodied (mean SVL>17.4 mm) species (A.
leopardus, A. sp. “Bakhuis”, A. sp. “Brownsberg”, and A. sp. “Mitaraka”) from small-
bodied (mean SVL<17.4 mm) species (A. stepheni, A. apiau, A. baeobatrachus, and A.
sp. 1). This was supported by the multivariate analysis of variance (MANOVA) that
indicated that species identity explains 80% of the variance for morphometrics variables
(Adonis MANOVA R?=0.8, p=0.001), but only 55% when the data were corrected by
body size (SVL) (Adonis MANOVA R?=0.55, p=0.001). When the data were corrected
according to body size, all the groups largely overlap except A. stepheni, indicating that
body proportions in that species differ from those observed in other species (see suppl.
mat.). Interestingly, A. baeobatrachus is forming two different non-overlapping clusters of
individuals differing in their body size. In fact, the distinction between large-bodied and
small-bodied species seems to coincide with other traits, notably larval development (see

below).
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Figure 3.4 — Results of the PCA on raw morphometric variables with circle of correlations for (A) A.
stepheni group and (B) A. degranvillei group. Symbols represent specimens on the first two principal
components. The contribution of each axis for total variation is indicated in parenthesis. The groups are
delimited with coloured lines.

For the A. degranwvillei group, two components accounted for 94.37% of the total in-
ertia. Coefficients of the first component, which explains 92.87% of variation (Fig. 4B),
are highly and positively correlated (Supplementary Table S6). The second component
explains 1.5% of variation (Fig. 3.4B), and has significant positive loading for IO and a
significant negative one for WFD (Supplementary Table S6). The two subclades (A. de-
granvillei and A. surinamensis subclades) are well distinguished according to their body
size. In the A. degranvillei subclade, A. sp. “north FG” is well segregated from the

two related CS. However, the morphometric space of all CS within the A. surinamen-
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sis subclade broadly overlaps. Additional analyses based on raw and size-corrected data
focusing on the A. surinamensis subclade did not discriminate more groups. The mul-
tivariate analysis of variance (MANOVA) indicated that species identity explains 91%
of the variance on morphometrics variables (Adonis MANOVA R?=0.91, p=0.001), but
only 29% when the data were corrected by body size (SVL) (Adonis MANOVA R?=0.29,
p=0.001).

3.3.4 Bioacoustics

Bioacoustic data showed a much greater discriminating power within the A. stepheni
group than morphometric data with no or limited overlap among CS across the multi-
dimensional space. Two components with eigenvalues >1.0 accounted for 82.62% of the
total inertia. Coefficients of the first component, which explains 51.66% of variation, have
significant positive loadings for internote length, note length, and call length, and signif-
icant negative ones for call rate, Harm2nd freq and note rate (Fig. 3.5A, Supplementary
Table S7). The second component explains 30.96% of the variation, and has significant
positive loadings for call rate and note length, and significant negative ones for Harm2nd
freq and Call length (Fig. 3.5A, Supplementary Table S7). Anomaloglossus baeobatrachus
contains individuals either with a slow trill call (note rate<15 notes/s) or a rapid trill
call (note rate>15 notes/s) calling groups. Two distinct clusters are recovered within A.
baeobatrachus, corresponding to the results found using morphometric data. These two
groups of individuals differ markedly in their calls. Together with morphometrics, these
differences seem to reflect two distinct phenotypes within A. baeobatrachus that occur
often in sympatry (see below). These results are in accordance with the MANOVA analy-
sis, which indicated that species identity explains 93% of on the variance on bioacoustics

variables (Adonis MANOVA R2=0.93, p=0.001).

For the A. degranvillei group, two components accounted for 89.87% of the total in-
ertia. Coefficients of the variables have significant positive loadings for note length and
internote length, and significant negative ones for Harm2nd freq on the first component
(Supplementary Table S7), which explains 62.69% of variation (Fig. 3.5B). The second
component explains 27.18% of the variation, and has significant positive loading for in-

ternote length (Fig. 5B, Supplementary Table S7). The two subclades (A. degranvillei
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and A. surinamensis subclades) are well segregated. In the A. degranvillei subclade, A.
sp. “north FG”, A. sp. “Itoupé”, and A. degranuvillei are all well segregated among each
other. These results are in accordance with the MANOVA analysis, which indicated that
species identity explains 85% of the variance on bioacoustics variables (Adonis MANOVA
R?=0.85, p=0.001). However, as for the morphometric analysis, all CS within the A. suri-
namensis subclade completely overlap. Additional analysis focusing on these individuals

failed to discriminate any additional CS.

Figure 3.5 — Results of the PCA on raw bioacoustics variables with circle of correlations for (A) A.
stepheni group and (B) A. degranvillei group. Symbols represent specimens on the first two principal
components. The contribution of each axis for total variation is indicated in parenthesis. The groups are
delimited with coloured lines.
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3.3.5 Reproductive modes and habitats

In the A. stepheni group (excluding A. apiau), two reproductive modes have been
observed, which seem to covary with habitat, call characteristics and body size (Table 3.3).
The species in this group have either nidicolous and endotrophic tadpoles or exotrophic
tadpoles with male phoresy (Fig. 3.6B). Endotrophic tadpoles are found in reduced
number in the nest (<4), have reduced and bare mouth, large vitelline reserves, and
complete their development in the nest. On the contrary, exotrophic tadpoles are in
larger number (>4), have labial teeth, less vitelline reserves, and are transported by the

male to water bodies where they complete their development.

Anomaloglossus stepheni has an endotrophic and nidicolous tadpole and is found on
terra firme habitats (Junca et al., 1994). In contrast, Anomaloglossus sp. “Acari”, A. sp.
“Bakhuis”, A. sp. “Brownsberg”, A. sp. “Mitaraka” all have exotrophic tadpoles, that
males carry to water bodies. However, both phenotypes are observed in A. baeobatrachus
(Fig. 3.6B). Indeed, northern populations of this species are found in terra firme habitats
and have endotrophic and nidicolous tadpoles, but some populations in the eastern and
southern part of French Guiana are associated to streams, have an exotrophic tadpole
and phoretic male. These populations are slightly larger in SVL and have a slower note
rate. Anomaloglossus sp. 1 also seems to display both phenotypes. Although we could
not gather totally unambiguous data, phoresy has been observed in Serra do Navio, and
slow-calling individuals have been observed along the Oyapok River (Brazilian margin in
Memora), Amapa state, Brazil (Grant et al., 2006), suggesting that the A. baeobatrachus

lineage might be present in these areas.

Males carrying endotrophic tadpoles (reduced and bare mouth and large vitelline re-
serves) have been observed in seven populations of the A. degranvillei group assigned
to different CS, thus documenting the mode of larval development and male behavior
for most CS in that group (Table 3.3; Fig. 3.6A,C). All the members of this clade live
along streams, and we assume that they display phoresy until metamorphosis, or at least
during a prolonged period of the larval development. Interestingly, A. apiau, despite be-
ing a member of the A. stepheni clade, is also associated to streams and also displays

this reproductive mode with tadpoles having reduced and bare mouth and large vitelline
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reserves, and males transporting them until metamorphosis (Fig. 3.6C).

Data on the reproductive mode, body size, call, and habitat are completely missing
for A. sp. “Paru”, so we could not attribute a phenotype to this species. We also miss
data on the reproductive mode of A. leopardus. However, this species is associated with
streams, displays a large body size and a slow note rate, thus corresponding to phenotype

3. Therefore, it is likely that this species has exotrophic tadpoles transported by males.

Interestingly, phenotypes 2 and 3 co-occur in many places but in different combinations
of CS in the A. stepheni group (Fig. 3.1). Anomaloglossus stepheni is found in sympatry
with several exotrophic species in Suriname and in northern Para (Brazil) (Fig. 3.6). The
two phenotypes observed in the same lineage (A. baeobatrachus) occur in sympatry only in
the north-eastern part of French Guiana (Route nationale 2, a.k.a. RN2) (Fig. 3.6). This
might also be the case in Amapa (Brazil) with two co-occurring phenotypes observed in
the A. sp. 1 lineage. However, in most cases, the two distinct co-occurring phenotypes are
observed among different lineages. The phenotype 3 of the A. baecobatrachus lineage occurs
in sympatry with the phenotype 2 A. sp. 1 in the southern part of French Guiana (Fig.
3.6D) while in northern French Guiana A. baeobatrachus displays phenotype 2. Similarly,
A. sp. “Mitaraka”, which displays phenotype 3, occurs in sympatry with phenotype 2
of A. sp. 1 in south-western French Guiana. Within the A. baeobatrachus clade (A.
baeobatrachus + A. sp. 1), phenotype 2 seems to be distributed throughout FG and
Amapa (Brazil) whereas phenotype 3 is apparently absent from north-western FG (west
margin of the Approuague River north of Saiil). Such distribution patterns are concordant
for at least seven other frog species (Allobates granti, Ameerega hahneli, Dendrobates
tinctorius, Engystomops sp., Hyspiboas dentei, Pristimantis gutturalis, and Pristimantis
sp. 3 = A. baeobatrachus phenotype 2 distribution pattern) and four other frog species
(Amazophrynella sp., Leptodactylus longirostris, Pristimantis sp.1, and Rhinella lescurei

= A. baeobatrachus phenotype 3 distribution pattern) (the authors pers. obs.).
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Phenotype Species Development Nidicoly Body size Habitat
mode Phoresy

A. apiau endotrophic phoresy - riparian

A. degranvillei endotrophic phoresy - riparian
Phenotype 1  A. sp. “Itoupé” endotrophic phoresy — riparian

A. sp. “north FG”  endotrophic phoresy - riparian

A. surinamensis endotrophic phoresy - riparian

A. stepheni endotrophic nidicoly < 17.15 Terra firme
Phenotype 2 A. baeobatrachus endotrophic nidicoly < 17.15 Terra firme

A sp. 1 endotrophic nidicoly < 17.15 Terra firme

A. baeobatrachus exotrophic phoresy < 17.15 riparian

A. sp. “Acari” exotrophic phoresy 17.41 - 19.21 riparian
Phenotype 3 A. sp. “Bakhuis” exotrophic phoresy 17.41 - 19.21 small water

bodies

A. sp.  “Browns- exotrophic phoresy 17.41 - 19.21 riparian/small

berg” water bodies

A. sp. “Mitaraka” exotrophic phoresy 17.41 - 19.21 riparian

Table 3.3 — Summary of the phenotypes that are observed within the EGS Anomaloglossus species and
the characteristics attributed to each species and phenotype.
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Figure 3.6 — Evidences for reproductive and larval developmental modes in the Anomaloglossus CS.
(A) the topology obtained from analysis of the mtDNA used in Fig. 1 and 3. (B) Photographs of adult
males of species representative of the different modalities (phoretic or nidicolous) found in Anomaloglossus
[from top to bottom, the endotrophic and nidicolous A. baeobatrachus 2 from Mitaraka (French Guiana);
the exotrophic and phoretic A. sp. “Brownsberg” from Brownsberg (Suriname); the endotrophic and
phoretic A. apiau from Serra do Apiad (Roraima, Brazil); the endotrophic and phoretic A. surinamensis
2 from Nassau (topotypic population in Suriname); the endotrophic and phoretic A. sp. “north FG” from
Route Nationale 2 (French Guiana)]. Continuous lines indicate that the picture corresponds to the lineage
while dashed lines indicate that the modality is found in the lineage. A question mark indicates when
the modality has not been observed and is only assumed. Pictures of the three tadpoles representative
of the endotrophic (reduced and non-functional mouth) or exotrophic (fully functional mouth) are also
included (from top to bottom: A. baeobatrachus 2 from Mitaraka; A. sp. “Brownsberg”; A. surinamensis
2. The colours of the lines (blue, green, red) correspond to the three modalities of the reproductive traits
found in the genus. (C) Distributions of the contrasting phenotypes in the A. baeobatrachus clade and
the two mtDNA lineages. The white dashed line corresponds to the known distribution of phenotype 2,
and the black dashed line corresponds to the distribution of phenotype 3.
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3.4 Discussion

