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Abstract 

Due to the remarkable physical and mechanical properties of individual, perfect 

carbon nanotubes (CNTs), they are considered to be one of the most promising new 

reinforcements for structural composites. Their impressive electrical and thermal 

properties also suggest opportunities for multifunctional applications. In the context of 

inorganic matrix composites, researchers have particularly focussed on CNTs as 

toughening elements to overcome the intrinsic brittleness of the ceramic or glass 

material. Although there are now a number of studies published in the literature, these 

inorganic systems have received much less attention than CNT/polymer matrix 

composites. This paper reviews the current status of the research and development of 

CNT-loaded ceramic matrix composite materials. It includes a summary of the key 

issues related to the optimisation of CNT-based composites, with particular reference to 

brittle matrices and provides an overview of the processing techniques developed to 
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optimise dispersion quality, interfaces and density. The properties of the various 

composite systems are discussed, with an emphasis on toughness; a comprehensive 

comparative summary is provided, together with a discussion of the possible toughening 

mechanism that may operate. Lastly, a range of potential applications are discussed, 

concluding with a discussion of the scope for future developments in the field. 
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1. Introduction  

Ceramic matrix composites (CMCs) have been developed to overcome the 

intrinsic brittleness and lack or mechanical reliability of monolithic ceramics, which are 

otherwise attractive for their high stiffness and strength 
1
. The issue is particularly acute 

with glasses, as the amorphous structure does not provide any obstacle to crack 

propagation and the fracture toughness is very low (<1MPa.m
1/2

) 
2
. In addition to 

mechanical effects, the reinforcing phase ,may benefit other properties such as electrical 

conductivity, thermal expansion coefficient, hardness and thermal shock resistance
1, 3

. 

The combination of these characteristics with intrinsic advantages of ceramic materials 

such as high-temperature stability, high corrosion resistance, light weight and electrical 

insulation, makes CMCs very attractive functional and structural materials for a variety 

of applications; they have particular relevance under harsh conditions where other 

materials (e.g. metallic alloys) cannot be used 
4-6

. 

A wide range of reinforcing fibres have been explored, including those based on 

SiC, carbon, alumina and mullite 
7-9

. However, carbon fibres are amongst the highest 

performance toughening elements investigated, since the first reports of their use in 

ceramic matrices were published in the late 1960s 
10

. The fracture toughness of carbon 

and SiC fibre reinforced glass and ceramic matrix composites can be much better than 

the native matrix, as demonstrated by a wealth of available data in the literature 
4-6, 10, 11

 

(e.g. 17MPa.m
1/2

 for SiC fibre reinforced glass-ceramic composites
5
). Various 

toughening mechanisms can be involved, including fibre debonding, fibre pull-out, and 

crack bridging 
11

. 

Carbon nanotubes (CNTs) have received an enormous degree of attention in 

recent years, and, in the context of composites, they are often seen as the ‘next 
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generation’ of carbon fibre. Although their remarkable properties have suggested 

applications as diverse as tissue scaffolds, field emission guns, and supercapacitor 

electrodes 
12

, the interest in composite materials is driven by both the mechanical and 

functional properties that can be obtained at very low density (typically in the range 1.5-

2.0 gcm
-3

). For individual perfect CNTs, the axial stiffness has been shown to match that 

of the best carbon fibres (approaching around 1 TPa), whilst the strength is an order of 

magnitude higher (around 50 GPa) 
13

. Their electronic properties depend subtly on the 

exact structure but larger CNTs are essentially metallic conductors 
14

; smaller CNTs can 

offer unique optoelectronic properties, useful, for example, in non-linear optics 
15

. 

Ballistic electron transport effects can be related to uniquely high current carrying 

capacity (up to 10
9
 Acm

-2
) whilst the axial thermal conductivity is higher than that of 

diamond (>2000 Wm
-1

K
-1

) 
16

. It is worth noting that surface areas of CNTs can be very 

high since, in the absence of agglomeration, with every atom of a single walled 

nanotube lies on its surface; however, this factor can be a mixed blessing when 

considering composite applications, as discussed further below. 

One other significant characteristic of CNTs is their very high aspect (length to 

diameter) ratio which is relevant to load transfer with the matrix and, hence, effective 

reinforcement. Standard continuous-fibre composites have excellent anisotropic 

structural properties combined with low density, but are expensive to process and are 

limited to simple shapes 
3
. Short-fibre composites, on the other hand, are easier to 

produce in complex shapes but with conventional fibres, the aspect ratio is typically 

limited to around 100, after processing 
17

. In principle, the small absolute length of 

CNTs, combined with their resilience in bending, allows them to be manipulated with 

conventional processing equipment, potentially retaining their high aspect ratio; 
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however, in practice, length degradation is known to occur under high shear conditions. 

The high aspect ratio of CNTs can also encourage the formation of percolating networks 

that are relevant to functional properties, particularly electrical conductivity 
18

; indeed 

the lowest percolation threshold for any system has been observed in kinetically-formed 

networks of CNTs in epoxy 
19

. 

Structurally, CNTs have diameters in the range of around 1 nm to a somewhat 

arbitrary upper limit of 50 nm, and lengths of many microns (even centimetres in 

special cases) 
20

. They can consist of one or more concentric graphitic cylinders, 

forming single or multi walled nanotubes (SWCNTs / MWCNTs). In contrast, 

commercial (PAN and pitch) carbon fibres are typically in the 7 – 20 µm diameter range, 

whilst vapour-grown carbon fibres (VGCFs) have a broad range of intermediate 

diameters. Compared to carbon fibres, the best nanotubes can have almost atomistically 

perfect structures; indeed, there is a general question as to whether the smallest CNTs 

should be regarded as very small fibres or heavy molecules, especially as the diameters 

of the smallest nanotubes are similar to those of common polymer molecules. 

Consequently, it is not yet clear to what extent conventional fibre composite 

understanding can be extended to CNT composites, or whether new mechanisms will 

emerge. 

Although the perfect CNT structure is very appealing, real materials are very 

diverse and vary significantly in terms of dimensions, purity, surface chemistry, 

crystallinity, graphitic orientation, degree of entanglement, and cost. These factors 

directly affect the properties and processability of CNTs and they must be considered 

when interpreting their performance in a given application. In very broad terms, CNTs 

can be divided into two classes depending on the synthetic route used to prepare them. 
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High-temperature evaporation methods, using arc-discharge 
21, 22

 or laser ablation 
23

, 

tend to yield highly crystalline CNTs, with low defect concentrations and good 

mechanical properties, but are relatively impure, containing other, unwanted 

carbonaceous impurities; these methods usually work on the gram scale and are, 

therefore, relatively expensive. On the other hand, for use in composites, large 

quantities of nanotubes are required at low cost, ideally without complicated 

purification steps. At present, only chemical vapour deposition (CVD) or catalytic 

growth processes 
24

 satisfy these requirements and, as such, are the materials of choice 

for composite work, both in academia and in industry 
25

; a number of companies have 

scaled up such processes to 100 tonnes per year or more. CVD materials contain 

residual catalyst particles, and sometimes amorphous carbon, but are otherwise 

relatively pure. On the other hand, these gas-phase processes operate at lower 

temperatures and lead to structurally imperfect nanotubes, often with seriously reduced 

intrinsic properties 
26

. It is worth noting that there are currently around four orders of 

magnitude between the most expensive and cheapest commercial nanotube products. 

