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Impact of strain on the optical fingerprint of monolayer transition-metal dichalcogenides
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Strain presents a straightforward tool to tune electronic properties of atomically thin nanomaterials that
are highly sensitive to lattice deformations. While the influence of strain on the electronic band structure
has been intensively studied, there are only a few works on its impact on optical properties of monolayer
transition-metal dichalcogenides (TMDs). Combining microscopic theory based on Wannier and Bloch equations
with nearest-neighbor tight-binding approximation, we present an analytical view on how uni- and biaxial strain
influences the optical fingerprint of TMDs, including their excitonic binding energy, oscillator strength, optical
selection rules, and the radiative broadening of excitonic resonances. We show that the impact of strain can
be reduced to changes in the lattice structure (geometric effect) and in the orbital functions (overlap effect). In
particular, we demonstrate that the valley-selective optical selection rule is softened in the case of uniaxial strain
due to the introduced asymmetry in the lattice structure. Furthermore, we reveal a considerable increase of the
radiative dephasing due to strain-induced changes in the optical matrix element and the excitonic wave functions.
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I. INTRODUCTION

Atomically thin transition metal dichalcogenides (TMDs)
have been in the focus of current research due to their efficient
light-matter interaction and the remarkably strong Coulomb
interaction leading to tightly bound excitons [1–4]. Recently,
the impact of strain on optical and electronic properties
of TMDs has gained importance, since these atomically
thin materials are highly sensitive to deformations of their
lattice structure, suggesting strain-induced tailoring of TMD
characteristics. Recent experimental [5–9] and theoretical [9–
17] studies have revealed that strain can significantly change
the electronic band structure of TMDs. In particular, the direct
band gap decreases (increases) for tensile (compressive) strain,
resulting in a considerable redshift (blueshift) of optical reso-
nance. So far, most theoretical studies on the impact of strain
in TMDs are based on DFT calculations focusing on changes
in the electronic band structure without taking into account
the predominant role of excitons in these materials. In this
work, we present an analytic approach combining the Wannier
and TMD Bloch equations for excitons with the nearest-
neighbor tight-binding wave functions. The goal is to provide
a microscopic access to the impact of uni- and biaxial strain
on the optical fingerprint of TMDs, including the excitonic
binding energy, the oscillator strength, the optical selection
rules, and the radiative broadening of excitonic resonances.

II. THEOERTICAL APPROACH

In a first step, we determine the electronic band structure
of a general TMD material MX2 with M = (Mo, W) and
X = (S, Se), where Mo and W stand for molybdenum
and tungsten transition metals, while S and Se denote the
sulfur and selenium chalcogen atoms. To this end, we
solve the stationary Schrödinger equation H�λ

k (r) = Eλ
k�λ

k (r)
including the tight-binding (TB) wave functions �λ

k (r) =
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1√
N

∑
j=M,X Cλ

jk

∑N
Rj

eik·Rj φλ
j (r − Rj ). Here, the TB coeffi-

cients Cλ
jk express the contribution of each atomic sublattice

j = (M,X), Rj represents the position of the atoms within the
sublattice j , and φλ

j (r − Rj ) stands for the atomic orbitals
that are relevant for the considered bands λ. By inserting
the nearest-neighbor TB approximation [18,19], we obtain an
expression for the electronic band structure:

Eλ
k = ± 1

2

√
E2

gap + 4|tλ|2 |e(k)|2. (1)

The electronic band gap Egap = 1
2

∑
λ (Hλ

ii − Hλ
jj ) is deter-

mined by the on-site energies Hλ
ii . Furthermore, the nearest-

neighbor hopping integral reads Hλ
ij = 〈φλ

i |H |φλ
j 〉 = tλe(k) =

tλ
∑

α e−ik·bα with tλ = 〈φλ
i (r − Ri)|H |φλ

j (r − Rj )〉 and the
nearest neighbor connecting vectors bα . To obtain Eq. (1), we
have exploited the symmetry of the lattice resulting in Hλ

ij =
Hλ∗

ji and neglecting the overlap of orbital functions of neigh-
boring sites, i.e., Sij = 〈φλ

i |φλ
j 〉 = δij . Finally, restricting our

investigations to the area around the high-symmetry K point in
the Brillouin zone, we can further simplify the electronic band
structure by performing a Taylor expansion for small momenta
k and by applying the effective-mass approximation

