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Abstract

Recent years have seen a marked interest in the construction of eco-towns,

showcase developments intended to demonstrate the best in ecologically-

sensitive and energy-efficient construction. This paper examines one such

development in the UK and considers the role of biomass energy systems.

We present an integrated resource modelling framework that identifies an

optimized low-cost energy supply system including the choice of conversion

technologies, fuel sources, and distribution networks. Our analysis shows

that strategies based on imported wood chips, rather than locally converted

forestry residues, burned in a mix of ICE and ORC combined heat and power

facilities offer the most promise. While there are uncertainties surrounding

the precise environmental impacts of these solutions, it is clear that such

biomass systems can help eco-towns to meet their target of an 80% reduction

in greenhouse gas emissions.
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1. Introduction

Cities account for approximately two-thirds of the world’s primary en-

ergy consumption and 71% of global fossil-fuel related direct greenhouse gas

emissions [1]. Therefore to ensure that cities maintain their vital social and

economic functions, while mitigating global climate change, there is a need

to develop urban energy systems that are more efficient and emit less carbon

dioxide.

One option is to switch from fossil fuels to renewable energy sources

such as wind, solar or biomass. This is typically achieved with national or

regional policy initiatives. For example, the European Union has issued a

directive which sets an EU-wide target of providing 20% of final energy con-

sumption from renewable sources by 2020. The target is then broken down

by member state: the UK, for example, has agreed to increase its renewable

energy mix from 1.3% in 2005 to 15% by 2020 [2]. Urban environments

are recognized as having an important role to play in delivering these goals.

Articles 12.3 and 12.4 of the directive oblige member states to “consider”

the use of renewables “when planning, designing, building and refurbishing

industrial or residential areas” and to “require the use of minimum levels of

energy from renewable sources in new or refurbished buildings”. A practical

example of such a policy in the UK is the Code for Sustainable Homes, “an

environmental assessment method for rating and certifying the performance

of new homes”. This standard recognizes biomass energy systems, from sin-

gle household boilers to district combined heat and power (CHP) systems,

as “low or zero carbon technologies” integral to achieving high performance

levels [3].

However, urban biomass energy systems pose a number of practical chal-

lenges including the use of specialist technologies, a range of alternative

supply chains, and local air pollution impacts. This paper explores these

trade-offs in the case of a UK eco-town and demonstrates a software tool
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that evaluates alternative technological options to identify an optimal (low

cost) urban biomass energy system. The issues that need to be considered

in such a model and the eco-town case study are presented in Section 2. An

overview of the software tool and the input data is then given in Section 3,

before the results are described in Section 4. In the concluding discussion,

we consider the implications of the results for the specific eco-town case as

well as urban biomass energy systems more generally.

2. Background

This section highlights the diversity of urban biomass energy systems

and key findings from the literature. It then introduces an eco-town case

study to be used in the subsequent modelling. Note that our focus is on

biomass for heat and power applications; we have not examined biofuels for

urban transport.

2.1. Characteristics of urban biomass energy systems

There are several options to produce heat and power from biomass and

these can be generally classified according to criteria such as biomass type,

technology type and size, and the degree of decoupling between biomass

treatment and conversion processes [4]. When integrating bioenergy into

urban areas, the specific concerns are the availability of space for biomass

storage and pre-treatment, the emission levels of bioenergy conversion pro-

cesses, and transport issues including the logistics and costs of biomass sup-

ply. These barriers are mainly caused by the low energy density of biofuels,

which require additional conditioning processes and consequently result in

energy conversion efficiencies lower than what could be achieved via fossil

fuel routes. Scarcity and competing alternative uses of biomass feedstocks

are also a concern.

Despite these obstacles, bioenergy routes offer potentially high overall

energetic, economic and environmental performance in urban areas due to
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the aggregation of demand and typically high energy costs. Unfortunately

the proximity of the energy conversion plants to the load can be a disadvan-

tage since the resulting emissions are also close to people. As power plants

are often far from urban centres, new local plants can have a major impact

on local air quality [5, 6, 7]. On the other hand, the effects of converting

heating systems from electricity or gas-fired boilers to pellet heating systems

have also been investigated, showing that conversion from electrical heating

to pellets does not significantly affect air quality [8].