3.4.1 Anomaloglossus represents a unique case of in-situ diver-

sification in the Guiana Shield lowlands

Our results highlight once more how far we still are from having a realistic view of
the structure of the Amazonian biodiversity (Fouquet et al., 2007a; Funk et al., 2012).
Underestimation of species richness within Anomaloglossus in the EGS had already been
suggested in previous studies (Fouquet et al., 2007a, 2012b) based on more limited sam-
pling. Our results indicate that these studies were still largely underestimating the actual
diversity of the genus. Indeed, the present study identified a total of 18 lineages among
populations of six currently recognized nominal species, out of which 11 are classified as
CCS, six as DCL and one as UCS (three are classified as CCS and five as DCL in the A.
degranuvillei group and eight are classified as CCS, one as UCS, and one as DCL in the
A. stepheni group). These results show that Anomaloglossus represents the only docu-
mented group of frogs to have significantly diversified within the Guiana Shield lowlands.
Given that many of these newly discovered, yet undescribed species, are microendemics,
and that many massifs in the Guiana Shield remain virtually unexplored, it is likely that

more undescribed species still remain to be discovered.

Within the two main groups that are restricted to the EGS, the A. degranvillei group
is restricted to Suriname and French Guiana, with three allopatric CCS forming the
degranvillei subclade endemic to French Guiana, and among which two species (A. de-
granvillei and A. sp. “Itoupé”) have a very restricted range (<500 km?) in the southern
part of the country (Fig. 3.1B). These two large-bodied species are associated to moun-
tainous streams above 300m a.s.l., while the smaller-bodied A. sp. “north FG” occurs at
lower elevations but is also associated to massifs. In recent years, populations belonging
to these three species seem to have drastically declined and some may have gone extinct
(the authors pers. obs.). It is likely that these species or additional ones occur in adjacent
Suriname and Amapa state (Brazil), and given the conservation concerns raised above,
they should be the focus of field surveys. The five DCL forming the surinamensis subclade
also occur in allopatry, with three of them found in Suriname, and two others in French

Guiana, but across larger areas than the degranvillei subclade, and no sign of decline has
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been detected among these populations yet. None of the species within each subclade
have overlapping ranges, but one DCL from the surinamensis subclade (A. surinamensis

1) occurs in sympatry with A. degranvillei and A. sp. “Itoupé” (Fig. 3.1B).

Within the other main group found in the EGS, the A. stepheni group, we were able to
clarify the taxonomic status and range of A. stepheni and A. baeobatrachus. The first was
recovered as diverging basally and has the widest distribution among the species group,
occurring in the states of Amazonas and Para (Brazil), and in Suriname. Anomaloglossus
baeobatrachus is restricted to French Guiana and Amapa, Brazil (Fig. 1C). Populations
assigned to this species in Suriname (Ouboter and Jairam, 2012) correspond in fact to
various species: A. sp. “Bakhuis”, A. sp. “Brownsberg”, A. sp. “Mitaraka”, or A.
stepheni. Out of the 10 lineages in this group, seven are localised endemics or have at
least narrow ranges in the EGS (A. apiau, A. leopardus, A. sp. “Acari”, A. sp. “Bakhuis”,
A. sp. “Brownsberg”, A. sp. “Mitaraka”, and A. sp. “Paru”), even though species
occurring in poorly documented area such as northern Para (Brazil) may have larger
ranges. Finally, it is highly probable that additional data (bioacoustics and reproductive
mode) would allow distinguishing A. sp. “Paru” from its close relatives and classifying it

as a CCS.

Among the rare genera that may have diversified in the GS lowlands, Anomaloglossus
seems to be the only group of frogs to have diversified to such an extent. Many groups
have diversified in the highlands of the Pantepui region (e.g., Oreophrynella, Stefania,
Myersiohyla), but none of them is closely related to lineages that diversified in the lowlands
(Duellman, 1999; Kok, 2013; McDiarmid and Donnelly, 2005). Most of the lowlands
lineages have apparently diversified throughout Amazonia or even larger areas throughout
the continent (e.g., (Fouquet et al., 2013). Among GS clades, Otophryne (de Sa et al.,
2012), Adelophryne (Fouquet et al., 2012a), Vitreorana (Castroviejo-Fisher et al., 2014),
Hypsiboas benitezi group (Duellman et al., 2016) all form ancient GS clades occurring in
the highlands and lowlands, but all display a small diversity in the lowlands compared to
Anomaloglossus. A pattern comparable to the one observed in Anomaloglossus might be

found in Pristimantis, but available data remain too scarce.
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3.4.2 Constrasting divergence patterns within Anomaloglossus

As expected, morphometric data provided little discriminative power in our analy-
sis, and most CCS were mainly distinguished by acoustic data. However, within the
Anomaloglossus species groups, we found two sharply contrasting cases of molecular and
phenotypical divergence that are worth discussing, even if possible explanations remain

hypothetical at this stage.

The first concerns the five CS forming the A. surinamensis subclade. Despite deep
genetic divergence among them (ranging from 2.7% to 6.4%, see Appendix 2), none of
these populations can be discriminated with any morphological or bioacoustic charac-
ter. Moreover, even though sampling implied fewer individuals, congruent divergence is
observed in the analyses based on nuDNA data. Since calls usually constitute strong
discriminant characters among anurans (Vences and Wake, 2007), a lack of differences
in calls between lineages diverging to such an extent might be surprising. Still, as they
display an allopatric distribution pattern, one explanation could be that populations were
isolated from each other without subsequent contacts, thus not promoting the evolution
of premating isolation and therefore promoting call conservatism (Bogert, 1960; Hoskin
et al., 2005). Although highly probable, this hypothesis is rather intriguing as an opposite
pattern is observed within its sister group the A. degranvillei subclade, which occurs in
similar habitat and displays similar breeding mode. The three species that compose this
clade have a comparatively low genetic divergence between them (1.9-2.6 %, see Appendix
2), are also allopatric, but have well-differentiated calls. It is not clear which factor might
have played a role in shaping these opposite patterns. However, we note that only the two
largest species of the A. degranuvillei subclade co-occur with A. surinamensis in French
Guiana, while A. sp. “north FG” displays a similar body size as A. surinamensis but
does not occur in sympatry with it (Fig. 3.1B). Phylogenetic relationships within the
A. surinamensis subclade (even though deserving more investigation) demonstrated that
French Guiana lineages are nested within Suriname lineages, therefore supporting the
hypothesis that the A. surinamensis lineage could have secondarily dispersed to French
Guiana from Suriname and therefore came into contact with the ancestral A. degranville:
subclade. One hypothesis could be that niche overlap have produced character displace-

ment in A. degranvillei and A. sp. “Itoupé”, thus evolving towards larger body size and a
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more specialized niche (Brown and Wilson, 1956). As a matter of fact, these two CS are
only found in torrents above elevations of 300m a.s.l., whereas at the same localities A.
surinamensis occurs along streams below 300m a.s.l. In contrast, A. surinamensis and
A. sp. “north FG” display allopatric ranges, and share a similar niche and similar body

size.

The second contrasting case concerns A. bacobatrachus and A. sp. 1, two closely re-
lated lineages that both display the same two contrasted phenotypes, i.e., phenotype 2
and phenotype 3. To our knowledge, such a situation has never been observed in any other
group of amphibian. We think that this pattern could result from two distinct scenarios:
either (1) very recent speciation in both lineages, or (2) secondary contact followed by
hybridization. (1) The first scenario would suggest that given their current parapatric dis-
tribution, geographical isolation would be responsible for the divergence between these two
lineages. Fouquet et al. (2012) estimated that such a pattern likely resulted from climate
driven isolation during early Pleistocene as observed in co-occurring anuran clades. More
recently, two mirroring diversification events would have occurred in each of these two
species, with two converging phenotypes within each species. Subsequently, they would
have dispersed and came into contact with the other pair. In this scenario, four different
species (two pairs) would exist in this clade, each pair being too recent to be distinguished
by molecular data (mean p-distances = 0.3% within A. baeobatrachus and 0.8% within
A. sp. 1, see Supplementary Table S4). Such a scenario raises many questions that lie
beyond the scope of the present paper. Nevertheless, it implies not only a rapid evolution
of the ecology, morphology, calls, and more importantly larval development mode, but it
also implies that these events would have been concomitant in the two species. (2) The
second scenario would involve secondary contact between two ancestral and phenotypi-
cally distinct species. As in the previous scenario, the two lineages would have originated
from historical isolation, and would have come into contact and hybridized in a recent
past. Given the striking phenotypical difference currently observed despite sympatry, we
would have to hypothesize that after secondary contact and formation of a hybrid zone,
selection against hybrids led to the evolution of premating isolation, yet letting time for
genomic exchanges, notably mitochondrial (Hoskin et al., 2005). In a second time, gene
flow would have allowed exchange of introgressive genomic material in both species. This

scenario raises many questions because hybridization between two species with different
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larval development seems quite unlikely. Testing these two hypotheses deserve further
investigation using population genomic data. It is noteworthy that either a rapid evo-
lution of the larval development or the hybridization between species differing in larval
development suggest that the genetic architecture of this trait could be rather simple and

worth of further research.

3.4.3 Biogeography and evolution of reproductive modes in Anoma-

loglossus

Our results suggest that Anomaloglossus represents an exceptional model to study
speciation and diversification in the GS. The fact that all Pantepui species apparently all
have exotrophic tadpoles, while in the EGS lowlands, the A. degranvillei species group
has endotrophic tadpoles, and the other (A. stepheni group) in the same area contains
both modes of tadpole development suggests a strong biogeographic signal. This also
reveals that endotrophy evolved several times independently in the genus. Therefore, we
hypothesize that evolution towards endotrophy in this genus probably allowed populations
to colonize terra firme environments and to disperse into new niches in the lowland forests.
As a matter of fact, species displaying nidicoly associated to endotrophic tadploles (A.
baeobatrachus, A. sp. 1, A. stepheni) have the widest distribution.