Eλ
k ≈ σλ

(
Egap

2
+ h̄2

2mλ
k2

)
(2)

with σc = +1,σv = −1 and with the effective mass

mλ = 2h̄2Egap

3 |tλ|2 , (3)

that is given by the TB hopping parameter tλ. The latter
determines the curvature of the electronic bands around the K

point. Solving the Schrödinger equation, we also obtain the
TB coefficients

Cλ
Xk = (

1 + ∣∣gλ
k

∣∣)− 1
2 , Cλ

Mk = Cλ
Xk gλ

k (4)

with gλ
k = tλ e(k)(Egap

2 − Eλ
k)−1.
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FIG. 1. Strain affects electronic and optical properties of transi-
tion metal dichalcogenides MX2 (with a transition metal M and two
chalcogen atoms X) through (i) geometric changes in the real space
lattice (geometric effect) and (ii) changes in the orbital functions
(overlap effect), upper and lower panels respectively. (a) The upper
panel shows the hexagonal lattice structure with M (orange) and X

(yellow) atoms in real space and the corresponding Brillouin zone
(BZ) in momentum space in the unstrained case. The lower panel
represents the corresponding orbitals functions (orange for the M

orbitals, yellow for X orbitals) and their overlap (purple). (b) In the
presence of tensile biaxial strain, atoms are uniformly moved apart
in both directions. Hence, the hexagonal lattice structure remains
symmetric. In momentum space, this leads to a decrease of the
BZ size. Furthermore, due to the larger distance between M and
X atoms, the orbital function overlap is reduced. (c) In the case
of tensile uniaxial strain, i.e., strain only along one direction (here
x), the hexagonal structure becomes antisymmetric both in real and
momentum space. Beside the reduced orbital overlap, the atomic
orbital functions also become elliptic in the direction of strain.

Now, we have access to the electronic band structure and
the electronic eigenfunction of unstrained TMDs. Putting these
materials under strain leads to two effects having impact on
electronic and optical properties of TMDs: (i) geometric effect
and (ii) orbital overlap effect; cf. Fig. 1. The geometric effect
describes the change in the geometry of the lattice compared
to the unstrained case [Fig. 1(a)]. For biaxial strain, i.e.,
strain applied both to x and y directions, this simply implies
an increase in the lattice constant a0 [Fig. 1(b)], while for
uniaxial strain, i.e., strain applied only in one direction, the
lattice vectors change differently in both directions leading to
a broken lattice symmetry [Fig. 1(c)]. In momentum space, the
Brillouin zone changes accordingly: biaxial strain leads to a
uniform decrease of the zone, while uniaxial strain implies
a compression only in the direction of the applied strain.
Besides the pure geometric effect, strain has also an effect
on the overlap of the atomic orbitals; cf. the lower panel of
Fig. 1. Here, the crucial property is the overlap of M and X

orbital functions. Due to the strain-induced increase in the
distance between atoms, the overlap of the orbitals is reduced.
The effect is more pronounced for biaxial strain, while for
uniaxial strain the broken lattice symmetry is transferred to
the orbital shape (elliptic form). In this work, we focus on
tensile strain; however, the gained insights can be also applied
to compressive strain.

We implement the geometric effect of the strain by in-
troducing the strain matrix S = (

sx 0
0 sy

)
, where si = 1 ± s [%]

100%
with s denoting the strain value and ± representing tensile

and compressive strain, respectively. The basis vectors in
real (momentum) space transform to ai → Sai (ki → S−1ki)
which leads to an increase (decrease) of the hexagonal lattice;
cf. the upper panel in Fig. 1. We neglect changes in the z

direction, since the effect was recently shown to be negligibly
small [17].

