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1. Introduction

In this chapter, we introduce the topics and approaches of this thesis. We first give an overview of
parallel job scheduling and direct the focus towards the users of parallel computing. This leads to
the setup of this work: a tripartite approach of understanding and modeling user behavior, as well
as optimizing schedules of parallel computing infrastructure regarding user satisfaction. Second,
we introduce notations and definitions necessary throughout this work and discuss the data sources
which are the basis of analyses presented in this thesis. Lastly, we present the structure and content
of the remaining chapters. This introduction combines argumentations, notations, and references
from papers discussed in Section 1.4.

1.1. User-Aware Performance Evaluation and Optimization of Parallel
Job Schedulers

High Performance Computing (HPC) and High Throughput Computing (HTC) are important en-
vironments for performing large-scale scientific computing. A plethora of works focus to enhance
the knowledge and application of these computing paradigms to achieve scientific goals. Sev-
eral noted international conferences on scientific computing underline this importance, e.g., the
The International ACM Symposium on High-Performance Parallel and Distributed Computing
(HPDC)1 or IEEE International Parallel & Distributed Processing Symposium (IPDPS)2. Never-
theless, resources are not available exclusively to each user and researchers develop sophisticated
methods to manage the switching of allocations. For example, the Workshop on Job Scheduling
Strategies for Parallel Processing (JSSPP)3 is dedicated on the development and evaluation of
parallel job schedulers. User requests for resources and the programs executed on the infrastruc-
ture, the so-called jobs, are queued and a scheduler decides about allocation and starting times of
jobs. Depending on the resource requirements and runtimes of jobs, schedulers seek to execute
the queued jobs in an optimal way. Since jobs need a certain amount of machines in parallel and
an uncertainty about runtimes and future job submissions, parallel job schedulers operate in an
online environment. A famous example is the EASY scheduling technique, which allocates jobs
in a first-come-first-serve order (FCFS), but advances this by a strategy called backfilling. Back-
filling allows jobs to skip the FCFS order, in case the execution of the first job in the queue is not
delayed.

There are increasing requirements for scientific applications, which are becoming more com-
plex and are thereby increasing the needs for processing and storage capabilities. World-wide
recognized scientific experiments utilize large amounts of computational power. A notorious ex-
ample is the CMS experiment4. The experiment consists of parametric sweep studies and proved

1 www.hpdc.org, accessed 09/19/2016
2 www.ipdps.org, accessed 09/19/2016
3 http://www.cs.huji.ac.il/~feit/parsched/, accessed 09/19/2016
4 http://cms.web.cern.ch, accessed 09/19/2016
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1. Introduction

the existence of the Higgs-Boson.5

The importance of the underlying computational paradigms is underlined by several works. For
example, Reed and Dongarra discuss requierements of these types of technology and their future
application [27]. Geist and Reed give an overview of ongoing research in the field of parallel
processing [13]. Therefore, research in the field of scheduling and allocation of parallel jobs
remains highly relevant.

When providing resources for applications of both computing paradigms (HPC and HTC), op-
erators consider many objectives to ensure availability. They need cost control, which covers
investment and operation cost [22]. Additionally, power management is an important objective,
e.g., Kaplan et al. provide insights on how to optimize data center energy efficiency [18]. Further-
more, depending on the academic and financial conditions, monetary profit can be an important
goal in operating computing centers [44].

Beside these objectives, research also focuses on users and their satisfaction in parallel process-
ing and on optimizing the quality of service (QoS) offered to users. This includes correctness
of the computational results, minimizing failure rates of hardware components, increasing of re-
sponse times (decreasing waiting and processing times), as well as fairness. This thesis focuses on
on the aspect of users in parallel computing and especially on their submission behavior and sat-
isfaction. We introduce the motivation and focus of this thesis by means of Figure 1.1. This thesis
presents an integral, tripartite view on job scheduling focusing on users, namely understanding,
simulation, and optimization, which are all influenced by a certain level of uncertainty:

Figure 1.1.: Overview of user-based understanding, modeling, and optimization in parallel com-
puting under uncertainty.

• The modeling of user submission behavior and performance evaluation of newly suggested
scheduling techniques in dynamic simulations.

• User-centered optimization of schedules in parallel job processing.

• Understanding of user related aspects, such as their submission behavior and satisfaction.

5 https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsHIG, accessed 09/19/2016
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1.1. User-Aware Performance Evaluation and Optimization of Parallel Job Schedulers

• All of these aspects have to consider uncertainty in various levels.

This setup underlines the granularity of the approach of this thesis. We mostly consider parallel
processing on site-level, i.e., we abstract from specific job characteristic, such as memory or soft-
ware requirements, but only focus on the number of requested computational resources and the
processing time. In the following, we introduce and discuss each of the aspects in detail and show
the relations between them to complete this tripartite view of parallel job scheduling.

Simulation So far, a common technique to compare performances of different schedulers is
achieved by simulations using previously recorded workload traces. There are many studies on
analyzing properties of workloads regarding their usage in performance evaluation. For example,
Mishra et al. characterize workloads recorded from Google Cloud infrastructures [24], Zakay and
Feitelson discuss resampling of workload [46], or Di et al. predict future workload from previously
recorded workload traces [5].

Understanding the component of user behavior in HPC and HTC environments is a highly re-
searched field [8]. Simulation and evaluation must consider the effects depicted in Figure 1.2.
Respecting a throttling effect in job submissions is necessary to create meaningful simulation re-
sults, which evaluate proposed job scheduling strategies. Feitelson describes the reaction of users
to system performances as “a mystery” [8, p. 414]. The workload submitted by users and the
system performance should meet in a stable state. A growing demand leads to poorer system per-
formance and subsequently to less workload submission. In this interpretation, a workload trace is
only a recording of one instantiation of a dynamic process. Therefore, it is not sufficient to replay
a trace directly.

re
sp

o
n
se

ti
m
e

generated load 10

stable state

user reaction

system
performance

Figure 1.2.: Supply-and-demand curves crossing in stable state [8, p. 414].

While there is a a significant number of researches who analyze and suggest improvements to
scheduling techniques in such environments, Schwiegelshohn has raised the need to close the gap
between suggestions and theoretical results and their practical application, e.g., by understanding
user behavior and mapping it to realistic workload models and simulations [38] . He claims that
understanding user behavior will support more convincing evaluations of parallel job schedulers
and therefore increase the potential of practical usability:

13



1. Introduction

"In our view it is one of the key challenges in the area of job scheduling for parallel
processing to develop workload models that incorporate a feedback component that
changes the workload depending on the result of job scheduling to imitate interaction
with the participants."

Therefore, there is a strong need in better understanding feedback effects, which would improve
the performance evaluation process as well as the evaluation of new scheduling algorithms.

Optimization So far, research on optimizing user needs in parallel processing is in its early
stages. In the literature, supporting users to work in sessions is a well known optimization objec-
tive to increase user satisfaction in parallel computing. It is assumed, that users work consecutively
and wait for results of previously submitted jobs to continue their work. Shmueli and Feitelson
present a scheduling technique called CREASY, which focuses on detecting active users and their
sessions, to prioritize their jobs compared to those jobs, which are not seen to be necessary in
supporting sessions [39].

In this thesis, we follow a different approach: We extract acceptable waiting times considering
job lengths and define optimization objectives on these findings. This is a result from the data
obtained in a survey of the Questionnaire of User Habits in Compute Clusters (QUHCC). We will
use these findings to implement and evaluate a mixed integer linear program to optimally schedule
jobs according to acceptable waiting times.

Understanding The previous introduction shows that users are the central aspect for both, devel-
oping realistic simulations and optimizing schedules according to user requirements. This princi-
ple can be attained in two different ways: (1) by assessing user behavior through cognitive studies
(e.g., in the form of questionnaires), or (2) by analyzing workload traces gathered from productive
systems.

Workloads are in the scope of many papers as a source of information on job characteristics.
Several papers have addressed computing workload characterization and modeling. For instance,
researchers focus the analyses of grid [16], high-performance [15], and high-throughput com-
puting workload characteristics [9] emphasizing system usage, user population, and application
characteristics. Considering specific parallel software and programming environments, Ren et
al. [28] presented an analysis of a MapReduce trace derived from a production Hadoop cluster,
where they analyzed job characteristics such as CPU utilization, memory usage, slots allocation,
I/O operations, and network transfers. Rodrigo-Alvarez et al. [30] analyzed 5 years of workload
traces from two Supercomputers (Hopper and Carver) at NERSC. This study aimed to collect sys-
tem performance metrics (wall clock time, CPU hours, waiting time, etc.) to evaluate the evolution
of these systems over their lifetime. A workload characterization of the Magellan cloud computing
system at ALCF was conducted in [41]. The cloud system workload is characterized in terms of
computing characteristics (e.g., runtime and job input data size) and I/O data movement. Carns
et al. [4] characterized the I/O behavior of the Intrepid Supercomputer at ALCF, while Luu et
al. [23] analyzed workload traces of the I/O behavior from Intrepid and Mira at ALCF, and Edison
at NERSC. Although these papers present a fine-grained analysis of system performance metrics,
none of them have focused on user behavior analysis.

Beside these technical aspects of job characteristics, workload traces can reveal several aspects
of user behavior related to system performance metrics and job characteristics. Feitelson [6] an-
alyzes user behavior from high-performance computing workload traces in which several aspects

14



1.2. Notation and Definitions

of dynamic correlations between system performance, utilization, and subsequent user behavior
are observed. As a result, these analyses have enabled the development of models emphasizing
specific aspects of user behavior. For example, Lee and Snavely [20] analyze the accuracy of
job runtime estimates provided by users, while Tsafrir et al. [43] derive a model for this specific
information.

Ferreira da Silva and Glatard [10] present an analysis of a science-gateway workload, which
shows that the estimation method to detect job batches underestimates job interarrival and CPU
times, and overestimates job runtimes. Different workload models and simulations mimic the
dynamic nature of user and system interaction.

Uncertainty Besides sources of uncertainty already mentioned previously, in general we have to
deal with various further forms of uncertainty in parallel computing. Tchernykh et al. [42] present
an overview of uncertainties and their sources in cloud computing. It covers several topics, which
are not in the scope of this thesis, e.g., migration of jobs or fault tolerance, since we are interested
in parallel processing on site-level. We only deal with runtime and job submission uncertainty in
the corresponding chapters.

The online character of parallel job scheduling is due to submission uncertainty, because we
do cannot certainly predict when a user submits a certain job. Furthermore, the runtime of jobs
is difficult to predict and user runtime estimates are not necessarily close to the actual runtime.
Focusing on user provided information regarding job runtimes, Lee and Snavely analyze the dif-
ferences between runtime estimates and actual runtimes [20], and Tsafrir et al. present a model to
calculate the difference between runtimes and runtime estimates [43]. Approaches to predict job
characteristics exist, which do not focus on users and the information they provide, but on more
general trace analysis. For example, Feirrera da Silva presents prediction schemes of job charac-
teristics in two papers [11, 12]. These approaches would add further complexity and uncertainty
to the problems addressed in this thesis. Therefore, we will be using more general approaches to
add uncertainty to job runtimes in the according chapters.

1.2. Notation and Definitions

We introduce the level of abstraction and basic notation relevant throughout this work. This no-
tation is commonly used in (parallel) job scheduling research [25]. Further notations may be
introduced afterwards and will be chapter-specific.

Considering a computational job j, let s j be the time when j is submitted by a user u, p j the job
processing time (which is also referred to as runtime throughout this thesis), and w j the waiting
time (the time it spends in queue). We define the job response time r j as the sum of the timespan
of its waiting and processing time:

r j = w j + p j. (1.1)

Thus, we define the job completion time c j as the sum of the job submission time and the response
time:

c j = s j + r j. (1.2)

The job interarrival time i j is the time interval between two subsequent job submissions ( j and
j′ := j+1) submitted by the same user:

i j, j′ = s′j− s j. (1.3)
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Two subsequent jobs are considered overlapped if job j has not finished before job j′ is submitted,
i.e., c j ≥ s j′ . Otherwise, they are considered non-overlapped. In many contexts in this thesis,
we are particularly interested in subsequent jobs that do not overlap. Therefore, we define think
time TT as the timespan between the completion time c j of job j and the submission time of its
successor j′ := j+1:

TT j, j′ = s j′− c j. (1.4)

This is the same definition as presented by Feitelson [6]. For overlapping jobs, the think time is
negative. Consequently, in think time analyses we only consider those subsequent job submissions
of positive think time. Additionally, we mostly consider think times of less than eight hours. For
comparison purposes, this threshold is defined based on the study conducted by Feitelson [6], and
it is intended to represent subsequent job submissions belonging to the same working day. This
threshold also eliminates user behaviors characterized by absent submissions for long periods
of time followed by burst submissions for short periods (e.g., conference deadlines, allocation
expiration, etc.). Zakay and Feitelson propose a similar definition of submission behavior [45].
Overlapping jobs can also form a batch (with some constraints according to the exact model), and
batches can be added up into a session. The slowdown sd of a job j is defined as the factor between
a job’s actual response time and its runtime:

sd j =
r j

p j
=

w j + p j

p j
. (1.5)

We define job size m j as the number of requested resources, depending on the computational
environment either processors or nodes, while the job workload ω represents the total CPU time
of the job:

ω j = p j ·m j, (1.6)

where p j is the processing time of a job j, and m its requested number of resources. In this thesis,
we only consider rigid jobs, which means the number of required resources m j is fixed and cannot
be adjusted at runtime.

1.3. Data Sources

In parallel job scheduling research, workload traces are a main source of information on productive
parallel computing systems. All relevant aspects of jobs processed on such infrastructure are
logged and represent the full information on timings (job submissions, waiting times, etc.), as well
as job characteristics (requested processing times, allocated number of resources, etc.), beside
further information on job requirements such as disk space or memory.

A standardized format to simplify the usage of workload traces was introduced by Feitelson6.
This format is named Standard Workload Format (SWF). All scripts developed for this thesis
regarding trace analysis require data presented in the SWF format. Several workload traces are
publicly available, e.g., through the Parallel Workload Archive [2] or the The Grid Workloads
Archive [1]. In this thesis, we use traces from the Parallel Workload Archive, as well as traces from
the Mira Supercomputer (HPC) at Argonne National Lab7 and the CMS experiments8 (HTC). We
will describe in each chapter, which workload traces we use to perform the respective analyses.

6 http://www.cs.huji.ac.il/labs/parallel/workload/swf.html, accessed 09/07/2016
7 https://www.anl.gov, accessed 09/19/2016
8 http://cms.web.cern.ch, accessed 09/19/2016
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1.4. Structure and Chapters

Furthermore, we analyze data collected in a survey among users of parallel computing infras-
tructures at TU Dortmund University. We only consider aggregated and anonymized data, to not
violate user privacy.

1.4. Structure and Chapters

Most of the contents of this thesis have been previously published in conference or workshop
proceedings. We give an overview of the following chapters, as well as the respective references
to the published sources. This work is structured as follows:

Chapter 2 In this chapter, we extend the understanding of subsequent job submission behavior in
HPC. It includes a detailed analysis of correlations among several job characteristics, e.g., waiting
time or job size. Furthermore, we present an in-depth analysis by combining job characteristics,
such as slowdown or job complexity, which reveals that job complexity correlates to subsequent
job submission behavior. We also demonstrate that notifications of users on job completion do not
influence their average subsequent behavior. These analyses and results are published as:

SCHLAGKAMP, S., FERREIRA DA SILVA, R., ALLCOCK, W., DEELMAN, E., AND SCHWIE-
GELSHOHN, U. Consecutive job submission behavior at mira supercomputer. In ACM In-
ternational Symposium on High-Performance Parallel and Distributed Computing (HPDC)
(2016).

Chapter 3 In this chapter, we use the aforementioned methods to extend the understanding of
HTC workloads. We compare methods to cluster jobs according to their belonging to bag of tasks
from raw job data without bag of task information. This analysis has been published as:

SCHLAGKAMP, S., FERREIRA DA SILVA, R., DEELMAN, E., AND SCHWIEGELSHOHN,
U. Understanding user behavior: from HPC to HTC. In International Conference on Com-
putational Science (ICCS) (2016).

Chapter 4 This chapter extends the understanding of user related aspects in parallel job schedul-
ing. We created the Questionnaire for User Habits of Computer Clusters (QUHCC) to access user
job submission behavior, as well as their satisfaction and expectations towards waiting times in
parallel job processing. We analyze the data obtained in a survey among 23 users of compute clus-
ters at TU Dortmund University in terms of descriptive statistical analysis, as well as correlation
and regression analyses. The questionnaire was mainly co-developed with Johanna Renker. The
description of the questionnaire, the data obtained in the survey and the analysis results have been
published as:

SCHLAGKAMP, S., DA SILVA, R. F., RENKER, J., AND RINKENAUER, G. Analyzing
users in parallel computing: A user-oriented study. In 14th International Conference on
High Performance Computing & Simulation (HPCS) (2016).

The regression analysis of user waiting time satisfaction is part of the following publication:

SCHLAGKAMP, S., HOFMANN, M., EUFINGER, L., AND DA SILVA, R. F. Increasing
waiting time satisfaction in parallel job scheduling via a flexible MILP approach. In 14th
International Conference on High Performance Computing & Simulation (HPCS) (2016).
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Chapter 5 In this chapter, we propose a framework to simulate dynamic user behavior. The
model combines several aspects and interpretations of user behavior deriving from current re-
search. We present components, advancing the user model previously published in

SCHLAGKAMP, S. Influence of dynamic think times on parallel job scheduler performances
in generative simulations. In JSSPP 2015 - 19th Workshop on Job Scheduling Strategies for
Parallel Processing (JSSPP 2015) (Hyderabad, India, May 2015).

This publication investigates the influence of dynamic think time on parallel job scheduler per-
formance evaluation by comparing the performance of job schedulers when facing static and dy-
namic, feedback-aware job submissions. The proposed framework incorporates assumptions on
users’ working behaviors, e.g., job submissions as batches, and extract statistical distributions
from workload traces to sample individual user behavior during simulations.

Chapter 6 Lastly, we combine the aspects investigated in the previous chapters. Therefore, we
focus on optimizing user satisfaction in parallel computing. First, we evaluate the practical ap-
plicability of a novel mixed integer linear programming (MILP) formulation for the parallel job
scheduling problem. The objective focuses to minimize the waiting time according to a certain
allowed slowdown related to the job lengths. Due to the computational intensity and long run-
times of this optimization approach, we only evaluate it by means of static scenarios, ignoring
uncertainties in runtimes and dynamic load generations. We choose a different MILP formulation
than Streit, who showed that his version is not necessarily useful in practical application [40]. This
appraoch was published in

SCHLAGKAMP, S., HOFMANN, M., EUFINGER, L., AND DA SILVA, R. F. Increasing
waiting time satisfaction in parallel job scheduling via a flexible MILP approach. In 14th
International Conference on High Performance Computing & Simulation (HPCS) (2016).

Chapter 7 The last chapter concludes this thesis and points out the contributions of this work
and links the results of the previous chapters. Additionally, this chapter discusses future research
directions. For example, this includes the future interpretation of workload traces and extracting
additional user information, which the survey in Chapter 4 revealed, but which are still hidden in
workload traces.
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HPC Workload Trace

This chapter aims to advance the understanding of feedback effects in terms of correlations among
job characteristics recorded in workload traces. First, we perform an in-depth analysis of think
time. Therefore, we analyze combined job characteristics and the influence on subsequent user
behavior in the Mira trace. We evaluate how system performance and job characteristics influence
users’ subsequent job submission behavior in HPC systems. In particular, we extend and evaluate
the definition of think time (the time interval between a job completion and the submission of
the next job), to assess the influence of system delays (e.g., queueing time), and job complexity
(number of nodes and CPU time) on user behavior. Therefore, we analyze a workload trace from
the Mira supercomputer at Argonne Leadership Computing Facility (ALCF) covering job submis-
sions in the year 2014. We first characterize the subsequent think time as a function of job response
time. Then, we perform further analyses on each of the constituting components of response time
(i.e., queueing and processing time).