Even if endotrophy is common in anurans (McDiarmid and Altig, 1999), lineages of
closely related populations or species that include both endotrophic and exotrophic de-
velopmental guilds are very rare (Anstis, 2010; McDiarmid and Altig, 1999). In the
Neotropical genus Allobates, endotrophy has been reported in two species that are not
closely related, A. chalcopis (Kaiser and Altig, 1994) and A. nidicola (Caldwell and Lima,
2003), thus suggesting independent evolution of endotrophy. Similarly, a striking pattern
of evolution of larval development mode has been documented in the Malagasy Gephy-
romantis (Kaffenberger et al., 2012). A comparable pattern of intrageneric recurrent
evolution of larval development is also known in Adenomera (A. dyptiz and A. thomei
being exotrophic in an otherwise endotrophic genus) (Fouquet et al., 2014). Nevertheless,
to our knowledge, this is the first case of endotrophy /exotrophy evolution between species

as closely related as in the Anomaloglossus baeobatrachus clade.
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Delineating species is crucial for evaluating their threatened status (Bickford et al.,
2007). Newly documented species can be formally described and their conservation status
evaluated. Among the 21 species of Anomaloglossus currently listed in the [UCN Red List
database, only six of them have been assessed for their conservation status. All the others
are considered as “Data deficient”. Nonetheless, some authors highlighted conservation
urgency for these frogs (Fouquet et al., 2015; Kok et al., 2013). Some Anomaloglossus
are already considered as threatened of extinction (A. apiau) when not probably already
extinct (A. tepequem) (Fouquet et al., 2015). The perception that so many undescribed
species are microendemics (A. sp. “Bakhuis”, A. sp. “Itoupé”) and that some nominal
taxa are in fact also microendemics (A. degranvillei, A. leopardus) highlights the urge of

evaluating the conservation status of these species.
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Chapter 4

Historical biogeography of
Anomaloglossus (Amphibia: Anura:
Aromobatidae) reveals single
dispersal from the tepuis to the
lowlands and multiple evolution of

reproductive traits

Foreword to chapter 4

Parts of the Material and methods section have been published in the journal Mito-
chondrial DNA Part B: Ressources (Vacher et al., 2016). This article is reproduced in
Appendix M.

4.1 Introduction

Tropical forests harbour the highest diversity of species on the planet (Dowle et al.,
2013; Gaston, 2000; Hillebrand, 2004). Among them, those of the Neotropics (tropical
America), notably Amazonia, are the richest for many groups (Antonelli and Sanmartin,

2011; Da Silva et al., 2005; Jenkins et al., 2013; Myers et al., 2000; Pyron and Wiens, 2013).
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The origin of Amazonian diversity has puzzled biologists for almost two centuries (Bates,
1863; de Humboldt, 1820; Wallace, 1852), but still remains poorly understood. Actually,
diversification in Amazonia was mostly explored in relation with adjacent biomes, and
only few studies tackle in situ diversification (e.g., Antonelli et al. 2009; Brumfield et al.
2007; Elias et al. 2009; Fernandes et al. 2012; Gascon et al. 2000; Hughes and Eastwood
2006; Munoz-Ortiz et al. 2015; Santos et al. 2009; Upham et al. 2013). Linnean and
Wallacean shortfalls that affect the Amazonia biota are the two main reasons for such a

lack of knowledge (Bush and Lovejoy, 2007; Hortal et al., 2015).

The Guiana Shield has been recognised as an Amazonian biogeographic region since
the 19" century, as Alfred Russell Wallace mentioned it as one of the four ‘districts’ of
Amazonia (Wallace, 1852). Since this classification, it is now admitted that the high-
lands formations of the western Guiana Shield (the Pantepui region) are not included in
the Amazonian biome (Vilhena and Antonelli, 2015), whereas the eastern Guiana Shield
(EGS), a region bounded by the Amazon and Negro rivers to the south and the Pantepui
and Orinoco basin to the north and that mostly comprises lowland rainforests, faunisti-
cally belongs to Amazonia. This region has been distinguished as a biogeographic area
based on the distribution of birds (Naka, 2011; Naka et al., 2012), but our analysis based
on frog distribution presented in Chapter 2 revealed a subdivision in three biogeographic
areas within the EGS, with high endemism rates. The Guiana Shield have been quite
stable during the Cenozoic, and therefore its fauna and flora were not subject to the
strong modifications from the influence of harsh events that affected landscapes such as
mountain uplift, or set up of large river basins as it was the case in the Andes or in central
Amazonia (Hoorn et al., 2010; Lujan and Armbruster, 2011). Nevertheless, lineages that
are endemic to the Guiana Shield indicate substential in situ diversification. The most
striking radiation that originates from the Guiana Shield is the plant family Bromeli-
aceae, which certainly first diversified in the tepuis about 100 mya, and subsequently
dispersed throughout adjacent areas of the Neotropics (Givnish et al., 2007, 2011). Other
examples mostly concern endemic fauna or flora of the Pantepui region (Berry and Riina,
2005; Désamoré et al., 2010; Kok et al., 2012, 2016a,b; Rull, 2004, 2005; Salerno et al.,
2012). Studies conducted on frogs also suggest that diversification events occurred in the
eastern lowlands of the Guiana Shield (Fouquet et al., 2012). To our knowledge, diver-

sification linked with exchanges between the western highlands and eastern lowlands of
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the Guiana Shield has only been previously explored for Bromeliad plants, with primary
diversification in the lowlands and subsequent colonisation of highlands in the family
Rapataeceae for example (Givnish et al., 2000). Frogs are rather interesting models for
phylogeographic and biogeographic studies, as they display low vagility compared to other
terrestrial vertebrates commonly used as models such as birds, often display a philopatric
behaviour, and all the more are constrained by climatic conditions (Zeisset and Beebee,
2008). Most of the Guiana Shield endemic species or groups of frogs are restricted to the
tepuis (Barrio-Amorés, 2010; Faivovich et al., 2005, 2013; Heinicke et al., 2009; Kok et al.,
2012, 2015, 2016a,b; Ron et al., 2016; Salerno et al., 2012). Only a few groups are dis-
tributed in both the tepuis and the eastern lowlands, among which the Guianan endemic
Microhylidae genera Otophryne and Synapturanus, each comprising three nominal species.
Anomaloglossus stands out from other endemic groups of frogs as it is the only one that
displays a large diversity (26 currently described species) and is distributed throughout
the entire Guiana Shield, with highland, middle-elevation and lowland species. Also, as
we exposed in Chapter 3, the genus displays contrasting life-history traits, particularly
in the lowland groups that harbour species that have exotrophic and phoretic tadpoles,
others have endotrophic and phoretic tadpoles, and finally at least two species have en-
dotrophic and nidicolous tadpoles. Our previous results suggest that acquisition of these
characters occurred independently in the evolutionary history of the group. Therefore,
the fact that this genus has diversified to such an extent both in the highlands and the
lowlands and that this diversification may be linked with the acquisition of reproductive
traits is very intriguing. Did Anomaloglossus originate from the tepuis as previous results
suggest (see Chapter 3), and subsequently dispersed to the lowlands, and if so, can this
dispersal be related to historical environment changes? Did the acquisition of less complex
reproductive traits enabled the colonisation of new niches, thus enabling diversification

in the lowlands?

In order to address these questions, we used a multilocus phylogenetic approach with
mitogenomes obtained through New Generation Sequencing (NGS) and four nuclear loci
for all species of Anomolaglossus which were available (1) investigate the phylogenetic
relationships within Anomaloglossus, (2) infer the ancestral states of life history traits

related to tadpole development, and (3) infer the historical biogeography of this group.
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4.2 Material and methods

4.2.1 Collection of data in the field

The samples used in this study represent a subset of the samples used in Chapter 3. The
field methods are described in section 3.2.1 of Chapter 3. The sample design for the
present study was conceived so at least one sample of each candidate species retrieved in
Chapter 3 would be included in the data pool, with a particular focus on the species from
the lowlands of the eastern Guiana Shield (Fig. 4.1). Only Anomaloglossus sp. “Paru”
was not included in the dataset as only a 400 bp fragment of the 16S rRNA was available
for this lineage and we did not have additional tissue to perform DNA extraction for
complementary sequencing. The non inclusion of this species did not impede the analysis
given its position as the sister species of A. sp. “Brownsberg” is little ambiguous, and

they share the same biogeographic area and most likely the same life history traits.

Figure 4.1 — Localisation of the Anomaloglossus samples used in this study. The ranges on the map
correspond to the three main species group as defined in Chapter 3, plus A. tamacuarensis.

4.2.2 Molecular data

We extracted DNA from liver tissue of 27 samples of Anomaloglossus and 11 outgroups

using the Wizard Genomic extraction protocol (Promega; Madison, WI, USA) (Supple-
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mentary Table D.1). We sequenced sequenced the whole genome of these samples using a
shotgun approach with an Illumina sequencer (Illumina, USA). Mitogenomes were assem-
bled using the python-based organelle assembler Org.Asm (Coissac, 2016), coupled with
a genome skimming approach implemented in Geneious (Besnard et al., 2014; Vacher
et al., 2016). The mitochondrion genomes were annotated using MITOS web annotator
(Bernt et al., 2013), and then corrected in Geneious v.9 (Kearse et al., 2012). We com-
pleted our dataset with 30 complete or incomplete mitogenomes of Hyloidea available in
GenBank (Supplementary Table D.2). The same approach was used to retrieve the 285
fragment. Additionally, we amplified and sequenced three protein-coding nuclear loci
(tyrosinase - TYR; proopiomelanocortin C -POMC; and recombination activating gene
exon 1 -RAG1). PCR conditions were similar as what we used for the 16S fragment (see
Chapter 3 for details). We completed our dataset by adding 26 fragments of TYR, 34
fragments of POMC, and 34 fragments of RAGI sequences that were already available
in GenBank. As the nuclear fragments were not always available for outgroup species
that we selected in the mitogenomes dataset, we concatenated fragments from different
species or from different genera when the monophyly of the targeted group was known
from literature in order to complete as much as possible the matrix (Supplementary Ta-
ble D.2). Novel sequences were deposited in GenBank and are listed in Supplementary
Table D.2. Nucleotide sequences were aligned using MAFFT v.7 (Katoh and Standley,
2013) using default parameters (gap opening penalty = 1.53; gap extension penalty =
0.123; progressive method = FFT-NS-2) for the mitogenomes, the 285 fragment, and the
three nuDNA fragments. We discarded the control region of mitogenomes in the resulting
alignment. Finally, we generated a concatenated dataset of the mitogenomes, 285, TYR,

POMC, and RAG1 using the program FasConcat v.1.0 (Kiik & Meusemann 2010).

4.2.3 Phylogenetic analysis

A Maximum likelihood (ML) analysis was conducted with RAxML v.8.2.4 (Stamatakis,
2014) using the GTR+G model following a recommendation from the RAxML v.8.2.X
manual (Stamatakis, 2015), applied on the mitogenome dataset and on the concatenated
nuclear loci (28S-TYR-POMC-RAG1) dataset. Support of nodes was investigated with
1000 nonparametric bootstrap replicates using the fast bootstrapping algorithm. Calyp-

tocephalella gayi and Lechriodus melanopyga (Myobatrachoidea) were used as outgroups
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for the whole tree (Frost et al., 2006; Pyron, 2014; Pyron and Wiens, 2011; san Mauro
et al., 2005).

4.2.4 Divergence time estimates

Divergence times were estimated using BEAST v2.4.1 (Bouckaert et al., 2014) in a
Bayesian inference (BI) analysis using a relaxed uncorrelated clock (Drummond et al.,
2006) on a concatenated dataset of mitogenomes with the four nuclear loci. We used the
program PartitionFinder v1.1.1 (Lanfear et al., 2012) to select the best-fitting model of
evolution for each partition using the Bayesian information criterion (BIC). A total of 42

partitions were treated:

e 1 nuclear rRNA e 13 mitochondrial genes
e 3 nuclear exons e 22 mitochondrial tRNA
e 2 mitochondrial rRNA e 1 mitochondrial origin of replication

We used BEAUTI v2.4.1 to generate the input file containing prior parameters for the
BI analysis. We applied a Birth-Death model for the tree prior. For divergence time es-
timation, we used secondary divergence time estimates that we implemented in BEAUTi
with an uniform distribution for the following nodes: Myobatrachoidea, Hyloidea, Den-
drobatoidea and Bufonidae (Table 4.1). A Markov Chain Monte Carlo (MCMC) was run
for 50 million generations and sampled every 5,000 generations, resulting in 50,000 trees
in the posterior distribution. A Maximum Clade Credibility (MCC) tree was obtained
with Treeannotator v.2.4.1 (Rambaut and Drummond, 2012), applying a 50% burnin.

