Immune protection against reinfection with nonprimate hepacivirus.

<table>
<thead>
<tr>
<th>Item type</th>
<th>Article</th>
</tr>
</thead>
<tbody>
<tr>
<td>Authors</td>
<td>Pfaender, Stephanie; Walter, Stephanie; Grabski, Elena; Todt, Daniel; Bruening, Janina; Romero-Brey, Inés; Gather, Theresa; Brown, Richard J P; Hahn, Kerstin; Puff, Christina; Pfankuche, Vanessa M; Hansmann, Florian; Postel, Alexander; Becher, Paul; Thiel, Volker; Kalinke, Ulrich; Wagner, Bettina; Bartenschlager, Ralf; Baumgärtner, Wolfgang; Feige, Karsten; Pietschmann, Thomas; Cavalleri, Jessika M V; Steinmann, Eike</td>
</tr>
<tr>
<td>DOI</td>
<td>10.1073/pnas.1619380114</td>
</tr>
<tr>
<td>Journal</td>
<td>Proceedings of the National Academy of Sciences of the United States of America</td>
</tr>
<tr>
<td>Downloaded</td>
<td>21-Nov-2017 21:14:17</td>
</tr>
<tr>
<td>Item License</td>
<td>http://creativecommons.org/licenses/by-nc-sa/4.0/</td>
</tr>
<tr>
<td>Link to item</td>
<td>http://hdl.handle.net/10033/621010</td>
</tr>
</tbody>
</table>
Immune protection against reinfection with nonprimate hepacivirus

Stephanie Pfaender1,2,b,c,*, Stephanie Walter3,*, Elena Grabski1,2,4, Daniel Todt3, Janina Bruening5, Inés Romero-Brey6, Theresa Gather1, Richard J. P. Brown3, Kerstin Hahn3, Christina Puff3, Vanessa M. Pfankuche5, Florian Hansmann6, Alexander Postel5, Paul Becher3, Volker Thiel1,2,5, Ulrich Kalinke6, Bettina Wagner6, Ralf Bartschläger1,2,6, Wolfgang Baumgärtner7, Karsten Feige1, Thomas Pietschmann3, Jessika M. V. Cavalleri1,2,6,4, and Eike Steinmann1,2,4

1Institute for Experimental Virology, Twincore Centre for Experimental and Clinical Infection Research, Medical School Hannover (MHH)-Helmholtz Centre for Infection Research (HZI), 30625 Hannover, Germany; 2Department of Infectious Diseases and Pathobiology, University of Bern, 3012 Bern, Switzerland; 3Federal Department of Home Affairs, Institute of Virology and Immunology, 3012 Bern and 3147 Mittelhäusern, Switzerland; 4Institute for Experimental Infection Research, Twincore Centre for Experimental and Clinical Infection Research, MHH–HZI, 30625 Hannover, Germany; 5Department of Infectious Diseases, Molecular Virology, Heidelberg University, 69120 Heidelberg, Germany; 6Clinic for Horses, University of Veterinary Medicine Hannover, 30559 Hannover, Germany; 7Department of Pathology, University of Veterinary Medicine Hannover, 30559 Hannover, Germany; 8Institute of Virology, University of Veterinary Medicine Hannover, 30559 Hannover, Germany; 9Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853; 10Division of Virus-Associated Carcinogenesis, German Cancer Research Center, 69120 Heidelberg, Germany; and 11German Center for Infection Research, Heidelberg University, 69117 Heidelberg, Germany

Edited by Peter Palese, Icahn School of Medicine at Mount Sinai, New York, NY, and approved February 13, 2017 (received for review November 24, 2016)

Hepatitis C virus (HCV) displays a restricted host species tropism and only humans and chimpanzees are susceptible to infection. A robust immunocompetent animal model is still lacking, hampering mechanistic analysis of virus pathogenesis, immune control, and prophylactic vaccine development. The closest homolog of HCV is the equine nonprimate hepacivirus (NPHV), which shares similar features with HCV and thus represents an animal model to study hepacivirus infections in their natural hosts. We aimed to dissect equine immune responses after experimental NPHV infection and conducted challenge experiments to investigate immune protection against secondary NPHV infections. Horses were i.v. injected with NPHV containing plasma. Flow cytometric analysis was used to monitor immune cell frequencies and activation status. All infected horses became viremic after 1 or 2 wk and viremia could be detected in two horses for several weeks followed by a delayed seroconversion and viral clearance. Histopathological examinations of liver biopsies revealed mild, periportally accentuated infiltrations of lymphocytes, macrophages, and plasma cells with some horses displaying subclinical signs of hepatitis. Following viral challenge, an activation of equine immune responses was observed. Importantly, after a primary NPHV infection, horses were protected against rechallenge with the homologous as well as a distinct isolate with only minute amounts of circulating virus being detectable.