Over the last ten years, interest in the application of carbon nanotubes of 

superior mechanical properties as toughening agents in polymer, ceramic or metal 

matrix composites has grown rapidly. The potential of developing advanced 

nanocomposites that manifest, to some degree, the extraordinary properties of 

individual CNTs is very attractive in fields as diverse as aerospace, sports equipment, or 

biomedical devices 
27, 28

. The vast majority of CNT composite work has focused on 

polymer matrices 
29

, whilst comparatively few investigations have explored inorganic 

(ceramic or glass) matrices and the potential toughening mechanisms that might be 

associated with CNT reinforcements. For successful CNT/composite development, a 
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number of key challenges must be met 
30

. Firstly, CNTs with intrinsically good 

mechanical properties must be obtained in reasonable quantity at acceptable cost. The 

CNTs must then be processed in such a way as to ensure that a homogeneous dispersion 

is obtained within the matrix, whilst developing an appropriate degree of interfacial 

bonding. These overall requirements are common to all CNT composites, and often 

involve chemical surface modification of the CNTs 
31

. Of course, in the case of 

inorganic matrix composites, an ‘appropriate’ interface may be defined differently 
1
. In 

addition, obtaining a high degree of inorganic matrix densification, without damaging 

the CNTs, is especially challenging. The following sections address the key issues 

currently raised in CNT-based composites, in general, and discuss the importance of 

these crucial factors for successful development of ceramic and glass matrix composites 

containing CNTs. 

 

2. Key issues in CNT-based composites 

2.1 CNT dispersion in the matrix  

One of the biggest challenges in processing nanotube composites lies in 

achieving a ‘good’ dispersion 
32

. It is important that the individual nanotubes are 

distributed uniformly throughout the matrix and well-separated from each other; the 

presence of agglomerates is extremely undesirable, especially in ceramic matrices, as 

they can act as defects leading to stress-concentration, and premature failure, 

particularly if the matrix does not fully penetrate the agglomerate during processing. On 

the other hand, with a good dispersion, each nanotube is loaded individually over a 

maximum interfacial area, and can contribute directly to the mechanical properties and 

to toughening mechanisms. Figure 1 (a)
33

 and 1 (b)
34

 show typical microstructures of 



 8 

agglomerated and homogeneous CNT/glass matrix composites, respectively, developed 

as model system. CNTs have a tendency to agglomerate due to their relatively high 

surface areas, their high aspect ratios, and typically poor interactions with solvents or 

matrix components 
35

. SWCNTs, in particular, tend to agglomerate into ‘ropes’ or 

‘bundles’, consisting of many parallel nanotubes bound by van der Waals forces. High 

loading fractions favour agglomeration not only because the particles come into contact 

more often, but also because there can be a shortage of matrix material to ‘wet out’ the 

large surface area of the filler. It is quite a common result for nanocomposites, in 

general, that properties are enhanced at low loading fractions but cannot be increased 

further due to CNT agglomeration above a few vol.%. The situation is more ambiguous 

when addressing transport properties, especially electrical conductivity, as a network of 

touching nanotubes is desired. However, even in this case, best results may be obtained 

by generating a good dispersion initially, and then allowing the network to form
19, 36

.  

A particular practical problem is that the dispersion of high aspect ratio, 

nanoscale objects is very hard to quantify objectively. Characterisation usually consists 

of a qualitative assessment of a fracture surface studied under scanning electron 

microscopy (e.g. Figure 1 (a)). This approach is quite successful for discovering dense 

aggregates (typical of CNTs synthesised in the electric arc) or looser agglomerates in 

low volume fraction systems. However, at high loading fractions where the filler is 

necessarily densely packed, it is less effective, since any contacts may not lie in the 

fracture plane. In any case, careful selection of magnification(s) is required in order to 

come to a statistically significant conclusion; low magnifications are useful to show the 

uniformity of the dispersion over larger areas but are not always provided in 

publications. Optical microscopy can be a useful guide, again chiefly for low loading 
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fractions since agglomerates tend to be on the order of microns (at least as big as the 

CNTs are long). Good dispersions, although very dark even at low loadings, transmit 

light without significant optical scattering. In order to obtain a good dispersion in the 

final composite, a suitable processing route needs to be obtained. Often the first step is 

to disperse the CNTs in a solvent, prior to mixing with a conventional ceramic powder 

(see section 3.2), a colloidal ceramic suspension (see section 3.3) or sol-gel precursor 

(see section 3.4). The primary method of dispersion is usually based on applying shear 

forces, using high shear mixers, ultrasonic probes, or ball mills. The CNT surface is 

often modified, either by direct functionalisation chemistry, or by the use of surfactants, 

in order to add stability in a given solvent or to improve compatibility with a given 

matrix (precursor). Alternatives to the basic disperse-and-mix strategy include 

synthesising CNTs on the surface of ceramic particles or within pre-defined pores (see 

section 3.1), and electrophoretically driven deposition (see section 3.5).  

 

2.2 Interface engineering   

In the light of the experience with conventional fibre composites, it is clear that 

the interfacial bonding between the CNTs and the inorganic matrix will be crucial. 

However, the consequences of reducing the reinforcing fibres diameter by several 

orders of magnitude is less obvious, and further studies of the scaling behaviour of 

different toughening mechanisms are required. It is possible both that the energy 

dissipation during fracture propagation due to familiar mechanisms such as pullout, 

crack deflection and crack bridging could be enhanced 
37

 and that new mechanisms may 

come into play. It seems likely that CNT-containing ceramic matrix nanocomposites 

should follow the example of their fibre reinforced conventional cousins; interfaces 
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should be of intermediate strength to maximise the energy involved in debonding the 

CNTs from the matrix at the same time as maintaining effective interfacial load transfer. 

In the case of poor or absent interfacial bonding, CNTs may even act as a source of 

microcracks, leading to failure. In the case of polymer/CNT composites, interfacial 

adhesion is readily modified by organic surface chemistry. Figure 2 highlights intimate 

interface between amorphous SiO2 and MWCNTs produced by sol-gel method
38

. In 

most ceramic systems, the high temperatures required for consolidation (see section 3.6) 

removes any organic functional groups that might have been introduced to aid 

processing. The interface is then dominated by the direct interaction (or reaction) 

between the matrix and the graphitic CNT surface.  

 

3. Overview of CNT/inorganic matrix composite fabrication methods 

 

3.1 In-situ growth of CNTs by chemical vapour decomposition (CVD)  

One of the first studies on synthesis of CNT/ceramic composites (published in two 

parts) was authored by Peigney and co-workers
39, 40

. They have developed CVD 

techniques to synthesise CNTs, in situ, in the presence of the ceramic powders destined 

to form the matrix. CNT/metal oxide powders can be synthesised by passing CH4:H2 

mixtures over dispersions of transition-metal catalysts supported on oxide powders 

(typical combinations include Fe, Co, or Fe/Co alloys on Al2O3, MgO, or Mg Al2O4) 
41-

48
. These composite powders can then be hot pressed to form macroscopic composites. 