Within the nearest-neighbor TB approximation, the atomic
orbitals φλ

j appear in integrals of the form 〈φλ
i |H |φλ

j 〉. Since
we are not interested in the exact shape of the orbitals, but
only in their strain-induced change, we assume effective 1s

hydrogen-like atomic orbitals φλ
j (r) = Nj exp(− r−SRj

σj,λ
) with

the normalization constant Nj , the atomic positions Rj , and
the orbital width σj,λ. We allow the width to change with
strain and find a self-consistent solution by benchmarking
the theory to experimentally observed strain-induced shifts
in optical spectra [5,6]. Note that the reported shifts include
both electronic and excitonic effects, and our framework can
now be used to differentiate those two effects. Therefore, we
have self-consistently calculated both electronic and excitonic
effects, and have used the reported values above as a boundary
condition for the total shift. Inserting this ansatz in Eq. (2)
we can find analytic expressions for the strain-dependent
electronic band gap Egap(s) and the TB hopping integral tλ(s)
in the case of symmetric biaxial strain (sx = sy = s):

Egap(s) = h̄2

4 m0 s2

∑
λ

(
σ−2

i,λ − σ−2
j,λ

)
, (5)

tλ(s) = 2h̄ s

m0(σi,λ + σj,λ)2
. (6)

Both quantities show a clear dependence on strain predom-
inantly via the orbital overlap effect (reflected by σi,λ,σj,λ):
the band gap decreases with s2, while the hopping integral
linearly increases with s. The slope of the increase/decrease
depends on the widths of the atomic orbitals and is hence TMD
specific—in agreement with experimental observations, where
we find a band gap reduction of approximately 50 meV/%
strain in WSe2 and MoS2 [5,9]. We exploit these experimental
findings to benchmark our theory by adjusting the widths and
the overlap of the atomic orbitals.

The strain-induced change of the band gap [Eq. (5)] gives
rise to a redshift of electronic resonances in optical spectra; cf.
the dashed gray line in Fig. 2(a). The strain-induced change
of the TB hopping integral [Eq. (6)] determines the variation of
the effective mass, i.e., the inverse band curvature. We observe
a clear decrease in the effective mass of the conduction band
[Fig. 2(b)] and a corresponding increase in the band curvature
[Fig. 2(c)]. We predict a reduction of the effective mass by
3% for WS2 (purple line) and 4% for MoS2 (orange line)
in the case of 1% applied uniaxial strain. In the case of
biaxial strain, the effect is roughly twice as large. For the
effective mass in the valence band, we obtain similar results.
Our results are in good agreement with DFT calculations
(dashed lines) [14,15].

III. EXCITONIC EFFECTS

By performing studies discussed above, we have bench-
marked our theory with available experimental and DFT
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FIG. 2. (a) Excitonic absorption spectra of unstrained (black) and
uniaxially strained tungsten diselenide (WSe2) as exemplary TMD
material at 3% strain. The observed redshift stems from (i) a decrease
in the orbital overlap giving rise to a reduced band gap (Egap) and
hence a redshift (dashed gray line) and (ii) the geometric effect leading
to a decrease in the effective masses, which results in weaker bound
excitons (Eb

exc) and hence a blueshift of the unstrained peak. The
inset shows the resulting energy shift �E as a function of strain
both with (orange) and without (gray dashed) taking into account
excitonic effects. (b) Strain-dependent decrease of the effective mass
in the conduction band for WS2 (purple) and MoS2 (orange). Our
results (solid lines) are in good agreement with values obtained by
DFT calculations (symbols and dashed lines) taken from Ref. [14]
(triangles) and Ref. [15] (squares). (c) Sketch of the effect of strain
on the dispersion of the conduction band.

studies regarding the impact of strain on the electronic
properties of TMDs (band gap and band curvature). Now, we
include excitonic effects and investigate how they change in
presence of bi- and uniaxial strain. Excitons are integrated by
solving the Wannier equation, providing access to eigenvalues
and eigenfunctions for all available excitonic states [2,20–23].
Furthermore, we derive the TMD Bloch equation for the mi-
croscopic polarization pvc

k1,k2
(t) = 〈a+

c,k1
av,k2

〉(t) giving access
to excitonic optical response of TMDs [18]. This microscopic
quantity is a measure of optically induced transitions from
state (v,k) to (c,k) that are characterized by the electronic
momentum ki and the band index λi = (v,c) denoting the
valence and conduction bands, respectively [18].

