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Abstract. We study how the choice of the regularization parameter affects the quality of the reconstruction of the
dielectric permittivity for an inhomogeneous medium, with data consisting of boundary observations of the electric field.
Our method is based on the minimization of a Tikhonov functional and uses a finite element method for computations
of the electric field. We conclude that the choice of the regularization parameter does not affect the quality of the
reconstruction significantly in the studied cases, and can even be removed with results not significantly different from
those with regularization.

Introduction

We consider the problem of determination of a variable dielectric permittivity, or wave propagation speed,
of an isotropic, non-magnetic, and non-conductive medium, from boundary observations of the electric field
generated by an incident plane wave. A numerical method, based on the minimization of a Tikhonov func-
tional and utilizing adaptive finite elements, for the solution of this problem has previously been studied by
our research group [1, 2, 3]. In those studies, the regularization parameter for the Tikhonov functional was
taken as a constant, selected by trial and error, to give the best reconstruction. In this note we compare that
method to an iterative updating of the regularization parameter as a part of the minimization procedure, by a
method presented in [4].

The direct and inverse problems

The dielectric medium in a bounded domain Ω ⊂ R
3 with boundary ∂Ω is characterized by a dielectric

permittivity function ε = ε(x). We assume that this permittivity belongs to the set of admissible permittivities

Uε, consisting of those ε such that ε ∈ C(Ω), ∇ε ∈ [L∞(Ω)]3, ε|T ∈ P1(T ) ∀T ∈ Tfine, 1 ≤ ε(x) ≤ M ∀x ∈ Ω,
and ∇ε|∂Ω ≡ 0. Here, P1(T ) denotes the set of polynomials of degree not greater than 1 over T , Tfine denotes
a very fine “ideal” triangulation of Ω into tetrahedra {T } (see [5]), and M > 1 is some known upper bound.

Let T > 0 be a given stopping time. We write ΩT � Ω × (0, T ) and ∂ΩT � ∂Ω × (0, T ). Given a
permittivity ε ∈ Uε, we describe the electric field E = E(x, t) by the following system of equations, defining
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the direct problem:

ε∂2
t E + ∇ × (∇ × E) − s∇(∇ · (εE)) = 0 in ΩT ,

∂nE = P on ∂ΩT ,

E(·, 0) = ∂tE(·, 0) = 0 in Ω,

(1)

where P ∈ [L2(∂ΩT )]3 is a known function describing the plane wave (see [1]). The system (1) then has a
weak solution E such that E ∈ Vdir � {E ∈ [H1(ΩT )]3 : E(·, 0) ≡ 0}.

The reconstruction problem described in the introduction can now be stated as a coefficient inverse
problem for the system (1): Given observed data G = G(x, t) for the electric field on ΓT � Γ × (0, T ),
Γ ⊂ Ω, determine ε ∈ Uε such that the corresponding solution E to (1) satisfies E = G on ΓT .

We seek a solution to this problem through minimization of the Tikhonov functional

Fα(ε) �
1

2
‖(Eε −G)z‖2L2(ΓT ) +

α

2
‖ε − ε0‖2L2(Ω) , (2)

where Eε is the solution to (1) for the given permittivity ε, z = z(t) is a smooth cut-off function, which
ensures data compatibility in the adjoint problem which appears in the minimization procedure, α > 0 is a
regularization parameter, and ε0 is an initial approximation to the true permittivity. In our computations, we
have used the homogeneous background initial approximation ε0 ≡ 1. We describe how to choose α below.

The gradient of Fα with respect to ε, which will be required for the minimization, can be computed as

F′α(ε) = α(ε−ε0)−
∫ T

0

(
∂tEε ·∂tλε− s(∇·Eε)(∇·λε)+ s∇· ((∇·λε)Eε)

)
dt. Here λε ∈ Vadj � {λ ∈ [H1(ΩT )]3 :

λ(·, T ) ≡ 0} denotes the weak solution to an adjoint problem to (1), with −(Eε −G)z as Neumann boundary
data on ΓT .

The adaptive algorithm and iterative regularization

Since we cannot in general compute exact solutions Eε and λε, we use approximations Eh and λh, and
obtain a corresponding approximate permittivity εh. These approximations are computed by a finite element

method with subspaces Vdir
h ⊂ Vdir, Vadj

h ⊂ Vadj, and subset Uεh ⊂ Uε, consisting of piecewise polynomials
of degree no greater than 1 over a triangulation Th of Ω into tetrahedra of size h, and a partition Iτ of (0, T )
into subintervals of length τ ∝ h. Details of the approximation procedure can be found in [1, 2, 3].

The principle of the adaptive algorithm can be outlined as follows. Given initial coarse Th and Iτ, we:

1. Minimize the Tikhonov functional of (2), using the conjugate gradient method, with functions approx-

imated by elements of Uεh , Vdir
h , and Vadj

h .

2. Refine the triangulation Th by subdividing those tetrahedra where the approximation error |Fα(ε) −
Fα(εh)| is large. If necessary for stability, refine Iτ as well.