The incorporation of the long nanotube bundles grown in situ, however, has not yet 

been shown to provide the expected improvement in mechanical properties. The fracture 

strength and toughness of the CNT-containing composites developed by this method are 
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generally lower than those of the monolithic metal-oxide composites probably due to 

relative low density (87-93%), as shown in Figure 3 (a) 
41

. Although the CNTs are 

uniformly grown over the surface of the oxide particles, they do not end up uniformly 

dispersed through the volume of the final composite. On the other hand, the CNTs can 

be aligned using high-temperature extrusion, and the resulting materials exhibit a 

marked anisotropy of the electrical conductivity 
45

. Interestingly, the CNTs apparently 

aid super-plastic forming of the composite material, an advantage attributed to inhibited 

matrix grain growth and grain boundary lubrication 
45

. Related studies of the 

preparation of CNTs/alumina composites using the in situ method have been performed 

by An et al 49 & Lim et al 
50

. As discussed further below, the tribological properties were 

significantly improved by the presence of CNTs at the alumina grain boundaries (see 

Figure 3 (b)) 
49

.  

A highly ordered array of parallel MWCNTs in an alumina matrix was 

fabricated by Xia et al. 
51-53

 using a variant of the in-situ CVD method. The oxide 

support, in this case, was an amorphous nanoporous (anodised) alumina matrix with 

thickness 20μm and a hexagonal array of straight pores around 30-40nm in diameter; 

Co or Ni metal particles were deposited within the pores in order to catalyse the CVD 

growth of MWCNTs up the pore walls, creating a highly ordered unidirectional CNT 

ceramic matrix composite 
51

 (see Figure 4). The authors demonstrated that the 

nanocomposites exhibit the three hallmarks of toughening found in micron-scale fiber 

composites: crack deflection at the CNT matrix interface, crack bridging by CNTs, and 

CNT pull-out on the fracture surfaces. The same group also combined analytical and 

numerical models, using cohesive zone models for both matrix cracking and nanotube 

crack bridging, to interpret indentation results and evaluate the fracture toughness
52

 and 
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tribological behaviour 
53

 of the composites.    

The in-situ formation of CNT by spray pyrolysis provides a simplified one-step 

embodiment of the CVD method, without a separate catalyst loading / preparation step. 

In this case, a slurry of ferrocene (metal catalysts) and alumina nanoparticles in xylene 

(hydrocarbon source) is sprayed into a furnace at 1000
o
C under Ar atmosphere 

54
; a 

similar reaction has also been explored using a SiC support 
55

. The technique produces 

flake-like mixtures, with a heterogeneous distribution of CNTs, particularly in the 

through-thickness direction.  

In general, the in-situ growth of CNTs in ceramic matrices is an attractive 

processing route to synthesise composites with reasonably distributed networks of CNTs. 

It is relatively simple and scalable, and can be applied to a wide range of matrices, 

including SiC 
56

, TiN 
57, 58

, Fe2N 
57

, and BaTiO3 
59-62

. However, a number of difficulties 

remain to be resolved. Firstly, the synthesis process intrinsically involves the presence 

of metal catalysts and often leads to the deposition of amorphous carbon, particularly on 

the exposed oxide particle surfaces; these phases are generally undesirable in the final 

composite, but can be difficult to remove. Secondly, these in situ composites typically 

have relatively low density after sintering suggesting unfavourable interactions between 

CNTs and the matrix materials; the network of CNTs at the oxide particle surface may 

then form a barrier to effective sintering and the CNTs are not readily distributed into 

the bulk. In this approach, there is little opportunity to manipulate the interface 

properties to improve the outcome; rather the interface properties remain highly 

dependent on the particular system. Although this type of microstructure, with the CNTs 

at the grain boundaries, may be beneficial for certain functional or processing-related 

properties, it is less appealing for straight-forward mechanical reinforcement.  
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3.2 Powder processing  

Powder processing methods are very commonly applied in ceramic systems and 

were the first techniques considered during the early stages of the CNT/ceramic 

composite fabrication. Results have usually shown that conventional powder processing 

is not an effective means to disperse CNTs homogenously in ceramic or glass matrices; 

as in the case of the in situ methods discussed above, there is no driving force to 

distribute the CNTs from the powder particle surface into the bulk. 

Powder processing is usually carried out by mixing raw CNTs and ceramic 

particles under wet conditions, followed by ultrasonication and/or ball milling; the dried 

powder is then crushed and sieved, and finally densified by hot-pressing. Powder 

processing has been applied to various composites systems including borosilicate glass 

33, 63
, silicon nitride 

64-69
 alumina, 

70, 71
, mullite 

72
 and silica 

73
 matrix composites 

containing different concentrations of CNTs (typically 1 – 10 vol.%). These 

investigations have been of mixed success in terms of the quality of the microstructure 

homogeneity and properties achieved (see section 4).  

 

3.3 Colloidal processing 

There is a growing interest in using ceramic particles with similar diameters to 

the nanotubes to create an intimate dispersion. By adjusting the surface chemistry of the 

colloidal suspensions and selecting proper processing conditions, the nanoparticles can 

be encouraged to coat the CNTs. The coatings then screen the undesirable attractive 

interactions between the nanotubes, preventing agglomeration and facilitating the 

production of well-dispersed composites. It is worth noting that dispersion of CNTs is 
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established by manipulating the surface chemistry of the two phases during low-

temperature processing, and that this dispersion is then retained after sintering. The 

coating process is generally carried out by so-called heterocoagulation of nanoparticles. 

The heterocoagulation occurs when two (usually electrostatically) stabilised 

suspensions (of CNTs and matrix particles) are mixed; by ensuring that the two sets of 

particles have opposite charge, the coating process can be encouraged.  

Perfect CNTs are intrinsically inert with minimal surface charge; in practice, as-

produced CNTs, especially commercial CVD materials, have a degree of surface 

functionalisation, often with oxygen, but dispersibility usually remains poor. Samples 

are usally aggregated or entangled, and may contain impurities such as amorphous 

carbon or catalytic metal particles. A post-synthesis chemical treatment is frequently 

employed to purify and disperse the CNTs in a suitable solvent. Commonly, CNTs are 

oxidised in a mixture of concentrated nitric and sulphuric acids to simultaneously purify, 

shorten and functionalize them 
74

. These aggressive conditions attack defect sites in the 

CNTs, cutting them and decorating their surface with carboxylic acid and other oxygen-

containing groups. These acidic groups electrostatically stabilize the CNTs in water, or 

other polar liquids, by developing a negative surface charge. Similar effects occur for 

both MWCNTs 
74

 and SWCNTs 
75

. The resulting electrostatic repulsion among the 

CNTs leads to a remarkable increase in the stability of the colloidal suspension 
76

. In 

addition, functional groups on CNT surfaces can be useful sites for further chemical 

modification. Similarly, functionalised CNTs can be produced using other liquid-phase 

oxidants as well as simple thermal treatments in air or other oxidising gases. 

Combinations of gas and liquid phase treatments are often used in order to optimise the 

purification and modification process 
27

.  
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Organic surfactants or dispersants can be also used to tailor surface properties 

of both CNTs and ceramic particles; entangled or bundled CNTs are often dispersed in 

surfactant solutions using ultrasound. The effective surface charge can be manipulated 

from positive to negative by using cationic or anionic surfactants, respectively. Typical 

cationic surfactants include PEI (poly ethylene amine) 
77-79

, and CTAB 

(cetyltrimethylammonium bromide) 
80, 81

, whilst common anionic surfactants include 

PAA (polyacrylic acid) 
77, 78

, SDS (sodium dodecyl sulphate) 
79, 82

, and SDBS (sodium 

dodecyl benzyl sulphonate) 
83

. In general, the surface charge on both the CNTs and a 

given type of ceramic particle can be altered on demand by employing different organic 

surfactants or dispersants. On the whole the surfactants will be removed during sintering, 

however they do have the potential to introduce undesirable impurities, since the 

inclusion of CNTs precludes a strongly oxidising calcination step. 