We also analyze think time in response to the slowdown and the job complexity. Our find-
ings show that these components are strongly correlated and have a significant influence on user
behavior. Thus, we conduct a comprehensive analysis of the subsequent think time in response
to multiple dimensions. Last, we analyze how job notification mechanisms may impact user be-
havior. Although a user might be unaware of a job completion, this time of unawareness is also
accounted as think time. The main contributions of this chapter include:

1. The characterization of a supercomputer scheduling workload and its major science fields;

2. An evaluation of think time, for measuring delays in users’ subsequent job submission be-
havior in HPC systems;

3. An in-depth analysis of correlations between subsequent think times, job characteristics and
system performance metrics;

4. An evaluation of modeling users’ think time behavior as linear functions according to di-
verse job characteristics

5. A comprehensive analysis of the influence of multidimensional metrics on user behavior;

6. An evaluation of the correlation between job completion awareness and think times.

The chapter is organized as follows. Section 2.1 presents the characterization of the Mira workload
trace. An in-depth analysis of think times is presented in Section 2.2. This section covers an overall
analysis of think time (Section 2.2.1), as well as the analysis of different job characteristics and
their possible influence on user behavior (Sections 2.2.2 to 2.2.4).
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2.1. Workload Trace Characterization

The analyses presented in this chapter are based on the workload from Mira, the IBM Blue Gene/Q
system at the Argonne Leadership Computing Facility (ALCF). Mira is a 786,432-core production
system with 768 TiB of RAM, and a peak performance of 10 PFlops. Each node is composed of
16 cores, and the minimum amount of nodes allocated to a job is 512 (i.e., 8,192 cores). Nodes are
organized into rows of 16,384 nodes. Typically, users submit jobs to the prod and prod-1024-torus
queue, which are routed automatically into the queue matching the node-count and wall clock time
parameters requested1. Projects have individual allocation balances restricting the number of CPU
hours available to the projects per year. Nevertheless, a backfill queue is available to projects that
have already used their allocation balance. This queue allows these projects to advance their work,
while supporting resource utilization when no jobs from projects with positive allocation balance
are able to be scheduled.

Mira’s workload dataset comprises computational jobs execution from the entire year of 2014,
which consists of 78,782 jobs, submitted by 487 users from 13 science domains. In total these jobs
consumed over 5.6 billion CPU hours. Table 2.1 shows the summary of the main characteristics of
the dataset and highlights the most important (by the number of jobs) science domain fields. Due
to a special agreement, most of Computer Science jobs (∼65%) consume less than the minimum
allocation (i.e., 512 nodes or 8,192 cores). Additionally, these jobs have very short processing
times (less than 15 min), thus we see the low CPU hours consumption regardless the high number
of jobs. Furthermore, about 25% of the jobs run in the backfill queue, which may bias user
behavior—the uncertainty of the job start time is elevated. Therefore, Computer Science jobs are
not considered in this study.

Science Field #Users #Jobs CPU hours Avg. Runtime Std. Dev. Runtime
(millions) (seconds) (seconds)

Physics 73 24,429 2,256 7,147 10,509
Materials Science 77 12,546 895 5,820 9,547
Chemistry 51 10,286 810 6,131 11,440
Computer Science∗ 75 9,261 96 917 3,598
Engineering 98 6,588 614 10,551 15,138
Earth Science 42 6,455 270 5,181 8,473
Biological Sciences 31 3,642 192 6,680 10,806
Other 40 5,575 565 6,017 15,360

Mira 487 78,782 5,698 6,093 10,943
∗significant number of jobs run in backfill queue

Table 2.1.: Characteristics of the Mira workload for a period of 12 months (Jan–Dec 2014).

2.1.1. Trace Analysis per Major Science Field

In this work, we target the analysis of the user submission behavior and its impact on improving
system performance (overall and per science field), user satisfaction, as well as modeling user
behavior. Therefore, we consider think time behavior of an HPC system as a single entity. We
conduct analyses on subsets of jobs from major science fields as shown in Table 2.1. Due to pri-
vacy issues, we do not perform analysis down to the job level, but to group of jobs belonging to a

1 http://www.alcf.anl.gov/user-guides/job-scheduling-policy-bgq-systems,
accessed 08/30/2016
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2.2. Characterizing Think Time

science field. Detailed analysis on project level could allow conclusions on potentially classified
experiments, assuming that projects run simulations with unique timing and resource characteris-
tics. In addition to the Computer Science field, Biological Sciences jobs are also not considered,
since the total number of jobs is less significant than the sum of jobs from the remaining fields.
The total number of jobs from the five major fields (Physics, Materials Sciences, Chemistry, Engi-
neering, and Earth Science) represents about 76% of the entire workload, where 31% of jobs are
from Physics.

Figure 2.1a shows the average number of jobs submitted per week and Figure 2.1b per hour
of the day. The distribution of job submission for the entire workload (Mira) and for the major
sciences is very similar. As expected, most submissions occur during working days, and between
working hours (9am. to 6pm.). Due to regular maintenance procedures (which occurs every other
Monday), the number of jobs submitted on Mondays is lower when compared to the other working
days. As a result, an increase in the number of job submissions is observed on Sundays, which
is believed to occur due to users who submit jobs in advance of the maintenance downtime, and
thereby have their jobs start running as soon as the downtime is over. Although Mira is also used
by a large international community with members not necessarily located in U.S. timezones, the
workload follows the expected daily and weekly patterns. This behavior is mainly due to the very
small number (nearly negligible) of international job submissions when compared to the workload
submitted by researchers located under the American timezones. The behavior similarity among

(a) (b)

Figure 2.1.: Average job arrival times per weekday (a) and per hour (b).

Mira’s workload and its science fields allows to infer that most of the users follow the guidance
on best practices for job submission, e.g., due to training sessions. Hence, the analyses conducted
further in this chapter consider a comparison between the user behavior of the entire workload and
per major science field is reasonable.

2.2. Characterizing Think Time

In this section, we extend this analysis by investigating whether one of the two components of
response time, waiting time or runtime respectively, have a more significant impact on user be-
havior. Feitelson only analyzed these characteristics combined as response time or slowdown [6].
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Additionally, we evaluate how job complexity (in terms of job size and total CPU time) may also
affect user behavior.

2.2.1. Overall Analysis of Think Time

Limiting the consideration of think times of less than eight hours (cf. Section 1.2) means that
we only considers a fraction of the dataset (about 19% of the total number of jobs), and thereby
the analysis may not capture all aspects influencing user behavior. Nevertheless, this constrained
dataset provides unbiased patterns of the user’s subsequent job submission behavior. In Sec-
tion 2.3, we discuss the implications of this constraint on our findings when contrasted with the
overall knowledge acquired in the production environment.

Science Field #TT Jobs

Physics 2,675
Materials Science 1,530
Chemistry 1,959
Engineering 1,870
Earth Science 1,397

Mira 14,145

Table 2.2.: Number of subsequent jobs with positive think times: 0 < TT ≤ 8hrs.

Figure 2.2.: Average think times in several traces from the Parallel Workloads Archive and Mira.
The average subsequent think times show an equivalent trend as described by Feitel-
son [6].

Figure 2.2 shows the average subsequent think times in terms of response time for the subse-
quently submitted jobs identified in Table 2.2. The standard deviations σ are in the range between
[208.5s, 345,0s] for response times of one second and increase to [8684.8s, 9139.7s] for the great-
est bin of response times up to eight hours. Response times are binned on a logarithmic scale. For
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the sake of simplicity and comparison purposes, averaged values are shown as continuous lines
instead of bar charts or histograms. In order to validate our findings, we compare the think time of
Mira’s trace to several HPC traces from the Parallel Workloads Archive [2]. Although the traces
from the archive are about two decades old, similar think time behavior can still be observed in
today’s systems. In the remaining of this chapter, we investigate whether the response time (and
its components) are the sole factors impacting the think time, or other system performance metrics
and job characteristics also significantly influence user behavior.

2.2.2. Analysis of Job Characteristics and Performance Parameters on Think Time

So far, the analysis of think time behavior is often limited to the study of the impact of response
time on user behavior. As response time is defined as a function of waiting time and processing
time (Equation 1.1), we are then interested in evaluating how these parameters correlate with users’
think times.

Figure 2.3a shows the average think times for subsequent jobs of Mira and its major science
fields. All fields follow the same linear trend. We observe slight differences for Engineering (for
short response times) and Physics (for response times around 5,000s). This difference in behavior
is due to a few points that deviate from the averages. For Engineering, the peak is due solely
to a pair of jobs that present a very high think time value (about 8h). For Physics, a few points
yield very low values (nearly instantaneous submissions). This behavior is typically due to the
use of automated scripts or jobs that failed within a few seconds after submission. The analysis
of think times in terms of processing time (Figure 2.3b) and waiting time (Figure 2.3c) shows that
on average, the parameters have an equal influence on user behavior. Note that as the graphs show
average values, the magnitude of the average subsequent think times (y-axis) may vary since jobs
within a bin (x-axis) may also vary for different parameters. This result leads to the conclusion
that reducing queueing times would not significantly improve think times for long running jobs.
In order to validate this assumption, we perform a comprehensive analysis of these parameters in
the next sections.

Feitelson also analyzes think times in terms of job slowdown [6]. Therefore, we also con-
sider slowdown in this analysis. Figure 2.3d shows the average think time in terms of slowdown.
Similarly to the results obtained by Feitelson, the slowdown does not drive submission behavior.
However, some peaks and throughs are observed for large slowdown values. These points (called
outliers) represent an average obtained from a few (or a single) jobs, which do not represent a
significant portion of jobs. Later in this section, we discuss why these outliers are not considered
in the analysis.

Moreover, we consider the workload of jobs in CPU hours. Figure 2.3e shows the average
think time for subsequent jobs as a function of the job size. For small jobs (up to ∼103 nodes),
average think times are relatively similar and below 1.5 hours. A slight increase is observed
as the number of nodes increases, in particular for Material Sciences and Earth Science fields.
For large jobs, think times substantially increase. This result leads to the following plausible
conclusions: (1) users do not fully understand the behavior of their applications as the number
of cores increases; (2) resource allocation for larger jobs is delayed by the system, which may
increase the queueing time and thereby uncertainty, which directly influences response time; or
(3) larger jobs require additional settings and refinements since the job complexity increases as
more nodes are used (e.g., message synchronization, I/O, etc.). On Mira, it is unlikely that large
jobs are delayed, since the system gives them priorities. However, if several of these jobs are
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(a) (b)

(c) (d)

(e) (f)

Figure 2.3.: Average think times as a function of (a) response time, (b) runtime, (c) waiting time,
(d) slowdown, (e) job size (number of nodes), and (f) workload (total CPU time).
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Attribute V Std. dev. of think times
smallest group of attribute value largest group of attribute value

Response Time (Fig. 2.3a) [295.6s ; 2,882.4s] [8,442.4s ; 9,505.9s]
Runtime (Fig. 2.3b) [653.0s ; 3,665.9s] [1,139.0s ; 9,283.4s]
Waiting Time (Fig. 2.3c) [474.0s ; 6,650.9s] [7,152.9s ; 10,196.0s]
Slowdown (Fig. 2.3d) [6040.0s ; 8,012.0s] [5,693.4s ; 11,692.0s]
#Nodes (Fig. 2.3e) [1,663.0s ; 3,950.5s] [4.727,2s ; 8,386.3s]
Workload (Fig. 2.3f) [3,141.2s ; 6,893.8s] [5,968.2s ; 9,687.8s]

Table 2.3.: Standard deviations of think times.

Attribute V c1 c2 (in s) MSE (in s2)
√

MSE (in s)

Response Time (Fig. 2.3a) 0.694 1,585.8 3.02·106 1,737.4
Runtime (Fig. 2.3b) 0.755 2,001.1 4.39·106 2,095.5
Waiting Time (Fig. 2.3c) 0.674 2,628.1 2.95·106 1,717.0
Slowdown (Fig. 2.3d) 26.638 5,492.7 4.47·107 6,682.7
#Nodes (Fig. 2.3e) 0.215 2,916.8 9.59·106 3,096.9
Workload (Fig. 2.3f) 0.0002 2,607.1 5.91·106 2,431.0

Table 2.4.: Parameters and qualities of linear regressions of subsequent think times in the Mira
trace.

submitted concurrently, the waiting time may become important. Thus, in the next section we also
investigate the job size parameter in further detail.

The think time is also heavily correlated to workload (Figure 2.3f). A significant growth is
observed for jobs that consume over 106 seconds (∼277 CPU hours). Note that this workload
characteristic is stronger correlated to user behavior than job size. Material Sciences, Engineering,
and Earth Science fields are the most impacted by large workloads. Similar conclusions could also
be made for the workload parameter. Thus, we also investigate this parameter further in the next
section.

Table 2.3 contains an exemplary subset of standard deviations for each subfigure of Figure 2.3.
We present the intervals of standard deviations of all science fields for both, the smallest and
largest attribute values for each plot, respectively. For most of the plots we experience an increase
of deviation for increasing job attribute values.

Linear Fit. The plots shown in Figure 2.3 also present the correlation between different job at-
tributes and the subsequent think time described as linear regressions (solid black lines). Table 2.4
shows the parameters of a linear fit in the form TT(v) = c1 · v+ c2, where v ∈ V represents a
value of the considered attribute V (i.e., runtime, slowdown, etc.), c1 is the slope, and c2 is the
intercept. Note that we ignore outliers as described below and shown in Table 2.5. Additionally,
Table 2.4 also shows the quality of the fit quantified as the mean squared error (MSE), and the
root-mean-square deviation (

√
MSE).

The waiting time component yields better average subsequent think time predictions (
√

MSE =
1,717.0s), followed by the response time (

√
MSE = 1,737.4s). As a result, modeling average

subsequent think time by means of response time, as performed in previous works, is outper-
formed by a linear fit according to waiting time. Fitting linear functions of runtime, number
of nodes, and workload yield qualities in terms of the root-mean-square deviation ranging be-
tween [2,095.5s, 3,096.9s]. As expected, the slowdown component yields poor quality estimates
(
√

MSE= 6,682.7s) due to weak linear correlations between slowdown and subsequent think time
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Science Field response time slowdown job size workload
≥ 104 > 120 > 32,768 > 108

Physics 227 11 1 8
Materials Science 219 13 0 3
Chemistry 147 5 2 4
Engineering 205 5 2 5
Earth Science 91 2 0 0

Mira 1,067 57 19 23

Table 2.5.: Number of outlier jobs with positive think times for job characteristics and performance
parameters.

values.

Outlier jobs. The analyses shown in Figure 2.3 were computed as average values of subsequent
think times. Table 2.5 shows the number of jobs per studied parameter (job characteristics and
performance) for large values of each parameter (where think times often increase). For large
response times (over 2.7 hours), the subset of jobs represent a significant fraction of the analyzed
dataset (about 8% of the subsequent jobs with positive think times). However, the number of jobs
for large slowdown (> 120s), job size (over 32K nodes), and workload (over 27K CPU hours)
parameters is below 0.05% of the total number of subsequent jobs analyzed, thus these pairs of
jobs are considered outliers, and are not taken into account in our considerations. The average
think time values associated with these few jobs are very volatile compared to the majority of jobs,
e.g., the think time associated with high workload (Figure 2.3f) is either very high for Physics or
Earth Science, while it is very low for Chemistry and Engineering. Therefore, we assume that
these values represent outliers. Since these outliers could lead to misleading conclusions, we use
boxplots adjusted to skewed distributions in the analyses conducted in the rest of this chapter.

2.2.3. Analysis of Job Characteristics in Terms of Runtime and Waiting Time

In the previous subsection, the analysis of think times for subsequent job submissions of the Mira
workload trace and its science fields showed that system performance metrics such as runtime and
waiting time, as well as job characteristics (e.g., job complexity), correlate with subsequent job
submission behavior. Hence, we investigate how job characteristics, in particular the job size and
workload, combined with performance parameters impact think times. To this end, we conduct
analyses using multidimensional metrics, i.e., we analyze the subsequent think time in response to,
for example, slowdown and job size. Note that the slowdown is per itself another multidimensional
metric (runtime and waiting time, Equation 1.5).

The analyses conducted here use the job slowdown sd as a metric to separate jobs into two
subsets: (1) runtime-dominant—the job runtime prevails the waiting time (sd ≤ 2); and (2) wait-
time-dominant—jobs spend more time in queue than running (sd > 2).

Figure 2.4 shows the average think times according to job sizes. We divide the dataset into
groups of small jobs that require the minimum amount of allocated nodes (m≤ 512, Figure 2.4a),
which represent 49.2% of the total number of subsequent jobs used in this analysis (and about
9% of the entire dataset), and large jobs requiring up to all available nodes (512 < m ≤ 49,152,
Figure 2.4b). This threshold is derived from the analysis of Figure 2.3e, where this group repre-
sents the subset of jobs with low think time values (under 1.5 hours). In the boxplots shown in
Figure 2.4 and in the following analyses, whiskers are defined as 1.5 IQR (interquartile range, i.e.,
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(a) m≤ 512 (b) m > 512

Figure 2.4.: Influence of prevalent (sd ≤ 2) and non-prevalent (sd > 2) runtimes on think times
for (a) small and (b) large jobs in terms of job size (number of nodes). Note that sd
denotes slowdown, and whiskers are defined as 1.5 IQR.

the distance between the upper and lower quartile). Several outliers (points beyond the upper inner
fence) characterize the datasets as heavy-tailed distributed, which is expected due to the natural
variation of the user behavior and the large number of sampling data. Therefore, our analyses use
the median as a robust metric to cope with outliers.

In both scenarios, think times are relatively small when runtime prevails. The median think time
is 507s for small jobs, and for large jobs 439s. The third quartile also yields low think time values
(2,083s for small jobs, and 2,361s for large jobs). Additionally, user behavior does not seem to be
impacted by the job complexity in terms of job size—the average think times for both small and
large jobs are of similar magnitude. Note that the third quartile values for runtime-dominant jobs
are below median values of wait-time-dominant jobs. Prevailing waiting times may significantly
affect user behavior. Furthermore, the job size seems to influence the queueing time. For small
jobs, the median think time is 2,478s, and for large jobs 4,276s. This result leads to the conclusion
that the think time is not directly bound to job size, but also by increased waiting times.

The analysis of the job size parameter is limited to one dimension (number of nodes). On the
other hand, the job workload (Equation 1.6) also includes the time dimension. Figure 2.5 shows the
average think times according to the workload. The small subset of jobs is characterized by jobs
that consume less than ∼277 CPU hours (106s). Similarly to the previous analysis, this threshold
is derived from the analysis of Figure 2.3f, where this group represents the subset of jobs with low
think time values (under 1.5 hours). In contrast to the previous analysis, more complex jobs (in
terms of workload) yield higher think times. Nevertheless, similar behavior is observed when the
runtime or waiting time prevail. Runtime-dominant small jobs have a median think time of 437s,
and large jobs of 1,305s. However, the third quartiles present a larger difference—1,478s for small
jobs, and 6,544s for large ones. Waiting times have equivalent influence on the job size analysis.
For small jobs, the median think time is 1,954s, and for large jobs 5,645s. These results lead to
the possible conclusions that: (1) more complex jobs require more think time to plan and release a
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(a) ω ≤ 106s (b) ω > 106s

Figure 2.5.: Influence of prevalent (sd≤ 2) and non-prevalent (sd > 2) runtimes on think times for
(a) small and (b) large jobs in terms of workload. Note that sd denotes slowdown, and
whiskers are defined as 1.5 IQR.

new experiment (e.g., it may include visualization and analysis on other systems); or (2) users do
not have full control or knowledge of the expected behavior of their jobs, and as a result they do
not have an accurate estimate of the processing time. In order to validate the first assumption, we
would need further workload traces from visualization systems used by experiments running on
Mira. This would allow to link information of both traces to get insights on the working day and
the causes of think time. Nevertheless, the second assumption could be evaluated by investigating
jobs that used a notification mechanism to alert the user of job completion, which is the focus of
the next section.

