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Abstract 

 

We report on the bioactivity of two series of glasses in the SiO2-Na2O-CaO-P2O5 system 

after immersion in simulated body fluid (SBF) after 21 days. The effect of P2O5 content 

was examined for compositions containing 0 to 9.25 mol. % phosphate. Both series of 

glasses degraded to basic pH, but the solutions tended towards to neutrality with 

increasing phosphate content; a result of the acidic phosphate buffering the effect of the 

alkali metal and alkaline earth ions on degradation. Bioactivity was assessed by the 

appearance of features in the X-ray diffraction (XRD) traces and Fourier transform 

infrared (FTIR) spectra consistent with crystalline hydroxyl-carbonate-apatite (HCAp): 

such as the appearance of the (002) Bragg reflection in XRD and splitting of the P-O 

stetching vibration around 550 cm
-1

 in the FTIR respectively. All glasses formed HCAp in 

SBF over the time periods studied and the time for formation of this crystalline phase 

occurred more rapidly in both series as the phosphate contents were increased. For P2O5 

content > 3 mol. % both series exhibited highly crystalline apatite by 16 hours immersion 

in SBF. This indicates that in the compositions studied, phosphate content is more 

important for bioactivity than network connectivity (NC) of the silicate phase and 
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compositions showing rapid apatite formation are presented, superior to 45S5 Bioglass® 

which was tested under identical conditions for comparison. 

 

Introduction 

 

Bioactive glasses and ceramics have been important for mineralised tissue regeneration in 

orthopaedic applications for over 30 years [1]. However, recently these materials are 

finding usage in products such as toothpaste as reminerialising agents [2]. The toothpaste 

Sensishield marketed in the EU by Periproducts contains Novamin (45S5 Bioglass®) as 

the active ingredient and there is also a toothpaste on the market which contains a zinc 

substituted hydroxyapatite [3]. L’Oreal also have a patent [4] for Bioglass as an additive 

to products for relaxing / straightening hair. This opens up the possibility for bioactive 

glasses to be used in a variety of consumer products.  

This study reports the bioactivity of two series of glasses of which structure and 

properties have been previously reported [5, 6]. In series I phosphate was added to the 

glass, replacing SiO2 and the Ca to Na ratio was kept constant. In series II, it was 

assumed phosphate did not enter the silicate network, but formed a separate 

orthophosphate phase and sufficient Ca and Na was added to ensure charge neutrality in 

the PO4
3-

 complex formed. As the previous study showed, the formation of this type of 

phosphate structure resulted in removal of network modifiers in series I, polymerising the 

silicate network and resulting in an increase in Q
3
 structural units and a reduction in Q

2
. 

In series II, as sufficient modifier was added to charge balance the orthophosphate 

species, no change in the silicate structure was seen by solid state NMR; effectively the 

silicate network remained Q
2
, [SinO3n]

2n-
 chains of infinite molar mass. 

Simulated body fluid (SBF) has been used in vitro in a large number of studies to 

predict in vivo bioactivity in particular in glass-ceramic systems to assess the formation 

of hydroxyl-carbonated-apatite at the surface of the material (HCAp). The formation of 

HCAp after a reasonable time period in SBF is a good indicator that the material will 

form a bond and integrate well with bone in vivo. Although SBF experiments should be 

complemented by cell studies, followed by animal and human trials, SBF data can be 

used to screen out materials for these expensive and possibly unnecessary studies. The 
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glasses studied here are modifications of the original 45S5 Bioglass® composition [1] 

and glasses studied by Elgayar et al. [7], with phosphate added to investigate the effect 

on bioactivity. The two most obvious negative effects in vivo might be degradation of the 

phosphate component of the glass producing an excessively acidic pH and hence 

cytotoxicity and pyrophosphate (Q
1
 phosphate) species producing wide macrophagic 

activation [8]. It is know that all the glasses in this study contain a separate 

orthophosphate (Q
0
 phosphate) phase. In the compositions studied the degradation and 

production of acidic pH caused by phosphate would be buffered by the large amount of 

basic ions (Na and Ca) in the glass and should not result in an acidic pH as seen in 

polyphosphate glasses [9]. Acidic pH conditions is not desirable for the formation of 

crystalline apatite. We would not expect the production of pyrophosphate species either 

as all but one of the glasses studied have a network connectivity (NC) less than 2.5. 