Sun et al 
77

 employed surfactants to encourage alumina particles to coat CNTs 

during a heterocoagulation process. The effective surface charge of both CNTs 

(modified with PEI) and alumina nanoparticles (modified with PAA) was established 

using zeta potential measurements. As expected, cationic type dispersants caused the 

isoelectric point (pHiep) to move to a higher pH value, while anionic types move pHiep to 

lower values. A typical TEM image of heterocoagulated CNTs and alumina particles is 

shown in Figure 5 (a) 
77

. The same group 
79

 also used acid-treated CNTs that were 

subsequently heat-treated in N2 or NH3 to remove the carboxylic functional groups; this 

treatment shifted the isoelectric point of the nanotubes to a higher pH value so that their 

positive surface charge would be maintained (in conjunction with the addition of PEI) 

over a much wider pH range. These modified CNTs were mixed with negatively-

charged TiO2 nanoparticles to produce heterocoagulated powder as shown in Figure 5 



 16 

(b) 
84

. Although the overall process appears successful, the individual SWCNTs were 

not, apparently, debundled.  

Similar heterocoagulation processes have been used for a range of crystalline 

matrices including Al2O3 
82, 85-91

, Si3N4 
67

 and SiO2 
34, 81, 92-94

. Figure 6 shows individual 

CNTs protruding from the fracture surface of a CNT/ SiO2 composites produced by 

heterocoagulation and highlights the high microstructural homogeneity that can be 

obtained 
95

. This simple approach can be extended to virtually any ceramic system by 

varying the pH and/or surfactant used to modify the surface properties during the 

processing phase. However, the CNT/matrix interaction in the resulting composites is 

likely to vary significantly; the measurement of the interfacial adhesion and its influence 

on composite properties have not yet been reported. 

 

3.4 Sol-gel processing  

Sol-gel processing methods provide an alternative route to creating an intimate 

dispersion of CNTs in inorganic matrices; here, the CNTs are dispersed in a molecular 

precursor (solution) which then undergoes a condensation reaction to generate a green 

body for subsequent consolidation. Work to date, has focused mainly on CNTs in 

silicate sol-gel systems 
38, 96-105

. Seeger et al. 
38, 96

 prepared a 2.5 wt.% MWCNT/SiO2 

gel by mixing MWCNTs, acidified water (catalysts) and tetraethoxysilane (TEOS) 

(silicate precursor), before sintering at 1150
o
C in argon. However, the sintering process 

led to a partial devitrification of the silica matrix resulting in a heterogeneous 

microstructure. Homogeneity was improved by an alternative method using a Nd:YAG 

laser to heat a SiO2/CNT mixture rapidly, producing an amorphous silica matrix without 

crystallisation and containing 2.5wt.% MWCNTs 
98

. The same method was used by 



 17 

DiMaio et al 
99

 to produce silica composites for non-linear optic applications with low 

CNT content (0.25wt.%). Although, in principle, sol-gel reactions ought to provide a 

route to good dispersions, agglomeration in the precursor suspensions has proved 

problematic. Recent work has shown that surface modification of CNTs with 

organosilanes can stabilise the reaction mixture, leading to excellent CNT dispersion in 

silicate matrices after consolidation for concentrations of up to 3wt% MWCNTs 
100

 as 

shown in Figure 7.  

The sol-gel method has also been used to synthesize well dispersed discrete 

composite rods of CNTs coated with a thin layer of silica 
38, 80, 81

, titania 
84

, and alumina 

106
. Hwang et al. 

80
 have developed CNT/SiO2 composite rods as reinforcing elements 

for CMCs. In principle, the approach provides a means of modifying the wettability 

and/or adhesion between CNTs and a chosen ceramic matrix, even after high 

temperature consolidation. Although the idea remains to be explored in detail, coatings 

of sol-gel silica on CNTs have been shown to improve the mixing quality of the CNTs 

with borosilicate glass powder 
63

, and to provide a degree of thermal oxidation 

resistance even at 1200
o
C in air 

38
. 

 

3.5. Electrophoretic deposition 

 Electrophoretic deposition (EPD) is a traditional ceramic processing method 

that is gaining increasing interest as a simple and versatile processing technique for the 

production of coatings and films from nanoparticles and carbon nanotubes 
107

. The 

technique allows the application of coatings of varying thickness to complex 3D shapes 

including the interior of porous substrates. EPD is achieved via the motion of charged 

particles, dispersed in a suitable solvent or aqueous solution, towards an electrode under 
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an applied electric field; deposition on the electrode occurs via particle coagulation. 

Electrophoretic motion of charged particles during EPD results in the accumulation of 

particles and the formation of a homogeneous and rigid deposit at the relevant electrode 

107
. The charge of the suspended particles can be modified by chemical reactions (such 

as oxidation), the use of surfactants and the adsorption of ions. Comprehensive reviews 

specifically on EPD of inorganic nanoparticles and CNTs have been published 

recently
108, 109

. The process of co-depositing a uniform mixture of CNTs and ceramic 

nanoparticles is shown schematically in Figure 8. In fact, CNT/ceramic composite 

layers can be formed by both sequential deposition and co-deposition from mixed 

suspensions. Chicatun et al 
110

 used both approaches to prepare CNT/SiO2 composite 

films for possible applications as porous coatings in the biomedical field and as thermal 

management devices. With appropriate surface modification, the CNTs were efficiently 

mixed with silica nanoparticles to form a composite CNT/SiO2 network structure. A 

similar strategy was used to fabricate four-layer CNT/TiO2 laminate composite coatings 

by sequential EPD 
111

. Microscopic studies of unsintered materials suggest that the CNT 

layer can act to reinforce ceramic coatings by providing a crack deflection and 

delamination path as depicted in Figure 9 (a)
111

. EPD has been used to generate 

CNT/bioceramic composites based on hydroxyapatite 
112-114

 and bioactive glass 
115, 116

 

as well as more device-oriented systems based on combining CNTs with nanocrystals, 

e.g. Fe3O4 
117

. Figure 9 (b) shows a cross-sectional SEM image of Fe3O4 nanocrystal 

film deposited between two CNT mats by EPD technique
117

. 

 

3.6 Advanced consolidation techniques 

Due to the high temperatures and long durations involved in conventional 
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pressureless sintering, hot-pressing (HPS) and hot-isostatic pressing (HIP) methods, 

degradation of the CNTs during densification of inorganic matrix has often been 

reported
33, 41, 45, 48, 50, 73, 79-82, 85

. The difficulty of entirely excluding oxygen, or indeed 

reactions with the matrix or associated impurities, often leads to the loss of the 

carbonaceous nanotubes. Although these effects can be mitigated by fully coating the 

CNTs with an inorganic layer before sintering, particularly using sol-gel techniques, 

some carbon loss is usually experienced. One promising solution that is growing in 

popularity is the use of a relatively new sintering technique named spark plasma 

sintering (SPS) 
118

. This technique relies on pulsed DC current passing directly through 

the powder compact to generate a very high heating and cooling rate (up to 600
o
C/min) 

within the die. The method contrasts with conventional hot-pressing in which the heat is 

provided by external elements 
118

. SPS allows ceramic powders to be sintered at lower 

temperatures and for much shorter times than other sintering processes, and provides a 

means to control the kinetics of the various processes (densification, chemical reaction 

and grain growth) that are usually involved during the entire sintering cycle. The short 

sintering time and low temperatures help to minimise grain growth and offer higher 

cost-effectiveness and productivity. They also minimise CNT loss, leading to a 

remarkable improvement in the mechanical properties of eventual CNT/ceramic 

composites.  