2.2.4. Influence of Job Notifications on Think Time

Users at Mira can monitor their jobs through a web interface2, or via a notification mechanism by
using command-line tools, i.e., emailing the user upon job completion. We are interested in how
the notification mechanism influences user behavior. Since the term think time implies that users
think about the results of the previous experiment before submitting a new one, it is also possible
that this think time is significantly influenced by the unawareness of job completion. Then, the
term think time would also cover unawareness of job completion. In this case, this definition would
contradict the intuitive meaning of thinking and shift the perspective of how the timespan between
job completion and subsequent submission is accounted.

From Mira traces, 17,736 out of 78,782 jobs used the provided notification mechanism—an
email was sent to the user to notify of job completion. We divide the dataset into two subsets
(whether they use or do not use the notification mechanism), and compute the think times between
subsequent job submissions (Figure 2.6). Surprisingly, the overall user behavior is nearly iden-
tical regardless of whether the user receives a notification. Nevertheless, we experience a slight

2 http://status.alcf.anl.gov/mira/activity, accessed 08/30/2016
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Figure 2.6.: Average think times as a function of response time for jobs with and without notifica-
tion upon job completion.

improvement of average subsequent think time for response times of up to ∼100s. These jobs
represent less than 1% of the total number of jobs, and about 40% of them are failed jobs, which
could justify short time intervals between resubmissions. For jobs with response times between
about 100s and 400s, we observe the opposite picture: notification actually leads to greater av-
erage subsequent think times. For larger values, both think times increase at similar rate. The
standard deviations σ are within the following ranges: Mira [295.6s, 8,684.8s], Mira notified
[593.3s, 7,909.9s], Mira not notified [296.5s, 8,684.8s].

The analysis of job characteristics, in particular the workload, revealed that job complexity may
significantly impact user behavior (Figure 2.5, Section 2.2.3). Therefore, we examine whether the
use of a notification mechanism may influence think time. We adopt the same strategy to split the
dataset into small and large workloads, where the small subset is composed of jobs in which the
workload is less than about 277 CPU hours (ω ≤ 106s), i.e., the average think time is below 1.5
hours. For each subset, we analyze groups of jobs according to whether they use notification or
not. In addition, we investigate whether job completion awareness influences user behavior when
the job runtime (sd ≤ 2) or the waiting time (sd > 2) prevail.

In spite of active efforts to increase user satisfaction, the use of a notification mechanism does
not seem to significantly impact user behavior regardless of the complexity of the workload (Fig-
ure 2.7). For small workloads (Figures 2.7a and 2.7b), the median think times are of 394s (sd
≤ 2) and 2,651s (sd > 2) when users are notified, and of 442s (runtime-dominant) and 1,812s
(wait-time-dominant) otherwise. For large workloads, the medians are of 2,000s and 5,659s when
users are aware of job completion (Figure 2.7c), and of 1,034s and 5,527s when no notification
mechanism is in place (Figure 2.7d). Intriguingly, lower think time values are observed when no
notification mechanism is used, in particular for large workloads. In both scenarios (runtime or
waiting time dominance), the third quartile as well as the median values of think times are lower
when users were not notified. This result shows that the unawareness of job completion does
not prevent users to trigger the next steps of their experiments (e.g., another computing job or a
visualization analysis).
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(a) Small, with notification (b) Small, without notification

(c) Large, with notification (d) Large, without notification

Figure 2.7.: Influence of job completion awareness for small (ω ≤ 106s) and large (ω > 106s)
workloads, and for runtime (sd ≤ 2) or waiting time (sd > 2) prevalence. Note that sd
denotes slowdown, and whiskers are defined as 1.5 IQR.

2.3. Summary and Discussion

The comprehensive trace-driven analysis of user behavior recorded in the Mira trace has advanced
the understanding of think times between subsequent job submissions in HPC. Although com-
putational systems have significantly increased their processing and storage capabilities and ap-
plications have become more complex, the user behavior has remained similar over the last two
decades. Our findings sustain the premise that the job response time is the most significant factor
in the length of think time. However, not all elements constituting the response time have equiva-
lent influence. Job characteristics such as the job size and workload have a substantial impact on
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the queueing time a job will experience (e.g., the larger the workload, the longer will the waiting
time be). Therefore, we argue that the think time definition should also consider job complexity.
For large workloads, the job runtime also negatively influences user behavior, regardless of short
queuing times. One may argue that this result is due to the lack of knowledge about the application
(e.g., bad estimation of runtime), or long waiting intervals increase the uncertainty of the system
status. A simple approach to tackle these issues is to notify users upon job completion. However,
our findings demonstrate that the job completion notification is not correlated to think time. This
result suggests that users need more time to think about their experiment results and next steps, in
particular when an experiment is complex. Note that the think time definition considers a threshold
of 8h between submissions, thus notifications over night are not considered.

The analysis results contradict the assumptions made for the development of user-aware algo-
rithms based on batches and sessions, such as the CREASY scheduler [39] (which was discussed
in Section 1.1). For instance, the CREASY scheduler considers response time as the main factor to
increase steadiness within user sessions. However, we have demonstrated that other characteristics
correlate comparably with the delays in subsequent job submission behavior. Therefore, we argue
that user-aware scheduling should not only consider response time, but also job characteristics
such as the job complexity, for example.

Furthermore, we showed that the notification mechanism does not improve think time behavior.
As a matter of fact, it induces a negative impact in some cases (which is controversial). We
then argue that users and the subsequent job submission behavior have been influenced by other
underlying mechanisms.

Another aspect that should be considered is that the think time may also include the time that the
user spends on other steps of the experiment. In modern sciences, it is common to perform further
computational analysis and visualization within an experiment. ALCF users, for instance, use
separate systems to perform these computations. During the time covered by the workload trace,
a system called Tuckey served this purpose, which is still in use up to date. In this case, the time
spent on this system should also be taken into account to accurately define think times. In order to
capture this workflow, we argue that a user-assisted analysis would significantly contribute to the
understanding of this process.

The main conclusions and recommendations of this work are summarized as follows:

• We have shown that the data source clearly represents human user behavior, and that the
trace therefore suffices as a source for data-driven behavior analysis;

• There is no shift on the think time behavior during the past twenty years, although comput-
ing hardware and managing have changed dramatically. This similar behavior is obtained
due to the current restrictive definition to model think time;

• Simulating submission behavior has to consider other job characteristics and system perfor-
mance components beside the response time (which has been demonstrated in a data-driven
manner).

• Our findings demonstrated that a notification mechanism has no influence on the subse-
quent user behavior. Consequently, there is no need to model user (un)awareness of job
completion in performance evaluation simulations.
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3. Advanced Think Time Analysis of the CMS
HTC Workload Trace

In this chapter, we investigate whether the method of analyzing user behavior in HPC in terms
of think time is also suitable for evaluating the feedback effects in high-throughput computing
(HTC) systems. Although these systems are designed to attend different needs—HPC jobs are
mainly tightly-coupled, while HTC jobs are mostly embarrassingly parallel (bags of tasks)—they
share common concepts inherent to parallel environments. Therefore, we aim at unveiling simi-
larities and differences in human job submission behavior in both systems. We focus on the two
submission properties resulting from individual human user behavior: (1) the characterization of
working in batches (Section 1.2), and (2) the user behavior in terms of think times. We analyze
and compare workload traces from Mira as an HPC system, and from the CMS experiment, which
applies the HTC concept. The main conclusions of this chapter include:

1. Although HTC jobs may be composed of thousands of embarrassingly parallel jobs, the
general human submission behavior is comparable to the one of HPC;

2. While there are several methods for characterizing and estimating HPC submission batches,
additional information is required to properly identify HTC batch submission;

3. Inter-job submission behavior, in terms of think time, is comparable between HPC and HTC
users;

4. Despite a clear correlation between job waiting times and the subsequent think times at
Mira, this correlation is absent in the CMS experiments due to the dynamic behavior of
queuing times within bags of tasks.

3.1. Workload Trace Characterization

This chapter is based on the CMS trace and the Mira trace (Table 6.1). In the previous section,
we have already given a detailed overview of the Mira trace. Therefore, we will introduce an
overview of the HTCondor trace here. The trace records experiments run in the HTCondor pool
for the CMS experiment deployed at the San Diego Supercomputing Center [3]. Table 3.1 show
the main characteristics for this workload.

The CMS workload is composed of single-core (embarrassingly parallel) jobs submitted as
bag of tasks. Each bag of tasks belongs to a certain experiment, which is run by a unique user.
A typical CMS analysis consists of the execution of collision readout events, which are stored
in files (approximately of the same size) logically grouped into datasets. In principle, all CMS
experiments use the same software base, CMSSW, but users may define their own code, analyses,
etc. CMS jobs are then distributed among several computing centers for execution. Two separate
traces represent the months of August and October 2014, which we denote by CMS08 and CMS10.
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In Mira, the workload is composed of multicore (tightly-coupled) jobs. Figure 3.1a shows the
distribution of jobs’ resource requirements in terms of the number of nodes. In this chapter, we
focus on the subset of jobs submitted by the Physics science domain, which enables a fairest
comparison possible between both HTC and HPC workloads due to its similarity of the science
domain. Additionally, we also consider the minimum job allocation size (512 nodes) at Mira,
which we denote as 1 rack. This subset represents small jobs and represents reference jobs to
evaluate similarities between HTC and HPC jobs.

Figures 3.1b and 3.1c show the average number of jobs submitted per day of the week and per
hour of the day for both workloads, respectively. The distribution of job submissions for the entire
workload (Mira) and for the Physics science field is very similar. Also, the distribution of CMS
job submissions follow similar patterns. As expected, most of submissions occur during working
days, and between working hours (9a.m. to 6p.m.). Due to Mira’s regular maintenance procedures
(which occurs every other Monday), the number of jobs submitted on Mondays is lower when
compared to the other working days and with the CMS workload (cf. Section 2.1.1). The behavior
similarity among the workloads, and in particular the Physics science field, allows to infer that the
analyses conducted further in this chapter, considering a comparison between the user behavior
across computing systems, is reasonable.

3.2. User and Job Submission Behavior

Users may describe experiments as bags of tasks in order to conduct parameter sweep studies,
or they may submit pipelines (or scientific workflows) that consist of sequential jobs with prece-
dence constraints. Typically, HPC jobs are mainly tightly-coupled and require large amount of
computing power which is statically constrained before execution, while HTC jobs are mostly
embarrassingly parallel and can therefore be executed dynamically. In this section, we analyze
the user’s subsequent job submission behavior, in terms of think time, and the batch-wise sub-
mission in HPC and HTC. We first characterize HTC workloads with common methods used to
capture and assess the dynamic effects in HPC. Then, we evaluate the quality of the analysis’
results by comparing them to an HPC characterization and the bag of task information provided
in the HTC workloads. Finally, we extend the current methods by broadening their definitions to
accommodate the concept of bags of tasks.

Characteristic August 2014 (CMS08) October 2014 (CMS10)
General Total number of jobs 1,435,280 1,638,803
workload Total number of users 392 408

Total number of execution sites 75 72
Total number of execution nodes 15,484 15,034

Jobs Completed jobs 792,603 816,678
statistics Preempted jobs 257,230 345,734

Exit code (!= 0) 385,447 476,391
Average Std. Deviation Average Std. Deviation

Job proc. time (in seconds) 9,444.6 14,988.8 9967.1 15,412.6
Disk usage (in MB) 55.3 219.1 32.9 138.9
Memory usage (in MB) 217.1 659.6 2030.8 170.5

Table 3.1.: Characteristics of the CMS workload for a period of two months (August and Octo-
ber 2014).
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(a) (b)

(c)

Figure 3.1.: Histogram of job resource requirements at Mira (a), and average job submission in-
terarrival times per day (b) and per hour (c). Note that ‘1 rack’ denotes the minimum
allocation in Mira, i.e., 512 nodes.
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(a) Think time / response time (b) Think time / waiting time

Figure 3.2.: Average think times as a function of response or waiting time for the CMS and Mira
workloads.

3.2.1. Characterizing Think Time

Figure 3.2a shows the average subsequent think times in terms of response time for the Mira
and CMS workloads (standard deviation intervals: Mira [295.6s, 8,684.4s], Mira 1 rack [295.6s,
8,592.7s], Mira Physics [2065.0s, 8,645.1s], Mira Physics 1 rack [2,032.7s, 7,374.3s], CMS08
[420.9s, 8,794.6s], CMS10 [1,266.4s, 8,352.8s]). Response times are binned on a logarithmic
scale. Both workloads follow the same linear trend. However, we observe higher subsequent think
time values for the CMS workloads (which present nearly equal behavior), while Mira-Physics
(and its minimum allocation ‘1 rack’) yield much lower think time values. As think time is defined
as a function of waiting and processing times, the high values experienced by the CMS workloads
may be due to long and indeterministic waiting times experienced in HTC systems, which may in-
fluence the response time of jobs in a bag of tasks. Figure 3.2b shows the average subsequent think
times in terms of waiting time (standard deviation intervals: Mira [3741.9s, 8,852.1s], Mira 1 rack
[623.2s, 8,754.4s], Mira Physics [3239.0s, 8,757.6s], Mira Physics 1 rack [3214.2s, 7,488.6s],
CMS08 [1396.4s, 8,603.5s], CMS10 [635.5s, 8,323.8s]). For the CMS workloads, the waiting
time has significant influence on jobs with very short queuing time. This nearly constant behavior
is atypical and unexpected in such environment. However, as the waiting time increases, the think
time follows a linear increase. In Section 3.2.3, we investigate the causes of this atypical behavior.

3.2.2. Characterizing Batches of Jobs

In order to unveil users’ working behavior, i.e.,when they are actively working on certain experi-
ments, user-triggered job submissions are often clustered and denoted as batches. Typically, batch
sizes in HPC systems are estimated from methods to detect whether two jobs belong to the same
batch [17]. These methods focus on the analysis of submit and response times, and commonly
consider that two jobs successively submitted by a user belong to the same batch if the interarrival
time i j, j′ between their submission times is within a defined batch size threshold ∆:

i j, j′ := s′j− s j ≤ ∆, (3.1)
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for subsequently submitted jobs j and j′ from the same user. Note that overlapping (s′j < c j) and
non-overlapping jobs (s′j ≥ c j) may belong to the same batch (cf. Equation 1.3).

Figure 3.3 depicts the impact of the interarrival time threshold on batch sizes for ∆ = 600s,
1200s, 1800s, 2400s, 3000s, and 3600s. For the Mira workload (Figure 3.3a), most of the jobs
are unique within a batch (about 50%), or belong to a batch with at most five jobs (up to 80%
of the dataset). Similar behavior is observed for the Physics science domain (Figure 3.3b), and
for jobs which required the minimum resource allocation (Figures 3.3c and 3.3d). In Mira, each
user is allowed to have at most 20 jobs in queue simultaneously (except for special arrangements).
This constraint does not negatively impact the user behavior since most of batches are composed
of a few jobs, and batches do not overlap very often. For the CMS workloads (Figures 3.3e
and 3.3f), batches are composed of several jobs described as bags of tasks. Table 3.2 shows the
number of batches, the maximum number of jobs within a batch, and the percentage of batches
composed of at most 20 jobs for the minimum (∆ = 600s) and maximum (∆ = 3600s) interarrival
time thresholds. In both cases, about 20% of the CMS experiments are composed of more than
1000 jobs, with some batches larger than 10K jobs. Although parameter studies may explore
large input parameter spaces, it is unlikely that a single CMS experiment computes over 50K jobs
(as shown in Table 3.2). This result suggests that large interarrival thresholds may not capture
the actual job submission behavior, or the method used to estimate batch sizes in HPC is not
appropriate to handle the fine granularity of HTC jobs. In the Mira workload, jobs within a batch

∆ = 600s ∆ = 3600s
Trace #batches size ≤ 20 max size #batches size ≤ 20 max size

Mira 35641 99.81% 158 20135 98.14% 690
Mira 1 rack 18909 99.88% 71 10684 98.55% 617
Mira Physics 11230 99.83% 56 5221 97.80% 628
Mira Physics 1 rack 5304 99.92% 31 2159 97.45% 617
CMS08 7319 49.82% 57990 4472 42.87% 58307
CMS10 8723 44.73% 20284 5127 39.91% 24418

Table 3.2.: Batch statistics for 10min (∆ = 600s) and 1h (∆ = 3600s) interarrival time thresholds.

are often submitted manually by the researcher, while jobs belonging to a CMS experiment are
mostly submitted at once through an automated system. Consequently, a large threshold value
may result in clustered batches. For instance, Ferreira da Silva and Glatard have observed that
batch size estimates are off by about 30% for bags of tasks in scientific workflows [10]. In the
next subsection, we investigate the impact of different thresholds on the batch size for the CMS
workloads, and how bags of tasks influence the analysis of think time behavior.

3.2.3. Redefining Think Time Behavior Analysis in HTC

An HTC experiment is often defined as a bag of tasks problem. In the previous sections, we
demonstrated that the CMS workloads have similar job submission behavior, in terms of think
time, to the HPC workload. However, further analysis revealed that handling HTC workloads at
the job granularity leads to misinterpretations of the data. Therefore, we extend the definition of
think time (Equation 1.4) to compute the time interval between subsequent bags of tasks (BoT)
submissions. We denote the set of jobs forming a BoT with J. Hence, the think time TT between
two subsequent bags of tasks J and J′ submitted by the same user is defined as:

TTJ,J′ := sJ′− cJ, (3.2)

37



3. Advanced Think Time Analysis of the CMS HTC Workload Trace

(a) Mira (b) Mira-Physics

(c) Mira 1-rack (d) Mira-Physics 1-rack

(e) CMS08 (Aug 2014) (f) CMS10 (Oct 2014)

Figure 3.3.: Impact of different threshold values (in seconds) on estimated batch sizes for the Mira
and CMS workloads.

where sJ′ is the submit time of the BoT J′, and cJ is the completion time of the BoT J. We then
define the submit time sJ , waiting time wJ , completion time cJ , and response time rJ of a bag of
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(a) interarrival times CDF (b) Think time / response time

(c) Think time / waiting time

Figure 3.4.: Distribution of interarrival times and think times related to response and waiting times
for approximated bag of tasks (∆ = 60s).

task J depending on all jobs in j ∈ J as follows:

sJ := min{s j | j ∈ J}, (3.3)

wJ := min{s j +w j | j ∈ J}− sJ, (3.4)

cJ := max{c j | j ∈ J}, (3.5)

rJ := cJ− sJ. (3.6)

Using the basic definition of batches in HPC, two jobs submitted by the same user are considered
part of the same BoT, if their interarrival time is within a threshold ∆ (cf. previous section). Nev-
ertheless, this definition does not account for overlapping BoT submissions. The CMS workloads
provide an additional experiment field, which relates a job to an experiment. We then extend the
aforementioned definition to also restrict BoTs to the same experiment in addition to the user.
Since bags of tasks are defined as immediate submissions, we analyze the CDF plot of job in-
terarrival times for both HTC traces, CMS08 and CMS10 (Figure 3.4a). The interarrival time
distribution shows that most of the jobs belonging to the same experiment and user (97%) are
submitted within one minute. Therefore, we use this threshold (∆ = 60s) to distinguish between
automated bag of tasks submissions and human-triggered submissions (batches).
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Figure 3.4b shows the average subsequent think times in terms of response time for approxi-
mated bag of tasks (standard deviation intervals: Mira [295.6s, 8,684.8s], Mira 1 rack [295.6s,
8,228.1s], Mira Physics [2,065.0s, 8,438.4s], Mira Physics 1 rack [2,032.7s, 7,3052s], CMS08
[135.8s, 8624.0s], CMS10 [43.1s, 7,975.9s]). Both HTC workloads follow the same linear trend.
However, we observe lower subsequent think time values when compared to the standard analysis
based on individual jobs shown in Figure 3.2a. Note that the think time behavior of the CMS
workloads is also closer to the HPC behavior. This result indicates that HTC BoTs are comparable
to HPC jobs.