Urban bioenergy solutions therefore require a trade-off between central-

ized large plants and distributed small plants: the benefits of the former

being high conversion efficiencies, low emission levels and low specific in-

vestment and operational costs; while the latter are advantageous due to

reduced space requirements, simplified logistics and transport, and ease of

plant location. For this reason, several studies have aimed to optimize the

location and size of biomass CHP plants on the basis of technical and eco-

nomic factors [9, 10, 11, 12]. For example, a multi-criteria decision analysis

methodology was applied to the Metropolitan Borough of Kirklees in York-

shire, UK, to compare small-scale renewable energy schemes with large-scale

alternatives. The results indicated that small-scale schemes were the most

sustainable, despite large-scale schemes being more financially viable [13].

The most promising urban biomass energy systems are therefore often

characterized by high-density biofuel feedstocks, clean conversion technolo-

gies and combined heat and power systems. However local air pollution and

the relative costs and performance of alternative system configurations must

be considered.

2.2. The eco-town case study

This paper presents an optimization model to evaluate alternative ur-

ban biomass energy systems. To illustrate its use, we have chosen a case

study based on a proposed “eco-town” development in the UK. Given rising
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demand for housing as well as substantial questions about how the build-

ing sector might contribute to national climate change and energy policy

goals, the UK government has promoted eco-towns as an opportunity to

drive innovation and to demonstrate how these policy goals might be jointly

achieved. It has been suggested that the headline targets for these devel-

opments should be an 80% reduction in CO2 emissions (versus 1990 levels)

and an ecological footprint two-thirds of the national average. To achieve

these goals, eco-towns are likely to run on nearly 100% renewable energy

for heat, cooling and electrical demand and at least 50% on-site renewables

“should be possible” [14].

Initially twelve eco-town developments were put forward for considera-

tion and this paper considers one of those proposals. The site is located in

central England and our analysis has focused on one of the design phases,

an area of 87 hectares intended to house 6500 people. An initial assessment

of the proposal by government-commissioned consultants found that the site

“might be a suitable location subject to meeting specific planning and design

objectives” but more information was required particularly on the energy

strategy for the site [15]. Since then, the developers have commissioned a

study of alternative energy systems to address some of these concerns. The

report examined a range of renewable supply scenarios including large-scale

wind, microgeneration technologies for heat and electricity (micro-wind, so-

lar PV, solar thermal, heat pumps) before proposing two feasible strategies,

based on biomass district combined heat and power (CHP) systems with

varying amounts of wind energy. The strategy therefore raises questions

about the choice of specific biomass conversion technologies, the structure

of the district heating network and the availability of the biomass material

(both imports from surrounding regions and local supplies).
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3. Model specification and input data

Here we present a brief review of existing urban biomass optimization

models and the rationale for our current work. An overview of the model’s

specification and key input parameters is also given.

3.1. Literature review

There has been a large number of energy-systems models published in

the last few decades. As many do not specifically account for biomass, we

restrict our literature review to specific biomass models and refer to the

recent review of Connolly et al. [16] for a comprehensive assessment of the

generic energy-systems models and tools available.

Sokhansanj et al. [17] presented a supply-chain simulation model for

the supply of agricultural biomass to a biorefinery. Although the model

considers collection, storage and transport processes in great detail, the

ultimate conversion of biomass to energy is not within the scope of their

paper.

Frombo et al. [18] recently presented a model for optimizing the use of

biomass for energy production. For a given area, divided into a number of

locations and forest “parcels”, the model determines what type and size of

plant to place at each location and which parcels will provide biomass for

each plant. As the model is intended to be used for long-term planning, only

annual energy demands are considered. Although the model considers many

details of the harvesting and processing of the biomass before arriving at the

plants, there are a number of limitations with their model. These are that:

the model is formulated as an MINLP (mixed-integer non-linear program),

which restricts the size of problem that can be tackled due to the difficulty

in solving such models; only one plant is allowed per location, which may

not be the optimal solution; and the model only considers thermal demand,

with excess heat production being converted to electricity and sold to the
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grid.

Another recent publication is that of van Dyken et al. [19], who de-

veloped an MILP model for biomass supply chains. This is essentially an

extension of the eTransport model of the same group [20] in order to model

the additional properties required to characterize the biomass. These prop-

erties (moisture content, density and heating value) can then be related to

the various operations in the supply chain: storage, drying, transport etc.

A feature of the model is that when two biomass streams are combined,

they must have the same properties. The eTransport model decomposes the

problem into an operational model (using MILP) and an investment model

(using dynamic programming); the operational model determines the cost-

optimal provision of predefined energy demands for a given infrastructure

and set of technologies, as determined by the investment model.