Balazsi et al. 
66

 compared the effectiveness of SPS to conventional hot isostatic 

pressing for silicon nitride composites reinforced with 6 wt.% MWNTs. As can be seen 

in Figure 10, fully dense samples with improved mechanical properties were achieved 

at comparatively lower sintering temperatures by using SPS 
66

. The effectiveness of SPS 

is not only that samples are fully densified, but also that CNTs are retained in the 



 20 

composites. Samples with higher densities showed higher modulus as well as higher 

hardness and fracture toughness. Similar results have been obtained on introducing 

SWCNTs into alumina by SPS 
70, 71

; apparently undamaged CNTs were incorporated at 

the grain boundaries, resulting in improved fracture toughness and bending strength 

(although see below for discussion). 

 

4. Mechanical properties and possible toughening mechanisms  

 Table 1 summarises the mechanical properties of CNT/inorganic matrix 

composites reported in the literature, including a number of significant improvements 

achieved by addition of CNTs. Most of these studies ultimately aim to increase the 

fracture toughness; for example, Zhan et al. 
71

 claimed that the fracture toughness in 

10wt% SWCNTs/Al2O3 composites was almost three times higher than that of 

monolithic alumina, whilst Berguiga et al 
103

 reported surprisingly large increases (54% 

and 69%) for transparent silica composites containing very low loadings (0.025 and 

0.05wt.%) of CNTs. Qualitatively, many reports 
77, 81, 82

 have observed CNT pull-out 

and crack bridging as toughening mechanisms, using SEM. Quantitatively, due to the 

small sample volumes available, the majority of researchers have chosen to measure 

fracture toughness (K1C) using the micro-hardness indentation method, using the 

following equation: 
119

:  
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where E and H are Young’s modulus and hardness, respectively, P is the applied load, c 

is the radial crack length, and   is an empirical constant which depends on the 

geometry of the indenter. For a cube-corner indenter  =0.04 and for a Vickers indenter 

 =0.016 
119

. The basic concept is that the crack length at a given load is an indication 
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of the toughness of the tested material (shorter cracks occur in tougher materials).   

Results from Wang et al. 
120

 have, however, questioned the validity of this 

method for K1C measurements in CNT/ceramic composites. They carried out a 

comparative investigation with previous results obtained by Zhan et al. 
71

, using a 

similar SPS methodology to prepare 10 vol.% SWNT/alumina and control 

graphite/alumina composites. They pointed out that the Vickers indentation technique is 

an indirect method for measuring K1C, and that the validity of the fracture toughness 

results depends critically on the elastic/inelastic contact-mechanical response of the 

material under test. They suggest that carbon additions may allow shear deformation 

under the indenter, as observed by the same group in their previous publication 
51

. This 

accommodation of the deformation may limit the cracking around the indentation, 

resulting in artificially high fracture toughness values. In the experiments, minor 

cracking occurred upon indentation but without the classical radial cracks required for 

the valid K1C measurement 
120, 121

. These authors, therefore, questioned the validity of 

several previous studies in which K1C values had been determined by indentation. 

Instead, they turned to a macroscopic method for K1C determination, namely the single 

edge V-notched beam test (SEVNB). This test showed virtually no improvement in 

fracture toughness of the CNT/alumina composites, in contrast to the earlier claims of 

Zhan et al. 
71

. On the other hand, Wang et al’s Vickers indentation results 
120

 do clearly 

show that SWCNT/alumina composites are highly resistant to contact damage. 

Although this interpretation is in some senses disappointing, the high resistance to 

contact damage is, in itself, a very attractive property considering applications such as 

bearings, valves and other wear resistant machine parts.  

A recent comprehensive review of the Vickers indentation method 
122

 for 
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fracture toughness measurement discusses in detail the limitations of the technique and 

supports the findings of Wang et al 
120

. It was concluded that the Vickers indentation 

technique is fundamentally different from other standard fracture toughness tests as the 

method involves a complex three-dimensional crack system with substantial 

deformation, residual stress, and damage around the cracks. It has been therefore 

recommended 
122

 that the method should not be applied to the determination of absolute 

values of K1C in ceramics but it can still be used to rank materials in terms of their 

resistance to local damage development (and, of course, hardness and stiffness). Its 

advantages include simple sample preparation and test operation, low material demands, 

and high speed; given the small size of CNTs, a well dispersed composite system should 

give a uniform set of data despite the micron-scale of the indentation.  

Recently, there has been an exchange of communications 
123-125

 continuing the 

debate on the appropriateness of different fracture toughness measurement techniques 

for CNT/inorganic matrix composites. Potential problems associated with both the 

Vickers indentation and the single-edge V-notched beam methods are highlighted, and 

these discussions may prove interesting to readers engaged in advancing CNT/inorganic 

matrix composites. Interestingly, in the last two years, an increasing number of reports 

in literature have used the single-edge notch beam method to measure the fracture 

toughness of various CNT-based systems, including Al2O3 
82, 90, 91, 126, 127

, hybrid 

(MWCNTs and SiC nanoparticles/Al2O3) 
128

, Si-C-N 
129

, and barium aluminosilicate 

glass-ceramic matrices 
130

. This shift may reflect not only the discussions of validity, but 

also the advancement of SPS methods able to produce the larger quantities of composite 

required. Nevertheless, effective use of the SENB test requires careful surface 

preparation and notching; uniform standards are not always reported or applied, 
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possibly still due to material constraints, as specimens of volume of at least 600 mm
3
 

(e.g. test bars of 3 x 4 mm
2
 and length of 50 mm) would be required for statistical 

meaningful results.  

Many of these more recent SENB studies continue to suggest improvements in 

toughness, although perhaps at a more modest level. Yamamoto et al. 
90

, for example, 

compared SENB and indentation measurements on 0.9 vol.% acid-treated 

MWCNT/alumina composites produced by SPS. They observed classical radial cracks 

and CNTs crack-bridging. However, the indentation toughness was significantly higher 

at 6.64MPa.m
1/2

 (+41%) than the SENB value of 5.90MPa.m
1/2

 (+25%). However, the 

reasons for this discrepancy were not discussed by the authors 
90

. The small number of 

samples, and especially the small range of, or even single, loading fraction used in the 

majority of these studies, makes it difficult to isolate the effects of the nanotubes from 

changes in microstructure or processing. The problem may be particularly acute in 

glass-ceramics where nucleation effects are likely to be important.  Katsuda et al.
129

 

reported large mechanical improvements in 10 vol% CNT/barium aluminosilicate glass-

ceramic composites  which they attributed to crack deflection and pullout. The flexural 

strength and fracture toughness (measured by SENB) were enhanced by 192% and 

143%, respectively, much larger values than achieved with the same content of 

conventional SiC whiskers, SiC platelets, or short carbon fibres. However, changes in 

degree of crystallinity, crystallite size or orientation were not considered. Similar 

problems are accounted with polycrystalline ceramics, where for example the location 

of CNTs, e.g. at grain boundaries or within grains, as well as the effect of CNT on grain 

growth make difficult to interpret ‘true’ toughening strength of the CNTs.  