Moreover, Figure 3.4c shows the average subsequent think times in terms of waiting time (stan-
dard deviation intervals: Mira [3741.9s, 8,404.1s], Mira 1 rack [623.2s, 8,126.5s], Mira Physics
[3,239.0s, 8,839.6s], Mira Physics 1 rack [3214.2s, 8,380.7s], CMS08 [1656.6s, 10,335.0s],
CMS10 [2,220.7s, 8,513.0s]). Similarly to the analysis shown in Figure 3.2b, the user behav-
ior in CMS is not related to waiting time. We acknowledge that the definition of waiting time for
bags of tasks (Equation 3.4) may not capture the actual think time behavior: we assume that the
BoT waiting time is defined as the timespan between the first job submission and the earliest job
start time of a BoT. The indeterministic waiting times experienced from the remaining jobs may
significantly impact the user behavior. As we experienced comparable results for user behavior
at Mira, where user behavior is also strongly correlated to job complexity (in terms of number of
cores) in the previous chapter, we argue that the HTC user behavior is mostly influenced by the
number of jobs in a batch.

Analysis of different think time definitions. Most workload traces are devoid of bag of tasks or
experiment identifier information. Therefore, we investigate different definitions of think time, in
terms of how the job granularity is defined (e.g., BoT per user or experiment, or individual jobs),
and their effect on data misinterpretations. Therefore, we define Bexp as the aggregation of bags of
tasks based on jobs submitted by the same user and belonging to the same experiment (Figure 3.5).
Bexp represents the ground-truth knowledge and is used to evaluate the accuracy of the following
definitions: (1) Buser, bags of tasks are defined based on jobs submitted by the same user (the most
common method, with a mechanism to detect bags of tasks with an interarrival time threshold of
less than 60 seconds); and (2) general, jobs are treated individually (Figure 3.2).

Figure 3.5 shows the average subsequent think times in terms of response time for the three
definitions on both CMS workloads (standard deviations CMS08: Bexp [135.8s, 9,135.3s], general
[420.9s, 8.7946s], Buser [1,695.1s, 9,060.3s], standard deviations CMS10: Bexp [101.2s, 8,367.2s],
general [572.5s, 8,352.8s], Buser [1,007.6s, 9,116.8s]). All three data sources have comparable
correlation between response time and subsequent think time. However, the subsequent think
time behavior for the general definition is closer to Bexp than Buser. The root-mean-square
error (RMSE) between general and Bexp is 1,021.5s for CMS08 and 1,215.3s for CMS10, while
RMSE between Buser and Bexp is 1,287.9s for CMS08 and 2,451.7s for CMS10.

3.2.4. Characterizing Batch-Wise Submission Behavior in HTC

The analysis conducted in Section 3.2.2, with HTC batches computed from individual embarrass-
ingly parallel jobs, resulted in misleading interpretations of batch sizes. In the previous section,
we have demonstrated that user behavior is driven by the submission of bags of tasks. Therefore,
we aim to estimate how often a user triggers bags of tasks within experiments in a batch.

The ground-truth knowledge represented by Bexp provides the actual batch size for the CMS
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(a) CMS08 (Aug 2014) (b) CMS10 (Oct 2014)

Figure 3.5.: Comparison of different data interpretations for think time computation in the CMS
workloads. Bexp is the ground-truth knowledge.

workloads. Since this knowledge is often unavailable, we also evaluate the accuracy of the com-
mon method to estimate BoTs based on jobs submitted by the same user (Buser). Figure 3.6 shows
the impact of the interarrival time threshold (∆ = [600s, 3600s]) on batch sizes for both Bexp and
Buser. For the actual batch sizes (Figures 3.6a and 3.6b), most of the users (∼95%) submit up
to four bags of tasks regardless the interarrival time threshold. This result indicates that HTC
users have less bursty batch submission patterns than HPC users (who have a slower increasing
batch size CDF function, Figure 3.3). This behavior is mostly due to the basis of each paradigm: in
HTC, jobs are independent and each job represents a data point of the input parameter space—thus
a batch may compute a large number of different configurations; in HPC, each job also represents
a data point, but requires far more computing power—thus a batch is limited to compute only a
few different configurations.

As expected, there is a significant difference between the ground-truth knowledge (Bexp) and
the estimated batch sizes from Buser (Figures 3.6c and 3.6d). Since the number of tasks in a BoT
are overestimated, the number of BoTs in a batch are then underestimated. For instance, about
90% of the batches are composed of a single BoT in Buser, while single BoT batches account 75%
in Bexp. This result supports our claim that modeling an HTC job submission behavior requires
knowledge of the underlying bags of tasks, which is often not provided. Consequently, the current
methods to estimate bags of tasks are unable to properly identify the actual number of jobs in a
batch.

3.3. Summary and Discussion

In this chapter, we have shown that user submission behavior extracted from CMS workloads does
not inherently differ from submission behaviors at the Mira supercomputer, although both envi-
ronments are following different computational paradigms (HTC and HPC, respectively). Never-
theless, the analysis of HTC workloads should target bags of tasks, instead of individual embar-
rassingly parallel jobs. Therefore, we defined parameters switching from the previously job view
to a bag of task view, and demonstrated that the analysis of think time behavior follows a similar
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(a) CMS08, Bexp (b) CMS10, Bexp

(c) CMS08, Buser (d) CMS10, Buser

Figure 3.6.: Impact of different threshold values (in seconds) on batch sizes for Bexp and Buser.

linear trend for increasing response times of jobs, but is slightly higher in the HTC environment.
Additional information on the experiment associated to bag of tasks in CMS does not fundamen-
tally change the think time analysis, but has significant impact on the interpretation of batch sizes:
overlapping bags of tasks are not captured with current models. The findings of this paper sup-
port the use of evaluation methods respecting individual user behavior to simulate HTC behavior.
Additionally, this study unveiled that there are not fundamental differences in think time behavior
and batch-wise submissions, although we face two distinguished parallel computation concepts.
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4. A Cognitive Study of Human User Behavior
in Parallel Computing

Besides the previous workload trace analyses of users and their submission behavior in parallel
computing, this chapter aims to enrich the knowledge about user behavior by studying and char-
acterizing users in parallel computing by means of a questionnaire. In particular, we apply the
Questionnaire for User Habits of Computer Clusters (QUHCC) to a group of 23 distinct users of
two different computer clusters hosted at TU Dortmund University. We then identify, compare,
and discuss aspects of the user submission behavior, revealed in this analysis, to conclusions ob-
tained from the previous statistical trace analyses. Appendix B contains all information on the
questionnaire and the conducted survey.

In this chapter, our goal is to investigate the following questions: (1) which are the most com-
mon ways for users to adjust their working times and how does this influence satisfaction/waiting
time satisfaction? (2) Does dissatisfaction lead to adjustments in user submission behavior?
(3) Are experienced users using the systems more efficiently? (4) Is job cancellation an important
aspect regarding subsequent user behavior and satisfaction?

Additionally, we aim to unveil the most relevant aspects that should be focused on in future trace
analysis, specially in studies targeting user submission behavior modeling. The ultimate goal of
this study is to provide insights to answer the following questions: (1) do the previous methods of
modeling user submission behavior from traces suffice? (2) which aspects should be emphasized
in future workload trace analyses?

Our findings indicate that

• user satisfaction is negatively correlated to the application slowdown; expert users are more
likely to be satisfied;

• users tend to work on weekends to cope with long completion times and to improve their
efficiency, although they constantly apply strategies to exploit the given resources;

• informal agreements between users are established to coordinate executions and reduce the
system load, even though a usual consequence might hazard the system or other users, or
violate policies; and

• scientific experiments may run across several clusters optimized to different analyses (e.g.,
computation or visualization), thus the user analysis should identify and correlate the be-
haviors on each system.

This chapter is structured as follows. Our methodology, scales of the QUHCC, and participants
are described in Section 4.1. Section 4.2 presents the data analysis and discussion, where we first
provide a general overview on the data basis of this study, and then a descriptive analysis of the
answers provided by users, and finally a correlation analysis between different scales. Section 4.3
presents a discussion of how our findings imply changes in policies, increase user satisfaction, and
increase focus in trace analyses. Section 6.4 concludes this chapter and presents future works.
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4.1. Methodology and QUHCC

Analyses presented in this chapter are based on answers to an online questionnaire among users
from computer clusters at TU Dortmund University. The questionnaire was developed with the
help of a focus group, i.e., the system administrators of the computer clusters at the Physics De-
partment of TU Dortmund University.1 They provided expertise knowledge on user habits, and
user satisfaction and requirements, from which questions were derived for the questionnaire. The
Questionnaire on User Habits in Computer Clusters (QUHCC) is composed of 53 questions di-
vided into seven measures, of which some are divided into sub-measures. We focus our analysis
on the measures of: (1) level of experience, (2) waiting for jobs, (3) influence on working times,
(4) usage of strategies, (5) general job adjustment, (6) user-centered job adjustment, (7) job can-
cellation, and (8) user satisfaction. In the following, we refer to these measures as scales2. In the
following subsections, we briefly describe each of these scales, the participants, and the computa-
tional resources.

4.1.1. Scales Overview

The questions developed for the questionnaire target different HPC and HTC topics, which aim
to provide broadly understanding of user behavior in parallel computing infrastructures. In ques-
tionnaire design, several items, i.e., user answers provided to statements or questions on the same
topic are combined into a scale value [19]. Therefore, a scale aims to measure an averaged value
for each participant on a certain topic. Questions in QUHCC have different answer categories,
e.g., binary (yes/no), or multiple answers values to weight the answer (e.g., strongly disagree,
disagree, somewhat disagree, somewhat agree, agree, or strongly agree). For the sake of clarity
and because the possible answers are symmetrically, we map answers to values in {0,1} or {0,5},
respectively. The answers to each item si of a scale s(u) for a participant u consisting of n items
are then normalized to a scale value in [0,1]:

s(u) =
∑

n
i=1 si(u)

n ·max{A} ∈ [0,1], (4.1)

where A is the answer possible values for any item si. In QUHCC, A := {0,1} or A := {0, . . . ,5}
holds for binary decisions and multiple decision, respectively. The scales of QUHCC considered
in this study target (1) a descriptive analysis of each item to capture the specific user behavior, and
(2) a map to values between zero and one to assess how strongly a user agrees to the considered
scale. Below, we provide an overview of each of the scales:

Level of Experience (LE): rates the user’s experience with parallel computing. This is a generic
scale, i.e., it is not bound to any computing paradigm (e.g., HPC, HTC, etc.). It consists of four
items, and evaluates the user’s confidence when using computational resources.

Waiting for Jobs (WJ): identifies dependencies between two consecutive experiments. Job de-
pendency is detected if the user requires the completion of a set of jobs in order to trigger the
following analysis.

Influence on Working Times (IWT): focuses on user reactions or strategies to seek for the system

1 http://www.phido.physik.uni-dortmund.de
2 Since this is the first time users are analyzed with QUHCC, scales are not yet validated.
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lower usage in terms of adjusting daily working time patterns. It consists of five items and aims to
identify alternative working times users typically adopt to circumvent poor system performance.

Usage of Strategies (US): identifies strategies users commonly use to obtain faster results and
better resource allocation. Such strategies include submission of bags of tasks, job prioritization,
moving computation to another resource, or informal agreements with other users.

General Job Adjustments (GJA): focuses on adjustments of job requirements to use the parallel
computing infrastructure more efficiently. This scale consists of six items.

User-centered Job Adjustments (UJA): focuses on self-centered adjustments of job requirements.
Typically, these job adjustments are not required from a global point of view, they target specific
jobs tuning so that resources may be allocated/consumed in the user’s benefit. This scale is com-
posed of five items, and aims to identify the most common adapting strategies users perform to
burst their executions.

Job Cancellation (JC): measures the percentage of submitted jobs that are voluntarily cancelled
by the user. Since this scale is defined by a number, we have also asked for the main reasons
leading to this action. We classified them as Useless Result, Configuration Error, Programming
Error, and Using other Resource.

User Satisfaction (USF): measures how participants perceive system performance in terms of
waiting times. This scale is composed of four items, and evaluates the impact of job response
times in the user’s expectance of system performance.

4.1.2. Participants and Computational Resources

The questionnaire was applied to users from both HPC and HTC environments at TU Dortmund
University. In total, 23 users from different science domains (including mathematics, statistics,
chemistry, physics, and computer science) took part in this study. Users mainly use two computer
clusters from the the TU Dortmund University: LiDO3, a cluster composed of 432 nodes and
3,584 CPU cores; and a cluster at the Physics Department composed of 114 nodes and 912 CPU
cores. While LiDO is mostly used to compute tightly-coupled jobs, jobs from the Physics’ cluster
are mostly embarrassingly parallel jobs submitted as bags of tasks. Additionally, two participants
work at the Statistics Department using a cluster composed of 85 CPU cores, which are unequally
distributed among 11 nodes4. Since all surveyed users belong to different science domains and
use both computation paradigms, we argue that our findings are independent of a particular sci-
entific domain or parallel computing paradigms, but represent a general picture of working with
distributed computing resources.

4.2. Data Analysis and Discussion

In this section, we analyze and discuss the data obtained from the application of QUHCC. First,
we present an overall analysis of the answers provided per scale. Then, we use this aggregated data
to conduct a descriptive statistics analysis of the items within scales, and to seek for correlations

3 http://lidong.itmc.tu-dortmund.de/ldw/status.html
4 https://www.statistik.tu-dortmund.de/rechnerdoku/tutorial/Computecluster.html

45



4. A Cognitive Study of Human User Behavior in Parallel Computing

(a) Level of Experience (LE) (b) Influence on Working Times (IWT)

(c) Usage of Strategies (US) (d) General Job Adjustments (GJA)

(e) User-Centered Job Adjustments (UJA) (f) Job Cancelation (JC)

(g) User Satisfaction (USF)

Figure 4.1.: Distribution of scale values according to answers provided by 23 users of computer
clusters at TU Dortmund University. Answers from strongly disagree to strongly
agree are represented between [0,1].
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among different scales. Finally, we discuss the importance of our findings, and limitations and
challenges of conducting workload trace analysis.

4.2.1. Overview of the Collected Data

Figure 4.1 shows the distribution of scale values for the user’s answers provided to QUHCC. Each
scale is computed according to Equation 4.1, and represents the weighted average of the items
within a scale. Below, we present the general interpretations of the analysis of the distributions.
In the following subsections, we will expand and discuss each of these findings. We present the
seven scales according to the order from the scales overview in Section 4.1.1.

1. Most of the users have good experience with parallel computing environments with an av-
erage scale value of µ = 0.82, and standard deviation σ = 0.15 (Figure 4.1a). This is an
important result to obtain meaningful results from the analysis, since other answers rep-
resent the opinions of experienced users rather than users who cannot provide meaningful
answers due to their inexperience;

2. Users tend to seek for alternative ways to circumvent poor system performance. There is no
major action that prevails the behavior of a single user (µ = 0.50 and σ = 0.26, Figure 4.1b);

3. Most of the users (µ = 0.46, σ = 0.25) use at least one strategy to improve jobs execu-
tion (Figure 4.1c). Since the scale consists of four items, a scale value greater or equal to
0.25 represents the usage of at least one strategy. Note that these strategies include both
computational methods and human decisions/interactions;

4. Users adjust the job requirements according to the available capacities, and are aware of the
efficient use of the computing infrastructure (µ = 0.67 and σ = 0.09, Figure 4.1d);

5. Users frequently use techniques to improve their executions (µ = 0.60, σ = 0.14). Neverthe-
less, we experience outliers of highest (0.8−1.0) or lowest (0.0−0.2) values (Figure 4.1e);

6. Most of the users cancel less than 20% of their jobs (µ = 0.12, σ = 0.15). We experience
only one outlier, a single user mentioned that he or she cancels 75% of the jobs;

7. Users are often satisfied with the overall turnaround time of an experiment (µ = 0.64),
however the standard deviation of σ = 0.28 implies that some users also experience longer
waiting times than expected (Figure 4.1g).

To determine whether users often wait for job completion in order to proceed their analyses, we
defined jobs length into three categories: (1) small–job runtime up to four hours; (2) medium–job
runtime up to three days; and (3) large–longer than three days (we also asked the participants for
how long they are willing to wait for results). The lengths of job represented in these job categories
are a result of discussions with the focus group. These categories cover the focus group’s view
of meaningful separation of job lengths and their possible influence on working time behavior.
Figure 4.2 shows the distribution of answers ranging from strongly disagree to strongly agree. For
job categories small and medium, the median answer is somewhat agree, while for large jobs is
disagree. This result suggests that job lengths ranging from several hours up to three days have
more influence on consecutive working. According to the provided answers, results of longer jobs
are not as crucial for consecutive working. In a general setup, schedulers and allocation strategies
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Figure 4.2.: Distribution of answers provided for the waiting for jobs (WJ) scale.

handle users and jobs equally, i.e., scheduling properties are limited to basic job characteristics.
Analysis results suggest that there is a need to prioritize jobs by the importance of continuing
work. In Section 4.2.3, we show how these jobs may impact the user behavior.

Note that no user reported severe dissatisfaction. A possible explanation is that the questionnaire
was conducted with users who are currently researching in a scientific environment, i.e., users that
already have experience with the system (see also the descriptive analysis of the USF scale below).
The analysis of users who left the system is out of the scope of this chapter, since we target the
understanding and modeling of continuous users and their behavior.

4.2.2. Descriptive Analysis of Scales

The aggregated data shown in the previous subsection allows the inference of the general user
behavior according to a scale. Nevertheless, it does not unveil knowledge related to, for example,
specific user decisions or patterns. Therefore, in this subsection we present a descriptive analysis
of the scale items observing the relative frequency of answers.

Figure 4.3 shows the relative frequency of different participants’ reactions to poor system per-
formance. About 75% of the users tend to work on weekends, followed by working longer in
the evening, and working at night (∼35%). About 30% of the users work earlier in the morning,
and only about 25% do not change their habits when facing poor system performance. This result
indicates that users need to employ alternative strategies (besides working hours) to detour the low
performance of the system and optimize their executions.

Figure 4.3.: Relative frequency of answers in the influence on working times (IWT) scale.

Figure 4.4 shows the relative frequency of participants using a certain strategy to improve their
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executions. Besides working after hours, users also seek for improvements at the infrastructure and
social (human interaction) level. Most of the users submit bags of tasks (above 60%), even though
only a few (7 out of 23) mainly work with the cluster of the Physics Department (which instantiates
an HTC environment). This result demonstrates that the capabilities of the HPC environment
are underutilized, which may be due to users that do not have proper knowledge of the usage
guidelines. In a previous work [33], we observed that this is not common in supercomputers,
where policies are stricter, and allocations and usage are actively monitored. Our data suggests,
that job prioritization is not common (less than 20% of the users). Since users have significant
experience with the system and most of the executions are embarrassingly parallel jobs, jobs within
an experiment have the same importance. About 40% of the users move their computations to
other resources when facing high workload contention. This behavior clearly indicates a metric of
success (in the form of feedback), and should also be considered in trace analyses. Surprisingly,
several users (∼35%) establish informal agreements to coordinate their executions. This fact
arouses the interest in investigating inter-user co-operation that could unveil on-the-fly deviations
to the user behavior, or violations to the service level agreements. This result also indicates that
the current system policies do not satisfy the users’ requirements. Last, less than 20% of the users
do not use any of the listed strategies. This analysis demonstrates the need to further investigate
user-strategies to improve parallel computing environments, either by conducting trace analysis,
workload modeling, or scheduler design. Each of these research interests must be aware of these
fluctuations and behavior traits. Trace analysis must be aware of this hidden knowledge, which are
only indirectly represented in recorded data. Therefore, a better workload modeling, and results
on importance of jobs can lead to better satisfaction.

Figure 4.4.: Relative frequency of answers in the usage of strategies (US) scale.