The main differences between the previous work and our model are that:

many models are developed specifically for a given purpose (e.g. biomass

supply chains, in this case) whereas our model was designed from the out-

set to be completely generic (and hence easily extensible); we also aim to

determine the optimal network, locations and types of conversion technolo-

gies and their operation simultaneously rather than assuming some of these

features are exogenously specified.

3.2. Model specification

The model is based on the State-Task Network (STN) of Kondili et al.

[21], which was used to represent generic recipes for batch-process schedul-

ing. The STN is a directed graph where states represent any material with a

given set of intensive properties and the tasks represent processes that con-

vert a set of input states to a set of output states. A similar approach can

be applied to urban energy systems, which can be represented as a resource-

technology network (RTN). The resources represent any material or energy

streams involved in the provision of energy (or other) services to a city. For
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example, gas, electricity, heat, potable water, waste water, municipal solid

waste and CO2 would all be resources. The technologies represent any pro-

cess that can convert a set of input resources to a set of output resources.

A typical technology would be a CHP unit, which primarily produces high-

quality heat, electricity and CO2 from an input resource, such as natural

gas. The high-quality heat may then be converted to space and water heat in

buildings by using a heat exchanger connected to a district heating network.

Technologies are also used to represent storage and transport of re-

sources. This approach facilitates the modelling of resource requirements

and losses when transporting or storing resources. For example, transport-

ing gas along a pipeline requires resources to power the compressors and

electricity is lost when stored in batteries for long durations or transported.

The RTN describes how services may be provided but the model must

also consider where and when these processes take place. The description

of the energy system is therefore incomplete without a spatial description

of the city and its service demands, as a function of time and space. Our

model considers the city as a number of zones (of any shape and size), each of

which has time-varying demands for services. The model will determine how

best to satisfy these demands by specifying the location of the technologies

and the transport infrastructure for each resource (e.g. electricity, gas etc.).

The operation of each technology and the flows in the networks are also

determined as a function of time.

Finally, unless the city is entirely self-sufficient, it will need to import

some resources from other cities and surrounding hinterlands. Similarly

any excess production of resources may be exported, subject to there being

demand for them (this includes export of wastes, at a cost). Constraints may

be used to limit the locations and quantities of any imports and exports.

The main constraint in the RTN model is the resource balance, which is

shown in simplified form below.
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Prit +Qrit + Irit + Srit–Erit–Drit = 0, ∀rit, (1)

where, for each resource r in zone i at time t, Prit is the net production

rate, Qrit is the net inflow from all of the other zones (transportation), Irit

is the rate of import, Srit is the net use of stored resource, Erit the rate

of export and Drit is the demand. Whereas Drit is a parameter (given as

input), the other terms are decision variables that depend on which tech-

nologies are selected and their rates of utilization (e.g. if a CHP is chosen

for zone i, then its rate at time t contributes to the values of Prit for all

r). The relationships are defined by technology-specific parameters such as

maximum and minimum operating rates, coefficients of performance and so

on.

The model’s decision variables therefore include the locations of resource

imports, exports, and network connections (all of which are binary vari-

ables); the number of technologies installed per cell (an integer variable);

and the operating rates of the technologies, the amounts of resources in

storage, and the flows within the networks (continuous variables). The ob-

jective function is to minimize the total annualized cost (capital, operating,

and resource imports) of satisfying the resource demands. Since all of the

constraints are linear, this results in a mixed-integer linear program (MILP).

A full description of the model is currently in review [22].

3.3. Input data

The following is a summary of the major data inputs to the model.

3.3.1. Resource demands

The demands for heat and electricity are considered for average winter

and summer days. The figures in Table 1 were estimated using UK bench-

mark data [23] and additional information provided by the developers.
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3.3.2. Urban biomass fuels

The proposed modelling scenarios considered two biomass fuels: forestry

residues and wood chips. Both fuels were assumed to be imported from

nearby areas with no production from within the urban area. This is be-

cause a previous study found that local resources for this site would only be

able to supply 1% of the overall requirement for biomass fuel [24]. Table 2

summarizes the properties of these materials.