For these reasons, the effect of CNTs on glass matrices is particularly 
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interesting, since microstructural variations associated with grain size, orientation, and 

boundaries are avoided. Unfortunately, there are relatively few such studies available 
33, 

34, 63, 73, 81, 92, 100, 103, 104
. One of the first reports, by Ning et al 

73
, looked at powder-

processed 5 vol.% MWCNT/SiO2 composites and claimed significant improvements in 

fracture toughness (measured by indentation method) (100%) and bending strength 

(65%). The use of surfactant assisted sol-gel methods allowed Ning et al 
81

 subsequently 

to improve the densification of the composites leading to 146% and 88% increases in 

fracture toughness (measured by indentation method) and bending strength, respectively. 

However, the data are surprising given that their SEM images showed large 

agglomerates of CNTs rather than clear evidence of individual CNT pull-out 
81

; the 

results may relate, at least in part, to a significant degree of matrix crystallisation that 

was observed. The variable density and crystallinity of the samples, as well as the 

indentation methodology used, cast some doubt on the significance of the mechanical 

properties obtained. Similarly processed samples 
33, 63

 of borosilicate composites with 

inhomogenous CNT dispersion typically exhibit poor mechanical properties. One 

difficulty with such amorphous systems is that the glassy matrix may unintentionally 

crystallise. Colloidally-processed MWNT/silca composites 
92

, fully densified by SPS, 

were found to contain variable fractions of crystalline SiO2 (cristobalite) despite the 

lower sintering temperature (950-1050
o
C) and shorter dwelling time (5-10min) 

compared to conventional hot-pressing. In this case, it is difficult to interpret the 

increases in Young’s modulus and fracture toughness (measured by indentation method) 

of 40% (60.51GPa) and 160% (2.74MPa.m
1/2

), respectively for the 10vol% CNT system 

92
. In contrast, borosilicate glass composites containing modified-MWNTs, produced 

using a sol-gel method, were sintered at lower temperatures without inducing 



 25 

crystallisation (see Figure 7)
100

. A high quality CNT dispersion was maintained at 

loading fractions below 3 wt%, by using a siloxane coupling agent, and correlated with 

modest improvements in strength, stiffness, and thermal conductivity; however, 

properties declined above 3wt% as agglomeration set-in 
100

. As noted in the introduction, 

this behaviour is quite typical of nanocomposites in general. 

As well as direct mechanical enhancement of strength, stiffness or toughness, a 

number of workers have investigated the tribological properties of CNT/ceramic matrix 

composites. An et al. 
49

 fabricated MWCNTs/alumina composites by CVD in-situ 

growth and hot-pressing. It was hown that microhardness increases with increasing 

CNT content up to 4 wt.% whilst the wear loss decreases; however, further additions of 

CNTs negatively affect both hardness and wear resistance. The tendency for the 

improvements to be limited to low loading fractions is a familiar phenomenon in both 

CNT/polymer systems and nanocomposites more widely. The reason is usually the onset 

of agglomeration as it becomes increasingly difficult for the matrix to cover the high 

surface area introduced by the nanofiller; alternatively, initial improvements can be 

associated with changes in the matrix microstructure that do not scale with the 

introduction of additional filler material 
27

. In the work of An et al. 
49

 the improved wear 

properties were attributed to the increase in hardness and a decrease in friction 

coefficient, due to the lubricating properties of the CNTs. The lubrication may arise both 

from the graphitic nature of the CNTs (and their debris) and, potentially, from the 

rolling of CNTs at the interface between the specimen and the ball (counter body). On 

the other hand, the increase in hardness was related mainly to a reduction of the matrix 

grain size with the inclusion of CNTs. This observation highlights the common 

difficulty of separating the intrinsic effects due to the presence of CNTs from the 
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processing-related changes in matrix microstructure that they induce. The influence on 

processing often dominates over any intrinsic mechanical effects, due to the relatively 

modest loading fractions accessible in well-dispersed systems. Low CNT volume 

fractions have relatively little impact on average properties, but the associated high 

surface area, network-forming behaviour, and often heterogeneous distribution at grain 

boundaries can strongly influence processing issues relating to viscosity, nucleation, and 

grain boundary effects. Work on sol-gel derived glasses 
100

 avoids some of these issues 

and does indicate improvements in stiffness and hardness due to the presence of low 

loadings of well-dispersed CNTs; however, the effects once again saturate, as CNT 

agglomeration starts at around 3wt% CNT loadings.  

Several tribological studies have been conducted on thin CNT/ceramic bulk 

composite and coatings. An aligned MWCNTs/alumina composite was investigated by 

Xia et al 
53

. In addition to the lubricating nature of CNTs, their work demonstrated that 

the frictional coefficient of the composites depended on the contact and buckling 

behaviour of the CNTs by showing that composites with thicker CNTs are more robust 

to lateral buckling or collapse of the nanotubes. For MWCNTs/hydroxyapatite 

composites, separate investigations based on scratch testing in physiological solution 
131, 

132
 revealed that CNT reinforced hydroxyapatite coatings exhibited improved wear 

resistance and lower friction coefficient with increasing loadings of CNTs (up to 

20wt.%). These composites may find potential applications in the field of coating 

materials for metal biomedical implants under high load-bearing conditions.  

Creep tests of SWCNT/alumina composites have been conducted in uniaxial 

compression at 1300 and 1350
o
C in argon; the SWNT containing composites were 

found to be about two orders of magnitude more creep-resistant than a pure alumina 
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control with about the same grain size (~0.5μm) 
133

. This improvement is attributed to 

partial blocking of grain-boundary sliding by SWCNTs in the composites, which is the 

dominant creep deformation mechanism in monolithic alumina.   

Overall, the review of the literature has indicated that research focussing on the 

mechanical performance of CNT/inorganic matrix composites is at a relatively early 

stage; the reports of modest improvements in mechanical properties do not, for the most 

part, provide clear evidence linking the quantitative performance data to the actual 

mechanisms involved. For toughening, CNT pull-out is often claimed as the energy-

dissipating mechanisms, but SEM images usually show relatively few CNTs emerging 

from the composite fracture surfaces. Further work relating properties to mechanism is 

clearly required; in the meantime it is interesting to consider how traditional toughening 

mechanisms may scale as the fibre diameter shrinks into the nanoscale. 

 Assuming that standard short fibre theory applies, the energy absorbed by 

pulling out one fibre (ΔU) is given by 
134

: 

*

2

i
rLU   

where r is the fibre radius, L is the fibre length, and τi is the sliding shear stress.  

Multiplying by the number of fibres per unit area (N = Vf / πr
2
), and taking the 

interfacial shear strength as the limit of the sliding shear stress ( *
i

 ), gives an 

approximate upper estimate of the pull-out contribution as: 
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Taking reasonable values based on existing systems, Vf (fibre volume fraction) =10%, 

L=100 nm, r=10 nm, and τi=10 MPa
135

, an estimate for the toughening of 1 Jm
-2

 could 

be achieved. This figure is relatively small, even if higher loading fractions could be 
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obtained. Similarly, an upper estimate of the energy absorbed in debonding can be 

obtained from 

r

LGV
NrLGG

if

idebond

2
2    

where Gi is the work of creating the new interface and it is of the order of 4 Jm
-2

 for 

inorganic matrices
135

; the result, using the parameters above, is only 8 Jm
-2

. Thus the 

potential contribution of these two mechanisms appears to be relatively modest; 

however, this simple model is probably too pessimistic. The use of more perfect 

nanotubes, with higher strength and/or smaller diameters, might significantly increase 

the pull-out length, raising the toughening effect. In addition, a variety of additional 

toughening mechanisms exist such as CNT bridging, CNT buckling/matrix shear 
51

, as 

well as the additional deformation and/or friction associated with the pull-out of the 

intrinsically wavy CNTs. It is worth noting that many CNTs are pulled-out even if not 

perpendicularly oriented to the crack plane. 