Although most of the users have a low rate of job cancellations (Figure 4.1f), we have classified
the main causes why jobs are deleted (Figure 4.5). Most of the jobs are often removed due to
configuration errors or useless results. Note that configuration and programming errors imply
a useless result. In case an answer could not be explicitly classified into one of the categories,
we accounted it for all possible interpretations (e.g., if an answer states that mistakes were done
during job preparation, it would be accounted as configuration and programming error). The
high percentage for useless results is mainly due to the non-convergence of iterative methods (see
Section 4.2.1).

Figure 4.6 shows the distribution of answers provided to the six items in the general job adjust-
ment scale (GJA). Whiskers are defined as 1.5 IQR—interquartile range, i.e., the distance between
the upper and lower quartile. Users mostly adjust their jobs according to the available capacities
of the system (median: somewhat agree, upper quartile: agree). Therefore, when analyzing and
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Figure 4.5.: Relative frequency of answer categories in the job cancellation (JC) scale.

comparing workload traces, one needs to be aware that different system capacities may lead to
distinct shaped jobs. Nevertheless, most of the users do not tend to scale their jobs (e.g., increase
the number of cores, or the number of jobs within a bag of tasks) if resources are idle—lower
quartile: strongly disagree. In most parallel computing systems where queuing systems do not
hold jobs longer than necessary, timing the job submission may significantly improve the system
performance (in terms of waiting times), and as a result user satisfaction. However, optimized
job submission is not frequently used. Answers range from strongly disagree (lower quartile) to
somewhat agree (upper quartile), with median somewhat disagree. This result indicates that users
are not aware of (or are not willing to explore) other system capabilities regarding job schedul-
ing (e.g., advance reservation, queue priorities, and among others), since they often work after
hours and/or establish informal agreements among them (Figure 4.4). Conversely, users care for
not disturbing the system performance, since they do interrupt jobs that would not produce useful
results. However, it is not clear whether they constantly (or have the capability to) monitor jobs
outcomes. Users somewhat agree (with whiskers ranging across the whole spectrum of answers)
that having system load information is helpful to determine job submission and their expectations,
which could also influence user behavior. Choosing systems suiting the job requirements is also
common among participants (the median answer is agree). This result shows that users are aware
of their jobs, systems, and care for the specifications.

Figure 4.6.: Boxplots of user answers to the general job adjustment (GJA) scale.

Figure 4.7 shows the distribution of answers provided to the items of the User-Centered Ad-
justment scale (UJA). Some of the questions target similar aspects as the GJA scale, but they are
user-centered. Although users tend to monitor the status of the system (Figure 4.6), high con-
tention do not prevent users to submit their jobs. In Section 4.2.1, we suggested that users may
plan in advance their executions, or there is no need for instant results. However, the analyses
performed in this subsection revealed that users seek for alternatives to avoid contention.
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Figure 4.7.: Boxplots of user answers to the User-Centered Job Adjustment (UJA) scale.

4.2.3. Correlation Analysis Between Scales

The analysis conducted in the previous subsections showed that the data in all scales are widely
spread. Although correlations do not necessarily describe causal dependencies, they allow us to
infer dependencies (e.g., there is a relationship between user satisfaction and the adjustments of
working times). Therefore, we use the Spearman’s correlation coefficient to identify statistical
relationships between the scales. We assume a p-value of less than 0.05 (in some cases we also
consider values below 0.1) to rate correlations as of statistical significance. An advantage of
Spearman’s correlation coefficient is that it is independent of the ordinal scale values.

Figure 4.8 presents an overview of Spearman’s correlation values ρ ∈ [−1,1] between all scales.
The correlation coefficient is expressed as an ellipse shape. The more elliptical it is, the higher
the correlation coefficient. Otherwise, the more circular it is, the lower the correlation. Fur-
thermore, the shape is tilted according to whether the correlation is negative (ρ → −1, red) or
positive (ρ → 1, blue). The colors also indicate the strength of the correlation coefficient: pale
colors indicate weak correlation values and therefore uncorrelated, while darker colors indicate
increasing correlations. WaitSmall, WaitMedium, and WaitLarge represent the three jobs
lengths from the waiting for jobs (WJ) scale. Although variables are not strictly correlated (which
is expected), we notice several narrow elliptical shapes that may represent interesting correlations.
Thus, we further analyze these correlations below.

We extract the most significant values according to the p-value. We assume that a p-value of
0.05 means significant correlation, while a p-value inferior to 0.1 will only serve the purpose of
understanding and discussing a few parameters, but further study must be performed to underline
or decline these correlations. Table 4.1 shows the Spearman’s correlation values and p-values for
the most significant correlations shown in Figure 4.8. Correlations are ordered by significance,
i.e., p-values < 0.05 in the top, and p-values ∈ [0.05,0.1[ at the bottom.

By means of the correlation table, we investigate the following claims, which were raised as
part of the motivation of this work:

1. Dissatisfaction with system response times is correlated with changes in working time be-
havior. The correlation coefficient between the scales for USF and IWT indicates a negative
correlation (ρ <−0.48, p < 0.02). This result confirms previous findings, which also sug-
gest that satisfaction and experience are correlated [29];

2. Completion of small- and medium-length jobs have more impact on the consecutive work-
ing. The answers provided to scale WJ (Figure 4.2) emphasize the importance of short-
and long-running jobs on the user’s consecutive work. However, in a correlation analysis
we can only report significant correlations for medium and large jobs. Waiting for results
of medium-sized jobs (ρ > 0.52, p < 0.02) is slightly stronger correlated to the influence
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Figure 4.8.: Spearman’s correlation map between scales. Two variables are full correlated if the
ellipse is a line.

Table 4.1.: Statistically significant correlations between scales with p-values < 0.05 (upper), and
p-value < 0.1 (bottom).

Correlated Scales
Spearman

corr. coeff. ρ
p-value

WaitMedium - WaitLarge ρ > 0.83 p < 0.001
Strategies - JobCancellation ρ > 0.60 p < 0.002
WaitMedium - WorkingTimes ρ > 0.52 p < 0.02
Experience - Satisfaction ρ > 0.48 p < 0.02
Satisfaction - WorkingTimes ρ <−0.48 p < 0.02
WaitMedium - UserAdjustment ρ > 0.48 p < 0.03
WaitLarge - Satisfaction ρ <−0.46 p < 0.03
WaitLarge - WorkingTimes ρ > 0.47 p < 0.03
GeneralAdj. - JobCancellation ρ > 0.45 p < 0.03
WaitLarge - Strategies ρ > 0.44 p < 0.04

WorkingTimes - UserAdjustment ρ > 0.40 p < 0.06
WaitLarge - JobCancellation ρ > 0.39 p < 0.07
WaitMedium - Satisfaction ρ <−0.38 p < 0.07
WaitSmall - WaitLarge ρ <−0.37 p < 0.08
WaitMedium - Strategies ρ > 0.38 p < 0.08
Strategies - GeneralAdj. ρ > 0.37 p < 0.09
Satisfaction - JobCancellation ρ <−0.35 p < 0.10
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on working times than large jobs (ρ > 0.47, p < 0.03). Regarding satisfaction, waiting for
large (ρ < −0.46, p < 0.03) and medium length (ρ < −0.38, p < 0.07) jobs are nearly
equal negatively correlated. Similar results are observed for the usage of strategies, where
positive correlations are observed: ρ > 0.44, p < 0.04 for large, and ρ > 0.38, p < 0.08
for medium. Nevertheless, waiting for medium-sized jobs are most relevant for adjustments
(ρ > 0.48, p < 0.03). These results indicate that short and medium jobs should be priori-
tized when optimizing consecutive work, however large jobs may also negatively impact the
satisfaction, and therefore lead to the use of strategies;

3. User experience increases satisfaction. Although one could argue that experienced users
have a deeper understanding of how a system could perform better, and they are therefore
dissatisfied with the system, the Spearman correlation coefficient reveals a positive rela-
tionship between experience and satisfaction (ρ > 0.48, p < 0.02). The analysis however
does not reveal whether this is due to the experience and coping with waiting times, or that
experienced users actually use the system better towards their own needs. We then argue
that teaching researchers about the underlying mechanisms of the resources, as well as best
practices, is beneficial for user satisfaction;

4. Job cancellation has significant influence in the user behavior and satisfaction. Our analysis
unveiled strong correlations that support this claim: (1) the user behavior shows positive
correlations to the usage of strategies (ρ > 0.60, p < 0.002), and to general job adjustments
(ρ > 0.45, p < 0.03). Furthermore, the waiting for results from large jobs is also strongly
correlated to the job cancellation scale (ρ > 0.39, p< 0.07); (2) the user satisfaction presents
negative correlation between the JC scale and the USF scale (ρ < −0.35, p < 0.10). This
result highlights a need for autonomic tools that seamlessly enable the execution of parallel
computing applications on high performance systems to rule out this aspect, in case there is
a causal relationship between the results from these two scales.

4.2.4. Linear Regression of Waiting Time Satisfaction

Furthermore, we target to identify waiting time satisfaction. As we have discussed, waiting times
show significant influence on subsequent job submission behavior in trace analysis. Additionally,
we discussed user answers regarding differences in the necessity of job completion on consecutive
job submission (cf. Figure 4.2). As analyzed before, there can be several further aspects influ-
encing user satisfaction, such as whether the system sizes suit users’ needs. Nevertheless, waiting
times are a measurable and negotiable component of parallel job processing.

Figure 4.9 shows the median, .25-quantile, and .75-quantile values of acceptable response times
to the AWT scale. The x-axis represents job lengths of six job length categories of QUHCC in
minutes. Acceptable response times are shown on the y-axis (also in minutes)

The increase on response time acceptance is of linear fashion. For all three datasets (median,
.25-quantile, and .75-quantile), we perform a linear regression analysis minimizing least squares.
The resulting functions are also plotted in Figure 4.9. The linear regression functions r(p j) repre-
sent the accetable response time according to processing time p j and are of the form

r(p j) := c1 · p j + c2. (4.2)

Table 4.2 lists the values of c1 and c2, as well as the root mean square (RMS).
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Figure 4.9.: Median, quantiles (.25 and .75), and linear regression of the acceptable response times
for different job lengths (in terms of runtime).

Table 4.2.: Linear regression function parameters (AccRT is the acceptable response time).
Data Set c1 c2 (in min) RMS (in min)

Median AccRT 1.70 29.51 286.00
.75-Quantile AccRT 2.28 215.75 746.11
.25-Quantile AccRT 1.14 -166.19 778.56

Based on the linear functions, we define an acceptable slowdown S(p j)≥ 1, which describes a
factor of how much greater the response time of a job j can be compared to its processing time p j:

S(p j) := max

{
(c1 · p j + c2)− p j

p j
,1

}
. (4.3)

For the .75- and .25-quantile function, we experience a RMS of more than 700 minutes, while
the regression of the median values only shows an RMS of 286 minutes. Considering Figure 4.9,
this is maily caused by single outliers at processing times of 120 minutes and 2880 minutes,
respectively. Note that for the .25-quantile regression, c2 is negative. This is due to the fitting of
the linear regression function which is unaware of the context. It is not adequate to require jobs
to complete faster than their actual processing time. When rating acceptability of waiting times
according to the regression functions, one has to be aware of this relation. Therefore, Function 4.3
considers the maximum between the slowdown implied by the linear regression and one.

4.3. Summary and Discussion

The study of human user behavior conducted in this chapter have extended the understanding of
the users’ working behavior in parallel computing. Although several aspects investigated in this
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chapter may be common knowledge5, our findings unveil factors that are often hidden in workload
traces, and human elements that cannot be modeled from traces due to the lack of knowledge on
users and their submission behavior. Below, we discuss the challenges and limitations of trace-
based analysis, and underline current open questions:

1. Users’ expertise. Participants of the study consider themselves as experienced users. How-
ever, subsequent analyses revealed that users are not aware of all capabilities of the system
(e.g., advance reservations). Thus, there is a need to define methods and techniques to
identify users’ expertise level in parallel computing systems. In order to build this knowl-
edge, direct interview or questionnaires would be required along with active monitoring of
users reactions to application and system issues. Even though this knowledge cannot be ex-
tracted from workload traces in a first instance, results from the user-centered study would
aid the identification of such patterns in available traces. Additionally, a study on how less
experienced users would impact the work of expert users may lead to the development of
experience-aware scheduling algorithms;

2. Modeling interactions with other systems. This study revealed that users tend to use dif-
ferent strategies to cope with issues and low system performance. We cannot model these
user strategies (e.g., usage of another cluster) from (single) workload traces. This result
indicates that user behavior analysis should include workloads from different systems that
could be potentially used by the user. A typical example is the use of a cluster optimized
for computations, and another optimized for visualization, e.g., the workflow at Mira in
Chapter 2);

3. Unveiling user agreements (and possibly violations). Users from the same institution or re-
search group tend to establish informal agreements to improve their performance. Although
these agreements might not be hazardous to the system, they may violate policies (e.g., a
user provides spare resource allocation to another user to run an experiment that is not listed
in the allocation request). Questionnaires may unveil this practice, however it would not
prevent the misuse of the system. Therefore, there is a need of methods to automatically
detect such practices (e.g., through job modeling based on past executions) and prevent or
alert users of possible misconducts.

Nevertheless, we will focus on the trace-based modeling of user submission behavior in the next
chapter. Afterwards, we utilize the results on waiting time satisfaction to define optimization goals
and evaluate the possibility to deploy an MILP approach to optimally schedule jobs according to
that satisfaction measure.

Analysis results shows that although most of the users have substantial knowledge of the system,
they still need to work after hours to obtain better response from the systems. Additionally, users
tend to establish informal agreements between them to improve their efficiency. These human
interactions, for example, cannot be captured in workload traces and therefore limit the analysis.
On the other hand, workload traces can provide information on previous users that abandoned the
system. Although this information may not explicitly highlight the causes related to leaving the
system (e.g., user dissatisfaction, or the user had no more experiments to run), relations could be
inferred from, for instance, the number of successful executions and experienced waiting times,
which may lead to dissatisfaction.

5 To the best of our knowledge, this is the first study that provides scientific data to support this common knowledge
in the field of parallel computing.
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In this chapter, we focus on the performance evaluation of parallel job schedulers, which has
emerged as an important way to test and establish new scheduling strategies in high performance
computing. Since we experience feedback between system performance and user submission be-
havior, there are several shortcomings of static trace based performance analysis. It is highly
desirable to provide a simulation environment which enables dynamic simulations of user behav-
ior and their reaction to system performance. Therefore, we present a framework of individual
user behavior in high performance computing. The framework divides user behavior into sev-
eral submodules of different granularity ranging from weekly working patterns down to actual job
characteristics and job submissions. We introduce an instantiation of every submodule to sim-
ulate user behavior recorded in workload traces and evaluate the quality of the results obtained
from simulations. The results indicate, that this framework and the proposed submodule capture
the daily cycle of working times and the submission processes reasonably. Additionally, we ex-
perience throttling effects in submission behavior comparable to those in real workload traces.
Furthermore, the framework can decrease the effort of deploying future research results into a
dynamic, feedback-aware simulation environment.

The approach combines synthetic and static workload trace evaluation features. In static work-
load trace evaluation, workload traces are replayed in a rigid fashion, not considering feedback
effects. The usage of synthetic workloads allows changes of the workload: de- or increasing of
statistical distribution parameters allow researches to test their algorithms against various load
conditions. The approach presented in this chapter combines these ideas and adds feedback to the
simulation: We develop statistical models from real workload traces on a user-level basis and add a
think time related feedback effect. This allows to simulate human submission behavior, which can
be easily manipulated by changes of the underlying parameter, e.g., to simulate differing demand
situations in performance evaluation.

In this chapter, we propose a framework to model independent users and their job submis-
sion behavior. Therefore, we divide the submission process into several submodules, starting by
analyses of weekly and daily working activity, down to the actual submission times and job char-
acteristics. Each submodule of the framework may be instantiated by different models. We present
and discuss models describing user behavior in different granularity based on statistical distribu-
tions. We argue for the quality of these distributions, which are a first approximation to capture
user submission behavior at compute clusters. Therefore, we make several general assumptions
which may influence the model arguably. We encourage future work to specifically improve these
modules. Our approach and contributions are the following:

1. This chapter provides a detailed approach to model human behavior in parallel computing
systems in a modular fashion.

2. We present a framework which is dynamically interacting with a simulated computing en-
vironment and which allows to evaluate reactions to different system performances.
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3. We extract several types of information from workload traces and implement the framework
accordingly. This includes methods to understand and model information like working day
patterns and job submission behavior.

4. We use statistical methods and measurements to compare the quality of the dynamically
generated workload and the original workload trace.

5. The framework enables the manipulation of parameters for different types of feedbacks.

6. To our knowledge, this is the first attempt to model individual user behavior in high perfor-
mance environments in a completely modular and dynamic fashion.

At this level, we do not incorporate specific results from the user survey (cf. Chapter 4), since
finding evidence of the results in workload traces remains challenging and so far we could not
identify convincing analysis and results. This chapter is structured as follows: We present the
methodology in Section 5.1. Our user model is introduced in Section 5.2, where we discuss design
decision and develop the model components. We evaluate and discuss the results of simulations in
Section 6.3. Section 5.4 provides a conclusion.

5.1. Methodology

In this chapter, we propose a framework to model individual user behavior in high performance
computing. Therefore, we separate user submission behavior into modules. We propose to break
down user behavior from top to bottom, i.e., from long-term assumptions on working times on a
weekly level down to the actual job submission times. Furthermore, we instantiate the framework
by combining data-driven modeling, extracting features from workload traces according to general
assumptions on human working behavior, and application of statistical distributions according
to minimizing the mean square error (MSE). We decide for one class of distributions for each
submodule which models each aspect of user behavior best. We fit the distributions applying the
maximum likelihood estimation1. The individual parameters of the distributions, i.e., mean and
standard deviation, are then specific for each user. The same holds for modeling the workload
each user submits. We see this to be unique to a user’s work when using a parallel computing
infrastructure.

This concept differs from statistical tests to prove whether a certain data set follows a given
distribution. Due to the large number of users represented in parallel processing systems and the
number of available data points, statistical tests mostly prove that underlying data does not ex-
actly follow certain distributions given reasonable significance levels [8][p. 169]. Nevertheless,
sampling from statistical distributions is common to model unknown aspects, which we are fac-
ing in human user modeling. Therefore, rating distribution functions to model an aspect of user
behavior by the MSE is a valid compromise to develop a user behavior model representing effects
experienced in the underlying data.

We also discuss ideas and results from other works and add them to our model. Lastly, we
incorporate a set of analyses to compare the quality of our model and the proposed statistical
modules. Six workload traces are the data basis for this chapter. Five of them are arbitrarily taken
from the Parallel Workloads Archive recorded during the years 1994−2002 [7]. Additionally, we

1 https://www.encyclopediaofmath.org/index.php/Maximum-likelihood_method, ac-
cessed 07/01/2017.
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Table 5.1.: Workload traces used in this chapter.

Tracename Handle Year System Size #Users #Jobs Duration

LANL-CM5-1994-4.1-cln LANL 1994 1,024 213 122,060 721 days
CTC-SP2-1996-3.1-cln CTC 1996 338 679 77,222 340 days
KTH-SP2-1996-2.1-cln KTH 1996 100 214 28,476 340 days
SDSC-BLUE-2000-4.1-cln SDSC 2000 1,152 468 243,314 978 days
HPC2N-2002-2.1-cln HPC2N 2002 240 257 202,876 1,269 days
MIRA-2014 MIRA 2014 49,152 487 78,782 409 days

model users present in the Mira Supercomputer workload trace covering the activity during 2014.
The main properties of the traces are presented in Table 5.1. The traces cover a wide variety of
features in terms of system size, number of users and jobs and the duration of work recorded in the
trace. They cover system sizes from 100−49,152 computing resources, as well as user numbers
ranging from 257− 679. The duration covered by the traces reaches from about one year up to
about three years and the traces cover between 28,476−243,314 jobs. Furthermore, we give each
trace a short handle for easier reference.

