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Mixtures of perfectly conducting fibres and spheres, as well as mixtures of fibres of 

different aspect ratios, were simulated using a Dissipative Particle Dynamics (DPD) 

method, and the connectivity of the resulting assemblies was analyzed using a Monte 

Carlo algorithm to predict the threshold volume fraction of filler material required for 

electrical percolation. For both isotropic and uniaxially oriented fibre-sphere mixtures, it 

was found that gradually replacing fibres with an equivalent volume of spheres increased 

the percolation threshold. By contrast, in aligned mixtures of fibres of two different 

aspect ratios, replacing a small fraction of higher aspect ratio fibres with shorter fibres 

lead to a reduction in the percolation threshold, since the shorter fibres orient less well 

and provide bridging links between the highly oriented longer fibres. These theoretical 

results suggest that mixtures of fibres of different aspect ratio may be helpful in reducing 

the volume fraction of high aspect ratio filler particles (such as multi-wall carbon 

nanotubes) required to achieve significant electrical conductivity in composite materials. 
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1. Introduction 

The formation of extended networks of particles dispersed in a fluid gives rise to a discontinuous 

change in the rheological [1-5] and electrical [6-9] properties of the dispersion at concentrations 

around the so-called percolation threshold. Historically, percolation theory was first used by 

Flory [10] to explain the phenomenon of gelation in thermosetting polymers. Scher and Zallen 

[11] used percolation theory to study the insulator-to-conductor transition in disordered mixtures 

of conducting and non-conducing spheres, establishing a threshold around 15 vol%. Pike et al. 

[12] and Balberg et al. [13-14] extended the application of percolation theory to study network 

formation using randomly-orientated anisotropic particles, as a function of volume fraction, and 

electrical percolation in carbon nanotube polymer composites was recently reviewed by 

Bauhofer and Kovacs [15]. Several researchers have attempted to predict the effect of fibre 

aspect ratio and orientation distribution on the critical volume fraction required to achieve a 

percolating network [16-20]. However, all of these approaches tend to ignore the fibre-fibre and 

fibre-dispersion medium interactions other than the effects of excluded volume. It has been 

shown experimentally that additional forces, such as those mediated by shear or external electric 

field interactions, play an important role in the formation of fibre networks, and hence the onset 

of percolation [21, 22]. In a previous work by some of the present authors [23], a novel method 

was described in which dispersions of nanofibres were studied by carrying out Dissipative 

Particle Dynamics (DPD) simulations for systems with different aspect ratios and degrees of 

fibre alignment. For each configuration so generated, Monte Carlo simulations were then 

performed in order to determine the critical volume fraction of fibres required to achieve 

electrical conductivity. It was shown that randomly oriented, high aspect ratio fibres are effective 

in achieving percolation at low volume fractions, but lose their advantage when highly aligned; 

whereas low aspect ratio fibres, on the other hand, are relatively insensitive to fibre alignment. In 

the present study, we investigate the possibility of reducing the percolation threshold of aligned 

fibres by mixing fibres of two aspect ratios, starting with the limiting case of a mixture of 

spheres (i.e. aspect ratio of unity) and fibres of varying degrees of alignment. The results are 

relevant to understanding rheological [24] and phase behaviour [25-29], as well as computer 

simulation studies [30-33] of rod-sphere mixtures. The experimental relevance of such work is 

demonstrated in a recent paper by Sumfleth et al. [34], who found that for an conductive epoxy 

nanocomposite, a considerable amount of multi-wall carbon nanotubes (MWCNTs) can be 
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replaced by carbon black (CB) without changing the electrical properties. Since MWCNTs are 

currently more expensive than CB per unit mass, this may have important cost implications for 

the manufacture of electrically conductive composites. In general, the current study of mixtures 

of fibres and spheres and mixtures of fibres of different aspect ratios will also be an important 

first step in understanding the effect of particle shape polydispersity on the onset of percolation. 

The remainder of the paper is structured as follows. In Section 2, we briefly summarise the 

methods for generating and analysing the fibre networks. We then describe results from the 

consideration of an isotropically oriented ensemble of fibres with a single aspect ratio (Section 

3.1). Next, the fibres are replaced stepwise by spheres of equivalent volume, and the effect on the 

percolation threshold as a function of total particle volume is studied (Section 3.2). The relative 

contribution of the fibres and spheres in the formation of percolating the network are studied 

using a Monte Carlo simulation method (Section 3.3). Finally, in Section 3.4, the percolation 

threshold in binary mixtures of fibres with different aspect ratios is also studied using a similar 

methodology. 