3.3.3. Technology options

In the business-as-usual case, we assume that demands for heat and

power are met by imported electricity and gas (converted to heat in domes-

tic gas boilers). However, the options for the biomass scenarios are more

complex. As shown in Figure 1, the conversion chain starts with imported

forestry residues which are first converted to wood chips before being burned

in domestic boilers or CHP units. A number of biomass energy conversion

technologies have been identified as potentially suitable for the case study

considered here, including domestic biomass boilers, CHP plants based on

organic Rankine cycles (ORC), and CHP plants based on gasifiers coupled

to internal combustion engines (ICE). The assumptions for each of these

technologies are briefly described below.

Chippers

A 5 t/hr stationary chipping plant was considered, and the related invest-

ment, operating and maintenance costs estimated from Spinelli and Hart-

sough [25] and Spinelli and Visser [26].

Domestic boilers

In case of domestic boilers, a 25 kWt standard chip boiler was consid-

ered, and the investment, operating and maintenance costs also include a

small on-site storage facility and ash discharge costs. The technical param-

eters assumed in the simulation and the cost figures are estimates based
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on Biomass Energy Centre [27], National Energy Foundation [28], Bergman

and Jardine [29].

CHP plants

In the case of CHP plants, the resulting high-grade district heat is dis-

tributed to smaller heat exchangers throughout the city to meet final heat

demand. Chip-fired ORC-CHP plants are one of the most common solutions

for CHP production via solid biomass. Although this technology has a lower

overall electrical efficiency compared to other options, its reliability and the

possibility to generate large amounts of thermal energy for district heating

make it attractive for this case study [30, 31, 32]. The option of gasifiers

coupled to ICE is still at a demonstration stage but is considered here as

it looks highly promising, in particular given the high energy conversion

efficiency achievable at small sizes [33, 34].

A key question is what size of CHP unit to use. As the total demand

for electricity is 1.5 MW, we have given the model the choice of three sizes:

0.5, 1.0 and 2.0 MWe (corresponding respectively to 3, 5 and 10 MWt in the

ORC case and 1.5, 3 and 6 MWt in the ICE case). In both CHP technologies,

a fixed heat:electricity ratio was considered and chip-fired back-up boilers

were integrated with CHP plants to cover the heat demand during winter

(100–1000 kWt), thus avoiding over-sizing of the plants. In fact, there is

a trade-off between large back-up boilers, able to cover all the winter peak

demand but operating for a short period, and small back up boilers, which

require electricity to be converted into heat during peak demand periods.

The range of operating hours for these CHP plants is 5,000–7,500 h/yr. No

operating and maintenance costs have been considered for back-up boilers,

since they are already included in the CHP plant operating costs.

Table 3 summarizes the main techno-economic parameters for the se-

lected bioenergy technologies. The costs are calculated on an annualized

turn-key basis, assuming a lifetime of 15 years and a discount rate of 6%
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for the boilers and CHP plants, and 6 years at 6% for the chip production

plant. The data refer to the net electrical efficiency and the costs include

on-site biomass storage.

Storage and transportation

To complete the resource chain, technologies must also be introduced

to store and move the biomass resources throughout the city. Storage is

provided for wood chips only, using a closed system with a capacity of 20 kt

and losses of 2%; assuming a 20 year lifecycle, we estimate the annualized

capital cost to be £210 000 and the annual operating costs to be £48 000.

For transport, a road network is assumed using trucks with a capacity of

20 m3 and a distance between biomass storage and energy conversion plants

ranging between 1 and 10 km. We have also assumed that resource distribu-

tion networks will follow the proposed road network for the site. This data

is summarized in Table 4.

Table 5 provides the other techno-economic parameters used in the model.

3.4. Model scenarios

We have studied five scenarios. In each model scenario, a subset of the

technologies described above is used to illustrate different optimized energy

supply options for the eco-town. In the biomass cases, all associated resource

supply chain technologies are available: e.g. the model can choose to import

finished wood chips directly or it can import forestry residues and convert

them to chips using a chip-production facility. The scenarios are:

1. Grid fuels. This business-as-usual scenario provides a baseline for the

biomass scenarios. Heat and power demands are assumed to be met by

imported gas and electricity; small-scale domestic gas boilers are used

to convert the gas into heat.

2. Biomass boilers. The second scenario also uses small-scale boilers, but

fired by wood chips instead of mains gas. The optimization may choose
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to import forestry residues and convert them to wood chips, to import

wood chips directly or to use a combination of imports.