Since excitonic effects are known to dominate optical
properties of TMDs [2,3,24], we project the microscopic
polarization into an excitonic basis [25] pvc

k1,k2
(t) → pvc

qQ(t) =∑
μ ϕ

μ
q p

μ

Q(t) with excitonic eigenfunctions ϕq and the index μ

representing the excitonic state. In this work, we focus on the
energetically lowest optically allowed A1s state. Furthermore,
we introduce center-of-mass and relative momenta Q and q,
where Q = k2 − k1 and q = mh

M
k1 + me

M
k2 with the electron

(hole) mass me(h) and the total mass M = me + mh. The
separation ansatz enables us to decouple the relative from the
center-of-mass motion. For the relative coordinate including

the reduced mass μ = mcmv

mc+mv
, we solve the Wannier equation

[2,20–22]

Eqϕq −
∑

k

Vexc(k)ϕq−k = Eb
excϕq (7)

with the excitonic eigenfunction ϕq, the excitonic binding

energy Eb
exc, and the dispersion Eq = h̄2q2

2μ
.

To obtain the temporal evolution of the excitonic micro-
scopic polarization pQ(t), we solve the Heisenberg equation
of motion ih̄ṗQ(t) = [H,pQ(t)] [18,20]. This requires the
knowledge of the many-particle Hamilton operator H = H0 +
Hc-l + Hc-c including the free carrier contribution H0, the
carrier-light interaction Hc-l and the carrier-carrier interaction
Hc-c. To calculate the coupling elements, we apply the nearest-
neighbor tight-binding approach [18,20,21]. Exploiting the
fundamental commutator relations [20], we obtain the TMD
Bloch equations for the excitonic microscopic polarization [2]:

ṗQ(t) = 1

ih̄

(
Eexc + h̄2Q2

2M
− iγ

)
pQ(t) + �(t) δQ,0. (8)

The optical excitation is expressed by the Rabi frequency
�(t) = e0

m0

∑
q ϕ∗

q Mvc(q) · A(t) including the optical matrix
element Mvc(q) and the external vector potential A(t). Here,
e0 denotes the electron charge and m0 the electron rest mass,
respectively. Taking into account only direct transitions with
Q = 0, we end up in an analytic expression for the absorption
coefficient corresponding to the well-known Elliot formula
[20,21]:

α(ω) ∝ 1

ω
Im

[∣∣∑
q Mvc

σ±(q)ϕq

∣∣2

Eexc − h̄ω − iγ

]
. (9)

Note that we have projected the optical matrix element to
the polarization direction of right- (σ−) and left-handed (σ+)
circularly polarized light, i.e., Mvc

σ±(q) = Mvc
x (q) ± iMvc

y (q).
The nominator determines the oscillator strength and crucially
depends on the TMD properties and the lattice symmetry.
The denominator defines the energetic position Eexc of the
resonances in optical spectra Eexc = Egap − Eb

exc with the
electronic band gap Egap and the excitonic binding energy
Eb

exc. Furthermore, we have introduced a dephasing γ , which
accounts for radiative decay of the excitonic polarization.
Nonradiative channels have not been considered. They play
a crucial role at higher temperatures [26].

Evaluating Eq. (7), we have access to excitonic absorption
spectra of random TMDs. Figure 2(a) shows the spectrum for
the exemplary WSe2 directly comparing the strained (orange)
and the unstrained situation (black). Our approach enables
to extract the contribution of excitonic effects to the strain-
induced shift of resonances. Interestingly, we find that the
change in the excitonic binding energy leads to a blueshift
reducing the general strain-induced redshift; cf. the inset of
Fig. 2(a). This can be ascribed to the smaller effective masses
[Fig. 2(b)] entering the Wannier equation through the reduced
mass μ and resulting in smaller excitonic binding energies.

Now, we discuss in detail the impact of strain on all
quantities appearing in the Elliot formula, i.e., the excitonic
binding energies Eb

exc and excitonic wave functions ϕq as
well as the optical matrix element Mvc

σ±(q) and the radiative
dephasing γ . The gained insights will allow us to understand
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the strain-induced change in the optical fingerprint of TMD
materials.