 

2. Modelling Methodology 

In 1992, Hoogerbrugge and Koelman [35] introduced a method called Dissipative Particle 

Dynamics (DPD), which is similar to molecular dynamics, but applied on a supramolecular 

scale. The dynamics of a system of particles is coarse-grained by calculating the motion of 

particle clusters subjected to pair-wise, dissipative and random forces. Español and Warren [36] 

improved on the DPD model originally proposed by Hoogerbrugge and Koelman. In this work, 

they showed that the temperature of the system was directly related to the amplitude of the noise 

by means of a fluctuation dissipation theorem. Since then, DPD has been used to model wide 

variety of problems including, for example, shear thinning behaviour of polymer solutions [37], 

prediction of phase separation [38], and the suspension phenomenology of particles with 

different shapes [39-41]. 

In the current work, we represent the fibre as collection of fused spheres, as shown in Fig 1a. 

Conservative (FC), dissipative (FD) and random (FR) forces, given by equations (1)-(3), are 

defined between each pair of spheres that are not part of the same fibre. Although the 

conservative interaction (FC) is only softly repulsive, an effective hard-sphere diameter can be 

assigned based on a correspondence described in our previous paper [23]. Together with the 
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number of spheres comprising each fibre, this can be used to define the fibre volume, taking into 

account any overlap of the spheres in each fibre, and hence the volume fraction of fibres in the 

periodic cell volume. 
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The forces act between pairs of spheres i and j whose centres are connected by a vector ,i jr and 

travel with relative velocity ,i jv . The parameters εi,j and σi,j define the relative sizes of the 

spheres, and θi,j are a set of Gaussian random numbers with zero mean and unit variance. The 

repulsive exponent n was set to 12 to limit the interpenetration of the fibres [23]. The friction 

coefficient, κ, and the noise amplitude, β, are connected by equation (4) [36]. 

  η2 = 2 κ kB Teq       (4) 

The random force together with the dissipative force produces an effect as if the fibres are 

suspended in the pseudo-fluid. In principle, one can take into account the effect of alignment of 

the fibres due to an external field, such as shear or electric field. We start by carrying out DPD 

simulations of rigid fibre assemblies, where the initially aligned array of fibres relaxes to an 

isotropic orientation when no external forces are applied on the fibres. The orientation of the 

fibres is measured by a nematic order parameter s defined by equation (5) [42]. 

[ ]1cos3
2
1 2 −= θs          (5) 

Once the fibres are relaxed to isotropic orientation, (s = 0), a Monte Carlo walk of a virtual 

“electron” through the now fixed ensemble of fibres is carried out, driven by the presence of a 

uniform external electric field. It is assumed that the electron can move freely along each fibre; 

however, the probability for it to move to an adjacent fibre is given by equation (6) [23]. 
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where D is the closest distance between fibres, ε is the product of the applied electric field 

strength and charge on the “electron”, kB is the Boltzmann’s constant, T is temperature in Kelvin, 

γ is related to the dielectric tunnelling length and ∆x is the length of D along the direction of the 

external electric field. The first part of equation (6), ( )exp /D− γ , is related to the probability of 

quantum tunnelling of the “electron” between the fibres. The tunnelling probability decreases 

exponentially with increasing distance between the fibres, and is restricted to be less than unity 

since D and γ are always positive. The second part of equation (6), ( )Bexp /x k T−ε∆ , will tend to 

drive the “electron” to move preferentially in the direction of the external electric field. Again, it 

cannot exceed unity since all terms in the expression are positive. The product, pt, must therefore 

lie between zero and unity. 

During each Monte Carlo step, the “electron” is displaced randomly to an adjacent fibre, with the 

acceptance probability of such a move given by equation (6). If the fibres form a percolating 

network, the virtual “electron” will travel a large distance during its Monte Carlo walk; if not, the 

“electron” will tend to become trapped in the local pocket of fibres. The distance travelled by the 

“electron” in a fixed time, averaged over many MC runs, gives the average flux of particles per 

unit area. In this way, it is possible to use the distance travelled by the electron during fixed 

number of Monte Carlo walk to find the critical percolation threshold. In our previous study, we 

predicted the percolation threshold for monodisperse fibres as a function of fibre aspect ratio and 

fibre orientation [23]. 