The authors declare no conflict of interest.

This article is a PNAS Direct Submission.

Freely available online through the PNAS open access option.

Data deposition: The sequences reported in this paper have been deposited in the GenBank database (accession nos. KY124426 and KY124428).

S.P. and S.W. contributed equally to this work.

Present address: Division of Virology, Section for Viral Vaccines, Paul Ehrlich Institut, 63225 Langen, Germany.

J.M.V.C. and E.S. contributed equally to this work.

To whom correspondence may be addressed. Email: eike.steinmann@twincore.de or jessika.cavalleri@tiiho-hannover.de.

This article contains supporting information online at www.pnas.org/lookup/suppl/doi:10.1073/pnas.1619380114/-/DCSupplemental.

Significance

Hepatitis C virus (HCV) displays a narrow species tropism severely hampering development of small animal models that are required for vaccine and pathogenesis studies in vivo. The recent discoveries of HCV-related hepaciviruses in diverse hosts offer new opportunities with respect to the development of an immunocompetent animal model for HCV research. Among the hepaciviruses, the equine nonprimate hepacivirus (NPHV) represents the closest homolog of HCV discovered to date. We defined key aspects of natural immunity to NPHV challenge in the cognate host and provide evidence for natural protection from NPHV infection. Further characterization of the immune signatures that confer protection against NPHV could provide important information that may facilitate the development of new prophylactic strategies including protective vaccines against HCV.
contributed to vaccine development (8). Recently, multiple novel animal hepaciviruses naturally infecting various species have been identified (9, 10). Viruses classified within the genus *Hepacivirus* have been discovered in dogs (11) and subsequently in horses (12), rodents (13–15), bats (16), Old World primates (17), cattle (18), and recently catsharks (19). These viruses display different homologies to HCV and offer new insights into the origin and evolution of *Hepacviruses*. Furthermore, given the relationship of these animal viruses to HCV, they could facilitate the generation of immunocompetent surrogate animal models for HCV vaccine research. Among these newly discovered animal hepaciviruses, the equine nonprimate hepacivirus (NPHV) represents the closest homolog of HCV discovered to date. The virus was initially discovered in dogs (11); however, it was later shown to primarily