The situation is neatly summarised by the model nanocomposites of Xia et al 
51

 

(discussed in section 3.1), and shown in Figure 11, which showed the three hallmarks 

of toughening found in micron-scale fibre reinforced ceramic composites: crack 

deflection at the CNT/matrix interface, crack bridging by CNTs and CNT pullout on the 

fracture surfaces. Most interestingly, they also show a number of additional potential 

toughening mechanisms, associated with shear deformation of the regular array of 

pores/hollow tubes. However, presumably due to the limited thickness (30μm) of the 

templates available, quantitative results of fracture toughness or bending strength are 

not yet available.  

 

5. Functional properties of CNT-composites 
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In view of the outstanding thermal and electrical properties of CNTs, there have 

been several investigations focussing on the functional properties of CNT-reinforced 

inorganic matrix composites, including electrical and thermal conductivity. A summary 

of these results is presented in Table 2. Percolation theory relates a sudden change in a 

macroscopic property (such as electrical conductivity) to the development of a 

continuous network structure, at a critical percolation threshold. Around the threshold, 

the property (e.g. electrical conductivity) can be related to the concentration by a scaling 

law such as: 

t

cc
)(

0
     for  > c 

where c is the conductivity of the composite,  is the volume fraction of CNTs in the 

composite, c is the critical volume fraction or percolation threshold, and 0 and t are 

fitted constants related to the intrinsic electrical conductivity of the CNTs and the 

dimensionality of the system, respectively 
136

. 

 Electrical percolation of CNTs in an electrical insulating ceramic was studied 

for the first time by S Rul et al 
48

. They reported that the DC electric conductivity of 

SWCNT/MgAl2O4 composites (CNT content up to 11 vol.%) was well fitted by the 

percolation relation with a threshold of 0.64 vol.%, where the conductivity abruptly 

increased over seven orders of magnitude (from 10
-10

 to 0.0040 S/cm), eventually 

reaching a maximum at 8.5 S/cm. The electrical conductivities of a variety of other 

inorganic matrix materials containing MWCNTs have been measured, including SiC 
56

, 

TiN 
57

, Fe2N 
57

, borosilicate glass 
100

, SiO2 
93

 ZrO2 
137, 138

, and Si3N3 
139

 systems. The 

thresholds on the order of 1 vol.% are typical of a large number of CNT/polymer 

composite systems and are in line with expectations from excluded volume 

considerations; in other words, the high aspect ratio of the CNTs gives rise to a large 
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hydrodynamic volume and effective statistical network formation. Much lower 

percolation thresholds have been observed but are associated with kinetically-driven 

network formation or phase segregation 
36

; in this context, poor CNT distribution or 

dispersion can provide lower percolation thresholds.  

 Absolute values of the electrical conductivity are typically well above the level 

needed for static dissipation and approach the level needed for electromagnetic 

shielding applications. One of the highest absolute conductivities (33 S/cm) was 

achieved in dense alumina composites containing up to 15 vol.% SWCNTs fabricated 

by spark-plasma-sintering 
70

. Electromagnetic interference (EMI) shielding properties of 

MWCNTs reinforced fused silica composites have been investigated in the frequency 

region 36.5-40GHz (Ka band) 
140

. Shielding improved with MWNT content reaching 

68db for the 10 vol.% sample at 36-37GHz, indicating a possible commercial 

application at relevant high frequencies. The EMI shielding effectiveness of an 

equivalent carbon black-fused silica composite saturated at high frequencies. Indeed, for 

a given loading fraction, the electrical conductivity of CNT loaded systems tends to be 

one to two orders of magnitude higher than that of carbon black composites, due to the 

higher intrinsic conductivity of CNTs and the much higher connectivity of the network.  

Peigney et al 
45

 also investigated anisotropic electrical conductivity in 

SWCNTs/Fe/Co-MgAl2O4 composites following extrusion. As expected, the 

conductivity in parallel direction to the extrusion direction was much higher (by a factor 

of approximately 30) than that measured in the transverse direction, providing evidence 

of preferential alignment of the CNTs following extrusion; similar effects are well-

known in polymer systems 
36

. The anisotropy of the electrical conductivity was also 

studied in MWCNTs/alumina composites where CNT alignment was induced by DC 
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electric fields 
126

. The results showed a difference of about seven orders of magnitude 

between the electric conductivities in longitudinal (6.2 x 10
-2

 S/m) and transverse (6.8 x 

10
-9

 S/m) directions. It is worth noting that, for a given aspect ratio, alignment of fibres 

actually increases the percolation threshold 
141

.  

Relatively few studies have explored thermal conductivity; a strong percolation 

behaviour is not expected as there are, at most, only two to three orders of magnitude 

difference between the thermal conductivity of the CNTs and the inorganic matrix.  

MWCNTs/SiO2 composites showed systematic increases in thermal diffusion 

coefficient and thermal conductivity with increasing CNT content 
142

. At 650
o
C, the 

thermal conductivity was enhanced by 20.6% (~2W/m.K) at 10 vol.% CNTs, compared 

to that of monolithic SiO2. A recent study showed that thermal conductivity of 

4.08W/m.K was measured on fully dense 10 vol.% MWCNTs/SiO2 composites 

processed by spark plasma sintering 
94

. In sol-gel derived borosilicate/MWCNTs 

composites, thermal conductivities of up to 1.45 W/mK were measured at room 

temperature for composites containing 2 wt% MWCNT (considering that the thermal 

conductivity of borosilicate glass matrix at 25 °C is 1.1 W/mK) 
100

. Nevertheless, the 

increases reported are relatively modest compared to the high intrinsic thermal 

conductivity of CNTs. The relatively small improvements may be due to the high 

interface thermal resistance
143, 144

, and the large interfacial surface area between CNTs 

and the matrix. It is also worth noting that the intrinsic thermal conductivity of the CVD 

nanotubes used in composite systems will be lower than the ideal value. Although there 

may be a improvement during sintering, most inorganic matrices are processed at too 

low a temperature for large improvements of thermal conductivity due to graphitisation 

of the CNTs.  
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Encapsulating CNTs in transparent inorganic glass (or glass-like) matrices may 

enable or enhance photonic applications, including nonlinear optics, planar optical wave 

guides, optical switches and optical limiting devices. CNTs have been shown to be 

broadband optical limiters, efficient at both 532 and 1064nm laser wavelength in 

solutions 
15, 145

 and polymer composites 
146

. Although theoretical calculations show that 

CNTs have large third-order optical nonlinearities there are relatively few experimental 

reports available 
99, 101, 147-149

. On the other hand, nanotube arrays and composites have 

been successfully used as saturable absorbers for mode-locked lasers
150, 151

. In high 

power situations, inorganic matrices may offer improved stability than current systems. 

For optical applications, sol-gel techniques are usually employed to produce transparent 

and structural composites containing low volume fractions of CNTs. Exploiting the 

desirable optical effects requires a good dispersion of the nanotubes to retain clarity and 

avoid Rayleigh scattering.  