All computations were performed on EDB-Calc Cluster which uses a software de-
veloped by the Rocks(r) Cluster Group (San Diego Supercomputer Center, University
of California, San Diego and its contributors), hosted by the laboratory “Evolution et

Diversité Biologique” (EDB).
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Time of divergence

Node
Calibration Type of prior

Bufonidae 40 — 65 mya (Van Bocxlaer et al., uniform prior (lower 40; upper
2009) 65; offset 0.0)

Dendrobatoidea 31— 52 mya (Santos et al., 2009) uniform prior (lower 31; upper

52; offset 0.0)

Hyloidea 65 — 100 mya (Marjanovi¢ and uniform prior (lower 65; upper
Laurin, 2007) 100; offset 0.0)

Myobatrachoidea 76 — 106 mya (Frazao et al., uniform prior (lower 76; upper
2015) 106; offset 0.0)

Table 4.1 — Molecular clock scenarios used for the divergence time estimation, with the types and
settings of priors.

4.2.5 Ancestral traits reconstruction

We used a stochastic character mapping approach to infer the ancestral states of two sets
of traits associated with tadpole development: (1) exotrophic tadpoles vs. endotrophic
tadpoles and (2) phoretic tadpoles vs. nidicolous tadpoles vs. phytotelm-dwelling tad-
poles. We ran a first analysis by adding an “unknown” category for both states when we
did not have any information on the reproductive mode or tadpole development mode.
This applied to A. leopardus, A. sp. “Acari”, and one individual assigned to A. baeoba-
trachus labelled MTR24258 from Amapd, Brazil. In a second analysis, we inferred the

character states for these species as follow:

o Anomaloglossus leopardus was attributed exotrophy and phoresy based on its body
size, its habitat and its call which are similar to other exotrophic and phoretic

species (see Chapter 3);
e A.sp. “Acari” was attributed exotrophy;

e Anomaloglossus baeobatrachus MTR24258 was attributed endotrophy and nidicoly
based on its body size that is similar to endotrophic and nidicolous species of its

clade (see Chapter 3).

We applied a discrete trait reconstruction approach with a stochastic mutational map-

ping on phylogenies method (SIMMAP) with the packages geiger (Harmon et al., 2008)
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and phytools (Revell, 2012) implemented in R (R Development Core Team, 2016). We
created evolutionary model ER (single rate), SYM (symetrical), and ARD (All rates dif-
ferent) with the fitDiscrete function of the geiger package. We then selected the best
model by calculating the delta of AICc! between models. We conducted two sets of anal-
ysis on the two sets of data with the function make.simmap of the package phytools. The
first analysis used an empirical setting for the estimation of the parameter “Q”. The
second analysis used a MCMC setting for the estimation of the parameter “Q”. For both
analyses, we generated 1000 stochastically mapped trees. For an empirical estimate of
“Q”, we used symmetric transitions and default on the root. For an MCMC estimate of
“Q”, we set the sampling variances of MCMC (“vQ”) to 0.01, and used a prior with a =
BxML(Q), and with beta set to 2.

4.2.6 Biogeographic multimodel inference and ancestral range

estimation

Previous to undertaking biogeographic analyses, we generated a subtree of the clade
formed by Dendrobatoidea? from the global tree generated with BEAST with the “sub-
trees” function of the package ape. Then, in order to estimate the ancestral range for
Anomaloglossus species and species groups, we defined nine biogeographic regions that
correspond to the distribution of the different Dendrobatoidea groups that we used in the
phylogenetic tree: Atlantic Forest (A), Chocé (A’), Southern Andes (B’), Northern Andes
(B), Amazonia (C), Pantepui region (D), western EGS (E), southern EGS (F), eastern
EGS (G), these last three areas being the ones recovered from Chapter 3. Model pa-
rameters and ancestral areas were reconstructed using an optimx routine in the package
BioGeoBEARS (Matzke, 2013a) implemented in R (R Development Core Team, 2016)
for six biogeographical models. The Dispersal Extinction Cladogenesis (DEC) model de-
scribes the temporal change in the range of a species, and distinguishes anagenetic change
from cladogenetic change. It estimates two free parameters describing anagenesis: d, the
rate of dispersal (range expansion) and e, the rate of extinction (range contraction) (Ree

and Smith, 2008). We tested six different biogeographical models on our dataset:

e Dispersal Extinction Cladogenesis model (DEC) of Lagrange (Ree et al., 2005);

LAICc: sample-size corrected Akaike information criterion (AIC), used to reduce overfit of AIC.
2Clade containing Dendrobatidae and Aromobatidae, see Fig. H.1
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e DEC+j, DEC with an additional “j” parameter accounting for founder event speci-

ation during cladogenesis (Matzke, 2013b);

e DIVALIKE (DIVA), a likelihood version of the parsimony-based dispersal-vicariance
analyses (Ronquist, 1997);

e DIVA+j, DIVALIKE with an additional “j” parameter accounting for founder event

speciation during cladogenesis;

e BAYAREA-LIKE (BAYAREA), a likelihood version of the Bayesian inference of
historical biogeography for discrete areas (Landis et al., 2013);

e BAYAREA+j, BAYAREA with an additional “j” parameter accounting for founder

event speciation during cladogenesis.

The best fit of the models was assessed by comparing weighted Akaike’s Information
Criterion (AIC) scores, and we also evaluated likelihood values through a Likelihood
Ration Test (LRT) (Matzke, 2013a).

We ran the analyses with the following adjustments of occurrence areas for the six
different models: all the nodes above Anomaloglossus except the the two Allobates set to
“Andes”, given that the origin of Dendrobatoidea has been inferred to be in the Andes
(Santos et al., 2009), and the sister clade of Anomaloglossus also originates from the Andes
(Santos et al., 2009), and with Anomaloglossus stepheni set to “southern EGS” according
to the results of Chapter 2 that indicate that this species originates from the southern

EGS and expanded secondarily to the eastern EGS.

4.3 Results

4.3.1 Phylogenetic analysis an molecular dating

Dendrobatoidea (Dendrobatidae + Aromobatidae) was retrieved as the sister group of
all other Hyloidea (Appendix Fig. G.1 and F.1). Within Dendrobatoidea, both fami-
lies are retrieved as a well-supported clades, and within Aromobatidae, Anomaloglossus
represent a very-well-supported clade with a crown age estimated at 29.6 mya (95 % CI
24.5-34.8 mya) (Appendix Fig. G.1 and F.1). Anomaloglossus tamacuarensis, a species

from the southern Pantepui region (Fig. 4.1), is retrieved as the sister group of all other
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Anomaloglossus. Three well-supported clades are emerging, corresponding to the three
species group defined in Chapter 3: the “Tepuis” group, which encompasses all species
that are found in the Pantepui region except A. tamacuarensis; the “degranvillei” group,
which includes A. surinamensis, A. degranvillei, and all candidate species related to these
two species; the “stepheni” group, which contains A. stepheni, A. apiau, A. leopardus, A.
baeobatrachus, and all related candidate species (A. sp. “Acari”, A. sp. “Bakhuis”, A. sp.
“Brownsberg”, and A. sp. “Mitaraka”). The split between the “Tepuis” group and the
lowlands clade formed by the “degranvillei” and “stepheni” groups is estimated in the

late Oligocene, 25.5 mya (95 % CI 21.5-29.9 mya).

The “degranvillei” group comprises two clades that diverged in the mid-Miocene (13
mya, 95 % CI 9.9-16.6 mya), one containing Anomaloglossus degranvillei, A. sp. “north
FG” and A. sp. “Itoupé” that started to diverge in the Pliocene (3.4 mya, 95 % CI 2.2
4.7 mya), and another regrouping the deep-conspecific lineages currently assigned to A.
surinamensis, with a first split of the lineage from Bakhuis Mounts (Suriname) with the

two other lineages that occurred in Miocene 8.7 mya (95 % CI 5.6-11.9 mya).

The estimate of the crown age of the “stepheni” group is 19.8 my (95 % CI 14.7-23.8).
The sister position of A. stepheni to the whole group is retrieved with strong support
(Fig. 4.5). A.sp. “Acari”, A. sp. “Bakhuis”, and A. sp. “Brownsberg” form a clade that
diverged in the Miocene 9.9 mya (95 % CI 6.9-12.8 mya). The clade formed by A. sp.
“Mitaraka”, A. leopardus and A. baeobatrachus diverged more recently at the boundary
between Miocene and Pliocene (5.3, 95 % CI 3.8-7 my). Anomaloglossus baeobatrachus is
represented by two well-defined lineages that diverge in the late Pliocene (3.2 mya, 95 %
CI 2.2-4.4 mya), and at least one of these lineages contains two distinct phenotypes (see
Chapter 3 for details) (Fig. 4.2). The position of A. sp. “Mitaraka” as the sister species
of (A. leopardus + A. baeobatrachus) is retrieved with high support (Fig. 4.2).

The mitogenome tree has an almost identical topology as the BI consensus tree for
Anomaloglossus, the only differences being the position of A. wothuja as the sister group
of the rest of the “Tepui” group in the mitogenome tree, whereas it is the sister species
of A. megacephalus in the BI tree (Fig. 4.2 and H.1 in Appendix). Most of the rela-

tionships between Anomaloglossus species are not well-supported in the nuclear tree (Fig.
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H.2 in Appendix). All the more, ML analysis of mitogenome-based only phylogeny and
concatenated nuclear loci display some differences in their topology (Fig. H.1 and H.2
in Appendix). Anomaloglossus leopardus is the sister group of a clade formed by A. sp.
“Mitaraka” and A. baeobatrachus, but the support is low. Anomaloglossus sp. “Acari” is
not included in a clade with A. sp. “Bakhuis” and A. sp. “Brownsberg”, but is retrieved
as the sister group of the clade formed by A. leopardus, A. baeobatrachus and A. sp.
“Mitaraka”, with a rather high support (81 %).

Figure 4.2 — Time-calibrated phylogeny of Anomaloglossus as recovered by BEAST with a secondary
calibration. Posterior probabilities are indicated above nodes. Traits associated with tadpoles develop-
ment are shown at the tip of the branches. The schematic timeline of paleoclimate is taken from Leite
and Rogers (2013). Outgroups not shown. The numbers associated to the A. baeobatrachus specimens
correspond to assigned field numbers. SU = Suriname; FG = French Guiana.
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4.3.2 Inference of ancestral range

Our results indicate that every models with the addition of the “j” parameter confer
more likelihood that the initial model (log-likelihood difference of 8 units for DEC, 6 units
for DIVA and 24 units for BAYAREA, Table. 4.4). The three models, DEC+j, DIVA+j
and BAYAREA-+j have a log-likelihood ranging from 44 to 49, with DEC+j having the
highest one (Table. 4.4).