Fig. 1. Course of infection after experimental inoculation with NPHV⁺ plasma. Horse 1 was i.v. transfused with 500 mL NPHV containing plasma, whereas horses 2 and 3 were i.v. transfused with 100 mL NPHV containing plasma (GenBank accession no. KY124246, viral load 7.78×10^6 RNA copies per milliliter). Horse 4 was i.v. transfused with 100 mL NPHV⁻ plasma. Serum samples were taken on a weekly basis postinoculation (weeks p.i.). (A) The viral load of NPHV RNA was determined by qRT-PCR and is depicted as gray dots (limit of quantification 50 RNA copies per serum sample). Anti-CHV (canine hepacivirus)/NPHV NS3 antibodies were measured by the luciferase immunoprecipitation (LIPS) assay and are depicted in black squares as relative light units (RLUs). A cutoff was calculated by the mean value of samples containing only buffer A, the renilla luciferase–NS3 (Ruc–NS3) fusion protein and A/G beads plus three SDs and is indicated by a dotted line. (B) Liver-specific enzymes in the serum were measured. Reference values are as follows: GLDH < 6 U/L, GGT < 20 U/L, and AST < 170 U/L.
To better understand immune responses to NPHV infection, we performed electron microscopy (EM)-based analysis of NPHV RNA copies. Horses were found to have similar levels of NPHV infection with different doses of NPHV-containing plasma (Fig. 1A). Horse 1 was iv. challenged with 500 mL of donor plasma (GenBank accession no. KY124246). Viral loads ranged from 7.78 × 10^6 RNA copies per milliliter, whereas horses 2 and 3 received 100 mL of the same donor plasma each. Horse 4 received 100 mL of NPHV plasma as control. Horses were monitored on a weekly basis for viral loads, seroconversion, and indications of liver injury. All NPHV-infected horses became viremic after 1 wk as determined by NPHV-specific quantitative RT-PCR (qRT-PCR) (Fig. 1A). Viral titers ranged between 10^5 copies per milliliter and 10^6 copies per milliliter. Horse 1 rapidly cleared the infection within 1 wk, whereas horses 2 and 3 stayed viremic for 8–10 wk before virus was cleared. A delayed seroconversion was observed in all horses with the appearance of NPHV-specific antibodies 3–7 wk postchallenge. The liver-specific enzymes γ-glutamyltransferase (GGT) and glutamate dehydrogenase (GLDH), which are specific markers of acute hepatocellular damage, and alanine transaminase (ALT) and aspartate aminotransferase (AST), which are markers of hepatocellular damage, were observed in the screening enzyme parameters in the screening enzymes, were monitored over the course of infection. Serum levels of liver enzymes stayed mainly within reference range with a mild elevation in horse 2 and horse 3 at seroconversion (Fig. 1B). Histopathological examinations revealed mild, multifocal, lymph–plasma–histiocytic infiltrates in portal areas (Fig. S1A). Furthermore, an intracytoplasmic, coarsely granular, yellow–brown pigment (hemosiderin) was multifocally demonstrated in hepatocytes, macrophages, and Kupffer cells at varying intensities. In addition, a mild, diffuse, hepatocellular vacuolation (most likely lipid storage) was found in one case (horse 3). Moreover, one biopsy exhibited single, multifocal, degenerating hepatocytes with an associated mild lymphohistiocytic inflammation and a mild bile duct hyperplasia 1 (horse 2). In one biopsy, mild, multifocal, necroinflammatory hepatitis was present (horse 3). Similarly, a NPHV negative control horse displayed mild, multifocal, lymphohistiocytic infiltrates with single eosinophils in portal areas and low amounts of intracytoplasmic deposits of a coarsely granular, yellow–brown pigment in hepatocytes, macrophages, and Kupffer cells. Furthermore, single, multifocal, degenerating hepatocytes with an associated mild neutrophilic inflammation were seen in the control animal. immunohistochemical characterization of portal infiltrates of NPHV-infected horses revealed 88.66–97.18% CD3+ T cells, 0.00–0.59% Pax5+ B cells, and 2.23–11.34% MAC387+ macrophages (Fig. S1 B–D). Comparable results were obtained for portal infiltrates of the control horse, where 92.1% CD3+ T cells, 0.85% Pax5+ B cells, and 7.05% MAC387+ macrophages were found (Fig. S1 B–D).

Hepatitis C virus is known to induce accumulations of vesicles forming a membranous web (MW) (26), consisting of mainly double membrane vesicles (DMVs) that are thought to be the site of viral RNA replication within the infected liver (27, 28). To determine whether MWs are formed in vivo within the liver of NPHV horses, we performed electron microscopy (EM)-based studies on liver biopsies of an infected horse, and in various cells, we observed numerous vesicles (Ve), which could not be detected in an uninfected horse (Fig. 2 A–C). These vesicles had an average diameter of about 120 nm and in some cases a double lipid bilayer could be observed, reminiscent of DMVs in HCV-infected cells (Fig. 2A). Furthermore, liver cells from the uninfected horse depicted a much more homogeneous appearance (Fig. 2B), in comparison with NPHV-infected liver cells (Fig. 2A). Importantly, these vesicles were also visible during a natural NPHV infection (Fig. S2 A and B), indicating that NPHV and HCV induce similar intracellular membrane rearrangements.