3. Biomass CHP – ICE. In this scenario, directly imported wood chips or

converted forestry residues are used in a gasifier resource chain, convert-

ing biomass into syngas which is then burned in an internal combustion

gas engine; heat is distributed via a district heat network. Electricity is

also produced, reducing the site’s need for imported mains electricity.

4. Biomass CHP – ORC. This scenario examines the use of CHP plants

based on an organic Rankine cycle, where the chips are combusted

directly in a boiler and the vapourized working fluid is then expanded

in a turbine to generate electricity.

5. All technologies. Finally we enable the model to use any combination

of the technologies identified above.

As the most complicated scenario, the All technologies model provides

a good indication of the overall problem size and it has 67508 single vari-

ables, 28120 discrete variables, and 156254 single equations. In contrast,

the simpler Grid fuels scenario has 123053 equations and a total of 76203

variables.

In our analysis, we have focused on these scenarios in order to determine

which general technology options look most promising. For a detailed design

problem, the method should be extended with a sensitivity analysis, for

example to assess how the results change in response to variations in biomass

feedstock prices. Saltelli et al. [35] describe appropriate methodologies for

such an analysis.

3.5. Objective function

In each scenario, the model was run with the aim of finding the energy

system that minimizes the annual cost. This includes the cost of imported

fuels, conversion, storage and transportation technologies (both annualized
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capital costs and annual operating costs). The model is therefore pursuing

a single objective, as we are exploring this problem from the perspective of

the site developer, although a multiple objective formulation (such as the

trade-offs between carbon and cost minimization) is a promising area for

further investigation.

The costs of biomass energy systems can be reduced by policy incen-

tives.1 In the UK, there are three policies of primary interest: the Renew-

ables Obligation (RO), the Climate Change Levy (CCL) and the European

Emissions Trading Scheme (ETS). However, as the CCL and ETS target

large energy users and the eco-town consists of multiple small consumers,

we will focus only on the RO.

The Renewables Obligation aims to ensure that 10% of UK electric-

ity will be supplied from renewable sources by 2010, by obliging electricity

suppliers to provide a given percentage of their electricity from renewables.

Initially, the Obligation was designed to favour the most profitable forms

of renewable electricity by not discriminating between different forms of re-

newable generation and thereby letting the market decide which renewables

to install. Since 1 April 2009, however, the Obligation has been “banded”

so that forms of renewable generation that are more economically viable at

present (e.g. co-firing, onshore wind) receive fewer ROCs than other less

competitive generation technologies (e.g. offshore wind, microgeneration,

biomass from dedicated crops).

In light of these policies, we have assumed that electricity produced by

the biomass technologies studied here will receive payments of £108.74/MWh,

thus reducing the value of the objective function. This is based on “dedi-

cated biomass with CHP” technology which is eligible for 2 ROC/MWh and

a 2008/9 ROC price of £54.37/ROC [39].

1For a detailed overview of the UK bio-energy policy, see Defra [36], RCEP [37], Slade
et al. [38].
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4. Results

The performance of each scenario can be evaluated using several met-

rics. First, the annual costs of constructing and fueling the designed energy

system (including distribution networks, capital investments and fuels) are

calculated, both with and without the ROC value. Second, we consider the

total energy consumption of the eco-town in both primary and final energy

terms [assuming that the primary conversion efficiency of the UK’s electric-

ity grid is 38.7%, 40]. Third, we estimate the environmental impacts of each

scenario including greenhouse gas and local air pollutant emissions.

A detailed assessment of each scenario’s carbon footprint is beyond the

scope of this research as the emissions profiles of wood chips and forestry

residues are strongly affected by features such as the configuration of the

supply chain (e.g. transport distances) and lifecycle impacts of building and

decommissioning plants. Instead we use a range of likely values, assuming

that the lifecycle emissions of imported wood chips are 22–28 kg CO2/t [41].

Emissions values for electricity and natural gas are taken from Defra [42].

(Forestry residues are not used in any of the solutions.)

Determining the local air pollution (PM10 and NOx) impacts of biomass

fuels is also difficult, owing to differences in biofuel, burner and abatement

technologies, load patterns, local meteorological and topographic conditions.

We again use a range of indicative values, shown in Table 6, and report

output-weighted emissions averages. Rather than increasing the emissions

based on partial load factors, we assume that the capacity factors shown

in the summary table below represent the average running time of each

technology. In other words, a technology running at 10% is assumed to run

at its design load for 10% of the year, rather than at 10% load for the whole

year.
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4.1. Summary

Table 7 summarizes the results of each solution, including the number

of technologies used, their operating performance and the solution quality.