The results of ancestral range inference are similar with these three models, the only
notable difference being the ancestral range of the MRCA of Anomaloglossus with the rest
of the Aromobatidae being inferred in the Tepuis with DIVA+j whereas it is inferred in the
Andes with the two other models, with a strong probability under the BAYAREA model
(Fig. 4.3). All ancestral range inferences within the Anomaloglossus clade are identical
with the three models (Fig. 4.3 and Fig. 1.1, [.2). The dispersal and extinction rates were
estimated as <0.001 for the three models (Tab. 4.4). The " parameter was similar for
the three models, at around 0.02 (Tab. 4.4). No vicariance event was inferred, and seven
jump-dispersal events, including six within Anomaloglossus (Fig. 4.3). The rest of the
events were sympatric range-copying events (Fig. 4.3). The proposed biogeographic sce-
nario infers an Andean origin of the group under DEC+j and BAYAREA+j, with a first
dispersal event to the tepuis 40 mya (Fig. 4.4A). After a first diversification event that
correspond to the split of A. tamacuarensis from the rest of the group around 30 mya, a
first dispersal event within Anomaloglossus occurred from the Tepuis to the eastern EGS
around 25 mya (Fig. 4.4B). After the split between the “Tepuis” group and the EGS
clade in the late Oligocene (~25 mya), another dispersal event took place rapidly in the
EGS in the late Oligocene—early Miocene, around 23 mya, which corresponds to the split
between the two clades composing the “stepheni” and “degranvillei” groups (Fig. 4.4B).
The range of the ancestor of these two clades was inferred to be in the eastern EGS, but
these two groups have started to diversify allopatrically, the “degranvillei” group in the
eastern EGS and the “stepheni” group in the southern EGS. The “degranvillei” group
diversified in the eastern EGS but did not colonised the southern EGS. The history of
the “stepheni” group is more complex. A first dispersal event from the the southern EGS
to the eastern EGS occurred around 17 mya (Fig. 4.4C). A second dispersal event to

the southern EGS was inferred around 9 mya and corresponds to the split between A.
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sp. “Acari” with the species found nowadays in Suriname (A. sp. “Bakhuis” and A. sp.

“Brownsberg”) (Fig. 4.4D).

Parameter estimates

Model LnL d e j AIC AIC Likelihood
model Ratio  Test
weight p-value

DEC -52.29 0.001 1x1072 0 108.6 0% 5.8x107°

DECHj -44.21 0.0003 1x107*2  0.019 94.44 100 %

DIVA -55.88 0.002 1x107*2 0 115.8 0% 0.0003

DIVA+j -49.36 0.001 1x107*2  0.019 104.7 100 %

BAYAREA  -73.56 0.001 0.02 0 151.1 0% 2.7x10712

BAYAREA+j -49.1 0.0003 1x10712  0.019 104.2 100 %

Table 4.2 — Comparison of biogeographic models with and without the j parameter. d: dispersal; e:
extinction; j: jump-dispersal; LnL: log-likelihood; AIC: Akaike’s Information Criterion
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Figure 4.3 — Ancestral area reconstruction of Dendrobatoidea following the DEC+j model, with the
range of all Dendrobatidae constrained to “Andes”, and the range of Anomaloglossus stepheni constrained
at southern EGS. Piecharts display the likelihood of each ancestral area; black arrows indicate dispersal
events associated with cladogenesis. The tree topology is derived from the BEAST analysis. Colours
represent area assignation for species at tips and most probable states at each node and stems. The
states at nodes represent the most probable ancestral area before speciation, whereas states at stem
represent the area of the descendant lineage right after speciation. The insert represent the estimate for
this node under the BAYAREA model. EGS = Eastern Guiana Shield; FG = French Guiana; SU =

Suriname.
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Figure 4.4 — Biogeographic scenario of the colonisation of the GS by Anomaloglossus. (A) First dispersal
of the ancestor from the northern Andes to the Pantepui region, establishment of Anomaloglossus ; (B)
Two dispersal events from the Tepuis to the north and southern zones of the EGS, corresponding to the
divergence of the “stepheni” species group (south) and the “degranvillei” species group (north) ; (C)
secondary dispersal of the “stepheni” species group from the south to the north of the EGS ; (D) Recent
dispersal of some species of the “stepheni” group from the north to the south of the EGS, and dispersal of
the phytotelm breeding species from the Tepuis to the western EGS. The yellow dashed lines materialise
the boundaries between the three biogeographic regions of the EGS defined in Chapter 2 (cf. p. 50).

4.3.3 Ancestral character reconstruction

Both empirical and MCMC stochastic character mapping yielded similar results under the
“ER” model when unknown characters traits were use in the database for A. leopardus,
A. sp. “Acari” and MTR24258-A. baeobatrachus. The inference of ancestral characters
differed for character 1 (exotrophy vs. endotrophy), with exotrophy being more likely
for the MCRA of the “stepheni” and “degranvillei” groups, the node that correspond
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to the MCRA of A. stepheni and the rest of the group, and the MCRA of A. apiau
and the rest of the group (Fig. 4.5A and J.1A in Appendix). Also, when no unknown
characters were inserted in the dataset, the MCRA of A. sp. “Mitaraka” with the clade
formed by (A. leopardus and A. baeobatrachus) and the MRCA of A. leopardus and A.
baeobatrachus were unambiguously exotrophic (Fig. 4.5B and J.1B in Appendix). The
reconstruction of ancestral characters was almost exactly the same for character 2 (phoresy
vs. nidicoly), with the exception of the MCRA of A. leopardus and A. baeobatrachus which
was unambiguously inferred as phoretic with no unknown characters (Fig. 4.5B and J.1B
in Appendix). We present in this chapter the results of the dataset that contains inferred
characters for the three species A. sp. “Mitaraka”, A. leopardus, and MTR24258-A.

baeobatrachus.

Exotrophy vs. endrotrophy There were six possible changes of states, all of them
occurred in our tree (Table 4.3). There were 5.8 changes on average between states along

the tree.

Changes 1,2 2]

x>y 3.76  2.03

Table 4.3 — Average number of changes for traits associated with exotrophy and endotrophy. 1 =
exotrophy; 2 = endotrophy

Phoresy vs. nidicoly vs. phytotelm breeders There was 12 possible changes of
states, all of them occurred in our tree (Table 4.4). The average number of changes
that involved phytotelm breeders with nidicoly or unknown states were always very low

(<0.05) There was an average of 4.3 changes between states along the tree.
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Changes 12 1,3 21 23 31 32

X—>y 2.04 1.09 1.07 0.00 0.07 0.02

Table 4.4 — Average number of changes for traits associated with phorey, nidicoly, and phytotelm
breeders. 1 = phoresy; 2 = nidicoly; 3 = phytotelm breeders

Our results indicate that endotrophy appeared at least once, and is concomitant with
the divergence of EGS species from Tepuis ones about 23 mya (Fig. 4.5A). Subsequently,
there was at least two, or maybe three independent reversals toward exotrophy, one dur-
ing the split of the clade formed by A. sp. “Acari”, A. sp. “Brownsberg”, and A. sp.
“Bakhuis” about 11 mya, one during the divergence of A. sp. “Mitaraka” with the rest
of the “baeobatrachus” clade, and more recently within the “baeobatrachus” group, cer-
tainly during the Pleistocene (fig. 4.5A). The ancestral trait of this character of the
MCRA? of the (A. sp. “Acari”—A. sp. “Brownsberg”—A. sp. “Bakhuis”) clade with the
“baeobatrachus” clade could not be determined, as well as the state for the MCRA of
A. sp. “Mitaraka” with the rest of the “baeobatrachus” group, as the likelihoods were
almost 50 % for both nodes (Fig. 4.5A). Nidicoly appeared independently twice during
the evolution history of Anomaloglossus, in the “stepheni” group (Fig. 4.5B). It ap-
peared once during the divergence of Anomaloglossus stepheni during the Miocene, then
appeared a second time during the diversification event of the A. baeobatrachus lineages
in the late Pliocene (Fig. 4.5B). All nidicolous species are endotrophic, but acquisition
of this character is decoupled from the acquisition of endotrophy as this last character
occurred earlier in the evolutionary history of Anomaloglossus, as our results indicate the
the MCRA of the “degranvillei” and the “baeobatrachus” group was certainly endotrophic
and phoretic. Reversal to phoresy occurred only in A. baeobatrachus, and is associated

with the independent acquisition of exotrophy within this species (Fig. 4.5).

3SMCRA: most common recent ancestor
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Figure 4.5 — Discrete trait reconstruction based on stochastic character mapping method with an
empirical estimation of Q, for the dataset that includes no unknown states of characters. (A) exotrophy
vs. endotrophy; (B) phoresy vs. nidicoly vs. phytotelm breeders.
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4.4 Discussion

4.4.1 Biogeography of Anomaloglossus

Anomaloglossus is a unique example of radiation within an Amazonian subregion. To
our knowledge, no other lineages have diversified in Amazonian lowlands to that extent in
such a restricted spatial scale. Moreover, even at such a small scale, a clear biogeographic

signal is detected.

Our results support the hypothesis that Anomaloglossus certainly originates from a
dispersal event from the northern Andes to the the Pantepui region. This pattern has been
observed for other Tepuis vertebrates such as birds (Bonaccorso et al., 2013; Mayr and
Phelps, 1967; Sedano and Burns, 2010). However dispersal to the Tepuis occurred during
the Pliocene in Aulachorhynchus toucanets (Bonaccorso et al., 2013) and tanagers (Sedano
and Burns, 2010), a period that correspond to the end of the northern Andean uplift, when
the northern Andes reached half of their current size, between 7 and 4 mya. Yet, our data
indicate that Anomaloglossus certainly originated from a dispersal event from the northern
Andes to the Pantepuis that dates from mid- to late Eocene (about 40 mya), a period
when the northern Andes uplift has not begun, and only some isolated highland areas were
present in this region (Hoorn et al., 2010). Data on global paleoclimate of earth indicate
that the early Cenozoic Era was warm, with a peak during the early Eocene climatic
optimum (~50 mya). The Eocene climatic optimum was followed by a cooling period that
lasted for about 17 my, with three periods of notable change, two in the Eocene between
50 and 48 mya and between 40 and 36 mya, and in the early Oligocene (35-34 mya)
(Zachos et al., 2001). As the second cooling period of the Eocene correspond to the origin
of Anomaloglossus, it is possible that cooler conditions triggered a range shift from higher
to lower altitudes in some ectothermic organisms that were living in the few highland areas
of the region during that period, thus enabling ancestors of Anomaloglossus to colonise
the lowland areas of what constitutes nowadays the Llanos, between the northern Andes
and the Pantepui region. Such a scenario would be in accordance with a long-distance
dispersal from the northern Andes to the tepuis, even if some authors rejected it for small
vertebrates (Leite et al., 2015; McDiarmid and Donnelly, 2005). Marine incursions that

occurred in the Oligocene (~33 mya), followed by the formation of the Pebas system in the
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early Miocene, certainly fragmented terrestrial habitats between the northern Andes and
the Guiana highlands over a long period of time (Hoorn et al., 2010), and could therefore
have promoted allopatric speciation between Anomaloglossus and their Andean relatives
such as what was suggested for Allophrynidae vs. Centrollenidae (Castroviejo-Fisher
et al., 2014), Stefania vs. other Hemiphractids, or Oreophrynella vs. other Bufonids, and
probably other groups whose centre of origin remains to be investigated, even though it
is challenging at this time scale. A rapid warming-up of the climate that occurred in
the late Paleogene could have triggered colonisation of higher elevations in the Tepuis,
as this climatic event is concordant with the first diversification within Anomaloglossus

(Fig. 4.2).