Typically soda-lime-phosphosilicate glasses with NC > 2.5 contain some phosphate in a 

Q
1
 configuration [7, 10]. 

 

Experimental 

 

The processing of these glasses have been previously reported [5, 6]. Compositions can 

be found in table (1) also with network connectivity values assuming phosphate enters 

the glass network (NC) and that a separate orthophosphate phase is formed (NC’). 

 

SBF 

 

Simulated body fluid was prepared according to Kokubo and Takadama [11]. Glass 

particles of diameter <38µm were immersed in this solution in sealed containers for up to 

21 days and were mechanically agitated at 60 rpm using an incubator set to 37°C. At 

various time points the samples were filtered and dried to constant weight for analysis by 

XRD and FTIR. 

 

XRD 

 



P2O5 SBF paper; MDO 4 

A Phillips powder diffractometer with a copper (Cu Kα) X-ray source (Philips PW 1700 

series diffractometer, Philips, Endhoven, NL) was used to characterise the glass samples. 

The powdered samples were recorded between 10 and 60 2 at a scan speed of 0.04.s
-1

. 

For crystallite size analysis high resolution scans of the (002) apatite peak were take 

between 24 and 28 2 for a step size of 0.01, collecting data on each step for 5s. Peak 

analysis was performed using SciDAVis 0.1.3 software. 

 

FTIR 

 

FTIR spectra were obtained using a Bruker IFS 28 Fourier transform infrared 

spectrometer in the mid-IR range of 550 to 2000 cm
-1

 with a resolution of 0.2 cm
-1

. 

Powdered samples were pressed into pellets with KBr. Peak analysis was performed 

using SciDAVis 0.1.3 software. 

 

Results and discussion 

 

SBF 

 

Fig. (1) and (2) shows the variation in pH with time for series I and II glasses respectively 

after immersion in SBF. As a general trend the SBF becomes more basic with time. This 

is to be expected as more sodium and calcium ions are released. The solution also shifts 

towards acidity as the phosphate content of the glasses is increased in both series. This 

can be explained by the release of more phosphate from the glass which will buffer the 

alkalinity caused by the sodium and calcium ions. This decrease in pH is advantageous 

for bioactivity as a pH of 7.2 is optimal in physiological fluid for apatite deposition [8]. 

 

XRD 

 

Fig. (3) and (4) shows XRD traces of selected glasses from series I and II. With 

progressing time we can see the formation of Bragg peaks associated with apatite 

crystallisation. The data is quite noisy and even after 21 days the apatite formed is 
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relatively disordered. The most prominent features are the Bragg peaks at 25.9 and 31.9 

corresponding to the (002) and (211) and reflections [12, 13]. The region containing the 

(211) peak (30 to 35) also contains a number of other features, namely the (112), (300) 

and (202) reflections [12, 13]. However due to the noise and degree of peak overlap, 

these lines could not be used for crystallite size analysis. The (002) peak was used for this 

purpose. Apatite formation can be clearly seen after 16 hours. Fig. (5) shows the 

crystallite size obtained from the peak width and position of the 002 peak using the 

Scherrer equation [14]. After 21 days there is no real variation in the apatite crystallite 

size. For series II there is possibly a decrease in crystal size with phosphate content, but 

the variation over the series is less than the error of the peak fitting. 

 

FTIR 

 

Fig. (6) and (7) show FTIR spectra of selected glasses from both series immersed in SBF 

for up to 21 days. For the glasses containing phosphate, in the 500 to 600 cm
-1

 region 

there is a broad feature corresponding to the P-O bending mode and also a Si-O-Si 

bending vibration in this region [13, 15-17]. Around 720 cm
-1

 in the glass spectra is the 

band due to Si-O bending vibrations [18, 19]. The dominant bands at approximately 910 

and 990 cm
-1

 can be attributed to Si-O (Q
2
) and Si-O-Si stretching vibrations respectively 

[15, 16]. On exposure to SBF, vibrations from the silicate glass network decrease in 

intensity and bands due to the formation of crystalline hydroxyl-carbonate apatite become 

dominant. In particular the P-O bend and P-O stretch sharpen and increase intensity at 

around 580 and 1010 cm
-1

 respectively [15, 16]. The P-O bend also shows the 

characteristic splitting indicative of crystalline apatite formation (into bands at 560 and 