IV. STRAIN-INDUCED CHANGE OF EXCITONIC BINDING
ENERGIES AND WAVE FUNCTIONS

Strain enters in the Wannier equation [Eq. (7)] both through
the geometric and the orbital overlap effects. From Eq. (6), it
follows directly for the reduced mass in case of biaxial strain

μ(s) = μ0s
−2, (10)

where μ0 is the value for the unstrained case. For uniaxial
strain the geometric effect induces an anisotropy, i.e., Eq =
h̄2q2

2μ
→ h̄2q2

x

2μx
+ h̄2q2

y

2μy
. Exploiting the relation μi = μ0s

−2
i and

projecting it to elliptic coordinates with the absolute value q

and the angle φq , the dispersion Eq in the Wannier equation
reads

Eq(sx,sy) = h̄2q2

2μ0

(
s2
x cos2 φq + s2

y sin2 φq

)
. (11)

Here, we have to distinguish between uni- and biaxial
strain, since the solution of the Wannier equation will be
different in an anistropic system. For biaxial strain with
sx = sy , the Wannier equation remains isotropic and only
the reduced mass μ is smaller for tensile strain. As a result,
biaxial strain accounts for lighter and weaker bound excitons
with radially symmetric excitonic wave functions. The latter
become slightly larger in amplitude and spectrally narrower
[Fig. 3(a)]. In contrast, in the case of uniaxial strain the Wannier
equation becomes anisotropic owing to the geometric effect.
This results in anisotropic wave functions. To quantify the
degree of anisotropy, we calculate �ϕq = (ϕqx

− ϕqy
)/ϕqy

as
a function of momentum [Fig. 3(b)]. Note that we divide
here by ϕ

y
q (unstrained direction) to give percentage values

of the strain-induced change. The anisotropy is zero for the
unstrained case (black line) and increases with the applied
uniaxial strain.

Besides the change in the excitonic eigenfunction, strain
also induces a reduction of the excitonic binding energy Eb

exc(s)

δϕ
ϕ

FIG. 3. Strain induced changes in the (a) excitonic wave function
φq for biaxial strain, (b) �ϕq = (ϕqx

− ϕqy
)/ϕqy

expressing the
anisotropy of the wave function for uniaxial strain, and (c) the
excitonic binding energy for both bi- and uniaxial strain according to
the solutions of the Wannier equation [Eq. (7)] for WSe2 (solid lines)
and MoS2 (dashed lines). The excitonic binding energy decreases
both for uni- and biaxial strain due to the smaller reduced mass μ(s).
We find a decrease of 8 meV for 1% (25 meV for 3%) applied biaxial
strain for WSe2 and 11 meV (33 meV) for MoS2.

due to the smaller reduced mass that can be mainly ascribed to
the orbital overlap effect; cf. Eq. (6). Our calculations reveal
a decrease of Eb

exc by 4 meV/% applied uniaxial strain in
WSe2. The effect is approximately twice as large in the case
of biaxial strain; cf. Fig. 3(c). The strain-dependent change
of the excitonic binding energy scales with s−2 according
to Eq. (10); however, at the considered low strain values
s = 1.01–1.03 the scaling is approximately linear. The weaker
bound excitons result in a blueshift of excitonic resonances,
however, this strain-induced excitonic shift is much smaller
than the general redshift of the band gap, resulting in an overall
redshift of optical resonances; cf. Fig. 2(a). The dashed lines in
Fig. 3(c) show Eb

exc(s) in MoS2, where we find qualitatively the
same behavior; however, the slope of the approximately linear
decrease is with 5 meV/% uniaxial strain, quantitatively larger.
The difference to WSe2 can be traced back to different atomic
orbital functions, where the atomic mass of molybdenum is
lighter than tungsten and therefore molybendum-based TMDs
tend to be generally more affected by strain. Our results are
in good agreement with previous studies, revealing decreases
of 11 meV/% (MoS2) and 8 meV/% (WSe2) for biaxial
strain [17,27]. Note that absolute values of the excitonic
binding energy (and the strain-induced changes) crucially
depend on the dielectric screening of the Coulomb potential
due to the presence of a substrate. In our study, we have
used free-standing TMDs, as the impact of strain on the
substrate-induced screening is beyond the scope of our work.
In Ref. [27], a study of strain-induced changes depending on
the dielectric screening was presented, proposing a stronger
screening for tensile strain. This would further decrease the
excitonic binding energy in our work, which can explain the
quantitative difference with Ref. [27].