Concerning the timing of diversification in the Guiana Shield, it is to note that the crown
age of the endemic frog genus Stefania has been inferred to the late Oligocene (around 26
mya) (Kok et al., 2016b), that the split between Tepuihyla and lowland Osteocephalus has
been also been estimated to late Oligocene, at 24.7 mya (Salerno et al., 2012), and that
the crown age of Otophryne has been inferred during the Oligocene (~29-30 mya) (de Sa
et al., 2012). Our estimates for the crown-age of Anomaloglossus are concordant with this
period (~29 mya (95 % confidence interval 34.8-24.5, Fig. 4.2). Therefore, it is possible
that the events that triggered the first diversification events within Anomaloglossus were
similar to the ones for the other groups, which is likely due to habitat shift or vertical
displacement that were generated by late Oligocene warming around 25 mya (Fig. 4.2)

(Salerno et al., 2012).

During the Miocene, the uplift of the northern Andes continued and generated profound
changes in climate regime in Amazonia, as well as the establishment of the Amazon basin
from west to east (Hoorn et al., 2010). Warmer climates during the first half of the
Miocene could have influence a range shift towards higher elevation on the tepuis, thus
triggering speciation in this group, which is in accordance with our results (Fig. 4.2),
even though our sampling of tepuis Anomaloglossus is lacking a lot of species (our dataset
includes 9 out of 20 species). It is not clear though what triggered a dispersal from the
tepuis to the eastern lowlands (EGS). Another documented example of colonisation of
the lowlands from the Tepuis would be the frog genus Otophryne, in which the high-

elevation dwelling species (. steyermark: is the sister group to the two other the species
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that occur at mid- and low elevations (de Sa et al., 2012). This dispersal event actually
occurred during the late Oligocene warming, an episode that was quite rapid, estimated
to occur between 27 and 25 mya, followed by a long period of warm climate until the
mid-Miocene (~15 mya). The dispersal from the tepuis to the lowlands is concomitant
with the emergence of a new reproductive mode (endotrophic tadpoles) thus enabling
populations to become independent of aquatic habitats and shift their ranges to warmer
and more humid habitats of the lowland forests. Such a hypothesis is in accordance with

our results, as the MRCA of the whole EGS clade was likely to be endotrophic (Fig. 4.5).

Dispersal to the eastern EGS from southern EGS occurred between 23-19 mya, during
a stable warm period of the Miocene. An endotrophic ancestor certainly benefited from
such climatic conditions, and consequently could have expanded its range in the eastern
EGS by colonising terra firme habitats in large patches of lowland forests. A reversal
from endotrophy to exotrophy in the “stepheni” group certainly occurred around 13 mya
(Fig. J.1 in Appendix), a period that corresponds to a cooling of the climate during
mid-Miocene (Hoorn, 1994). During this period, terra firme lowland forest may have
been fragmented into patches, or at least precipitation regimes may have been disturbed,
causing species ranges to become fragmented (Pons and De Franceschi, 2007). If such
landscape conditions were indeed present, it is possible that populations could have sur-
vived in such environments for long periods of time, thus leading to allopatric speciation.
Dryer conditions would have favoured the exotrophic and phoretic phenotype as it is
likely less dependent on atmospheric humidity than the endotrophic form. Endotrophic
and nidicolous phenotype was certainly confined to a restricted range, but could colonise
again rapidly large areas during more recent warmer and humid episodes. This certainly
explain why species that share the same phenotype display allopatric distributions nowa-
days, whereas A. stepheni is sympatric with exotrophic A. sp. “Brownsberg”, A. sp.
“Mitaraka”, A. leopardus, and probably with A. sp. “Bakhuis” and A. sp. “Acari”, while
endotrophic A. baeobatrachus is sympatric with exotrophic A. baeobatrachus and A. sp.
“Mitaraka”. It would therefore be necessary to provide fine distribution ranges for each

species occurring in the region, and to design a fine geographic division of the eastern

EGS.
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4.4.2 Pattern and timing of character acquisition

To our knowledge, the pattern of trait distribution within Anomaloglossus represents
the only case of independent shift of characters among closely-related species within the
same genus of frogs. Also, our data suggest that evolution of exotrophy from endotrophy
occurred at least twice within the genus (Fig. 4.5). Such a pattern is unexpected as

reversal from endotrophy to exotrophy is very rare in frogs (Gomez-Mestre et al., 2012).

Acquisition of endotrophy seems to be associated with the first divergence event between
tepuis species and lowland clades as our results clearly indicate independent and repeated

acquisition of exotrophy and nidicoly within Anomaloglossus (Fig. 4.5).

The case of Anomaloglossus baeobatrachus is more complex. As we saw in Chapter
3, it is highly probable that our tree does not reflect the actual relationships between
species, and that actually exotrophic and phoretic A. baecobatrachus and endotrophic and
nidicolous A. baeobatrachus are two different species that are not distinguishable with
the markers that we used for this study. This taxonomical uncertainty blurs the inter-
pretation of the results. Therefore, if we consider that A. leopardus is exotrophic and
phoretic, then the ancestral state of the MRCA of A. leopardus and A. baeobatrachus
would unambiguously be exotrophic and phoretic. Also, in a scenario where both pheno-
types of A. baeobatrachus were considered as different species and A. baeobatrachus was
the endotrophic and nidicolous one, endotrophy associated with nidicoly would only have
occurred twice independently in the “stepheni” group, once in A. stepheni, and once in
A. baeobatrachus, and the ancestral state of the clade composed by A. sp. “Mitaraka”,
A. leopardus and A. baeobatrachus would certainly be exotrophic and phoretic. In such
a scenario, the re-acquisition of endotrophy and nidicoly in A. baeobatrachus would have
been triggered by an event that occurred at a more recent times than for A. stepheni,

around 5 mya, which correspond to early Pliocene.

Evolution from a direct developer* MRCA to aquatic tadpoles has already been demon-
strated in the Neotropical family Hemiphractidae, with at least two cases of independent

evolution from direct development to free-living tadpoles (Castroviejo-Fisher et al., 2015;

4Direct-developer is used here as opposed to free-living tadpole, not sensu Altig and Johnston (1989)
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Wiens et al., 2007). The pattern of trait evolution observed in the “stepheni” group rep-
resents the second known case of evolution from direct developer to free-living tadpoles,
with at least two independent events, and maybe four. Getting a clearer view of this
pattern of trait evolution within the “stephen:” group would require to complete the gaps
in knowledge on reproductive traits for some species (species marked “unknown” in Figs.
4.2 and J.1 in Appendix), and also to resolve the taxonomic riddle of A. baeobatrachus.
Another example of contrasting life-history traits within a group is found in Madagascar,
as the genus Gephyromantis also countains nidicolous species vs. free-living tadpoles ones,
and exotrophic vs. endotrophic species, but frogs possessing different traits actually form

clades (Kaffenberger et al., 2012).
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Chapter 5

Conclusion

At the brink of the sixth mass extinction of biodiversity, we are still struggling to
estimate the actual magnitude of diversity in the tropics. The present work brings new
insights at the actual species richness of anuran amphibians in Amazonia, and highlights
the gap that needs to be filled to understand the foundations of tropical ecosystems.
Results presented in Chapter 2 indicate that the number of Amazonian frogs is vastly
underestimated, and that regional endemism could be as high as 82 % in the eastern
Guiana Shield, instead of 33 % as currently suggested by the IUCN. This large difference
shed doubts on conclusions regarding Amazonia presented in analyses based on TUCN
data. The threats faced by Amazonian amphibians such as impact caused by climate
change could actually be far more serious than what is currently estimated. Also, my
results hint concern on the conservation of Amazonian amphibians as entire subregions
of southeastern Amazonia that might harbour similar degrees of endemism are currently

vanishing, mainly due to deforestation.

The gap in our understanding of the Amazonian diversity is so large that it has also
hampered tackling questions about the processes of diversification within that region.
Using an unprecedented database, I managed to unravel a yet undocumented pattern
of diversity within the Guiana Shield that does not seem to have emerge from current
landscape features, but probably from past climate and current heterogeneity (Chapter
2). This pattern should be investigated in other taxa, and such an approach should be
extended to the whole Amazonia. Actually, collaborative projects are underway. De-

termining the inherent structure of Amazonian diversity will allow formulating strong
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hypotheses for several fields of biology, notably biogeography. The description of the pat-
tern of diversity at the scale of the entire anuran fauna of Amazonia also opens a window
toward the investigation of the evolutionary processes of the major clades of frogs. Once
species boundaries and distributions are better understood, comparative analyses can be
made on solid bases and sampling design can be optimised. In that way, I hope that the

present work will foster further research on the diversification of Amazonian anurans.

In fact, I contributed to this feat by exploring species delineation in Anomaloglossus
(Chapter 3). This genus is peculiar in the sense that it is the only group of frog that has
diversified both in the Guiana Shield highlands and lowlands. The analyses presented in
Chapter 3 revealed that like in most groups, the diversity existing in that genus was largely
underestimated. The integrative analyses that I applied confirmed the delineation based
on a single barcode, but also revealed contradictions. Indeed, even though morphological
and bioacoustical data were available, I could not to confirm the specific status of several
candidate species retrieved with barcodes in the “degranvillei” group. Similarly, two
putative different species of the “stepheni” group were not retrieved as candidate species
in the delineation analysis based on barcodes. The contrast in the phenotypic evolution in
the “degranuvilles” group is striking and may have resulted from interspecific competition,
an hypothesis that would require further investigations. The present work also enabled to
unravel an incredible variety of reproductive traits in the “stepheni” group. The evolution
of larval development in that group is puzzling and should be investigated in much more
details, especially in the baeobatrachus clade. Even though I formulated scenarios to
explain such a remarkable pattern, I could not test them with the set of data that were
produced and available. Further work would be necessary to tackle this question through
a population genetics approach. An additional spectacular characteristic of that genus
lies in the spatio-temporal features of its diversification (Chapter 4). The results that I
presented revealed that this clade is rather ancient (~30 my) and has apparently dispersed
to the lowlands of the eastern Guiana Shield (EGS) only once about 25 mya, leading to the
12 currently known species. This probably represents the most striking radiation in such a
small area in Amazonia. Moreover, despite this geographic confinement, a biogeographic
signal is very clear even within the EGS. The evolutionary history of Anomaloglossus
reveals that an extent forest existed over the last 20 my, and has probably been fragmented

but diversification in that group also seems linked to reproductive traits shifts coupled
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with climate fluctuation.