The solutions for each of the household-scale technology scenarios (1 and

2) are quite similar. Both use 3132 domestic boilers to meet heat demand,

that is approximately one boiler per household. However the boilers only

run at an annual average load of 5% maximum capacity. This is due to the

high-efficiency of the buildings and the model’s aggregation of large time

periods. Running the model at a finer temporal resolution would identify the

extent to which these technologies are oversized or do in fact service short-

term peaks in load. Both of these scenarios also feature similar resource-

conversion chains, importing the required electricity and heating fuels (gas

and wood chips respectively) directly from the national grid. In the biomass-

boiler case, the model could have chosen to import forestry residues and

convert them to wood chips within the eco-town; however, the results show

that, because of their higher energy density, finished wood chips are directly

imported instead. This is also true of the other biomass scenarios.

In the CHP cases (scenarios 3 and 4), a mix of technology sizes are chosen

with one 5 MW CHP unit in the ICE case and a 1 MW plus a 3 MW CHP

in the ORC case. The solutions also use a number of gas boilers, primarily

in order to tackle the winter heat demand (for example, in the biomass ICE

scenario, the summer average rate of the gas boilers was 21%, whereas in

winter it was 86%).

In the all-technologies scenario (5), the model uses a combination of

technologies but essentially relies on small and medium ICE CHPs with a

few domestic wood chip and gas boilers to service heat demands far from

the town centre.

The fuel consumption of each case is shown in Figure 2. Figure 3 shows

how the resources are transported throughout the city for the all-technologies

16



scenario (5). Here, wood chips are imported into the centre of the site

and then distributed to two CHP facilities in the north-east and south-west

corners. These CHPs then provide district heat for the local area as well

as electricity to supplement imports from the grid. A small gas import is

required to top up the heat requirements in one area.

4.2. Costs

The objective of each optimization was to minimize the overall energy-

system cost, consisting of capital costs, fuel costs and any ROC benefits

achieved by generating renewable electricity from biomass. Figure 4 com-

pares the cost of each scenario. Clearly biomass domestic boilers by them-

selves are a more expensive option than the traditional gas-fired systems. In

contrast, biomass CHP systems offer significant cost savings of up to 15%

over the gas-fired boiler scenario, especially when considering the income

from Renewables Obligation Certificates. However, the cost balance is dif-

ferent because each CHP unit has to have an associated backup boiler (a

constraint in the model). This increases the capital costs of the systems by

33% in comparison with individual gas boilers. The total system cost is sim-

ilar though, because the units produce heat and power from comparatively

cheap biomass fuels and receive revenue from the sale of ROCs. Neverthe-

less, higher upfront costs may be off-putting for some system developers.

4.3. Energy efficiency

The energy efficiency of each scenario can be evaluated by considering

the primary energy requirements per capita, recalling that the end-service

demands are the same in each scenario. Figure 5 shows that, as expected,

the combined heat and power scenarios are the most energy efficient as they

make full use of the biomass fuel. It is interesting to note however that the

ICE scenario (3) relies on importing gas to top up demands, whereas the

ORC scenario (4) imports electricity (because of its higher heat/electricity
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output ratio in comparison to the ICE technology), resulting in a slightly

lower overall energy efficiency. Compared to the business-as-usual gas boiler

scenario, these CHP scenarios consume 15% and 19% less energy per capita

respectively.

4.4. Environmental impacts

Figure 6 shows the average greenhouse gas emissions per capita in each

scenario. The biomass CHP situations have much lower emissions, repre-

senting 87% and 80% reductions over the gas boiler case respectively. The

all-technologies case has the lowest emissions, though, being 92% lower than

the gas boiler case. These levels easily meet the eco-town proposed standard

of an 80% CO2 reduction.

As noted above, a full assessment of the local air pollution impacts for

each scenario is not possible here. However, the indicative results suggest

that the biomass scenarios do not necessarily result in undue increases in

local air pollution. Only the case with domestic biomass boilers produces

notably higher PM10 emissions and NOx emissions are lower in all biomass

cases, particularly when using CHP systems. However, full modelling of

local conditions would be required to assess whether the distribution of

these impacts may be undesirable (e.g. if the CHP plants was sited next to

a school or hospital).