5.2. User Model

This section covers our assumptions on user behavior in high performance computing environ-
ments and the resulting framework. Furthermore, we give a short classification of this model
before discussing several submodules implementing the framework, which we will afterwards
evaluate in a dynamic simulation.

5.2.1. Model Decisions

In the literature, we find several ideas and assumptions on how to understand, interpret, and model
human behavior in high performance computing. Not every user is present in every week recorded
in a workload trace and workload traces reveal daily and hourly activity cycles [39]. Therefore,
our user model framework will provide submodules to decide whether a user is active during a
certain week, how his or her submissions are spread during a specific week, as well as during a
specific day. Furthermore, we again interpret working patterns during a day according to Zakay
and Feitelson [45]: Users work in sessions and batches. Consecutive job submissions form batches
and batches add up to sessions.

Summarizing, our model decisions can be described as a top-down-approach. From a broad
decision when a user is active, we distinguish when jobs of certain characteristics are actually
submitted:

• Week Model: Represents whether a user is active in a certain week and on which days in
the week he or she is submitting jobs.

• Day Model: The day model provides decisions when a user starts and finishes work, as well
as when he or she starts new sessions.

• Session Model: Decision on whether a user continues his or her work based on the previ-
ously submitted batch.
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• Batch Model: Capturing each users individual batch submission behavior, i.e., points in
time of submissions, number of jobs submitted in a batch and common characteristics of
jobs in the same batch.

• Job Model: Modeling job characteristics for each user uniquely.

This setup allows to trigger feedback effects on different levels of working behavior. These effects
could reach from users who stop all activity when certain events occur, down to changes in working
times or adjustments of job characteristics. As we analyzed in the previous chapters, we can
think of several forms of feedback in human user behavior when facing differently utilized and
responding parallel computing infrastructures. One can think that users begin their work earlier
in the morning or finish work later in the evening when there are not as many users interacting
and therefore slowing down the system in terms of response times, as the analysis in Chapter 2
revealed. Nevertheless, in this chapter we will consider the correlation between response time and
subsequent (positive) think time, which indirectly leads to a balancing effect of job submissions.

Instantiating this model for each user u recorded in a trace leads to a user population U . Fig-
ure 5.1 depicts and summarizes every component of our user model framework. The following
analyses only consider users who have submitted more than 100 jobs. This number was evaluated
to be a sufficiently large for all trace-based analysis techniques and modeling. This structure of

Job
Model

Batch
Model

Session
Model

Day
Model

Week
Model

User

Feedback

Figure 5.1.: Framework of components to model individual users.

user behavior is already published [31]. While the published paper made less complex assump-
tions on the instantiations of the submodules (mainly averaging the according criteria), we here
present more sophisticated approaches to implement these modules.

5.2.2. Model Classification

According to Feitelson [8][p. 394] and Schroeder et al. [37], the model developed in this chapter
is generative, conservative, and closed. Furthermore, the proposed models, which instantiate
the human behavior modules, use data-driven techniques. The model also features a feedback
effect. It is fully generative, since it mimics individual user behavior. Furthermore, the model
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is conservative, because we do not fully understand every mechanism leading to an analyzed
workload trace, but we make certain assumptions and so far do not completely understand all
properties and their effects in every detail. Since we only model users present in an analyzed
workload trace, the model is closed.

5.2.3. Week Model

The first property of our framework focuss on is the weekly user activity. The decision, whether
user u is active during a certain week of the simulation is represented by the probability

pw,u =
#active weeks

#weeks
∈ [0,1], ∀u ∈U, (5.1)

where #active weeks is the number of weeks in which u submitted at least one job and #weeks
is the whole timespan recorded in the trace. We calculate this value as the relative frequency of
weeks of activity and weeks without activity.

For each of the seven weekday from Monday to Sunday, we introduce a user individual value

pd,u =
#active at day d
#active weeks

∈ [0,1],

∀d ∈ D = {mon, tue, . . . ,sun}. (5.2)

This value is calculated as the relative chance of finding activity of a user u on a certain weekday d
within all active weeks. Sampling days of activity then is a two step procedure: First, find a week
where a user is active according to (5.1). Second, distinguish the days a user is active within that
week according to (5.2).

Note that we do not model user arrivals to the system and users’ residence time [8][p. 371f].
This proposed submodule samples user activity independently and does not cover longer periods
of activity, nor longer periods of inactivity. Nevertheless, we show that our approach leads to
reasonable results and is worth considering. Modeling arrivals and residences only increases com-
plexity and may make the results more difficult to evaluate. In case we are interested to use this
workload model to predict and evaluate the workload in a not too distant future, we can initialize
only users who are currently using the system.

5.2.4. Day Model

To uniquely model the daily working patterns of individual users represented in a workload trace,
we choose to model the starting times of his or her working days and the length of working. This
implies the detection of when a user starts his or her work and when he or she finishes. In this
section, we discuss the difficulties to determine such points in time and compare five different
methods extracting this information from workload traces, of which two are benchmarks. Before
we present the five different methods, we discuss our assumptions on working days and introduce
our reference data. Analyzing daily behavior, we face the following problems:

1. The first job submitted on a certain day, i.e., the first job submission past midnight, is not
necessarily the point in time we would call the beginning of the working day, because the
user might have worked over night.
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2. Users might work remotely and interact with the system while living in a different time
zone. They might even travel through different time zones, while the recorded workload
traces do not respect information on the timezone the user was present in. The opposite is
the case: it records timestamps relative to the timezone the compute cluster is located in
(often relative to UTC, which also does not cover individual timezones).

3. Users might use scripts or other techniques to automatically submit jobs. These can lead to
a behavior, which is recognized as robotic behavior and does not suit assumptions on human
behavior, e.g., a script could submit jobs on a regular basis independent of the time of the
day. We have to be aware, that this can lead to complications when interpreting data.

To address problems one and two, we differentiate between calendar days and working days in
the following. While calendar days are the days as in a calendar starting at midnight and ending
at the following midnight, we define working days differently. We assume that users’ lives are
divided into alternating phases of work and phases of leisure. For each calendar day where we
find evidence of work, i.e., at least one job is submitted, we have the following four options on
classifying this scenario, as depicted in Figure 5.2:

1. Switch from work to leisure: The user was in a phase of work and switches to leisure after
the last job submission on that calendar day (cf. Figure 5.2 (1)). Example: The user works
overnight and does not submit any jobs on that same calendar day afterwards.

2. Switch from leisure to work: The user was in a phase of leisure und starts work with the first
job submission on that calendar day (cf. Figure 5.2 (2)). Example: The user starts a regular
working day without previous overnight work but will finish on the following calendar day.

3. Switch from leisure to work and switch from work to leisure: The user starts and finishes
work on the same calendar day (cf. Figure 5.2 (3)).

4. Switch from work to leisure and switch from leisure to work: There is at least one job
submission after the user finished work and he or she starts work on that same calendar day
again (cf. Figure 5.2 (4)). We need to determine whether he or she finished work on that day
for a second time again. Example: The user worked overnight, finished work and started to
work again.

We assume that there is at most one gap between work and leisure and at most one gap between
leisure and work which fits the intuitive assumptions of daily working patterns, i.e., users go to
work or start work once a day. Furthermore, these assumptions are not as complex as models
with several switches between working and leisure. These definition and interpretation shows
the importance of detailed analyses and modeling. Modeling the start and the end of working
times as mean or median does not lead to good estimates. Since we are in a 24 hour cycle, the
mean and median of start and end times may not capture the discussed effects of overnight work.
Considering a user who always works for eight hours, but who sometimes works on the same
calendar day, while other times works overnight, he or she will have a mean or median start to end
time of less than eight hours.

Reference Data To evaluate the different methods proposed next, we need annotated data re-
vealing whether jobs belong to the same working day or not. We manually investigated arbitrary
user submissions in the traces HPC2N, LANL, and CTC. We distinguish between human users
and robots.
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Figure 5.2.: Possible work and leisure barriers.

5.2.5. Working Day Classification

In this section, we present possible classification methods to extract working day information from
workload traces. We measure the quality of the different methods by comparing the percentage
of correctly classified jobs, i.e., whether a job belongs to the previous, current, or next working
day according to the definitions in the previous section. To a certain extend, some of the proposed
models can deal with situations, where users change their timezones.

Simple Classification We call the first classification method Simple Classification. We assume
that working days are strictly separated by the boundaries of calendar days. All jobs submitted
on a calendar day belong to the same work day. Since we already discussed the problems of this
approach, we see results from this classifier as a benchmark to compare the quality of other, more
advanced ideas to classify work days.

Offset Classification The Offset Classification is similar to the Simple Classification, with the
difference, that instead of setting the boundary at midnight, we separate the jobs for every moment
in time between 00:00:00 and 23:59:59 into overnight work from the previous working day and
work of the current day. We set the steps to 5 minutes. The Simple Classification is a special
case of the Offset Classification with a separation at midnight. Which offset is best for a certain
trace can only be evaluated, if reference data is present. Therefore, results from this classification
method are also benchmarks.

Longest Gap Classification (Day) This classification idea finds the longest gap between job
submissions of two consecutive days of work (Longest Gap Classification (Day), LGC(D)). We
identify the longest gap, i.e., the two jobs of the longest interarrival time, between job submissions
on each day and consider the earlier job defining the interval to be the last overnight job, while the
later job marks the beginning of the working day. We consider the sorted sequence of jobs of two
consecutive days d′ and d′′ and find the maximum distance

d := max{si− si−1}, 1 > i≥ n+m, (5.3)

with the sorted sequence of daily submission times (s1, . . . , sn+m) := (s′1, . . . ,s
′
n,s
′′
1 . . .s

′′
m), s′i :=

mod(si,24 ·3600s) ∀ ji ∈ d′, s′′i := mod(si,24 ·3600s)+24 ·3600s ∀ ji ∈ d′′.
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Longest Gap Classification (All) We name the next proposed technique Longest Gap Classi-
fication (All) (LGC(A)). This classification idea seeks for at least one point in time p between
00:00:00 and 23:59:59, which has the greatest distance from all job submissions. We find the
maximal value d, for every submission time of user u,

d := max{si− si−1}, 1 > i≥ n, (5.4)

with the sorted sequence of daily submission times (s′1, . . . , s′n), s′i := mod(si,24 ·3600s).

2-Means Classification Because we distinguish between overnight work and the beginning of
the next working day, we test a k-means approach. Considering all job submissions, we hope to
cluster job submissions from overnight work and those from the same working day. Therefore, we
suggest to choose k = 2 and submission times relative to the calendar day, i.e., s′ := s mod 24 ·
3600s (cf. Definition 5.4). Since the k-means method is an unsupervised learning strategy, it suits
our purpose. We choose Lloyd’s algorithm to approximate the means.

Results Table 5.2 presents the performance as the percent of false classified jobs of the different
classification methods. We compare whether a job in the reference data is classified as belong-
ing to the same or previous working day with the outcome of the classifier. For each trace the
table shows the ID of each user in the reference data set, as well as the results for Simple, Offset,
LGC(D), LGC(A), and 2-Means Classification. The top part of the table contains the performance
for users showing human behavior, while robots are in the bottom part. The bottom row contains
the average for of all performance results. We see that the Offset Classifier is the best on average
with 1.83% of jobs classified falsely. It outperforms the Simple Classifier, which is second best
(3.34% error). Although we discussed shortcomings of these methods identifying daily cycles,
they have the best average performance. Since we cannot use the Offset Classifier because of its
dependency on reference data to evaluate the quality, we choose the best unsupervised classifi-
cation method LGC(A) Classifier. This classifier outperforms both, Simple and Offset Classifier
for what we marked as human users. For robots, the quality is not as good, which also hugely
influences the average. Yet as discussed before, for robots with continuous behavior, the influence
of falsely detected daily patterns may not be influencing the model significantly. LGC(D) and
2-Means Classifier perform worse compared to LGC(A) with average performances of 8.72% and
45.11%. Especially applying the 2-means technique explores daily patterns, which are not suiting
the reference data at all.

5.2.6. Start of Day Distribution

We propose to utilize distribution functions of start times to model the length of a working day
for each user u individually. We see a need for choosing these two distributions instead of just
taking an average or median value for beginning and ending of working days. First, we experience
volatility in start times which is not covered by a static value. Furthermore, the mean and median
values are highly influenced by the reset of hours during a day each night.

Examining the data, normal and logistic distribution seemed to best describe the distribution of
starting times. We verify this by fitting both distribution functions to the data classified with the
best performing LGC(A) from the previous section for each user u individually. To evaluate the
quality of these approximations, we consider two averages of the mean squared error (MSE): we
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Table 5.2.: Quality of working day classifications. Top: human users, bottom: robots.

Trace User ID Simple Offset LGC(D) LGC(A) 2-Means

LANL 1 0.77% 0.14% 1.01% 0.17% 46.06%
LANL 20 0.00% 0.00% 26.59% 0.50% 65.14%
CTC 6 2.30% 0.77% 1.28% 0.77% 44.39%
HPC2N 1 10.22% 0.22% 3.65% 0.24% 30.74%
HPC2N 3 0.47% 0.00% 0.70% 0.00% 44.65%
HPC2N 17 0.17% 0.00% 0.00% 0.00% 34.07%
HPC2N 20 0.00% 0.00% 0.00% 0.00% 45.59%
HPC2N 153 5.46% 3.43% 3.47% 3.47% 57.26%
HPC2N 238 0.00% 0.00% 0.00% 0.00% 44.33%

CTC 525 20.71% 17.36% 20.51% 29.39% 29.39%
HPC2N 17 0.00% 0.00% 23.56% 17.02% 27.27%
HPC2N 17 0.00% 0.00% 23.92% 17.28% 72.39%

Average 3.34% 1.83% 8.72% 5.74% 45.11%

average it by the number of users (5.5) and by the number of jobs (5.6). We denote the MSE of
fitting the start of days of user u by MSE(fitstart(u)). We adapt this quality measurement for all
following modelings, respectively:

∑u∈U MSE(fitstart(u))
|U | (5.5)

∑u∈U MSE(fitstart(u)) ·#days u is active
∑u∈U #days u is active

. (5.6)

We only consider users who submitted more than 100 jobs, to have sufficient data to perform
fittings. The amount of jobs is arbitrarily chosen and let to reasonable results considering the fit-
ting and simulation algorithms. Table 5.3 lists all performance values in form of both normalized
MSEs. We see that the average MSE of the logistic distribution fits outperform the normal distri-

Table 5.3.: MSE for beginning of working times normal and logistic distribution functions.

Trace Normal (user/days) Logistic (user/days)

LANL 0.0065 0.0068 0.0043 0.0040
CTC 0.0063 0.0054 0.0047 0.0037
KTH 0.0060 0.0060 0.0045 0.0042
SDSC 0.0054 0.0044 0.0039 0.0029
HPC2N 0.0071 0.0052 0.0056 0.0036
MIRA 0.0070 0.0056 0.0052 0.0039

bution fits for every trace for both, normalized by the number of users and the number of days.
We can therefore rule out, that the result is influenced by neither users who submit few jobs but
are well represented by a logistic distribution, nor users submitting large amounts of jobs who are
well represented by a logistic distribution. The working times of users of the HPC2N are worst
represented by the normal distribution with a value of 0.0071. Using logistic distribution, we gain
a normalized MSE of 0.0056. Considering the normalization by the number of days represented
by the fits, LANL is represented worst by normal distribution with a value of 0.0068, while logistic
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distribution has a mean squared error of only 0.0040. We therefore extend the user model by a
logistic distribution and the two parameters

µstart,u

σ
2
start,u

to sample the beginning of work individually in form of a logistic distribution L(µstart,u,σ
2
start,u).

Although we are not treating robots differently, we assume that for continuous robotic behavior
our results are not strongly influenced. The submission of jobs on a regular basis is independent
of the modelled starting time of a working day. Whether a robot starts consecutive work for 24
hours at 3a.m. or 5p.m., continuing with that process at the same time the next day, leads to the
same continuous job submission patterns.

5.2.7. Length of Day Distribution

To model the length of a working day, we use the same method as for the model for beginnings of
working days. We extract the data of working time lengths from data classified with LGC(A). The
working length is equal to the time between the first and last job submission on each work day.
Similarly to fitting a distribution function to the distribution of starting times, normal and logistic
distribution seemed to best describe the distribution of work day lengths.

The top half of Table 5.4 reveals that a logistic distribution approximates the lengths of working
days better than a normal distribution. We choose the same quality measures according to (5.5)
and (5.6), except that we consider MSEs denoted by MSE(fitlength(u)) for each user u. For every
trace both average MSEs show better quality when applying logistic distribution. Again, we can
claim that our findings are not influenced by many small users submitting only a few jobs nor by
users who submit more jobs, since we consider average MSEs normalized by the number of users
as well as by the number of jobs. This extends the model by two parameters

Table 5.4.: MSE for lengths of working times normal and logistic distribution functions. Top: All
working time lengths, bottom: only working time lengths longer than 1 hour.

Trace Normal (user/days) Logistic (user/days)

LANL 0.0095 0.0078 0.0067 0.0055
CTC 0.0219 0.0222 0.0161 0.0160
KTH 0.0154 0.0178 0.0112 0.0128
SDSC 0.0191 0.0180 0.0129 0.0121
HPC2N 0.0181 0.0168 0.0127 0.0115
MIRA 0.0232 0.0229 0.0164 0.0159

LANL 0.0045 0.0029 0.0032 0.0021
CTC 0.0064 0.0042 0.0051 0.0033
KTH 0.0054 0.0033 0.0040 0.0023
SDSC 0.0059 0.0040 0.0042 0.0027
HPC2N 0.0081 0.0041 0.0060 0.0028
MIRA 0.0067 0.0048 0.0056 0.0040

µlength,u

σ
2
length,u.
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Moreover, we find that introducing a threshold tl dividing the data into working days of lengths
less or equal to tl and lengths longer than tl can have a positive influence on the quality of the fits.
Keeping the model simple, we choose tl to be one hour. The bottom half of Table 5.4 presents
the results for lengths larger than tl = 1h. We experience an increase in quality of up to five times
(0.0128 compared to 0.0023for the KTH trace). To let our model profit from this finding, we
introduce the variable

pu,length<1h
=
|{d | d ∈ Du, dl ≤ 1h}|

|Du|
∈ [0,1],

which is the relative frequency of working day lengths shorter than one hour. If we sample a
working day to be longer than one hour, we sample according to a logistic distribution L(µlength,u,
σ2

length,u). We set parameters µlength,u and σ2
length,u according to the data of working days, which are

longer than one hour.

5.2.8. Job Model

After defining the general structure of activity on the weekly and daily basis, we explain the daily
work bottom-up. We start with the most basic category of job submissions in the framework, i.e.,
job characteristics. Previous works have shown that the number of requested processors is likely
to be a power of two, e.g., [6], which for example even is explicitly defined in the policies of the
Mira supercomputing center (beside further policies, e.g., concerning minimum allocation sizes).
We use this observation to simplify the model accordingly. Furthermore, we also assume that
jobs of the same application have similar characteristics and that this especially holds for users
who tend to submit similar jobs. This assumption tackles the fact that the number of requested
resources and the running times of jobs are not correlated over different systems [6]. Each user u
has a relative frequency of job sizes

pm,u
#jobs of size m

#jobs
∈ [0,1],

m ∈ {2i | i ∈ N}.

Furthermore, we add parameters

µm,u, (5.7)

σ
2
m,u, (5.8)

m ∈ {2i | i ∈ N}

defining a normal distribution for job runtimes for each job size m and user u, respectively. These
values are fitted for each user individually, as well as for all job sizes m ∈ {2i | i ∈ N}.

5.2.9. Batch Model

We model overlapping job submissions in form of batches. We consider jobs submitted by the
same user u to form a batch, if the interarrival time is less than 20 minutes. This assumption keeps
the model simple and covers the main idea of batch-wise working patterns.