In conclusion, I hope that the present work will prompt similar studies elsewhere in
Amazonia, as well as in the Guiana Shield on other groups. Understanding the diversity
of Amazonia is crucial and urgent for its conservation, and I hope that I have contributed
to improve the knowledge on Amazonian diversification and hopefully that my results will

be used in the future for its conservation.
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two principal components. The contribution of each axis for total variation is indicated

in parenthesis. The groups are delimited with coloured lines. . . . . . . . . . . . ..
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3.6

4.1

4.2

Evidences for reproductive and larval developmental modes in the Anomaloglossus CS.
(A) the topology obtained from analysis of the mtDNA used in Fig. 1 and 3. (B) Pho-
tographs of adult males of species representative of the different modalities (phoretic
or nidicolous) found in Anomaloglossus [from top to bottom, the endotrophic and nidi-
colous A. baeobatrachus 2 from Mitaraka (French Guiana); the exotrophic and phoretic
A. sp. “Brownsberg” from Brownsberg (Suriname); the endotrophic and phoretic A.
apiau from Serra do Apiat (Roraima, Brazil); the endotrophic and phoretic A. surina-
mensis 2 from Nassau (topotypic population in Suriname); the endotrophic and phoretic
A. sp. “north FG” from Route Nationale 2 (French Guiana)]. Continuous lines indi-
cate that the picture corresponds to the lineage while dashed lines indicate that the
modality is found in the lineage. A question mark indicates when the modality has
not been observed and is only assumed. Pictures of the three tadpoles representative
of the endotrophic (reduced and non-functional mouth) or exotrophic (fully functional
mouth) are also included (from top to bottom: A. baeobatrachus 2 from Mitaraka; A. sp.
“Brownsberg”; A. surinamensis 2. The colours of the lines (blue, green, red) correspond
to the three modalities of the reproductive traits found in the genus. (C) Distributions of
the contrasting phenotypes in the A. baeobatrachus clade and the two mtDNA lineages.
The white dashed line corresponds to the known distribution of phenotype 2, and the

black dashed line corresponds to the distribution of phenotype 3. . . . . . . . . . . .

Localisation of the Anomaloglossus samples used in this study. The ranges on the map

correspond to the three main species group as defined in Chapter 3, plus A. tamacuarensis. 110

Time-calibrated phylogeny of Anomaloglossus as recovered by BEAST with a secondary
calibration. Posterior probabilities are indicated above nodes. Traits associated with
tadpoles development are shown at the tip of the branches. The schematic timeline of
paleoclimate is taken from Leite and Rogers (2013). Outgroups not shown. The numbers
associated to the A. baeobatrachus specimens correspond to assigned field numbers. SU

= Suriname; FG = French Guiana. . . . . . . . . . . . . . . .. ... ... ...



4.3

4.4

4.5

F.1

G.1

H.1

Ancestral area reconstruction of Dendrobatoidea following the DEC+j model, with the
range of all Dendrobatidae constrained to “Andes”, and the range of Anomaloglossus
stepheni constrained at southern EGS. Piecharts display the likelihood of each ancestral
area; black arrows indicate dispersal events associated with cladogenesis. The tree
topology is derived from the BEAST analysis. Colours represent area assignation for
species at tips and most probable states at each node and stems. The states at nodes
represent the most probable ancestral area before speciation, whereas states at stem
represent the area of the descendant lineage right after speciation. The insert represent
the estimate for this node under the BAYAREA model. EGS = Eastern Guiana Shield;

FG = French Guiana; SU = Suriname. . . . . . . . . . . . . . . . . . ... ...

Biogeographic scenario of the colonisation of the GS by Anomaloglossus. (A) First
dispersal of the ancestor from the northern Andes to the Pantepui region, establishment
of Anomaloglossus ; (B) Two dispersal events from the Tepuis to the north and southern
zones of the EGS, corresponding to the divergence of the “stepheni” species group
(south) and the “degranvillei” species group (north) ; (C) secondary dispersal of the
“stepheni” species group from the south to the north of the EGS ; (D) Recent dispersal
of some species of the “stepheni” group from the north to the south of the EGS, and
dispersal of the phytotelm breeding species from the Tepuis to the western EGS. The
yellow dashed lines materialise the boundaries between the three biogeographic regions
of the EGS defined in Chapter 2 (cf. p. 50). . . . . . . . . . . .. ... ... ...
Discrete trait reconstruction based on stochastic character mapping method with an
empirical estimation of Q, for the dataset that includes no unknown states of characters.

(A) exotrophy vs. endotrophy; (B) phoresy vs. nidicoly vs. phytotelm breeders.

Time-calibrated phylogeny of Hyloidea as recoverded by BEAST. Posterior probabilities
are indicated above nodes. 95 % time confidence intervals are indicated by blue bars.

Two species of Myobatrachoidea are used as outgroup. . . . . . . . . . . . . . . ..

Maximum likelihood tree obtained from concatenated mitogenomes and nuDNA loci
28S, TYR, POMC, RAG1. Bootstrap values are indicated above nodes (* = 100 %; not

indicated when <80 %). . . . . . . . ..o e

Maximum likelihood tree of Dendrobatoidea obtained from mitogenomes. Bootstrap

values are indicated above nodes (* = 100 %; not indicated when <80 %).. . . . . . .
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H.2

I.1

I.2

J.1

K1

K.2

K.3

Maximum likelihood tree obtained from concatenated nuDNA fragments of TYR, POMC,
RAGI1, and 28S. Bootstrap values are indicated above nodes (* = 100 %; not indicated

when <80 %). . . . . .. Lo

Ancestral area reconstruction of Dendrobatoidea, with the range of all Dendrobatidae
constrained to ” Andes”, and the range of Anomaloglossus stepheni constrained at south-
ern EGS. (A) DIVA+j model; (B) DIVA+j model piecharts displaying the likelihood of
each ancestral area. The tree topology is derived from the BEAST analysis. Colours
represent area assignation for species at tips and most probable states at each node and
stems. The states at nodes represent the most probable ancestral area before speciation,
whereas states at stem represent the area of the descendant lineage right after speciation.
A = Mata Atlantica; B = Andes; C = Amazonia; D = Tepuis; E = Eastern Guiana
Shield-West; F = Eastern Guiana Shield-South; G = Eastern Guiana Shield-East.

Ancestral area reconstruction of Dendrobatoidea, with the range of all Dendrobatidae
constrained to “Andes”, and the range of Anomaloglossus stepheni constrained at south-
ern EGS. (A) DEC+j model; (B) DEC+j model piecharts displaying the likelihood of
each ancestral area. The tree topology is derived from the BEAST analysis. Colours
represent area assignation for species at tips and most probable states at each node and
stems. The states at nodes represent the most probable ancestral area before speciation,
whereas states at stem represent the area of the descendant lineage right after speciation.
A = Mata Atlantica; B = Andes; C = Amazonia; D = Tepuis; E = Eastern Guiana

Shield-West; F = Eastern Guiana Shield-South; G = Eastern Guiana Shield—East.

Discrete trait reconstruction based on stochastic character mapping method with an
empirical estimation of Q with unknown states of characters for three terminals (A)
exotrophy vs. endotrophy; (B) phoresy vs. nidicoly vs. phytotelm breeders. SU =

Suriname; FG = French Guiana. . . . . . . . . . . . . . . . ... 0.0 ...

Male Anomaloglossus surinamensis with tadpoles on its back, from the type locality of
the species, Nassau Mountains, Suriname (¢) Antoine Fouquet. . . . . . . . . . . . .
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16S pairwise distances
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Appendix D

Samples of Hyloidea

Family Species Field num- Locality Country Lat Lon
ber

Alsodidae Eupsophus JN1 Valdivia Chile ? ?
roSeus

Aromobatidae Allobates AF3224 Trois Paletu- French 4.0545 -51.6770
femoralis viers Guiana

Aromobatidae Allobates MTR16435 Itacare BA, Brazil -14.3655 -39.1086
olfersioides

Aromobatidae Anomaloglossus MTR23223 Serra da RR, Brazil 2.4216 -61.4129
apiau Maroquinha

Aromobatidae  Anomaloglossus AF2092 RN2 French 4.0328 -51.991
baeobatrachus Guiana

Aromobatidae  Anomaloglossus AF2102 RN2 corridor French 4.0334 -51.99
baeobatrachus 5 Guiana

Aromobatidae Anomaloglossus AF2590 Saint-Eugene  French 4.8216 -53.0676
baeobatrachus Guiana

Aromobatidae Anomaloglossus AF3032 Memora D AP, Brazil 3.3129 -52.1803
baeobatrachus

Aromobatidae Anomaloglossus MTR24258 Lourenco AP, Brazil 2.3215 -51.6108
baeobatrachus

Aromobatidae Anomaloglossus OPC26 Oiapoque AP, Brazil 3.8355 -51.8333
baeobatrachus

Aromobatidae Anomaloglossus PK0933 Kaieteur Guyana 5.2686 -59.7686
beebei

Aromobatidae Anomaloglossus PG601 Atachi-Bakka  French 3.5454 -53.9068
degranvillei Guiana
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Aromobatidae

Aromobatidae

Aromobatidae

Aromobatidae

Aromobatidae

Aromobatidae

Aromobatidae

Aromobatidae

Aromobatidae

Aromobatidae

Aromobatidae

Aromobatidae

Aromobatidae

Aromobatidae

Aromobatidae

Aromobatidae

Aromobatidae

Aromobatidae

Anomaloglossus PK1367
kaiei

Anomaloglossus AF2039
leopardus
Anomaloglossus PK1881
megacephalus
Anomaloglossus PK1991
praderioi
Anomaloglossus PK2046
TOTAIMA

Anomaloglossus 214

rufulus

Anomaloglossus MPEG30212

sp. 'Acari’
Anomaloglossus AF3426
sp. 'Bakhuis’

Anomaloglossus BPN0850

sp. 'Browns-

berg’

Anomaloglossus PG660
sp. 'Ttoupé’
Anomaloglossus PG302
Sp- "Mi-

taraka’

Anomaloglossus AF0932
Sp. ‘north

FG’

Anomaloglossus AF2045
stepheni
Anomaloglossus AF0585

SUTinamensis
Anomaloglossus AF2456

SUTINAMENSLS

Anomaloglossus AF3340

SUTINAMENSsLSs

Anomaloglossus MNR.J38049

tamacuaren-
518
Anomaloglossus 216

tepuyensis

Kaieteur
Apalagadi
Maringma-
tepui
Maringma-
tepui
Maringma-
tepui
Churi-tepui
Acari

Bakhuis

Brownsberg

Ttoupé

Haut Mar-

wini

Kaw-Patawa

Apalagadi
Carbet Saint-
Elie

Nassau

Bakhuis

Pico

Tamacuari

Auyan-tepui
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Guyana

Suriname

Guyana

Guyana

Guyana

Venezuela

PA, Brazil

Suriname

Suriname

French
Guiana
French

Guiana

French

Guiana

Suriname

French
Guiana
Suriname

Suriname

AM, Brazil

Venezuela

5.1292

2.1781

5.2097

5.2044

5.2163

5.2595

1.2854

4.72462

4.9365

3.025

2.6152

4.54

2.1781

5.3415

4.8172

4.7246

1.2092

5.7690

-59.4133

-56.0852

-60.5662

-60.5775

-60.5847

-62.0595

-58.6959

-56.7638

-55.1948

-53.08

-564.0327

-52.1527

56.0852

-53.0388

-54.5909

-56.7638

-64.7483

-62.5340



Aromobatidae Anomaloglossus FS5627 Tobogan dela  Venezuela 5.3855 -67.6145
wothuja Selva

Aromobatidae Mannophryne FS5523 ? ? ? ?
collaris

Aromobatidae Rheobates RHEOPALM ? ? ? ?
palmatus

Batrachylidae  Batrachyla JN2 Valdivia Chile ? ?
taeniata

Bufonidae Amazophrynella AF2713 Alikéné French 3.2187 -52.3964
Sp. Guiana

Cycloramphidae Cycloramphus AF1746 Estacio Bio- SP, Brazil -23.6330  -45.5330
eleuthero- logica de Bo-
dactylus racéia

Dendrobatidae Ameerega AF2673 Alikéné French 3.2081 -52.4024
hahneli Guiana

Hylodidae Crossodactylus H155 ? ? ? ?
Sp.