3. Repeat steps 2 and 3 until a stopping criterion is satisfied.

In order to perform the second step, it is essential to be able to estimate in which regions the approx-
imation error is large. To this end, we have developed the following recommendation for the refinement of
the triangulation (see Mesh Refinement Recommendation 1 of [3]): Refine the triangulation in those regions
where the absolute value of the residual Rε � α(εh − ε0) −

∫ T
0
∂tEh · ∂tλh dt + s

2h

∫ T
0

[(∇ · λh)(n · E)] dt is
within a predefined relative tolerance of its maximal value. In Rε, [(∇ · λh)(n · E)] denotes the spatial jumps
of the discontinuous function (∇ · λh)(n · E) across the faces of the tetrahedra in Th.

Classical methods for the choice of regularization parameter, such as the (generalized) discrepancy
principle [6, 7], rely on multiple minimizations of the Tikhonov functional. In our case, this is computation-
ally expensive since the minimization requires the numerical solution of two partial differential equations
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TABLE 1. Maximum values mδ = maxx∈Ω ε(x) of the reconstructions on the final twice refined mesh,
and largest differences dδ = maxx∈Ω |ε(x) − εni(x)|, where εni is the reconstruction using non-iterative
regularization. For iterative regularization, p is the power in (3). Recall that the value of the true
permittivity is 3.0 inside the inclusions.

non-iterative iterative regularization no
regularization p = 0.1 p = 0.2 p = 0.5 p = 1.0 regularization

m0.05 2.870533 2.870554 2.870584 2.870642 2.870735 2.870929

d0.05 – 0.000038 0.000074 0.000151 0.000262 0.000519

m1.00 2.843455 2.843476 2.843513 2.843567 2.843648 2.843846

d1.00 – 0.000042 0.000075 0.000162 0.000270 0.000532

at each iteration. Therefore, we study an adaptive regularization method, described in detail in [4], which
relies on only one minimization. The idea is to select a sequence of regularization parameters α = αn,
where n ∈ N is the iteration count in the conjugate gradient method, and corresponding step-sizes βn, such
that minε Fαn (ε) → 0 as n → ∞. Under certain assumptions on the boundedness and regularity of the
Tikhonov functional, this amounts to selecting αn and βn such that α0 ≥ . . . ≥ αn > 0, limn→∞ αn = 0, and
0 < |1 − αnβn| < 1. In our computations we use the sequence

αn =
α0

(n + 1)p , (3)

with α0 = 0.01, and p ∈ (0, 1). Optimal step-size βn is computed explicitly.

Numerical results

As a numerical example, we consider the reconstruction of three spherical inclusions of radius 0.2, with
centres x1 = (0.3, 0.3, −0.2), x2 = (−0.3, 0.3, 0.0), and x3 = (0.0, −0.3, 0.2), respectively, with permittivity
3.0 inside the inclusions, and 1.0 outside. We use the computational domain Ω = [−1.4, 1.4]× [−1.4, 1.4]×
[−0.7, 0.7].

To generate data, we construct an initial mesh of with mesh size h = 0.1 overΩ, then refine it three times
locally close to the inclusions. The obtained three times refined mesh is used as Tfine in Uε. On this mesh,

we solve the direct problem for an incident plane wave at {x ∈ Ω : x3 = −0.7} of the form P(t) = sin(ωt)
for 0 < t < 2π/ω, and P(t) = 0 for t ≥ 2π/ω, with ω = 10.0, and collect observations at the transmission
side {x ∈ Ω : x3 = 0.7}. To these observations, we add a pointwise uniform random additive noise of levels
δ = 0.05, and δ = 1.00 respectively. To these data sets, we apply the reconstruction algorithm outlined above.
The results are shown in Figure 1 and Table 1.

Conclusion

We see from Figure 1 and Table 1 that the adaptive algorithm performs well for the lower level of noise,
reconstructing the correct number of inclusions, in the correct locations, with a reasonable maximum value
of the permittivity. For the larger level of noise, the inclusion furthest away from the observation boundary
is lost in the reconstruction. These results confirm those of [1, 2, 3].
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FIGURE 1. Isosurfaces at the level (minx ε(x) + maxx ε(x))/2 for the reconstruction with non-iterative regularization
(blue), and reference shapes of the three inclusions (grey, transparent) for noise level 0.05 (left), and 1.00 (right). Recon-
structions with iterative regularization and with no regularization are visually indistinguishable from the reconstructions
presented here.

The differences presented in Table 1 indicate that the choice of regularization parameter does not affect
the reconstruction of the permittivity of the three inclusions significantly. Indeed it is possible to remove the
regularization term of the Tikhonov functional altogether, and still obtain a good reconstruction of the di-
electric permittivity. This does not necessarily imply that the reconstruction problem is well-posed, since the
mesh parameter h of the finite-dimensional approximation may act as an additional regularization parameter.

It should be noted that regularization may still improve the reconstruction of dielectric permittivity if
an initial approximation ε0, which is better than the homogeneous background approximation used here, is
available. Such results are presented in [1, 2]. Moreover, it was demonstrated in [8] that iterative regulariza-
tion improves the performance of adaptive reconstruction of magnetic permeability.
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