Experimental Infected Horses Mount Immune Responses Against NPHV. To better understand immune responses to NPHV infections, which could contribute to viral clearance, we established flow cytometric assays to monitor immune cell frequencies and activation status. We isolated peripheral blood mononuclear cells (PBMCs) from horses on a weekly basis and established a gating strategy to distinguish between CD3+ CD4+ T-helper cells, CD3+ CD8+ cytotoxic T cells, dendritic cells (DCs), B cells, and monocytes/ granulocytes (Fig. 3A). Using this approach, we could analyze the peripheral immune cell frequency of individual subsets; however, we did not observe any striking differences between individual horses (Fig. S3). Intracellular IFN-γ expression was monitored in individual immune cell subtypes to analyze the activation status. Interestingly, all NPHV-infected horses (horses 1–3) displayed an elevated frequency of IFN-γ-expressing monocytes/ granulocytes following infection, indicating an activation of the innate immune response after experimental infection, which could not be observed to a similar extent in the negative control horse (Fig. 3B). To further analyze equine immune responses, we measured serum cytokine levels using a fluorescent bead-based multiplex assay. Serum cytokine levels varied between the individual horses. In two horses (horses 2 and 3) we observed a transient elevation of serum IL-4 and IFN-γ 3 wk p.i.; however, similar levels could also be observed in the negative control horse arguing for an NPHV-independent immune reaction (Fig. S4).

In humans and chimpanzees, a strong peripheral and intrahepatic T-cell immune response appears to be associated with HCV clearance (29). To analyze the impact of T cells on NPHV clearance, we established a NPHV-specific T-cell proliferation assay. We stimulated ex vivo isolated PBMCs with eight overlapping peptide pools spanning the whole nonstructural 3 (NS3) region of NPHV (Fig. 4A) and measured cell proliferation upon decrease of the fluorescence dye eFlour 670 (Fig. 4B). PBMCs were stimulated with PHA (phytohemagglutinin-M) as positive control (Fig. 4B). We gated on CD3+CD4+ T cells (Fig. 4C) and CD3+CD8+ T cells (Fig. 4D) and determined the respective proliferation as stimulation index (SI). No distinct NPHV-specific peripheral T-cell proliferation could be observed in horses 1 and 2 and the negative control horse; however, a weak CD3+ CD8+ T-cell proliferation could be detected in horse 3 (Fig. 4D). Taken together, we established assays to analyze peripheral immune responses in horses and could show a moderate immune activation following experimental NPHV infection in horses, although differences between individual horses were observed.

Horses Are Protected Against Rechallenge With Homologous or Distinct NPHV Isolates. Previous studies in chimpanzees and also reports from infected patients have shown that HCV re-infection is possible after resolving a primary HCV infection (30–32). To analyze whether horses are protected against a secondary NPHV reinfection, we...
experimentally rechallenged two of the horses, which had previously resolved a NPHV infection (horses 2 and 3) with 100 mL of the homologous virus isolate (GenBank accession no. KY124246, viral load \(7.78 \times 10^6\) RNA copies per milliliter). Inclusion of a previously

Fig. 2. Ultrastructural analysis of horse liver biopsies. Biopsy samples taken from the liver of one NPHV− horse as well as from a positive control horse experimentally infected with NPHV (Fig. 6) were immediately fixed with glutaraldehyde. Samples were sectioned in small pieces and, subsequently, processed and analyzed by transmission electron microscopy (TEM) as described in SI Materials and Methods. EM micrographs of (A) a liver biopsy of an experimentally NPHV-infected horse, 7 wk postinfection, and (B) a NPHV− horse. An overview of several liver cells is depicted at Top. Higher magnification images of two different areas are shown at Bottom. The white boxed areas highlight the areas that are shown at Bottom as magnified views. (C) Quantification of vesicle sizes (in nanometers) from an experimentally NPHV-infected horse (n = 55) compared with a NPHV− horse. Ve, vesicle; LD, lipid droplet; m, mitochondria; rER, rough endoplasmic reticulum; n.d., not detected; nm, nanometer.
naïve horse (positive control horse) confirmed that the used plasma was still infectious (Fig. 5A, Lower graph). Both rechallenged horses retained a high NPHV-specific antibody titer before secondary rechallenge (naïve vs. \(t = 0 \); Fig. 5A). Interestingly, no productive infection could be established in the rechallenged animals with only trace amounts of viral RNA being detectable (gray boxes and agarose gel) (Fig. 5A). Detected viral genomes were sequenced to confirm homologous genome identity. NPHV-specific antibody titers further increased in the rechallenged horses 3–6 wk postinfection (Fig. 5A). Liver-specific enzymes mainly stayed within the reference range (Fig. 5B) and histopathological examination revealed mild, multifocal, lymph-plasma-histiocytic infiltrates in perilobular areas. Furthermore, an intracytoplasmic, coarsely granular, yellow–brown pigment (hemosiderin) was multifocally demon-