Beside the change in the reduced mass μ(s), the strain
also affects the Coulomb matrix element Vexc appearing in
Eq. (7). The latter is treated as a Keldysh potential, including a
consistent description of substrate-induced screening in quasi-
two-dimensional nanostructures [2,28]. In this first study, we
have neglected strain-induced changes due to the substrate.
Hence, strain only enters via the tight-binding coefficients.
Our calculations reveal that this effect is negligible compared
to the strain-induced change of the reduced mass. Note that
our approach could be extended to TMDs on a substrate or
even encapsulated TMDs, provided that the strain dependence
of the dielectric constant of the surrounding medium is known.

Our work goes beyond the discussion of strain-induced
shifts, but rather focuses on the impact of strain on optical
properties of TMDs that will be discussed in the following
sections.

V. STRAIN-INDUCED CHANGE OF THE OPTICAL
MATRIX ELEMENT

The optical matrix element Mvc
k = 〈�v

k(r)|∇|�c
k(r)〉 is

given as the expectation value of the momentum operator
p = −ih̄∇ [18,29]. Exploiting the nearest-neighbor TB wave
functions, we obtain an analytic expression for Mvc(k),

Mvc
k = c0

3∑
α=1

bα

(
Cv∗

MkC
c
Xke

ik·bα − Cv∗
XkC

c
Mke

−ik·bα
)
, (12)
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FIG. 4. Influence of strain on the optical matrix element projected
in the direction of right- (σ−) and left-handed (σ+) circularly polarized
light. The change of |Mvc

σ−| and |Mvc
σ+| are shown for biaxial [(a) and

(b), respectively] and uniaxial strain [(c) and (d), respectively], for 1%
strain. Close to the K point, strain induces an increase (orange area) of
the optical matrix element for both bi- and uniaxial strain. Due to the
valley selective excitation in TMDs, Mvc

σ+ vanishes at the K point in
the unstrained case. In presence of uniaxial strain, this valley-selective
optical selection rule is softened resulting in |Mσ+| 
= 0. The change
of |Mvc

σ−| and |Mvc
σ+| at the K point is plotted as a function of strain

in (e) and (f), respectively.

where the constant c0 denotes the nearest-neighbor orbital
overlap c0 = e

√
3

a0
〈φv

j (r − Rj )|px |φc
i (r − Ri)〉 [2]. The optical

matrix element exhibits, similarly to the electronic band
structure, a strong trigonal warping effect; i.e., it shows a
triangular shape around the K and K ′ valleys. This reflects
the threefold symmetry of the nearest neighbors in the real
space lattice. Note that the optical matrix element is also
strongly valley dependent; i.e., at the K (K ′) point it is
maximal, whereas it vanishes at the K ′ (K) point for excitation
with right (left)-handed circularly polarized light [2]. This is
the microscopic origin of the observed valley polarization in
TMDs [30–32].

Strain enters in Eq. (12) through the TB coefficients
Cλ

M(X)k and through the vectors bα connecting the nearest
neighbors in the real space lattice. Figures 4(a)–4(d) show the
strain-induced changes in the optical matrix element �|Mvc

σ±|
projected to the direction of left- or right-circularly polarized
light in the case of 1% tensile strain. We find that strain has
a complex impact on the optical matrix element, including
areas with positive (orange) and negative (purple) changes.
In particular, we observe an increase of the matrix element
around the K point both in uni- and biaxial cases. This can
be traced back to a large extent to the orbital overlap effect.
Inserting our ansatz for the atomic orbitals into the constant c0

appearing in Eq. (12), we find an analytic expression for the
biaxial strain:

c0 ∝ s
2h̄

m0
(
σλ

i + σλ
j

)2 . (13)

The larger the strain, the smaller are the orbital overlaps σλ
i ,σ λ

j ,
resulting in an increase of the optical matrix element.