Leptodactylidae Rupirana car- JC1146 Mucuga BA, Brazil -12.9708 -41.3559

dosoi

Table D.1 — List of all samples for which mitogenomes were sequenced through HiSeq 2500 sequencing
technology (Illumina).
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Appendix E

BEAST partition scheme

Partition Genes Model
1 288 GTR+G+I
2 POMC, RAGI1, TYR GTR+I4+G
3 tRNA-Cys, tRNA-Leul, tRNA-Lys, tRNA-Ser2, tRNA-Tyr GTR+G+I
4 tRNA-Ala, tRNA-Arg, tRNA-Asp, tRNA-GIn, tRNA-Glu, GTR+G+I
tRNA-Gly, tRNA-His, tRNA-Tle, tRNA-Leu2, tRNA-Phe, tRNA-
Pro, tRNA-Thr, tRNA-Trp, tRNA-Val
5 12S, tRNA-Asn, tRNA-Met, tRNA-Ser GTR+G+I
6 16S GTRA+G+I
7 ATP6, ATPS, ND1, ND2, ND3, ND4, ND4L, ND5 GTR+G+I
8 rep-origin SYM+G
9 COX1, COX2, COX3 GTRA+G+I
10 ND6 TrN+G+I
11 CYTB GTR+G+I

Table E.1 — Best-fit partition scheme recovered by PartitionFinder for possible models implemented in
BEAST for mitochondrial genes, rRNA, tRNA, and nuclear genes and rRNA.
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Appendix F

Phylogeny of Hyloidea

Figure F.1 — Time-calibrated phylogeny of Hyloidea as recoverded by BEAST. Posterior probabilities
are indicated above nodes. 95 % time confidence intervals are indicated by blue bars. Two species of
Myobatrachoidea are used as outgroup. 186



Appendix G

ML tree of Hyloidea

Figure G.1 — Maximum likelihood tree obtained from concatenated mitogenomes and nuDNA loci 288,
TYR, POMC, RAG1. Bootstrap values are indicated above nodes (* = 100 %; not indicated when <80
%).
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Appendix H

Mitogenome and nuDNA ML trees
of Hyloidea

188



Figure H.1 — Maximum likelihood tree of Dendrobatoidea obtained from mitogenomes. Bootstrap
values are indicated above nodes (* = 100 %; not indicated when <80 %).
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Figure H.2 — Maximum likelihood tree obtained from concatenated nuDNA fragments of TYR, POMC,
RAGI1, and 28S. Bootstrap values are indicated above nodes (* = 100 %; not indicated when <80 %).
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Appendix 1

BioGeoBEARS plots
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Figure I.1 — Ancestral area reconstruction of Dendrobatoidea, with the range of all Dendrobatidae
constrained to ”Andes”, and the range of Anomaloglossus stepheni constrained at southern EGS. (A)
DIVA+j model; (B) DIVA+j model piecharts displaying the likelihood of each ancestral area. The tree
topology is derived from the BEAST analysis. Colours represent area assignation for species at tips
and most probable states at each node and stems. The states at nodes represent the most probable
ancestral area before speciation, whereas states at stem represent the area of the descendant lineage right
after speciation. A = Mata Atlantica; B = Andes; C = Amazonia; D = Tepuis; E = Eastern Guiana
Shield-West; F = Eastern Guiana Shield—South; G = Eastern Guiana Shield-East.
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Figure [.2 — Ancestral area reconstruction of Dendrobatoidea, with the range of all Dendrobatidae
constrained to “Andes”, and the range of Anomaloglossus stepheni constrained at southern EGS. (A)
DEC+j model; (B) DEC+j model piecharts displaying the likelihood of each ancestral area. The tree
topology is derived from the BEAST analysis. Colours represent area assignation for species at tips
and most probable states at each node and stems. The states at nodes represent the most probable
ancestral area before speciation, whereas states at stem represent the area of the descendant lineage right
after speciation. A = Mata Atlantica; B = Andes; C = Amazonia; D = Tepuis; E = Eastern Guiana
Shield-West; F = Eastern Guiana Shield—South; G = Eastern Guiana Shield-East.
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Appendix J

Ancestral traits reconstruction with

unknown characters
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Figure J.1 — Discrete trait reconstruction based on stochastic character mapping method with an empir-
ical estimation of @ with unknown states of characters for three terminals (A) exotrophy vs. endotrophy;
(B) phoresy vs. nidicoly vs. phytotelm breeders. SU = Suriname; FG = French Guiana.
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Changes 1,2 14 2,1 2,4 4,1 4,2

X—>y 2.44 1.26 2.41 2.05 0.45 0.25

Table J.1 — Average number of changes for traits associated with exotrophy and endotrophy. 1 =
exotrophy; 2 = endotrophy; 4 = unknown

Changes 1,2 1,3 14 21 23 24 31 32 34 41 42 43

x>y 1.89 1.10 068 116 0.01 141 0.08 0.04 0.00 0.07 0.15 0.01

Table J.2 — Average number of changes for traits associated with phorey, nidicoly, and phytotelm
breeders. 1 = phoresy; 2 = nidicoly; 3 = phytotelm breeders, 4 = unknown
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Appendix K

An overview of some
Anomaloglossus species of the

eastern Guiana Shield
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. ) ~ Figure K.4 — Male Anomaloglossus bacobatrachus,
Figure K.1 — Male Anomaloglossus surinamensis field number AF2590, from the type locality of

with tadpoles on its back, from the type locality the species, Saint-Eugene, French Guiana © Jean-
of the species, Nassau Mountains, Suriname (©) An-

toine Fouquet.

Pierre Vacher.

Figure K.5 — Tadpole of Anomaloglossus stepheni
Figure K.2 — Calling male of Anomaloglossus in the nest, from Sipaliwini, Suriname ©) Antoine
stephent, from Apalagadi Mountain, Suriname (© Fouquet.
Jean-Pierre Vacher.

Figure K.3 — Male Anomaloglossus leopardus Figure K.6 — Male Anomaloglossus apiau carry-
from Apalagadi Mountain, Suriname (¢) Jean-Pierre ing tadpoles, from Serra do Apiau, Roraima, Brazil
Vacher. (© Antoine Fouquet.
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ABSTRACT

The complete mitogenome of the rocket frog Anomaloglossus baeobatrachus was sequenced using a
shotgun approach on an lllumina HiSeq 2500 platform (lllumina Inc,, San Diego, CA), providing the first
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mitogenome for this genus. The genome was 17,572bp long and presents the typical organization

found in other neobatrachian anurans. A phylogenetic analysis including A. baeobatrachus and all other
available mitogenomes of Hyloidea provided relationships in accordance with previous phylogenetic

studies.

Anomaloglossus baeobatrachus (Boistel & Massary, 1999) is a
species of frog endemic to the eastern part of the Guiana
Shield. It is currently known to occur in French Guiana,
Suriname and the State of Amapa (Fouquet et al. 2012), and
the State of Para (Avila-Pires et al. 2010). The taxonomy of the
genus Anomaloglossus is not well resolved, as several mito-
chondrial lineages currently associated with nominal species
might in fact represent undescribed species (Fouquet et al.
2007, 2012; Kok et al. 2012). This is the case of A. baeobatra-
chus for which four distinct mitochondrial lineages have been
identified (Fouquet et al. 2012). Molecular data can signifi-
cantly contribute in resolving the systematics and species
boundaries within this genus but available genomic data are
still scarce. Here, we describe the complete mitochondrial
genome of Anomaloglossus baeobatrachus.

A calling male of A. baeobatrachus was collected at Saint-
Eugéne, French Guiana (4°49'17.2"N; 53°04'03.4"W), the terra
typica of the species (Boistel & Massary, personal communica-
tion). DNA was isolated from liver tissue using the Wizard
Genomic extraction protocol (Promega Inc.,, Madison, WI). We
then used 200 ng of DNA to create a DNA sequencing library
at the Genopole of Toulouse (France). The library was hybri-
dized and sequenced on a 1/24th of lane of an Illlumina HiSeq
2500 flow cell (Illumina Inc.,, San Diego, CA). Over 24 million
paired-end read of 150bp were obtained. The mitochondrial
genome was assembled using an iterative mapping strategy

KEYWORDS

Amphibia; Aromobatidae;
Guiana Shield; mitochondrial
genome

(Besnard et al. 2014). We obtained a circular sequence of
17,572 bp in length. The overall base composition was as fol-
lows: A (28.5%), C (27.4%), G (13.9%) and T (30.3). We anno-
tated the mitogenome with the MITOS webserver (Bernt et al.
2013). We validated the coding regions using Geneious ver-
sion 9.0.5 (Kearse et al. 2012). The annotated sequence was
submitted to NCBI (accession no. KU958559).

We then used MAFFT v.7 (Katoh & Standley 2013) to align
the mitogenome of A. baeobatrachus with all available mito-
chondrial genomes of Hyloidea (Nobleobatrachia), a superfam-
ily of Neobatrachia. The gene order was fully conserved in
this clade, and we conducted a maximume-likelihood phylo-
genetic analysis on this alignment with RAXML v. 8.2.4.
(Stamatakis 2014) excluding the control region. The resulting
phylogenetic tree (Figure 1) shows that A. baeobatrachus
and Mannophryne trinitatis, which belong to the family
Aromobatidae, form a strongly supported clade. This clade is
the sister group of Dendrobatidae, which is in accordance
with previous studies (Grant et al. 2006). Given several species
within this genus might face decline or might already have
gone extinct (Courtois et al. 2015; Fouquet et al. 2015), resolv-
ing taxonomic uncertainties is crucial to assess conservation
priorities. These data, which represent the first mitogenome
for the genus and the second for Aromobatidae, will serve as
a reference for further studies on the taxonomy and evolution
of this group of amphibians.

CONTACT Jean-Pierre Vacher @ jpvacher@gmail.com @ Laboratoire Evolution et Diversité Biologique, UMR5174, CNRS-UPS-ENFA, Bat. 4R1, Université Paul

Sabatier, 119 route de Narbonne, 31062 Toulouse Cedex 9, France

© 2016 The Author(s). Published by Taylor & Francis. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/
licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
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Figure 1. Maximum-likelihood phylogeny of Hyloidea inferred with a GTR + G+ | model from all available mitochondrial genomes in this clade. Calyptocephalellidae
was used to root the tree. The new sequence is represented in bold. The Bootstrap values (based on 1000 iterations and 100 independent maximum-likelihood

searches) are indicated for each internal node.
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Diversification in the Guiana Shield as seen through frogs.

Abstract The Guiana Shield has been geologically stable during the Cenozoic era,
exempt of the influence of the uplift of the Andes and the setting up of the Amazon
basin. Is this region biogeographically homogeneous within Amazonia? What are the
spatio-temporal diversification modalities within this region? To answer these questions,
I explored bioregionalisation within Amazonia and the Guiana Shield based on the dis-
tribution of anuran amphibians. This approach enabled to define three bioregions in the
eastern Guiana Shield and to reveal a high underestimation of endemism. Then, I studied
the diversification patterns within the endemic frog genus Anomaloglossus. This part en-
abled to reveal cryptic speciation within the genus, and a biogeographic pattern composed
of four areas of diversification in the Guiana Shield, with an origin of the genus in the

western highlands (tepuis).

Keywords Amazonia. Guiana Shield. Diversity. Bioregionalisation. Endemism. Di-

versification. Biogeography. Evolution. Integrative taxonomy. Amphibians.
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