 

3. Results 

3.1 Predicting the percolation threshold in fibre-sphere mixtures 

The simplest case of a binary mixture fibre-sphere was examined using a mixture of fibres with 

aspect ratio λ = l/d = 20 and spheres of diameter d. Both the fibres and spheres interact with each 

other by soft-core repulsive forces along with the dissipative and random forces, as described by 

equations (1) to (3). The initial configuration consisted of uniaxially aligned array of pure fibres 

which was allowed to relax to find the percolation threshold for randomly oriented fibres. Then, 

step-by-step, the fibres were replaced with the number of spheres required to maintain a constant 
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total volume fraction. As an example, Fig. 1a shows an equilibrium mixture of fibres and spheres 

with total particle volume fraction of 0.085, and a volume fraction of spheres relative to the total 

particle volume (Фrs) of 10% (note that the number fraction is considerably larger). Fig. 1b 

shows an equilibrium mixture with total volume fraction 0.095 and Фrs = 0.5. In these examples, 

the fibres have relaxed to a random orientation (s = 0), and the spheres are randomly dispersed 

without any spatial correlation (as confirmed by the radial distribution function (RDF) plot). 

Having established equilibrium particle arrangements using DPD, the Monte Carlo method 

(using two MC million steps) was used to probe the existence of percolating networks in the 

binary mixture. Fig. 2 shows the normalised distance travelled (i.e. total distance travelled 

divided by the number of MC steps) as a function of the total volume fraction of the particles. 

Such a plot can be used to find the percolation transition for sphere-fibre mixtures with different 

relative volume fractions of spheres by fitting a power-law expression in the vicinity of the 

percolation transition [23]. Fig. 3 shows the critical volume fraction required for percolation as a 

function of the relative volume fraction of spheres (Фrs) in the fibre sphere mixture. As can be 

seen, when the fibres are replaced with spheres of equivalent volume in the sphere-fibre mixture, 

the critical total volume fraction required to achieve percolation rises. The effect is expected, 

since randomly oriented fibres form networks more efficiently than spheres. During the set of 

simulations required to calculate each data point, the relative volume fraction of fibres to spheres 

was kept constant while the total volume fraction of the particles was varied in order to find the 

percolation threshold. 

For the two pure systems, the values tended to the expected [23] percolation thresholds of 0.028 

for fibres (λ = 20) and 0.15 for spheres. For intermediate compositions, the percolation threshold 

increased monotonically with increasing relative volume fraction of spheres in the mixture. As 

the fibres were initially replaced by spheres, the fibres continue to dominate the percolating 

network formation. The black line in Fig. 3 is given by ( ){ }1crit crit rs rsΦ + Φ Φ − Φ ; in other 

words, the expected total volume fraction at the percolation threshold if the sphere fraction 

makes no active contribution to the network. This simple projection of the fibre-only 

contribution fits well over relatively low relative volume fractions of spheres, showing that, in 

this range, the contribution made by spheres towards percolation is insignificant. However, on 

raising the relative volume fractions of spheres (above around Фrs = 0.7 for λ = 20), there is a 

clear deviation from the fibre-only projection, showing that the spheres begin to contribute 
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significantly. Once the spheres have a controlling influence, the percolation threshold rises 

rapidly as the network increasingly consists of relatively inefficient particles. To understand this 

behaviour further, the Monte Carlo data were studied more closely in order to establish which 

particles were visited most frequently by the virtual “electron”.  

3.2 Frequency of visits during Monte Carlo Walk to Study the Network Properties 

Goulet et al. [43] analysed visit frequencies during Monte Carlo “electron” walks in order to 

identify the critical connections in pure fibre networks. For the current study, the same algorithm 

was applied to fibre-sphere mixtures; the visit to a given particle is counted only when the 

“electron” moves onto that site from a different particle, and not for those steps in which it stays 

resident on the same particle. Each Monte Carlo walk (106 steps) was repeated ten thousand 

times, from random starting points, in order to obtain good counting statistics (no difference was 

observed between data collected over 5000 and 10000 repeats). Each fibre or sphere was then 

categorised (and coloured for visualisation) according to the number of visits; an example is 

shown in Fig. 4a. The light green colour represents the least visited fibre or sphere, and the red 

colour represents most frequently visited fibre or sphere. From the colour distribution, it is clear 

that the fibres are much more frequently visited than the spheres in this example based on a low 

relative fraction (Фrs = 0.05) of spheres. This visual impression is confirmed by the histogram of 

visit frequencies shown in Fig 4b; the distributions are quite different, with the majority of the 

fibres playing a significant role in the network, and the majority of the spheres showing the 

minimum number of visits. An example of the sphere-dominated mixtures (Фrs  = 0.9) is shown 

in Fig. 5; in this case, most of the spheres are visited during at least ten percent of the Monte 

Carlo passes and some of the spheres are visited more often. In the Фrs = 0.05 example, most of 

the spheres were not visited at all. This analysis therefore indicates that at low relative volume 

fractions of the spheres, the percolation is achieved mainly via the network of the fibres. 