Exploiting Eq. (4) and applying a Taylor expansion of
Eq. (12) around the K point, we can further evaluate the optical
matrix element, yielding

Mvc
k = c0C

v∗
X Cc

Xi
∑
l,m

k · (bm − bl)
bm

|bm|
× (

βv∗
k e−iK·bl eiK·bm + βc

ke
iK·bl e−iK·bm

)
, (14)

where we have introduced the abbreviation βλ
k =

tλ(Egap

2 − Eλ
k)−1. Neglecting the influence of strain on the

tight-binding coefficients and focusing on the change of the
connecting vectors (geometric effect), which are responsible
for the trigonal warping effect, i.e., bi → Sbi , we find for the
x (y) component of the optical matrix element

Mx(y) ∝ i
sxkx

(
bx

m − bx
l

) + syky

(
b

y
m − b

y

l

)
√(

sxbx
m

)2 + (
syb

y
m

)2
sx(y) b

x(y)
m . (15)

For biaxial strain we find a simple relation Mx(y) = sM0
x(y),

where M0
x(y) is the unstrained optical matrix element. Here,

strain has the same impact on x and y directions, and so
the trigonal warping effect is fully conserved; cf. Figs. 4(a)
and 4(b). For uniaxial strain, Eq. (15) shows that applying the
strain in one direction affects the x and y components of the
optical matrix element in different ways, which results in a
distorted trigonal warping effect; cf. Figs. 4(c) and 4(d). This
feature can be clearly traced back to the geometric effect of
the strain.

Now, we evaluate the strain-induced changes of both |Mvc
σ−|

and |Mvc
σ+| directly at the K point; cf. Figs. 4(e) and 4(f). We

find a linear increase of |Mvc
σ−| with strain, where the slope

is larger in the case of biaxial strain: by applying 1% strain
our calculations reveal an increase of |Mvc

σ−| by 2% (2.5%) for
uniaxial and 4% (5%) for biaxial in WSe2 (MoS2). We find
again that the effect is slightly more enhanced for MoS2. Due
to the optical valley-dependent selection rules, |Mvc

σ+| is zero
at the K point in unstrained TMDs. However, in the case of
uniaxial strain, we observe a softening of this selection rule
due to the broken symmetry stemming from Eq. (15). Even
though the effect is rather small (increase by 0.2–0.3% per 1%
applied strain in WSe2 and MoS2), it shows that strain can be
principally exploited to control the valley polarization.

To further discuss this behavior, we find an analytic
expression for the optical matrix element directly at the K

and K ′ points by evaluating the sums in Eq. (15) and directly
plugging in the coordinates of the these points:

(
Mx

My

)
∝

(
sx

±isy

)
, (16)
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where + (−) denotes the K (K ′) point. For the projected
optical matrix element Mvc

σ± = Mx ± iMy it follows that

biaxial uniaxial

Mvc
σ+(K) ∝ sx − sy 0 
= 0

Mvc
σ−(K) ∝ sx + sy increase increase

Mvc
σ+(K ′) ∝ sx + sy increase increase

Mvc
σ−(K ′) ∝ sx − sy 0 
= 0 .

(17)

Here, we clearly see that the optical valley-dependent selection
rule does not apply anymore in the case of uniaxial strain.
Figure 4(f) shows the strain-induced change of |Mvc

σ+| at the
K point. For unstrained TMDs and for biaxial strain, |Mvc

σ+|
is zero according to the optical selection rules. Applying
uniaxial strain, |Mvc

σ+| increases with strain as predicted in
Eq. (17). However, the effect is rather small and, although it
softens the optical selection rules, it will be difficult to observe
the decreased valley polarization at experimentally accessible
strains. The effect also occurs in MoS2 (dashed line), where it
is slightly more enhanced due to the larger overlaps of atomic
orbital functions.

In summary, the optical matrix element increases around
the K point as a function of applied strain. This can be
traced back to the orbital effect which leads to an increase
of c0 [Eq. (13)] and the geometric effect changing the nearest-
neighbor vectors bα and accounting for the distorted trigonal
warping effect and the softening of valley-dependent optical
selection rules in the case of uniaxial strain. As the optical
matrix element directly enters the Elliot formula [Eq. (9)],
the observed changes will have a direct impact on the the
optical absorption spectra. However, to fully understand the
change in the oscillator strength of excitonic resonances,
we investigate the influence of strain on the excitonic
linewidth.