5. Discussion and conclusions

This paper set out to examine bioenergy options for an eco-town devel-

opment in the UK. Using a mixed-integer linear programming model which

considers the full energy supply chain within the city, the results indicate

that biomass energy offers significant promise for delivering low carbon ur-

ban developments. As noted above, these results are based on best estimates

of parameter values and before committing to a specific system specification,

a detailed sensitivity analysis would be beneficial.
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The analysis raised a few key issues. First, the urban biomass solutions

identified here all favoured the importation of high energy-density finished

biofuels, such as wood chips. This implies that these fuels can be produced

outside the urban area to take advantage of economies of scale, resulting

in much higher efficiencies. The alternative, importing lower quality fuels

into the urban environment for conversion in situ, would result in signifi-

cant transportation costs and additional processing on-site. The results also

implied that supply chains would be able to deliver these fuels reliably, as

the model chose not to provide bulk urban wood chip storage in any of the

scenarios.

Second, the Renewables Obligation has a small but notable effect on

the cost of urban biomass energy systems. In the all-technologies case,

for example, the income from ROCs was equivalent to a 5% saving on the

total system cost. However, biomass energy systems have notably higher

capital costs, due to the cost of the equipment, distribution networks and

associated backup boilers. The question is how investment and ownership

models can be created that enable the construction of these more-efficient

systems without the obstacle of high upfront costs.

Third, the environmental impacts of these solutions — both in terms of

global climate change and local air pollution — are difficult to estimate for

urban biomass energy systems. Alternative biofuel processing routes can

lead to significantly different lifecycle impacts and the location of biofuel

technologies within the urban environment means that a full assessment

of their impacts must be sensitive to the peculiarities of local geography

and meteorology. Nevertheless, the results indicated that biomass offers

significant carbon savings with acceptable levels of urban air pollution when

compared to a gas boiler reference case.

Finally the current model optimizes for minimum cost. These costs

include the capital costs of resource distribution networks and conversion
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technologies, as well as the costs of the imported fuels. However, it would

be interesting to modify the model to use a multi-objective optimization

framework so that the multiple trade-offs between cost, carbon and local air

pollution could be addressed. Furthermore, although local biomass resources

were not feasible for this case study, incorporating an economic model of

local land prices could be valuable to identify opportunities for local biomass

cultivation.

In conclusion, the model introduced in this paper provides a framework

for assessing the strategic options surrounding the use of biomass heat and

power systems within an urban environment. It enables a range of trans-

portation, conversion and storage technologies to be simultaneously evalu-

ated thus facilitating strategic assessments of biomass supply options. Both

this integrated methodology and its application to the eco-town case study

are new to the existing biomass energy systems literature. However detailed

assessments of both system design and impacts will be beneficial when seek-

ing to move a project from the drawing board into reality.
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Time period
Resource Summer Winter

Heat 3.4 4.4
Electricity 1.5 1.5

Table 1: Resource demands (MW).

Type Moisture LHV Energy density Supply cost
(% d.m.) (MJ/kg) (MJ/m3) (£/t)

Forestry residues 35 11.4 3.75 50
Wood chips 20 14.6 7.29 60

Table 2: Technical and economic data of selected bioenergy resources [43]. LHV = lower
heating value.

Technology Size ηe ηt TKC (k£) O&M (k£/yr)

Chipping plant 5 t/hr 250 37.5
Domestic boiler 25 kWt — 82% 6 0.5
ORC-small 500 kWe 18% 78% 2000 80
ORC-medium 1000 kWe 19.5% 78% 3400 120
ORC-large 2000 kWe 20% 78% 6400 220
ICE-small 500 kWe 24% 50% 1750 75
ICE-medium 1000 kWe 25% 50% 3000 140
ICE-large 2000 kWe 26% 50% 6000 260
Back up boiler 100–1000 kWt — 85% 20–100 —

Table 3: Major techno-economic parameters for the selected bioenergy technologies. (ηe
and ηt are electrical and total efficiencies respectively; TKC = turn key cost)
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Resource Cost Fuel requirements
(£/t·km) (MJ/t·km)

Forestry residues 0.36 1.7
Wood chips 0.24 1.1

Table 4: Biomass transport parameters (assuming short-distance transport via road and
diesel consumption of 0.35 kg/km)

Value

Resources

Electricity import cost [44] 7.86 p/kWh

Networks

Electricity network cost £80 000/km
Gas network cost £150 000/km
District heat network cost £350 000/km

Technologies

Gas boiler Max capacity 25 kW
Unit cost £1000
Ann. op. cost £60

Heat exchanger Max capacity 30 kW
Unit cost £300
Ann. op. cost £50

Table 5: Other techno-economic parameters.