600 cm
-1

) [20]. The appearance of carbonate bands on exposure to SBF is also evidence 

of crystalline hydroxyl-carbonate-apatite formation with the C-O stretch (v2) around 860 

cm
-1

 and C-O asymmetric stretching (v3) at 1410 and 1450 cm
-1

 [16, 21, 22]. The 

carbonate band at around 860 cm
-1

 can be seen to shift in position linearly (fig. (8)) to 

higher wavenumber for series I with increasing phosphate content in the original glass 

after 21 days exposure to SBF. It also increased for series II but levelled off in the high 

P2O5 samples (> 4 mol. %). In the samples exposed to SBF the Si-O bending vibration 
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reappears at higher wavenumber ( 800 cm
-1

) compared to the original glasses which 

indicates some degree of repolymerisation, possibly condensation of the silica gel formed 

in the SBF. Serra et al. saw this band shift to higher wavenumber with increasing silica, 

from 44 to 66 wt. %, in bioactive glass samples [19]. The band seen around 1200 cm
-1

 in 

the 21 day SBF samples is due to a component of the asymmetric stretching mode of Si-

O [19, 23, 24]. 

 

General comments 

 

All glasses showed formation of apatite in the 21day period tested in SBF. Table (2) 

summarises the time in which the characteristic splitting of the FTIR P-O bending mode 

at around 550 cm
-1

 was seen indicating crystalline apatite formation. As a general trend, 

apatite formation is faster as the phosphate content is increased in the parent glass; even 

in series I which shows an increase in network connectivity with increasing P2O5. This 

indicates that phosphate content is more important than network connectivity of the 

silicate phase for bioactivity in the range of compositions studied as long as the 

phosphate is present as Q
0
 species [5, 6]. The glass ICSW4, containing the highest 

phosphate content in both series does not fit in with the trend shown in table (2). It is 

know from previous studies that this sample was partially crystalline [5, 6] which would 

account for the slower rate of apatite formation compared to the other glasses. 

The area of the P-O bending mode (also known as the v4 phosphate region) can be 

seen to linearly correlate with the area of the (002) Bragg reflection from XRD as 

presented in fig. (9). The areas of these features after 21 days in SBF both increase with 

phosphate in the parent glass. This indicates that as a general trend, as more phosphate is 

added to the glasses, more apatite forms which suggests the phosphate content is more 

important in these two series of glasses than NC for mineralisation even though the 

network connectivity is increasing in series II and fixed in series II. Also as fig. (5) shows, 

the size of the apatite crystals are not varying with phosphate content in the parent glass 

after 21 days in SBF, but the amount of crystals clearly increases due to the increase in 

the areas of the features in the XRD and FTIR data associated with HCAp crystallinity.  



P2O5 SBF paper; MDO 7 

Fig. (10) compares the bioactivity of glass ICSW9 against 45S5 Bioglass® from FTIR 

spectra taken on glass powders of identical particle sizes exposed to the same SBF 

conditions. It can clearly be seen that after 1 day in SBF the apatite formed on the ICSW9 

glass is highly crystalline with intense, narrow, split peaks in the 550 cm
-1

 region, 

whereas the phosphate peak can hardly be resolved from the background in 45S5. This 

unequivocally shows the glasses studied here show superior bioactivity and potential as 

hard tissue remineralising agents compared to 45S5 Bioglass® 

The increased apatite formation could be a result of phase morphology. Pyrex is 

comprised of sodium borate rich drops in a silica rich matrix. The drops at the glass 

surface degrade when exposed to corrosive media, however those in the bulk are not 

affected. Vycor® is another phase separated borosilicate glass. However the borate phase 

is interconnected and the glass can be etched to form a porous structure. The high 

phosphate content glasses presented in this study which show increased apatite deposition 

may exhibit an interconnected orthophosphate morphology resulting in continuous 

phosphate leaching on exposure to SBF and enhanced apatite formation kinetics. This 

may be explained by a rapid increase in the surface area of glass exposed to solution in 

the initial stages of exposure. 

 

Conclusions 

 

Compositions are typically designed in weight percentages in the patent literature and 

also, surprisingly, in the scientific literature. This study avoids that approach as it is 

difficult to correlate changes in composition with changes in properties. The glasses 

presented here were designed on a molecular percentage basis. For example in the studies 

by Gorustovich et al. [25, 26], the authors substituted calcium oxide with strontium oxide 

on a weight percentage basis. No difference was seen in the two sets of samples in vivo. 