Fig. 3. Development of a flow cytometry-based method to measure immune cell frequencies and intracellular IFN-γ expression. PBMCs were isolated on a weekly basis postinoculation by centrifugation on a Ficoll-Hypaque density gradient and stored at \(-150^\circ C\) before flow cytometry staining. PBMCs were stained for the surface markers CD8, CD4, CD3, PanB, CD13, CD1w2, and Mac387 using equine-specific antibodies to detect T lymphocytes (CD3+CD4+ T-helper cells, CD3+CD8+ cytotoxic T cells), B lymphocytes (PanB+), CD13+ cells (expressed on blood neutrophils, basophils, monocytes, but not B or T cells), dendritic cells (CD1w2+), and monocytes/granulocytes (Mac387+), respectively. Additionally, intracellular IFN-γ staining was performed on all cells. Samples were analyzed by flow cytometry. (A) Exemplary depiction of the gating strategy. Dead cells as well as cell duplets were excluded before subsequent gating on the respective immune cell subset. (B) The frequency of IFN-γ-expressing immune cells (CD3+CD4+ T cells, CD3+CD8+ T cells, and mac387+monocytes/granulocytes) of each time point postinoculation normalized to \(t_0 \) is depicted for all four horses. Time points that tested positive for NPHV RNA and anti-CHV/NPHV NS3 antibodies are indicated in light- and dark-gray boxes, respectively.
strated in hepatocytes, macrophages, and Kupffer cells in varying intensities (Fig. 5C).

To examine the breadth of immune protection, we rechallenged the same horses (horses 2 and 3) with 100 mL of a distinct NPHV isolate (GenBank accession no. KY124248, viral load 6.0 × 10⁵ RNA copies per milliliter) that differs from the primary inoculum at 11.54% of nucleotide sites of the near-completely sequenced E1E2 glycoproteins, thus mimicking a rechallenge with a NPHV subtype (Fig. 6A). Similar to the first rechallenge, previously infected horses were protected against

Fig. 4. Analysis of NPHV-specific T-cell proliferation. (A) Eight distinct but overlapping peptide pools originating from the NS3 region of NPHV were synthesized based on the NS3 reference sequence of NPHV isolate H10 (GenBank accession no. KP640276). Individual peptides were pooled with each pool containing 20 peptides consisting of 10 overlapping amino acids each. Isolated PBMCs were stimulated in duplicates with the peptide pools and incubated for 7 d at 37 °C before flow cytometry analyses. As positive control, PBMCs were stimulated with PHA. (B) Gating strategy after flow cytometry-based analysis of T-cell proliferation. Seven days postinfection, PBMCs were stained for CD3, CD4, and CD8 surface markers to gate on the respective cell population as described above. A decrease in the proliferation dye eFluor 670 indicates proliferation of the respective population. Representative plots of horse 2 at t₀ and t₉ are shown. The amount of proliferating CD3⁺CD4⁺ (C) and CD3⁺CD8⁺ (D) T cells was calculated by dividing the stimulated samples by the unstimulated control of each time point depicted as stimulation index (SI). The respective values of each peptide pool are indicated with a single symbol for all of the respective time points measured in duplicates. The dotted line indicates the unstimulated control. Time points that tested positive for NPHV RNA and anti-CHV/NPHV NS3 antibodies are indicated in light- and dark-gray boxes, respectively.
reinfection compared with a naïve horse (positive control horse) (Fig. 6A). Only trace amounts of viral RNA could be detected 3 wk and 1 wk postinfection, respectively. The naïve positive control horse rapidly developed robust viremia 1 wk post-infection with high viral titers (Fig. 6B). Sequencing of viral trace amounts confirmed the correct viral sequence of the inoculum. Rechallenged horses (horses 2 and 3) displayed a slight increase in NPHV-specific antibody titers (Fig. 6B); however, no infection-associated clinical signs for hepatitis could be observed upon biochemical and histopathological examination (Fig. 6C and D). In chimpanzees, after reinfection a rapid virological control has been connected to HCV-specific T-cell responses (31, 33, 34). We therefore analyzed peripheral T-cell responses against NPHV after rechallenge; however, we could detect only weak T-cell proliferation in both horses after homologous or distinct rechallenge (Fig. S5A and B). In conclusion, we could show that horses are protected against homologous and distinct viral rechallenge, although no sterilizing immunity is induced as trace amounts of viral RNA can be detected.