Before we introduce the batch model and its parameters, we analyze basic properties of batches
and make initial assumptions. Figure 5.3 contains plots of the cumulative distribution functions
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(CDF) of core and runtime deviations of jobs belonging to the same batch. The first figure plots
the following: For each user, we calculate the amount of batches which contain jobs of the same
number of resources. We plot the CDFs for all traces separately. We experience a steep increase
in the CDFs towards the right end of the plot. This indicates that a large portion of users submit
batches with jobs of equal size. Therefore, we make the simplified model assumption, that jobs
in the same batch will always have the same number of requested resources. Contrary, the CDF
of runtime deviations of job lengths in the same batch shows that more than 50% of the batches
have runtime deviations of a few hundred seconds. Therefore, we will not model correlations
of runtimes of jobs in the same batch, but consider them independently and sample according to
Parameters (5.7) and (5.8).

Figure 5.3.: Cummulative distributions of cores and deviations in runtimes in batches.

Figure 5.4 summarizes all components considered: jobs form a batch if the interarrival time
i j, j+1 is less than 20 minutes. In this example, m1 = m2 = m3 holds and processing times are
sampled from the same distribution. We now model the sampling of the batch size and interarrival
times.

w1 p1

w2 p2

w3 p3

| | |
—

—

—

—

s1 s2 s3

m1

m2

m3

...

t1,2

t2,3

Figure 5.4.: Overview of components forming a batch.

5.2.10. Batch Size

Similarly to our study of lengths of working times, we perform a study of batch sizes in two
setups. First, we analyze which distribution approximates our data best. Second, we perform the
same analysis, but ignore batches of size one, because a certain amount of batches consist only
of one job. This will again lead to a model where we sample whether a batch will contain more
than one job according to a relative frequency. In case a batch contains more than one job, we
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sample according to the best fitting distribution. Considering batch sizes, we see that a majority of
batches only have size one, which might suggest that an exponential distribution fits the data best,
due to the initial steepness of the distribution function. Therefore, we consider normal, logistic,
and exponential distribution. Ruling out the fact, that users who submitted a smaller amount of
jobs, influence the results, we consider the MSE normalized by the number of users as well as
normalized by the number of batches for each trace.

The top half of Table 5.5 contains the results in the same fashion as we used previously. Instead
of normalizing the number of jobs, we normalize by the number of batches considered. We see
that logistic distribution outperforms normal and exponential distribution. Except for CTC and a
normalization by the number of batches, logistic distribution approximates the data best. When
not considering batches which only contain one job, we obtain the results listed in the bottom half
of Table 5.5. In contrast to the result before, batch sizes are approximated better, e.g. for MIRA
we see an increase from 0.09 to 0.01 (normalizes by users) and from 0.0522 to 0.0176 (normalized
by batches). We extend the model by the following three parameters

Table 5.5.: Quality of fitting batch sizes with normal, logistic, and exponential distribution. Top:
all batch sizes, Bottom: batches of size one ignored.

Trace #Users #Batches Normal (user|batches) Logistic (user|batches) Exponential (user|batches)

LANL 206 112071 0.1961 0.0877 0.1453 0.0929 0.1522 0.0907
CTC 624 47685 0.1823 0.1004 0.1144 0.0756 0.1262 0.0837
KTH 187 20950 0.1938 0.0876 0.1251 0.0781 0.1358 0.0841
SDSC 464 196939 0.1122 0.0647 0.0932 0.0620 0.1011 0.0660
HPC2N 256 89460 0.1570 0.0701 0.1102 0.0676 0.1122 0.0617
MIRA 452 40297 0.1354 0.0651 0.0907 0.0533 0.1009 0.0577

LANL 206 6130 0.0266 0.0612 0.0240 0.0550 0.0326 0.0757
CTC 624 8766 0.0186 0.0404 0.0142 0.0303 0.0200 0.0455
KTH 187 3039 0.0189 0.0507 0.0153 0.0390 0.0214 0.0557
SDSC 464 16073 0.0265 0.0363 0.0213 0.0259 0.0317 0.0413
HPC2N 256 13003 0.0149 0.0221 0.0100 0.0113 0.0143 0.0164
MIRA 452 10246 0.0140 0.0262 0.0100 0.0176 0.0148 0.0291

pbatch=1,u :=
|{b | |b|= 1,b ∈ Bu}|

|Bu|
∈ [0,1],

µbatch,u,

σ
2
batch,u,

with Bu representing the set of all batches associated with user u. The value of pbatch=1,u represents
the relative frequency of batches of size one of user u and batches containing more than one batch
are sampled from the logistic distribution L(µbatch,u,σ

2
batch,u).

5.2.11. Interarrival Time

We model interarrival times of less than 20 minutes as a normally distributed. We obtain parame-
ters

µinter,u and

σ
2
inter,u.

These parameters are fitted for each user u individually and extend the model by normal distribu-
tion N(µinter,u,σ

2
inter,u) from which we sample interarrival times.
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5.2.12. Feedback

Feedback is the next property in focus. So far, this thesis discussed various aspects of feedbacks,
e.g., Chapter 2. While we analyzed correlations among several job parameters and subsequent
think time, we implement the feedback between response time and subsequent think time to be in
line with the literature and not adding further sources of uncertainty. Furthermore, this decision
provides better comparability between workload models incorporating response time related feed-
back effects. We model a correlation between system performance and subsequent user behavior
in form of think times.

In this chapter, we choose a linear function to model subsequent think time depending on the
response time of the previously submitted job ji−1

TT(r ji−1) = c1 · r ji−1 + c2,

c1 = 0.4826,

c2 = 1779.0,

which is equally set for each user u ∈ U . This function was also presented in the previously
published user model [31]. The linear fashion equals the one from Chapter 2, but instead of only
considering the Mira trace, the parameters represent the averages among all traces subject in this
chapter. Since this model only represents the average think times, we add a normally distributed
uncertainty factor with parameters

µTT = TT(r ji−1),and

σ
2

TT =
TT(r ji−1)

2
.

Every time all jobs of a batch finish processing, we sample a think time from the normal distribu-
tion N(µTT,σ

2
TT), depending on r j−1. This way of modeling subsequent batch submission leads to

an implicit session model.

5.2.13. Session Model

We decide to model sessions implicitly by the following mechanism. After the last job of a batch
finishes, we sample the think time according to the job’s response time and the subsequent think
time as described in the previous section. If the point in time of the next submission matches
the working day, we sample a new batch. This will allow the simulation to replay the think
time behavior relative to response time as analyzed in the previous chapters. Figure 5.5 depicts
a schematic session consisting of three batches b1, b2, and b3. After each batch i we sample an
interarrival time ti,i+1 according to the presented model. Contrary to the batch model, we do not

b1 b2 b3| |
t1,2 | |

t2,3 · · ·

Figure 5.5.: Session model.

assume that jobs submitted during a session will request the same number of resources. Figure
5.6 reveals that there is a much higher volatility in the number of resources requested by jobs
belonging to the same session than what we experienced for batches.
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Figure 5.6.: Distributions of sessions requesting the same number of resources.

5.3. Evaluation

In this section, we present several analyses to evaluate our model and to discuss its quality and fea-
tures in dynamic simulation. An overview of evaluation techniques is presented in [8][pp. 492f].
We perform a phenomenological evaluation, i.e., we compare several features of simulation re-
sults and the original traces. Therefore, we present the simulation setup in the next section, before
discussing the results obtained.

5.3.1. Simulation Setup

To evaluate our user model, we model users recorded in a workload trace individually and let the
user population dynamically interact with a simulated system. Figure 5.7 depicts the setup: First,
we initialite the user population from a workload trace. Second we run the dynamic simulation
and trigger feedback effects in form of think times in the user population. Third, we record the
results from the simulation in form of a workload trace, which we then compare to the original
data.

Original
Trace

Simulated
Population

u1

u2

u3

Simulated
System

Resulting
Trace

Job Submission

Feedback

Parameters record

Comparison

Figure 5.7.: Simulation setup.

We purposely utilize differently performing scheduling techniques, i.e., first come first serve
(FCFS) and EASY with backfilling [21]. While FCFS tries to allocate jobs in order of arrival and
allocates them strictly in that order, EASY also allocates in order of arrival but can prefer jobs
from the queue. Whenever a queued job does not violate the reservation made for the first queued
job, it is processed. Since we do not model uncertainty in runtime estimation, EASY has perfect
conditions in our simulation setup, which its efficiency and therefore stressing the difference of
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the scheduling system. We run the simulation for each trace in Table 6.1, with both schedulers and
simulate 104 consecutive weeks of job submissions, which is the equivalent of two consecutive
years.

By applying two differently advanced scheduling techniques, we can distinguish whether certain
aspects of the user model are dependent or independent of performance and underline the validity
of our approach.

5.3.2. Simulation Results

We analyze the quality of our model by eight different aspects and discuss positive and negative
features of the simulation results, as well as possible reasons and improvements. Validating our
model, we focus on the model quality for features we explicitly modeled, which are an indirect
component of the results, and which are depending on the different qualities of the schedulers.
Obviously, we will not be able to capture every effect which led to a workload trace, because of
the model assumptions on users and systems, e.g., our simulation covers only one queue and no
system specific policies etc. We focus our comparison on the following eight features between
original traces and simulation results:

• Working Times: We want to evaluate, whether a user’s individual working time model leads
to a comparable pattern of job arrivals as in the original traces. The results should be inde-
pendent of the scheduling system, because we have not modeled a feedback effect influenc-
ing working times.

• Workload Throttling: In real traces, we experience a throttling effect between the average
workload of jobs and the number of jobs submitted on a weekly basis [6]. Due to the dy-
namic fashion of our model, we expect similar results in our simulation results. Furthermore,
we should see a difference between two differently performing schedulers, since FCFS will
not handle as much workload as EASY leading users to submit less workload according to
our think time model.

• General Job Statistics: We are interested in the average number and workload of jobs sub-
mitted in the simulations and in the real trace.

• Think Times: We compare the average think times of our model to the think times experi-
enced in the traces. This proves, that our results are affected by this dynamic feedback.

• Batch Sizes: Because we model batch sizes individually for each user, we are interested,
whether the aggregation of batch sizes in a trace is similar to that of the original trace.

• Session Sizes: Since we do not model session sizes explicitly, we are interested in the
discrepancy of session sizes observed in the original trace and in the simulation results.

• Job Sizes: We want to evaluate if the job model leads to similar distributions as in the
original traces.

• Run Times: Similar to job sizes, we evaluate if the runtimes of jobs are similar in the original
trace. Therefore, we consider the standard deviation of runtimes for each user.
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Here, we discuss the outcomes of simulating KTH and MIRA. The results from simulating the
other systems are available in Appendix A. We see, that the percentage of job arrivals per hour
represents the data, which we find in the original trace independent of the quality of the scheduler
used in the simulations (Figure 5.8). Considering MIRA, we see best results for Mondays and Sun-
days. Some peak values of arrivals, e.g., on Tuesdays during the day or in the night from Thursday
to Friday and Friday to Saturday are different for the simulation but the amplitudes match. Con-
sidering KTH, we see that the moments in time where strongest increases and decreases in arrivals
occur are well captured. However, the peeks during the day and over night are stronger in the orig-
inal trace. Nevertheless, the peaks in the arrivals match well with the peaks of our simulations.
The overall impression is, that the daily cycle model captures the up and down between night and
daily work reasonably.

Figure 5.8.: Weekly arrival pattern.

Analyzing the average number of jobs and the workload submitted weekly, we experience the
same throttling effect for the simulations as in the original trace (Figure 5.9). The average job
workload correlates negatively with the number of jobs submitted in a certain week. Additionally,
we see an expectable result considering the quality of EASY and FCFS. EASY is more often
capable to handle more jobs than FCFS. The top left area of data points contains more data points
from the EASY simulation, while the bottom right contains more data points from the FCFS
simulation. This fact is also underlined by the location of the centroids of the data.

Furthermore, Table 5.6 gives a more general picture: The average number of jobs submitted per
day is close to the number of jobs submitted in the original traces. We experience minimum differ-
ences using EASY of 8.4% and 8.6% less submitted jobs. We again see the expected result, that
EASY handles more jobs and higher workload, while FCFS can only handle less jobs and lower
workload. Regarding the standard deviation of the number of jobs, the model is not as volatile
as the original trace. Due to the capability to handle more workload, the simulations performed
with EASY are more volatile as the the simulations performed with FCFS. We experience that the
feedback and therefore the increased amount of submitted jobs lead to this increased volatility.

The way we model subsequent think time ensures that the average subsequent think time re-
mains the same, regardless of the scheduling strategy used. Figure 5.10 proves this and is a key
feature of the simulation. Replaying a trace, i.e., using all information contained in a trace in a
static fashion to measure the quality of scheduling algorithms, cannot lead to these results. If a
scheduler is capable of finishing tasks faster, the think time observed in the result will increase,
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Figure 5.9.: Workload throttling.

Table 5.6.: Job statistics of both simulations.

Trace avg. #jobs/day std. #jobs/day avg. ω/day (in s) std. ω/day (in s)

KTH original 83.48 50.01 5.91 ·106 3.22 ·106

KTH EASY 76.30 33.29 6.04 ·106 2.49 ·106

KTH FCFS 64.71 29.93 5.63 ·106 2.33 ·106

MIRA original 189.84 139.55 3.13 ·109 2.30 ·109

MIRA EASY 175.84 73.05 4.30 ·109 2.44 ·109

MIRA FCFS 148.71 79.73 3.82 ·109 2.14 ·109

since the next job submission time is static.
The quality of the batch size model is depicted in Figure 5.11. While the model almost ex-

actly matches batch size distribution in KTH, the results differ slightly for MIRA. The cumulative
distribution of batch sizes is less for the two simulations. Since we model batch sizes indepen-
dently from system performance, the CDFs indicate that batches are similarly distributed for both
schedulers.

Figure 5.12 shows the CDFs for session sizes, i.e., the number of batches a session contains.
Somehow unsurprisingly, these plots reveal the greatest discrepancy between simulations and orig-
inal traces, most likely because we do not model session sizes directly. Although the difference
is greater than 20% in the KTH simulations, the CDFs converge quickly. For MIRA we can say
that the amount of session with a size greater than four are equal, while convergence is slower for
KTH. Maybe more advanced think time analyses will have positive influence on session sizes.

Although the number of submitted jobs and their parameters such as resources and runtimes de-
pend on several models, e.g., the daily working times have influence on the number of submitted
jobs and assuming that batches always contain the same number of resources jobs request, the cu-
mulative distribution of allocated resources matches the original trace (Figure 5.13). We conclude
that our assumptions on job sizes (only powers of two) and the fact that batches may only contain
jobs of the same size are valid properties of our model, since they do not see significant deviation
from the original data.

A similar result holds for the deviations of runtimes as we can see in Figure 5.14. The figure
represents the aggregated standard deviations of runtimes for each user. For MIRA the CDFs
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Figure 5.10.: Average think times.

Figure 5.11.: Batch size distributions.

Figure 5.12.: Session size distributions.
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Figure 5.13.: Job size distributions.

match quite well, except for the interval between 0.5 · 104 and 2 · 104. For this interval we
see that our model leads to more users having greater standard deviations than the original trace.
Considering KTH, we first see less users of standard deviations up to 1.5 · 104, while our model
overestimates the number users of higher standard deviations.

Figure 5.14.: Distributions of deviations in runtimes for each user.

5.4. Summary and Discussion

In this chapter we proposed a framework to model user behavior in high performance computing.
The framework divides user behavior and their submissions into components of different gran-
ularity, starting at a decision whether a user is active in a certain week down to the submission
of individual jobs of different characteristics. We developed an instantiation for each component
by statistical analysis of user information provided in workload traces. Furthermore, we added a
dynamic component in form of think time. We evaluated this approach and the interaction of the
different components in a simulation. Starting from a workload trace, we model the user popula-
tion according to our model assumptions and trace analyses and compare the aggregated results
from the simulation to the original data. We find that, although we model each user individually,
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the aggregated outcome captures the effects experienced in real workload traces, e.g.,

• the model of daily submission behavior leads to similar submission patterns as experienced
in the original traces,

• we experience similar throttling effects between job sizes and the number of submitted jobs
as we experience in the real world,

• the CDFs of job sizes and deviations in run times are similar to the original traces.

The framework will allow researchers to deploy their results and studies on user behavior, e.g.,
from cognitive studies to trace analysis, and evaluate their quality.

77





6. Optimizing Waiting Time Satisfaction in
Parallel Job Schedules - A MILP Approach

In this chapter, we propose a mixed-integer linear programming formulation (MILP) [36] to ad-
dress the online parallel job scheduling problem. The advantage of using a MILP formulation
approach is its capability of addressing a wide variety of linear objectives and solve them op-
timally, while the rest of the program remains the same. This does not only support the two
objectives evaluated in this chapter, but also allows further research to encode the objective into
a linear objective function and keep the rest of the program. We first introduce a method to dis-
cretize an online parallel job scheduling problem, which allows us to explore the possibilities of
MILPs. Then, we design our MILP formulation based on the results obtained in the exploration
step. Due to the flexibility of the linear optimization function, our formulation has the potential for
a broad set of mentioned optimization goals, such as (1) maximizing utilization, (2) optimization
of energy-consumption, and (3) user satisfaction. In this chapter, we explore the possibilities of
the MILP towards user satisfaction.

The approach in this chapter uses the data derived form the survey presented in Chapter 4,
specifically on the linear waiting time satisfaction regression from Section 4.2.4. We formulate
optimization goals to:

1. Maximize the number of jobs that lie in an acceptable waiting time frame; and

2. Decrease the lateness of jobs according to an acceptable waiting time deadline.

The main contributions of this work include:

• The use of planning horizons in parallel job scheduling, which allows to discretely optimize
schedules in online scheduling environments;

• A MILP formulation for the parallel job scheduling problem on parallel machines. The
formulation is flexible towards linear optimization goals; and

• An evaluation of the performance of the MILP formulation with focus on increased waiting
time satisfaction of users in parallel computing.

This chapter is structured as follows. In the next section, we introduce the scheduling approach,
discretizing the online parallel job scheduling problem by interpreting it as a consecutive optimiza-
tion of independent sub-schedules. The flexible MILP solver is described in Section 6.2, where we
also provide a complexity classification of the targeted scheduling problem. Section 6.3 contains
an evaluation for two different user-based optimization goals. Section 6.4 concludes this chapter.

6.1. Planning Horizon

We introduce planning horizons to improve job scheduling and tackle the online aspect of job
submission. A planning horizon is a time slot of constant, or dynamic length, in which a set of
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Si Si+1 Si+2

Qi Qi+1 Qi+2 Qi+3schedule schedule schedule

backfill backfill backfill

· · ·

· · ·

· · ·

|ti ti+1| |ti+1 ti+2| |ti+2 ti+3|

Figure 6.1.: Planning horizons divide the online job submissions into queues, which are used to
backfill a current schedule until all jobs of the current schedule are processed. Mean-
while, new schedule is calculated from the queued jobs. Qi, i≥ 0 is the queue of jobs,
which are scheduled in schedule Si at time ti. Execution lasts from time ti to ti+1, i≥ 0.
Jobs arriving between ti to ti+1 are either allocated by the EASY backfilling strategy
or, if they cannot be processed before ti+1, queued in Qi+1.

jobs is scheduled. Figure 6.1 shows the process of job scheduling using planning horizons. We
use the MILP approach described in Section 6.2 for scheduling the jobs in the queue Qi, i ≥ 0.
The resulting schedule Si, i ≥ 0 is modified online (utilizing EASY backfilling) if and only if an
incoming job fits into the existing schedule. Otherwise, the job is deferred to the next planning
horizon, and therefore added to the queue Qi+1, i≥ 0 that collects the jobs during execution of Si.

Planning horizons are beneficial for the proposed method of applying MILP-techniques to par-
allel job scheduling. Due to the fact that solving MILPs is generally a runtime-intensive process,
we do not reschedule queued jobs at every event of job arrivals, job completion (or preemption),
or job starts, but only on certain, pre-defined moments in time. This is advantageous in parallel
computing systems with a large number of jobs. The use of planning horizons reduces the com-
plexity of dealing with the online arrival of jobs, and keep the system controllable by dividing the
online scheduling problem into smaller subproblems. The length of a planning horizon might be
adapted to specific application requirements.