Technology PM10 (µg/Nm3) NOx (µg/Nm3)

Gas boilers 5 300–400
Domestic biomass boiler and back-up boiler 30–50 300–400
ORC 10–30 200–300
ICE 10–30 200–300

Table 6: Average air emission level ranges for the different scenarios under investigation
[8, 45].
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Scenario
Metric 1 2 3 4 5

Headline metrics
Energy consumption (delivered, GJ/cap) 28.6 30.7 34.1 27.4 34.6
Energy consumption (primary, GJ/cap) 40.3 42.4 34.2 32.7 35.9
Greenhouse gas emissions (tCO2/cap) 2.2 1.14–1.15 0.27–0.29 0.44–0.46 0.17–0.19
PM10 emissions (µg/Nm3) 7.5 30–50 5.4–11.9 2.5–6.8 9.3–19.0
NOx emissions (µg/Nm3) 450–600 300–400 136–190 47–70 119–168
Total cost w/o ROCs (mil GBP) 6.7 9.0 6.6 6.4 6.0
Total cost w/ ROCs (mil GBP) 6.7 9.0 6.2 6.3 5.7
Solution gap (% from relaxed) 1.6 0.2 12.3 9.0 5.8

Installed technologies – number
Gas boiler 3132 - 59 3 1
Biomass boiler - 3132 - - 45
Heat exchangers - - 3073 3128 3086
Chip production - - - - -
Chip storage - - - - -
1 MW ICE CHP - - - - 1
3 MW ICE CHP - - - - 1
5 MW ICE CHP - - 1 - -
1 MW ORC CHP - - - 1 -
3 MW ORC CHP - - - 1 -
5 MW ORC CHP - - - - -
0.1 MW backup - - - 2 -
0.5 MW backup - - 1 - 2
1 MW backup - - - - -

Installed technologies – average rate (% of max capacity)
Gas boiler 5.0 - 53.7 47.7 31.4
Biomass boiler - 5.0 - - 71.0
Heat exchangers - - 3.1 4.1 3.0
Chip production - - - - -
Chip storage - - - - -
1 MW ICE CHP - - - - 100
3 MW ICE CHP - - - - 86.0
5 MW ICE CHP - - 75.5 - -
1 MW ORC CHP - - - 8.4 -
3 MW ORC CHP - - - 92.1 -
5 MW ORC CHP - - - - -
0.1 MW backup - - - 39.9 -
0.5 MW backup - - 55.0 - 39.7
1 MW backup - - - - -

Table 7: Summary of results. Scenarios 1 = grid fuels, 2 = biomass boilers, 3 = biomass
CHP (ICE), 4 = biomass CHP (ORC), 5 = all technologies.29
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Figure 1: Schematic of a resource-technology network for an urban biomass energy system.
Waste heat losses and CO2 emissions from each conversion process are shown as wavy
arrows.
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31



Chip boiler

Chip boiler

Chip boiler

Chip boiler

Chip boiler
Chip boiler

Chip boiler
Chip boiler

Chip boiler

Chip boiler

Chip boiler
Small ICE CHP

Backup boiler

Backup boiler

Chip boiler

Chip boiler

Chip boiler

Chip boiler

Med ICE CHP Chip boiler

(a) Wood chips

Heat ex

Heat ex

Heat ex

Heat ex
Heat ex

Heat ex
Heat ex

Heat ex

Heat ex

Heat ex

Heat ex

Small ICE CHP

Heat ex

Heat ex

Heat ex

Heat ex

Heat ex

Heat ex

Heat ex

Heat ex Heat ex

Heat ex

Heat ex

Heat ex

Heat ex

Heat ex

Med ICE CHP
Heat ex

Heat ex

(b) District heat

Small ICE CHP

Med ICE CHP

(c) Electricity

Boiler

(d) Gas
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34



Scenario

A
nn

ua
l c

ar
bo

n 
em

is
si

on
s 

(t
C

O
2/

ca
p)

0.0

0.5

1.0

1.5

2.0

1 2 3 4 5

Resource

Electricity

Gas

Petrol

Wood chips

Figure 6: Annual per capita greenhouse gas emissions by fuel.

35