However, as strontium has a much higher relative atomic mass than calcium, replacing 

the weight of calcium in the glass with strontium would result in an increase in silica 

content. This would increase the network connectivity (NC [5, 6]) of the glass, slow 

dissolution and reduce bioactivity. The beneficial properties of adding the strontium to 

the glass [27], namely speeding dissolution, decreasing osteoblast differentiation and 
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function whilst decreasing osteoclasts, would be cancelled out by the increase in NC. 

Therefore it is no surprise no real difference was seen in the calcium bioactive glass 

compared to the strontium sample in the study by Gorustovich et al. 

  In summary, two series of glasses were studied to examine both the effect of network 

connectivity of the silicate phase and phosphate content on bioactivity. All glasses 

studied produced a hydroxyl-carbonated-apatite layer on immersion in SBF for up to 21 

days. The formation of this layer occurred more rapidly as the phosphate content 

increased for both series. This is a clear indication that in the compositional ranges 

studied here, phosphate content is a more important variable than the connectivity of the 

silicate network or an overriding factor in a process where NC and phosphate dissolution 

compete. The bioactivity of soda-lime-phosphosilicate glasses can be improved 

significantly by designing compositions with a good understanding of glass structure. 
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Tables 

 

Table (1): Glass compositions used in this study with network connectivity assuming 

phosphate enters the silicate network (NC) and assuming phosphate forms a separate 

orthophosphate phase (NC’). 

 

ID 
Mol. % 

NC NC’ 
SiO2 Na2O CaO P2O5 

Series I 

ICSW1 51.06 26.10 22.84 0.00 2.08 2.08 

ICSW2 47.84 26.67 23.33 2.16 2.00 2.18 

ICSW3 44.47 27.26 23.85 4.42 1.92 2.30 

ICSW5 40.96 27.87 24.39 6.78 1.83 2.44 

ICSW4 37.28 28.52 24.95 9.25 1.75 2.62 

Series II 

ICSW6 48.98 26.67 23.33 1.02 2.00 2.08 

ICSW7 47.07 27.19 23.78 1.95 1.92 2.08 

ICSW8 43.66 28.12 24.60 3.62 1.79 2.08 

ICSW10 40.71 28.91 25.31 5.07 1.67 2.08 

ICSW9 38.14 29.62 25.91 6.33 1.56 2.08 

 

Table (2): Time for crystalline apatite formation observed by splitting of the FTIR P-O 

bending mode at around 550 cm
-1 

(sample ICSW4 partially crystalline). 

 

ID Mol. % P2O5 Time 

Series I 

ICSW1 0.00 1 week 

ICSW2 2.16 2 days 

ICSW3 4.42 16 hours 

ICSW5 6.78 16 hours 

ICSW4 9.25 1 day 

Series II 

ICSW6 1.02 2 days 

ICSW7 1.95 2 days 

ICSW8 3.62 16 hours 

ICSW10 5.07 16 hours 

ICSW9 6.33 16 hours 
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Figures 

 

 

Fig. (1): pH variation of SBF for series I glasses. 

 

 

Fig. (2): pH variation of SBF for series II glasses. 
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Fig. (3): XRD traces for series I glass ICSW03 (4.42 mol. % P2O5) with time of 

immersion in SBF with the main Bragg peaks labelled. 

 

 
 

Fig. (4): XRD traces for series II glass ICSW09 (6.33 mol. % P2O5) with time of 

immersion in SBF. 
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Fig. (5): Crystallite size analysis from 002 Bragg peak for both series of glasses. 
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Fig. (6): FTIR spectra of series I glass ICSW05 (6.79 mol. % P2O5) with time of 

immersion in SBF. 
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(a) 
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(b) 

 

Fig. (7): (a) FTIR spectra of series II glass ICSW10 (5.07 mol. % P2O5) with time of 

immersion in SBF and (b) 3D contour plot (time axis not linear). 
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Fig. (8):  Dependence of carbonate peak position from FTIR on parent glass phosphate 

content after 21 days in SBF. 

 

 
 

Fig. (9): Area of v4 phosphate FTIR region plotted against (002) Bragg peak area from 

XRD after 21 days in SBF. 
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Fig. (10): Comparison of ICSW9 and 45S5 Bioglass® by FTIR after 24 hours in SBF. 