Furthermore, if we re-arrange queued jobs and do not compute them in an order significantly
influenced by the arrival time (in the basic case, in a first-come-first-serve order), we have to be
aware of starvation, i.e., a job never starts processing because other jobs have higher priority.
This situation cannot occur when considering planning horizons—every job is processed within
its horizon, and jobs cannot run at any other moment outside its horizon.

6.2. MILP for Parallel Job Scheduling on Parallel Machines

In this section, we first classify the theoretical complexity of the addressed scheduling problems.
Then, we introduce an MILP-formulation as a flexible optimization framework for linear objec-
tives.

6.2.1. Parallel Job Scheduling Complexity

We use the 3-field notation, which was introduced by Graham et al. [14]. Our analysis is based on
the theoretical concept of parallel machines Pm and minimizing the makespan Cmax (the turnaround
time to complete the experiment execution, Term 6.1), which is known to be NP-hard [26]. In
parallel job scheduling, additional constraints on the size of jobs m j have to be met, as well as that
jobs arrive online (Terms 6.2 and 6.3). However, these constraints do not weaken NP-hardness.
The steps described in Section 6.1 for considering independent schedules then are, that we solve
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independent problems for some t ∈ T (Terms 6.4 and 6.5). Therefore, the complexity of the
addressed problem is NP-hard, since all objectives considered in this chapter are stronger than
Cmax. Furthermore, we will introduce due dates d j and related objective functions, which we
consider to reflect user satisfaction—if a due date related aspect is met, then it is satisfactory.
Again, this only increases the complexity of parallel job scheduling problem.

Pm | |Cmax (NP-hard) (6.1)ysize j, online (6.2)

Pm | size j,online |Cmax (6.3)y"offline": t ⊂ T (6.4)

Pm | size j |Cmax (6.5)

Since the problem is NP-hard and we target optimal solutions, we choose a MILP (mixed-integer
linear programming) for solving the targeted parallel job scheduling problem. We then assume that
there is no additional abstraction layer, such as a meta-scheduler. Consequently, we neglect any
kind of queuing and scheduling policies, which results in no user restrictions, and no sub-queues.
We also assume that, once a job has been submitted, there is no further interaction between the
users and the system. Although the approach allows in principle job removal from the queue,
or the preemption of jobs at runtime, this is not considered in the evaluation (see Section 6.3).
Additionally, the proposed scheduling system does not give any guarantees. Hence, there are no
service level agreements, or any guarantee that the job will complete within a deadline.

6.2.2. Mixed Integer Linear Programming Formulation

The MILP requires a set of input variables describing the jobs which we have to schedule, as
well as resource availability to handle situations, where a current schedule utilizes resources and
a decision for further scheduling has to be made:

p j : (requested) processing time of job j,

m j : size of job j,

w′j : previous waiting time of job j,

ai : availability of resource i.

We will define due date related aspects of jobs when developing objective functions representing
user satisfaction. Additionally, we define a set of jobs as J, and a set of resources as M.

The MILP requires two sets of binary decision variables, and one integer decision variable for
the optimization process. The value ranges ensure that only a single job is executed per resource at
the same time (i.e., there is no concurrency), and that there is a strict order between jobs allocated
to a particular resource:
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xi j ∈ {0,1} : indicator if job j is

processed on resource i

y j j′ ∈ {0,1} : indicator if job j is

processed before job j′

t j ≥ 0 : start time of job j

Q≥max{M}+∑
i∈J

p j +1 : arbitrarily large value

The following terms (Objective Function 6.6 and Constraints 6.7–6.11) represent the MILP
formulation of the

Pm | size j, d j |min∑
j

f (.)

scheduling problem. The MILP is flexible since it is applicable to any linear optimization function
f (.) on the given variables:

min ∑
j∈J

f (.) (6.6)

s.t.
M

∑
i=1

xi j = m j ∀ j (6.7)

xi j + xi j′−1≤ y j j′+ y j′ j∀i, j, j′ j > j′ (6.8)

y j j′+ y j′ j ≤ 1 ∀ j, j′ j 6= j′ (6.9)

t j′+(1− y j j′) ·Q≥ t j + p j ∀ j, j′ j 6= j′ (6.10)

t j +(1− xi j) ·Q≥ ai ∀ j, i (6.11)

Equation 6.7 denotes the size constraint of the jobs. This means that a job j must be executed on
exactly size j resources in parallel. If two jobs run on the same resource, they must be executed
consecutively (Constraint 6.8), and exclusively either j

′
before j or vice versa (Constraint 6.9).

Non-overlapping (Constraint 6.10) adds a time constraint by guaranteeing that only a single job
is executed per resource at an instant of time. Finally, the starting time of job j must respect the
availability of the resource (Constraint 6.11).

6.3. Evaluation

In this section, we evaluate the practicability of the proposed MILP formulation. We first define
two user-based optimization goals related to waiting times, i.e., the tardiness and the number of late
jobs, as well as the makespan, and compare them to results obtained with the EASY scheduling
with conservative backfilling. EASY follows a FCFS approach with backfilling—jobs located
farther in the queue may run before their predecessors if they do not delay the execution of any
previous job. We derive scenarios from production platform workload traces, which are used as

82



6.3. Evaluation

input for the MILP. In this evaluation, we ignore feedback effects such as think time and the online
character of this scheduling problem, since they add significantly complexity and uncertainty to
the user submission behavior. Since our approach uses planing horizon, this assumption does
not weaken our evaluation. The schedulers face static scenarios, which are independent of online
submission behavior.

Both schedulers, EASY and MILP, are based on runtime predictions. Whenever a runtime
estimate is poor and a job completes significantly in advance to its estimated completion time,
backfilling strategies are triggered to fill this gap. Therefore, this approach mitigates flaws in
runtime estimates provided by users (which is typical in production systems).

6.3.1. Optimization Goals

In the following, we use two related optimization goals from the scheduling theory, i.e., ∑ j∈J Tj

(tardiness) and ∑ j∈J U j (tardy jobs) [26], and apply them to the targeted problem of increasing
user satisfaction. Tardiness is the time span from a due date of a job until it is processed, while
unified lateness describes whether a job can complete before its due date. Both objectives lead our
simulation setup to an NP-hard problem, since tardiness and unified lateness are more complex
than Cmax in parallel scheduling [26]. Both objective functions reasonably seek to exploit the
findings on acceptable waiting times as possible minimization objectives for parallel job schedules.
Thus, we derive the following two linear objective functions:

U j(p j) :=min
(

1,max
(
0,r j−

⌈
S(p j) · p j

⌉))
(6.12)

Tj(p j) :=max
(

0,r j−S(p j) · p j

)
(6.13)

S(p j) represents the acceptable slowdown we introduced with Function 4.3. The response time
r j := w′j +w j + p j represents the time time from submission of job j until its completion. It
comprises the waiting time w′j job j already experienced before we start the optimization, the
waiting time w j derived from the optimization and the processing time p j. Since these functions
respect the waiting time of jobs, the idea is to distribute waiting times among all users.

6.3.2. Experimental Scenarios

Beside the objective functions, we also need realistic data to evaluate the performance and quality
of the MILP scheduling approach in production environments. We use data from real workload
traces, covering different system sizes and different temporal spaces (recorded in 1996 and 2014).
Table 6.1 shows the main characteristics of the two traces used in this chapter (KTH and MIRA),
which include their names, a short handle, the system sizes (in terms of number of nodes), the
number of individual users, the number of recorded jobs, and the duration covered in the trace.
The KTH trace was obtained from the Parallel Workloads Archive (PWA) [2]. We arbitrarily chose
the KTH trace from PWA, since it has been used in several studies in the past decades1.

To evaluate the planning horizon approach (Section 6.1), we derive scenarios from the workload
traces. A scenario contains a queue status Q and a resource status M of trace l at an instant of time
t (Definition 6.14). At instant t, queue Q contains a set of jobs J, which have been submitted
and have not started processing (Definition 6.15), i.e., the submission time s j is before t, but

1 http://www.cs.huji.ac.il/labs/parallel/workload/l_kth_sp2/index.html
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Table 6.1.: Characteristics of workload traces used in this chapter.
Tracename Handle Year System Size (#nodes) #Users #Jobs Duration

KTH-SP2-1996-2.1-cln KTH 1996 100 214 28,476 340 days
MIRA-2014 MIRA 2014 49,152 487 78,782 409 days

Figure 6.2.: Distributions of job queue sizes for the KTH and MIRA workload traces.

j is still waiting for processing (w j ≥ t − s j). The resource status M describes the number of
resources m j that are allocated for a job j at t, and for how long the job will consume the resource
(Definition 6.16), i.e., the job has started processing before t (s j +w j ≤ t), yet it has not completed
processing at t (c j > t).

scenariol,t := {Q,M}, (6.14)

Q := { j | s j ≤ t ∧ w j ≥ t− s j ∧ j ∈ J}, (6.15)

M := {(m j,c j) | s j +w j ≤ t ∧ c j > t ∧ j ∈ J} (6.16)

6.3.3. Experimental Results and Discussion

First, we focus on minimizing the number of late jobs according to the unified lateness objective
function defined in Function 6.12. We create 20 scenarios at arbitrary points in time t from the
MIRA trace, and then we set the time limit to 10 minutes for the execution of the MILP. Mira
serves as an representative of modern parallel processing systems, which encourages the submis-
sion of large parallel jobs. In order to decrease the complexity of the solution, and lead to more
comprehensible results, the evaluation neglects any queueing, scheduling, or other policies, which
were present during trace recording.

Second, we choose the KTH trace to focus on minimizing the tardiness. Due to the smaller
queue sizes in the KTH trace, it is easier for the MILP to find solutions for the tardiness objective.
We also create 20 scenarios at arbitrary points in time. We set the time limit to 120 minutes. We
only chose two traces to prove the concept of applying the describes MILP formulation.

The distribution of queue sizes in both KTH and MIRA are shown in Figure 6.2.
Considering Mira, we do not consider jobs that will trespass their due date independently of

any schedule, i.e., U j(p j) = 1 without any further waiting time. Thus, we filter these jobs in a
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(a) (b)

(c)

Figure 6.3.: Results of scheduling scenarios taken from the MIRA trace with preprocessing:
(a) difference between results for EASY and MILP for ∑U j for median and .75-
quantile satisfaction function, (b) runtimes, and (c) gap between best integer and re-
laxation solution.

preprocessing step (data preparation). This allows the deletion of 64.5% – 95.8% of the jobs,
for which we cannot satisfy the due date. We choose the median acceptance function and the
.75-quantile function from Table 4.2 and the median as an average value, which is robust against
outliers. In situations of high queue saturation, this value cannot be satisfied. Therefore, we also
choose the .75-quantile to represent less satisfaction but still concerning the answers provided in
the survey. Additionally, we compare the results of both the EASY with conservative backfilling
and our proposed MILP approach.

Figure 6.3 shows the scheduling results for the MIRA trace, as well as runtimes and the gap
between best integer and relaxation solution of the MILP. Figure 6.3a shows the differences in the
number of late jobs between the solution obtained from EASY and MILP when applying either the
median or the .75-quantile function, respectively. Note that the obtained values are always positive
(including zero), since the MILP always finds a solution, which is better (or at least not worse) than
the EASY solution. This observation holds even when the runtime limit of ten minutes is reached
(Figure 6.3b). Overall, the .75-quantile function allows the MILP to find more jobs, which can
complete before their due date, whereas EASY cannot find suitable solutions due to its underlying
FCFS strategy. Figure 6.3c shows that 80% of the scenarios can be processed optimally within the
10-min threshold time limit.

Figure 6.4 shows the results of optimizing the tardiness objective function defined in Term 6.13.
Since we do not target the optimization of the unified lateness focusing only on the number of
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(a) (b)

(c) (d)

Figure 6.4.: Results of scheduling scenarios taken from the KTH trace: (a) Differences between
results from EASY and MILP regarding the sum of latenesses ∑Tj, (b) differences
between results from EASY and MILP regarding the makespan ∑Cmax, (c) runtimes,
(d) gap between best integer and relaxation solution.

jobs that could be processed before their due date, but the sum of individual latenesses, we also
report the Cmax-values of each schedule (Figure 6.4b). In this scenario, the runtime was limited
to two hours since in practical application, we want to obtain a schedule within a realistic time
frame. For both optimization functions, we observe that MILP outperforms EASY in most cases
(Figure 6.4a). For three scenarios (queue sizes 16 (2x) and 30) the solution obtained by EASY
is smaller than the solution obtained by MILP. For the median satisfaction function, the mean
improvement is µ = 20.6% (σ = 20.3%), and for the .75-quantile function the mean improvement
is µ = 32.2% (σ = 29.0%).

Although we reach the runtime limits for queue sizes of seven and nine already (Figure 6.4c),
and subsequently also experience a gap > 0% (Figure 6.4d), for every scenario considered, MILP
leads to better results than EASY. The MILP is able to find better schedules because it does not
need to schedule jobs in FCFS order but can re-arrange jobs. Furthermore, the makespan Cmax is
smaller for all schedules up to queue sizes of about 16 jobs, although this is not the primary goal
of the considered optimization functions. The makespan is not necessarily is metric to rate any
user-based quality of the obtained scheudles, but it hints at possible better utilizations, since the
same workload is processed in a shorter time.

Hence, we argue that we can distribute waiting times better among all jobs currently subject
to schedule by introducing planning horizons and applying the MILP approach proposed in this
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chapter under the assumptions discussed.
All experiments were conducted on five cores of an Intel Xeon CPU E5-2660 v3 @2,60Ghz with

a limit of 64GB of RAM, running Windows Server 2012 and CPLEX Enterprise Server Version
12.6.1. The time limit was set to 10 and 120 minutes, respectively.

6.4. Summary and Discussion

In this chapter, we have presented a way to explore MILP techniques for parallel job scheduling
in parallel computing to increase user satisfaction by meeting job deadlines. Therefore, we have
defined planning horizons and scenarios. The main results include:

1. The definition of planning horizons in the online parallel job scheduling problem, e.g., to
exploit methods from discrete optimization;

2. An approach to optimize user satisfaction in parallel job scheduling; and

3. A MILP formulation capable of optimizing job queues of up to 350 jobs optimizing a ∑U j

constraint (with preprocessing), and up to 30 jobs for a ∑Tj constraint.

While we have demonstrated the practicability of a MILP-based scheduling technique for par-
allel job scheduling in the form of planning horizons, future work should address the problem of
exploiting our findings. It is still necessary to apply the MILP to the consecutive scheduling of
scenarios described in this work. Furthermore, future work should also consider the feedback ef-
fect between the users and the parallel computing environments. These studies might also include
the influence of user-related inaccuracy in runtime estimation and further sources of uncertainty.

87





7. Conclusion and Future Directions

This thesis covers an integral and tripartite approach to optimize parallel job scheduling algo-
rithms, specifically focusing on user behavior and user satisfaction. We introduced the following
models and achieved several results, to understand and model user behavior in parallel computing,
as well as optimized user-centered waiting time satisfaction:

• We addressed the problem identified by Schwiegelshohn that there is a need for workload
generators including feedback between system performance and user behavior. Therefore,
we performed statistical workload trace analysis mainly focusing on the subsequent job
submission behavior in HPC and HTC. We found a correlation between job complexity
measures, e.g., the job size and the subsequent think time. This advances the previous find-
ings, that subsequent think time correlates to job response time. Additionally, we extended
the understanding on this type of feedback for HTC workloads. In two workload traces,
each covering one month of the CMS experiment, we can identify similar user behavior
compared to HPC; when interpreting bag of tasks as single jobs. This advances the under-
standing of workload traces, where several single jobs belong to one bag of task. It is even
possible to find this effect even if no information on which job belongs to which bag of task
information is provided.

• Furthermore, we developed a generative user model, to perform realistic parallel job sched-
uler performance evaluations. This model covers an individual behavior model for single
users recorded in a workload trace and combines a hierarchical structure to capture users’
working patterns from their weekly activity down to the actual job submission. Due to the
probabilistic design, it allows to adjust parameters and influence the workload accordingly.
Although the model is probability based, the behavior and performance of this model cov-
ers the relevant aspects of job submission behavior. Compared to the original trace, the
workload model produces the same distribution patterns of weekly job submissions and
dynamically throttles job submissions according to a linear think time function.

• We presented an MILP optimizer seeking optimal solutions according to acceptable waiting
times. In the evaluation, we assumed strict model assumptions, such as that job processing
times are exactly known at forehand. Due to the long times the algorithm takes to calculate
a solution, its deployment in productive systems is not recommendable.

There is no reason to only interpret the results from this thesis in combination. The results ob-
tained from the trace analysis and cognitive study can lead to other workload models than the one
presented in this thesis. Regarding the user model, the focus could be more shifted towards job
complexity feedback effects. Furthermore, we have not exploited the findings on working time
adjustments of users yet. We identified, that adjusting the working times is common among users
analyzed in this thesis, yet this has not become part of the workload model.

The aspect of changing working times can also become part of the optimization process. While
we invented algorithms focusing on acceptable waiting times from a linear regression analysis,
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service levels depending on evening or weekend work are plausible. In this case, minimizing
penalties for important jobs finishing outside the regular working times could be the objective.

Furthermore, future work should close the circle of understanding user behavior, modeling user
behavior and the subsequent optimization of parallel job schedules according to user satisfaction.
So far, we tested and evaluated an MILP approach to increase waiting time satisfaction. Due to
the high run times, it was yet not possible to utilize this approach in a generative, feedback-aware
simulation.

Considering the results of the direct user study, we advise future research to analyze workload
traces according to the specific findings. For example, this includes the investigation of correla-
tions between poor system performance and the adjustments of working times. So far, we only
considered think time as a criteria for user reaction to system performance, as this is a well-known
and accepted measure of feedback. Looking at the big picture, future work can exploit results
from this thesis to answer the question in how far algorithms (in this case scheduling and alloca-
tion decisions) have influence on our daily lives and their social impact.
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A. User Model Results

Table A.1.: Job and workload statistics.

Trace avg. #jobs/day std. #jobs/day avg. ω/day (in s) std. ω/day (in s)

LANL original 168.82 101.96 6.56 ·107 2.53 ·107

LANL EASY 128.83 45.37 6.61 ·107 1.84 ·107

LANL FCFS 109.21 36.04 6.35 ·107 1.64 ·107

CTC original 225.75 106.10 2.44 ·107 1.15 ·107

CTC EASY 242.12 78.59 2.58 ·107 1.05 ·107

CTC FCFS 182.81 85.11 2.34 ·107 1.08 ·107

SDSC original 227.97 129.81 7.60 ·107 3.94 ·107

SDSC EASY 218.84 86.23 9.44 ·107 4.42 ·107

SDSC FCFS 160.43 71.16 8.34 ·107 4.09 ·107

HPC2N original 159.12 187.94 1.24 ·107 1.25 ·107

HPC2N EASY 121.83 111.05 1.19 ·107 1.15 ·107

HPC2N FCFS 116.49 102.81 1.25 ·107 1.01 ·107

Figure A.1.: Weekly arrival patterns. Top left to bottom right: LANL, CTC, SDSC, HPC2N.
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A. User Model Results

Figure A.2.: Workload throttling. Top left to bottom right: LANL, CTC, SDSC, HPC2N.

Figure A.3.: Average subsequent think times. Top left to bottom right: LANL, CTC, SDSC,
HPC2N.
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Figure A.4.: Batch sizes. Top left to bottom right: LANL, CTC, SDSC, HPC2N.

Figure A.5.: Session sizes. Top left to bottom right: LANL, CTC, SDSC, HPC2N.
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A. User Model Results

Figure A.6.: Job sizes. Top left to bottom right: LANL, CTC, SDSC, HPC2N.

Figure A.7.: Runtime deviations. Top left to bottom right: LANL, CTC, SDSC, HPC2N.
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