VI. STRAIN-INDUCED CHANGE OF THE
RADIATIVE DEPHASING

The excitonic linewidth is expressed by the dephasing
constant γ in Eq. (9). We focus here on the radiative decay,
which is known to be the dominant dephasing channel at low
temperatures, while at higher temperatures, phonon-induced
nonradiative decay channels become important [26]. The
impact of strain on these processes is beyond the scope of
this work.

The radiative decay rate is determined by spontaneous
emission of light through recombination of carriers and has
been obtained by self-consistently solving the Bloch equation
for the excitonic polarization and the Maxwell equations in a
two-dimensional (2D) geometry [26]:

γ = h̄3cμ0

Eexcn

∣∣∣∣∣
∑

q

Mvc
σ±(q)ϕq

∣∣∣∣∣
2

, (18)

with c
n

describing the light velocity in the substrate material
and μ0 the vacuum permeability. As discussed in the previous
section, the optical matrix element increases with strain,
suggesting an enhanced γ as a function of strain. However, the
appearing excitonic wave function and the excitonic resonance

ϕ

γ

FIG. 5. Strain-induced broadening of the radiative linewidth.
(a) Absorption spectra of strained WSe2 for 1–3% of biaxial strain.
To focus on the linewidths, the excitonic resonances are normalized
and shifted to the peak in the unstrained case. We observe a
clear strain-induced increase of the radiative linewidth. Quantitative
evaluation of the strain-dependent change in (b) WSe2 and (c) MoS2.
We find an increase from 2 meV in the unstrained case to 2.3 meV
(2.4 meV) for 1% biaxial strain in WSe2 (MoS2). The total broadening
(solid purple line) is due to the strain-induced change of the excitonic
energy (dashed orange), the optical matrix element (dashed red),
and the excitonic wave function (dashed blue); cf. Eq. (18). The
matrix element turns out to play the predominant role for the observed
broadening.

also have an influence on the final broadening. Figure 5(a)
demonstrates that the radiative linewidth generally increases
with biaxial strain in WSe2. We find an enhancement from
from 2 meV in the unstrained WSe2 (black line) to 3.2 meV
for 3% biaxial strain (purple line); cf. Fig. 5(b). We obtain a
very similar behavior for MoSe2 [Fig. 5(c)] and uniaxial strain
(not shown), where the increase of the broadening is smaller
(2.6 and 2.7 meV for 3% uniaxial strain in WSe2 and MoS2,
respectively).

To get a deeper understanding of the underlying micro-
scopic processes, we evaluate the increase of the radiative
linewidth by considering separately the strain-induced changes
in (i) the excitonic energy Eexc, (ii) the optical matrix element
Mvc

σ±(q), and (iii) the excitonic wave function φq; cf. the dashed
lines in Figs. 5(b) and 5(c) for WSe2 and MoS2, respectively.
Our calculations demonstrate that the optical matrix element
plays the crucial role for the observed general increase of the
radiative linewidth. In contrast, the excitonic wave functions
actually reduce the radiative decay due to the strain-induced
spectral narrowing of the wave functions [Fig. 3(a)]. Finally,
the excitonic energy becomes smaller in the presence of strain,
resulting in a larger radiative broadening [Eq. (18)]; however,
the effect is relatively small compared to the impact of the
optical matrix element.

VII. CONCLUSIONS

We have presented microscopic insights into the impact of
uni- and biaxial strain on the optical fingerprint of atomically
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thin transition metal dichalcogenides. Combining Wannier
and Bloch equations with the nearest-neighbor tight-binding
approximation, we derive analytic expressions for the strain-
induced change in the (i) effective masses giving rise to a
reduction in the excitonic binding energy, (ii) the optical matrix
element resulting in a softening of valley-dependent optical
selection rules in the case of uniaxial strain, and (iii) radiative
broadening of the excitonic resonances. We trace back these
features to changes in the lattice structure (geometric effect)
and in the orbital functions (overlap effect). The presented
framework could also be extended to few-layer or encapsulated
TMDs. The gained insights contribute to a better understanding
of how strain changes the excitonic properties determining

the optical fingerprint of these technologically promising
nanomaterials.
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