However, when the relative volume fraction of the spheres is high, the fibres alone do not form a 

percolating network alone and the spheres begin to participate. The data are thus consistent with 

the transition proposed above between a fibre and a sphere-dominated network. 
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3.3 Percolation in the binary mixture of fibres of different aspect ratios 

Having studied fibre-sphere case, we next investigated percolation in binary mixtures of fibres 

with different aspect ratios. For the purpose of the current simulations, a mixture of fibres of λ = 

20 and λ = 5 were chosen. This combination ensures a sufficient distinction between the fibres, 

whilst maintaining a reasonable overall size for the simulation. Both types of fibres interact with 

each other via soft-core repulsive forces along with the dissipative and random forces as before. 

Initially, monodispersed fibres with λ = 20 were simulated using DPD; subsequently, ten volume 

percent of the λ = 20 fibres were replaced with an equivalent volume of λ = 5 fibres. The goal of 

these simulations was to study the relationship between percolation threshold and the relative 

orientation of the fibres in the binary mixture. 

The simplest case involves a random orientation of both types of fibres. After the DPD 

simulation is commenced, the λ = 20 fibres achieve an isotropic orientation (sλ20 = 0), as 

measured by order parameter defined in equation (5), more slowly than the λ = 5 fibres in the 

binary mixture. Also, the level of fluctuations in the average order parameter for the ensemble of 

λ = 5 fibres is larger than that for the λ = 20 fibres. This difference can be attributed to both the 

smaller absolute number of λ = 5 fibres and their lower moment of inertia. The order parameter 

of both λ = 20 and λ = 5 fibres, and hence the total order parameter of the binary mixture, 

reaches zero (i.e. isotropic orientation) since there are no external forces applied on the fibres, 

and the total volume fraction is well below the isotropic-nematic transition point [32]. After an 

equilibrated configuration of the binary fibre mixture was achieved, the conductivity was 

assessed using the Monte Carlo analysis, as shown in Fig. 6. As might be expected qualitatively, 

the critical percolation volume fraction for randomly oriented fibres of λ = 20 increased from 

0.028 for monodispersed fibres to 0.033 after partial substitution with shorter fibres. In other 

words, for isotropically oriented fibres, higher aspect ratio fibres are most effective in achieving 

a percolating network at low volume fractions. 

Previously, we showed [23] that when high aspect ratio fibres become aligned in the direction of 

an external field (such as shear or electric field), the percolation threshold required to achieve 

conductivity rises dramatically. It was also shown that low aspect ratio fibres are less sensitive to 

changes in percolation threshold due to alignment. In order to study the effect of orientation on 

the mixed fibre system, the λ = 20 fibres were aligned (to order parameter sλ20 = 0.9) using the 
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external electric field method reported previously [23]. Briefly, it is well known [22, 44, 45] that 

conducting fibres become polarised in presence of external electric field and experience a torque 

that tends to align them in the direction of the field. In our model, polarisation of the fibres is 

modelled by the introducing a fixed permanent dipole moment that interacts only with the 

external electric field. The degree of alignment of the fibres can then be controlled by changing 

the strength of the external electric field and the magnitude of charges in the dipole [23]; dipole-

dipole interactions between fibres are ignored. In effect, the external electric field serves only as 

a means of producing the desired state of orientation of the fibres, and its magnitude (together 

with that of the imposed dipole moment) is arbitrary. 

Once again, 10 vol% of the primary fibres were replaced by shorter (λ = 5) fibres; however, no 

dipole was added to the shorter fibres which, therefore, maintained a random orientation. In a 

more realistic situation, the shorter fibres might be oriented but to a lesser extent than the long 

fibres (since they experience less torque and more rapid thermal disordering). However, 

randomly oriented shorter fibres represent an interesting and simple limiting case. Having 

calculated the individual order parameters of λ = 20 and λ = 5 fibres in the binary mixture, we 

confirmed that the shorter fibres were less oriented than the longer fibres, with an overall average 

order parameter of smixture = 0.58. Fig. 7a compares the percolation transition for this binary 

mixture with randomly oriented monodispersed fibres of λ = 20 and λ = 5 (sλ20 = 0 and sλ5 = 0). 