 

6. Future work and conclusions 

The present review of CNT reinforced inorganic matrix composites describes 

the latest processing techniques developed to improve the mechanical and functional 

properties of CNT-reinforced ceramics and glasses. These techniques have gradually 

provided better and more consistent properties compared to traditional powder 

processing methods. However, further improvements in processing techniques are still 

required in order to develop high quality samples in sufficient quantities for reliable 

property determination, particularly of fracture toughness. The relationship between the 

nanocomposite structure, the properties, and the active toughening mechanisms remains 

to be established. Moreover, in order to fully exploit the reinforcing ability of CNTs, it 
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is clear that several critical issues remain to be solved, including: i) homogeneous 

dispersion of CNTs in the matrix system, ii) optimisation of the interfacial bonding 

between CNTs and adjacent matrix, and iii) development of novel consolidation 

methods/conditions that do not lead to CNT damage. In addition, higher quality CNTs, 

with intrinsic properties approaching the theoretical limit, are needed in sufficiently 

large volumes and purities for application in novel composite systems. The relationship 

of the toughening mechanisms to the wide variety of structural parameters associated 

with CNTs must also be established. Systematic studies exploring the impact of CNT 

dimensions, crystallinity, straightness, entanglement, internal structure and 

concentration will be needed in order to establish the ‘ideal’ nanotube for a given 

system or application.  

On the other hand, many argue that the real value of CNTs lies in their range 

and breadth of properties, which include mechanical, electrical and thermal properties. 

These properties provide additional benefits when incorporating CNTs in ceramic and 

glass matrices, which enable the development of multifunctional structural materials 

with a relatively low concentration of CNTs. It is worth remembering that the small size 

of CNTs allows them to be incorporated where conventional fibre reinforcements 

cannot be accommodated, for example in thin and thick films, coatings, foams and in 

the matrix of conventional fibre composites. This concept has begun to be exploited in 

the polymer systems but remains to be explored using inorganic matrices. 
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Table 1 Overview of mechanical properties of CNT/inorganic matrix composites as reported in the literature 

 

Matrix 

material 

CNT content Processing routes Investigated properties 

(%) indicates property improvement compared to monolith 

Year 

 

Al2O3 SWNT 0.1 wt% Colloidal processing Fracture toughness (VI): 4.9 MPam
1/2

 (31%)  2002 
77

 

Al2O3 SWNT 10 vol.% Powder processing Fracture toughness (VI): 9.7 MPam
1/2

 (200%)  2002 
71

 

Al2O3 SWNT 10 vol.% Powder processing Fracture toughness (SENB): 3.33 MPam
1/2

 2002 
120
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1/2

 (-45%) 2003 
49

 

Al2O3 1.5 – 3.3 vol.% Sol-gel Fracture toughness (VI): 1.1MPa.m
1/2
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82
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2007 
126

 

Al2O3 SWNT 10 vol.% Powder processing Fracture toughness (VI): 9.71MPa.m
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2
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Al2O3 MWNT 0.9 vol.% Colloidal processing Fracture toughness (SENB): 5.9MPa.m
1/2
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90

 

Al2O3 MWNT 7 vol.% Powder processing Fracture toughness (SENB): 6.8MPa.m
1/2
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Al2O3 MWNT 0.5 wt.% Colloidal processing Fracture toughness (SENB): 4.8MPa.m
1/2

 (20%), Flexural strength: 572MPa (17%) 2008 
91

 

Al2O3 MWNT 3 vol.% Colloidal processing Fracture toughness (SENB): 5.01MPa.m
1/2
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Al2O3 MWNT 0.5 wt.% in situ CVD Fracture toughness (VI): 4.62MPa.m
1/2

 (12%), Hardness: 905.9VH (12%) 2008 
153
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1/2
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Al2O3 MWNT 10 vol.% in situ CVD Frictional coefficient: 0.073 (-50%) 2008 
53
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Matrix 

material 

CNT content Processing routes Investigated properties 

(%) indicates property improvement compared to monolith 

Year 

 

SiC 1-5 vol.% Sol-gel method Fracture toughness (VI): 5.4MPam
1/2

 (12.5%), Hardness: 30.6 GPa (20%)  2007 
56

 

Si3N4 MWNT 1 wt.% Powder processing Bending strength: (37%) 2003 
64

 

Si3N4 MWNT 1-5 vol.% Colloidal processing Decrease in both modulus and strength 2006 
67

 

Si-C-N MWNT 1-2 wt.% Colloidal processing Fracture toughness (SENB): 1.8 MPam
1/2

 (60%) 2006 
129

 

mullite MWNT 5 vol.% Powder processing Fracture toughness (VI): (78%), Bending strength: (10%) 2007 
72

 

BAS MWNT 10 vol.% Powder processing Fracture toughness (SENB): 2.97 MPam
1/2

 (140%), Flexural strength: 245MPa (190%) 2006 
130

 

SiO2 6 wt% Sol-gel method Hardness: 350Hv (100%) 2001 
80

 

SiO2 MWNT 5-30 vol.% Powder processing Fracture toughness (VI): 2 MPam
1/2
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73

 

SiO2 MWNT 5 vol.% Colloidal processing Fracture toughness (VI): 2.46 MPam
1/2
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81
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104
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Table 2 Overview of functional properties of CNT/inorganic matrix composites as reported in the literature 

 

Matrix 

material 

CNT contents Processing routes Investigated properties 

(%) indicates property improvement compared to monolith 

Year 

 

Fe/Co-MgAl2O4 - in situ CVD Electrical conductivity: extrusion direction 20S/cm, transverse direction 0.6S/cm 2002 
45

 

MgAl2O4 0.2 – 25 vol.% in situ CVD Percolation threshold at 0.64 vol.% CNTs 2004 
48

 

Al2O3 SWNT 5.7-15 vol.% Powder processing Electrical conductivity: 3345S/m with 15 vol.% CNTs 2003 
70

 

Al2O3 MWNT 2 wt.% Colloidal processing Electrical conductivity: = dir. 6.2x10
-2

 S/m, ⊥ dir. 6.8x10
-9

 S/m 2007 
126

 

Al2O3 MWNT 4.65vol.% Colloidal processing Electrical conductivity: 210S/m 2008 
89

 

TiO2 MWNT 1.5 wt.% Colloidal processing Photocatalytic properties in Phenol degradation 2003 
79

 

TiN 12.4vol% in situ CVD Electrical conductivity: 735 S/cm (44.7%) 2005 
57

 

Fe2N 11.7 vol.% in situ CVD Electrical conductivity: 885 S/cm (11.5%) 2005 
57

 

Si3N4 1.8-12wt.% Colloidal processing Electrical conductivity: 79 S/m with 1.8wt% CNT 2005 
139

 

SiC 0.3-2.1 vol.% in situ CVD Electrical resistivity: (- 96%) at 2.1 vol.% CNTs 2005 
154

 

ZrO2 MWNT 10 wt.% Colloidal processing Percolation threshold at 1.7wt% CNT 2006 
138

 

SiO2 MWNT 10vol.% Sol-gel Thermal diffusion coefficient: (16.3%), thermal conductivity: (20.6%) 2003 
142

 

SiO2 MWNT 10 vol.% Colloidal processing Electromagnetic interference shielding: 69db with 10vol% CNTs 2007 
140

 

SiO2 MWNT 10 vol.% Colloidal processing Electrical conductivity: 65 S/m 2007 
93

 

SiO2 MWNT 10 vol.% Colloidal processing Thermal conductivity: 4.08W/m.K (69%) 2007 
94

 

 

 

 

 