Discussion

Persistent HCV infections account for ~500,000 deaths annually and are the leading indication for liver transplantation (35). With the development of robust in vitro cell culture systems the viral replication cycle could be studied in detail and ultimately contributed to the development and approval of efficient treatment options in the form of DAAs (36). Nevertheless, a protective vaccine is still lacking, which prevents effective global control and eradication of this virus. The lack of a traceable immunocompetent animal model for HCV hampers vaccine development, as cell culture systems do not permit detailed studies of virus-host interactions and cannot completely elucidate mechanisms that contribute to viral clearance versus persistence. So far, chimpanzees are the only fully immunocompetent host supporting a HCV infection, but due to ethical concerns, use of chimpanzees for research has been banned in the United States and the European Union. Therefore, the development of a new tractable immunocompetent animal model is of utmost importance. The recent discovery of animal hepaciviruses provides new opportunities to broaden our knowledge about hepaciviral virus–host interactions and could lead to the development of new surrogate experimental models for HCV. To estimate the significance of these novel viruses as surrogate models for HCV, a detailed understanding and biological characterization is crucial. This study provides insights into the closest homolog of HCV discovered to date, the equine NPHV. Previous studies already demonstrated similarities between HCV and NPHV, including molecular features as well as the mode of transmission and hepatotropism (20, 22, 23, 37, 38).
However, only a few studies have addressed detailed analysis of NPHV infection in vivo. We could confirm previously published data that horses can be experimentally infected by i.v. inoculation (23). All inoculated horses became viremic 1 wk postinfection and with the exception of one horse (horse 1) stayed viremic for several weeks. Reasons for the different clearance rates between the animals need to be further investigated, but one could imagine that undetected previous natural infections with NPHV might contribute to the observed differences. Ultrastructural studies of liver biopsies from infected versus naïve horses revealed that NPHV infection induces the formation of vesicles within the liver, similar to the vesicles that have been previously observed in liver biopsies of an HCV-infected chimpanzee (26) and comparable to the structures that are induced by HCV upon infection of culture cells (27). These findings indicate that HCV and NPHV might share common strategies for viral replication, resulting in...
the formation of similar replication structures, also known as replication factories. It is believed that formation of such vesicles not only facilitates the coordination of different steps of the viral replication cycle, but could also contribute to immune evasion by shielding viral RNA from recognition by innate sensors such as retinoic acid-inducible gene I (RIG-I) or melanoma differentiation-associated gene 5 (MDA5) (27). However, it is not completely understood how host immune responses contribute to viral clearance compared with the establishment of chronic infection (39). Studies of early immune events during a HCV infection in humans are difficult due to various reasons, including the late diagnosis in the majority of cases rendering animal models valuable surrogate models. Furthermore, several studies indicated that HCV-specific CD4 and CD8 T-cell responses in both humans as well as chimpanzees are weak after HCV infection and that spontaneous clearance is associated with a stronger cellular response. The latter is typically broad, polyfunctional, and sustained, indicating that cellular immunity is an important factor (40). To analyze the impact of the immune system on viral clearance, we established a variety of immunological assays to evaluate equine immune responses. However, given the fact that the horse is not a commonly used animal model, immunological tools are limited compared with murine model systems. Nevertheless, we explored innate and adaptive immune responses and despite viral clearance in some horses, only weak immune responses following viral challenge were detected. An earlier study using immune-deficient foals indicated that disease outcome varies based on the development of the immune system. Normal immunocompetent foals and immune-deficient foals were not able to clear NPHV infection, whereas young adult horses did clear the virus (23). Future studies directly addressing intrahepatic immune responses could further clarify the roles of specific immune cells in viral clearance. A previously resolved HCV infection does not necessarily confer sterilizing immunity against reinfection, which impedes global control of HCV infections (32). Re-infection following sustained virological response (SVR) has been reported in several studies among high-risk populations, including people who inject drugs (PWIDs) and prisoners. However, these studies are rare and sometimes show inconclusive results (32, 41). Important insights regarding reinfection and protection have been gained from earlier experiments in chimpanzees. Challenge experiments using vaccinated primates demonstrated that de novo immune responses in primary infection result in viral clearance; reinfection was possible in chimpanzees with both homologous and heterologous viruses. However, reinfection seems to be associated with improved control of viral replication, a short course of infection, and an increased viral clearance rate compared with primary infections (30, 31, 33, 42). To analyze immune protection upon previous NPHV infection, we rechallenged previously infected horses with homologous as well as with nonhomologous NPHV isolates. As NPHV exhibits low sequence diversity between isolates, classical heterologous rechallenge could not be conducted. However, homologous or distinct rechallenge experiments revealed that horses were partially protected with only trace amounts of viral RNA being detectable. This finding indicates the existence of immune mechanisms that contribute to protection. In chimpanzees, rapid virological control after reinfection has been connected to HCV-specific T-cell responses (31, 33, 34). However, first analyses of NPHV specific T-cell responses did not indicate a strong peripheral T-cell response. One limitation of the used assay is that T-cell responses were only determined with NS3-specific peptides and other immunodominant epitopes outside NS3 were not tested. Further analyses of equine hepatic T-cell responses might provide additional insights into protective immune-mediated mechanisms. In addition, the role of virus-specific antibodies needs to be further addressed. In humans, HCV strain-specific neutralizing antibodies have been found to be associated with spontaneous recovery (43, 44). Our reinfected horses displayed a higher titer of NPHV-specific antibodies before rechallenge, which even further increased after a new exposure. Although it will be interesting to analyze the presence and importance of neutralizing antibodies, these studies are currently not feasible as no cell culture system is available for NPHV.