The mixture of fibres achieves percolation at lower volume fraction than that for monodispersed 

λ= 5 fibres. However the mixture of fibres shows a higher percolation threshold than that for the 

randomly oriented monodispersd fibres of λ= 20. Fig. 7b compares the percolation threshold in 

the mixture of fibres with the percolation threshold of aligned monodispersed fibres of λ= 20 

(sλ20 =0.9). The mixture of fibres can achieve a lower percolation threshold than that for aligned 

monodispersed fibres of λ = 20 (sλ20 =0.9). Hence, by replacing a small fraction of aligned λ= 20 

fibres with randomly oriented λ= 5 fibres, it is possible to significantly decrease the percolation 

threshold.  

Although it might be possible to arrange short fibres randomly oriented around longer fibres, 

such a situation is unlikely from a practical point of view. More plausibly, both long and short 

fibres would experience an aligning force, due for example to an applied shear, electric, or 

magnetic field, resulting in two different orientation distributions. To this end, dipoles were 
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introduced to both sets of fibres (λ = 5, 20, Фr = 0.1, as before) to interact with the external 

electric field, so that they become aligned; the same virtual charge was applied at the ends of 

each fibre. As was confirmed from the calculated order parameters, both λ = 20 and λ = 5 fibres 

become aligned in the direction of external field. The order parameter for λ = 20 fibres fluctuated 

around < Sλ20> = 0.9, whereas the order parameter for the λ = 5 fibres fluctuated around < Sλ5> = 

0.57, with the net order parameter of the binary mixture around <Smixture> = 0.78. The difference 

in order parameter between the short and long fibres can be attributed partly to the greater dipole 

separation for high aspect ratio fibres, which results in a higher torque due to the external electric 

field. Hence, the degree of alignment for the longer fibres is higher than that for the shorter fibres 

even if strength of the applied electric field is the same for both. More specifically, Fishbine [46] 

have used following expression for dipole moment acting on the polarised rod : 

ˆx o x
Vp E x
L

= ε        (7) 

 

where εo is the free space permittivity, Ex the applied field component along the x-direction, V is 

the volume of the object and L is the depolarization coefficient. The depolarization coefficient 

for elongated objects was given by Behroozi et al. [44] as: 
2

2

2 76 ln
3

a dL
d a

⎛ ⎞⎧ ⎫⎡ ⎤= −⎨ ⎬⎜ ⎟ ⎢ ⎥⎣ ⎦⎩ ⎭⎝ ⎠
    (8) 

where d is the length and a is the radius of the elongated object. From Eq. 8, it can be deduced 

that the depolarization coefficient for λ = 5 fibres is more than one order of magnitude higher 

than that for λ = 20 fibres. So, in a fixed external field, the longer fibres will experience higher 

dipole moment than shorter fibres, and hence may be expected to show higher alignment, which 

is qualitatively consistent with our simulation results, although the real difference in orientation 

due to a change in aspect ratio is likely to be even greater. Previous work modelling fibres under 

shear [47] and analysing conducting rods in electric fields [48] reports similar trends. Clearly, the 

exact nature of the relative orientation distributions in a real situation will depend on the 

experimental conditions (temperature, field type, field strength, polarisability, moment of inertia, 

etc) but, in general, shorter fibers will be less strongly oriented.  
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As seen from Fig. 8a, the percolation transition for current binary mixture case study (Φcrit = 

0.052) was higher than that for the monodisperse fibres of λ = 20 at Sλ20  = 0.0 (Φcrit = 0.062). 

However for the percolation threshold of the mixture of fibres is lower than that for aligned 

monodispersed fibres of λ= 20 (Fig. 8b). The presence of short aspect ratio fibres (which are not 

as highly aligned as the high aspect ratio fibres) reduces the net order parameter of the binary 

mixture. But more significantly, the partially aligned short fibres act as a bridge between the 

highly aligned aspect ratio 20 fibres, maintaining the efficiency of the network. The effect is 

similar to the introduction of randomised short fibres to the aligned long fibres, but less strong, 

as the alignment of the short fibres reduces their network forming ability.  

 

Conclusions 

If percolation is required at low volume fractions in a system of fibres with high aspect ratio, the 

best strategy is usually considered to be the use of the highest aspect ratio particles feasible using 

the desired processing methods. The current theoretical study shows that this argument holds for 

randomly oriented systems; however, for any system that experiences a degree of alignment, for 

example due to magnetic, electric, or shear fields, then the addition of a small fraction of 

significantly shorter fibres is likely to beneficial. The long fibres dominate the transport but can 

become isolated once aligned; shorter fibres that orient less strongly can bridge between the long 

fibres. Clearly, the parameter space is large, given the range of absolute and relative 

concentrations, fibre dimensions, and orientations, but beneficial combinations exist and are 

worthy of further study. This model provides a means of exploring the behaviour of 

heterogeneous mixtures of particles and can readily be extended to other, non-fibrous shapes [38] 

as well as more complex and realistic polydispersed distributions of particles. 
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 a)                                                                                                                                (c)                                  

                                             

b)               d) 

 

 

 

 

Figure 1.   a) The mixture of fibres (λ = 20) and spheres with                                        c) The mixture of fibres (λ = 20) and spheres with total                       
total volume fraction  Фtotal = 0.085  and relative fraction of spheres Ф rs = 0.1         volume  fraction  Фtotal = 0.095 and relative fraction of spheres Фrs = 0.5  

                 b) sphere-sphere RDF for the same mixture                                          d) sphere-sphere RDF for the same mixture                                                                       
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Figure 2. Percolation transition for fibre spheres mixture for different relative volume fraction of spheres after carrying out  

           2×106 Monte Carlo steps. 

 

 

Ф rs = 0.1 

Ф rs = 0.0            

Ф rs = 0.5          

Φtotal 



 17 

 

 
 

Figure 3. Critical volume fraction required to achieve percolation as a function of the relative volume fraction of spheres (Фrs) in the fibre-sphere mixture 

(The black curve represents the threshold required to achieve percolation in the binary mixture if the spheres do not contribute in formation of percolating 

network).  
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   (a)                    (b) 

 

Figure 4a. Binary mixture of fibres(aspect ratio 20) and spheres, with Фtotal = 0.045; Фrs = 0.05. The fibres/spheres are colour-coded according to the 
frequency of visits during multiple Monte Carlo walks. In the colour scale, red represents most frequently visited sites (between 90 to 100% visits) while green 
represents least frequently visited sites (less than 10% visited sites). 
 

Figure 4b.  Histogram of fibres/spheres visited during the multiple Monte Carlo walk, Фtotal = 0.045; Фrs = 0.05. 
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Figure 5. Histogram of fibres and spheres visited during multiple Monte Carlo walks. Фtotal = 0.14; Фrs = 0.9 
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Figure 6.  Percolation transition for randomly oriented mono-dispersed fibres of aspect ratio 20 (Фr = 0.0, mono-disperse fibres) and a binary mixture of fibres 
with aspect ratios 5 and 20 (Фr (λ=5)  = 0.1, binary mixture). 
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Figure 7a Comparison of percolation transition in mono-dispersed randomly oriented aspect ratio 20 fibres (sλ20 = 0.0) and mixture of fibres of aspect ratio 20 
(sλ20 =0.9) and aspect ratio 5, (sλ5 = 0 and smixture = 0.58).  
 
Figure 7b Comparison of percolation transition of aligned mono-dispersed fibres of aspect ratio 20 (sλ20 =0.9) with mixture of fibres of aspect ratio 20 (<Sλ20> = 
0.9) and aspect ratio 5 (sλ5 =0 and smixture = 0.58) and with aligned fibres (λ = 20 sλ20 = 0.0). The mixture of fibres ensemble shows percolation transition at lower 
volume fraction than monodispersed aligned fibres of aspect ratio 20 (sλ20 = 0.9). 
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Figure 8a Comparison of percolation transition in monodispersed 
randomly oriented aspect ratio 20 fibres (sλ20 = 0.9), aspect ratio 5 
fibres (sλ5 = 0.9) with the partially aligned mixture of aspect ratio 20 
and aspect ratio 5 fibres.  

Figure 8b Comparison of percolation transition in monodispersed 
partially aligned aspect ratio 20 fibres (sλ20 = 0.9), aspect ratio 5 fibres 
(sλ5 = 0.9) with the partially aligned mixture of aspect ratio 20 and 
aspect ratio 5 fibres.  
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