Given the close genetic relatedness between HCV and NPHV, our study contributes to the biological characterization and to the understanding of hepaciviral pathogenesis and associated immunity. Detailed characterization of hepaciviral infections in their natural hosts will aid our understanding of viral and host determinants, which in the end, contributes to elucidate the mechanisms of HCV persistence and immunity.

Materials and Methods

Animals. Animal experiments were first examined by the animal welfare representatives of the University of Hannover Foundation, and then approved by the Lower Saxony’s official authorities (LAVES 13/1262).

Determination of Liver-Specific Enzymes. To monitor occurrence of hepatitis, hepatoinziner blood samples were taken at weekly time points and analyzed for the liver-specific enzymes GLDH, GGT, and AST in the laboratory of the small animal clinic at the University of Veterinary Medicine Hannover Foundation.

Extraction of Viral RNA and qRT-PCR. Viral RNA was purified from serum samples by the High Pure Viral RNA Kit (Roche) as described in the manufacturer’s instructions. Purified RNA was subsequently transcribed into cDNA using the Prime Script RT Master Mix Kit (Takara) and SYBR Green-based qRT-PCR was performed with SYBR Premix Ex Taq II (Takara) and previously described NPHV-specific primers targeting the 5′-untranslated region (5′-UTR) (12). Absolute quantification of NPHV RNA copies was conducted. Serial dilution of a plasmid containing the NPHV 5′-UTR sequence was used to generate a standard curve (limit of quantification 50 RNA copies per serum sample) and to calculate viromeia in individual samples.

ACKNOWLEDGMENTS. We thank Susanne Möller, Anja Seemann-Jensen, Suneetha Pothakamuri, Michael Engelmann, Bettina Buck, and Petra Grünig for technical support; Peter D. Burbelo (NIH) for providing the Renilla luciferase−NS3 fusion plasmid; Uta Haselmann for her excellent technical support; all members of the Institute of Experimental Virology, Twincore, for helpful suggestions and discussions; and the Electron Microscopy Core Facilities (University of Heidelberg) and the European Molecular Biology Laboratory (Heidelberg, Germany) for providing access to their equipment. The monoclonal antibodies against equine cytokines were developed with funding from Agriculture and Food Research Initiative Competitive Grants 2005-01812 and 2015-67015-23072, supported by the USDA National Institute of Food and Agriculture.

