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Abstract This study identifies characteristic features in scalp EEG that simultaneously give the 

best discrimination between epileptic seizures and background EEG in minimally pre-processed 

scalp data; and have minimal computational complexity to be suitable for on-line, real-time 

analysis. The discriminative performance of 65 previously reported features has been evaluated in 

terms of sensitivity, specificity, Area Under the sensitivity-specificity Curve (AUC), and relative 

computational complexity, on 47 seizures (split in 2698 2 s sections) in over 172 hours of scalp 

EEG from 24 adults. The best performing features are line length and relative power in the 12.5–

25 Hz band. Relative power has a better seizure detection performance (AUC=0.83; line length 

AUC=0.77), but is calculated after the Discrete Wavelet Transform and is thus more 

computationally complex. Hence, relative power achieves the best performance for offline 

detection, whilst line length would be preferable for online low complexity detection. These 

results, from the largest systematic study of seizure detection features, aid future researchers in 

selecting an optimal set of features when designing algorithms for both standard offline detection 

and new online low computational complexity detectors.  
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1 Introduction  

Epilepsy is a serious neurological disorder that affects 50 million people worldwide [28]. 

Electroencephalography (EEG) is a key tool for the diagnosis and treatment of the 

disorder and the benefits of long-term EEG monitoring, for both diagnosis and treatment, 

have been extensively reported [3,21,28]. However, EEG monitoring over many days, or 

even weeks, generates long records that are cumbersome for neurologists to review—

visual inspection takes up to two hours per 24 hour recording [9].To alleviate this 

workload, seizure detection algorithms to automatically detect the presence of 

epileptiform  activity have long been of research interest. Seizure detection algorithms are 

also of use to alert medical practitioners or bystanders of the occurrence of a clinical or 

sub-clinical seizure, and recently there has been renewed interest in discontinuous EEG 

analysis [2, 3]. Here, seizure detection algorithms aim to mark-out epileptiform activity 

so that the neurologist only analyses these marked sections of EEG rather than the 

complete EEG trace. Such sampled reviews have now been reported to capture sufficient 

information such that the final electro-clinical diagnosis is in close agreement with the 

diagnosis resulting from the review of the full continuous recording [2, 18]. However, 

despite the clear need for seizure detection algorithms, current algorithms still do not give 

sufficiently accurate results to be of practical use to clinicians and patients [16, 27, 34].  

To improve the performance of seizure detection algorithms many researchers [10, 11, 

19, 20, 26, 29, 30] have compared different characteristic features of seizure and non-

seizure EEG sections to determine which features can be used to best separate ictal and 

interictal EEG. These then facilitate designing future algorithms with the optimal set of 

features, in order to achieve better seizure detection performance.  However, these 

comparison studies only evaluate the utility of different characteristic features in terms of 

their performance for separating ictal and interictal activity: in terms of sensitivity, 

specificity, false positive rate, and the area under the performance trade-off curve. In 

recent years there has also been significant interest in the development of miniaturised, 

portable EEG systems for prolonged ambulatory monitoring that incorporate online, real-

time, seizure detection within the ambulatory unit [3, 12, 22, 26, 32]. This could be used 

to alert medical practitioners or bystanders of the occurrence of a clinical or sub-clinical 

seizure, to facilitate closed loop treatment [13], or to collect discontinuous data for 

sampled review. In these seizure detection systems the computational complexity 

required to generate each feature is an essential comparison point.  

Traditionally, when an algorithm is implemented offline using a standard computer, al-

gorithms with higher computational complexity can be expected to have longer 

simulation times, but this is not a critical factor using modern systems. On the other hand, 
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in battery powered ambulatory EEG systems, computationally complex algorithms can be 

expected to have higher power consumption due to the increased number of processing 

stages (additions, multiplications and similar) required. This translates to shorter 

monitoring times caused by a shorter lifetime for the battery, or the requirement for 

obtrusive physically larger batteries. Thus for future ambulatory seizure detection systems 

it is essential when evaluating features, to consider not only the detection accuracy 

(sensitivity and specificity) of each feature, but also the computational complexity.  

A recent study [26] investigated six features on invasive EEG recordings of animal mod-

els and gave some insight to the two-way trade-off of detection accuracy and hardware 

cost (including power consumption), for a specific hardware architecture. This paper 

presents an investigation in to the performance of 65 features in terms of both detection 

performance and computational complexity, when used for seizure detection in minimally 

pre-processed adult scalp EEG. The 65 features utilised have been taken from 97 

publications considering scalp EEG seizure detection published between 2000 and 2010. 

A simple seizure detection algorithm has been developed to compare the performance of 

each feature in turn on 172 hours of scalp EEG data containing 47 seizure events. It 

should be stressed that the seizure detection algorithm described here has not been 

developed for optimal detection accuracy, and thus incorporating extra processing, for 

example to remove artefacts or interictal spikes that may occur in the scalp EEG, could 

improve the algorithm performance. Instead, the aim is to consider the utility of each 

individual feature to facilitate future algorithms which would incorporate such extra 

processing stages. In addition to measuring standard seizure detection performance (using 

sensitivity and specificity), the computational complexity has been measured as a relative 

value using the simulation time required to generate each feature in MATLAB. This 

avoids specific architecture dependent computational complexity results and the increased 

simulation time for higher computational complexity features allows comparative results 

to be generated on a standard computer.  

 

2 Methods  

To determine suitable features to compare, a systematic review of recent seizure detection 

algorithms for scalp EEG-based monitoring, and published since the last such review [9], 

was performed. The inclusion criteria for publications considered in the review and full 

details of the 97 short-listed publications is given in the supplementary material. Based on 

this review, 65 features derived from: the time domain EEG signal, the Discrete Wavelet 

Transform (DWT) of the time domain EEG signal, the Continuous Wavelet Transform 
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(CWT) of the EEG and the Fourier Transform (FT) of the EEG, were selected. These pre-

processing techniques are particularly suitable for algorithms to be designed for online 

long-term monitoring from battery-powered systems, as features derived from the time 

domain signal do not require any additional processing and the other three pre-processing 

techniques have previously been implemented in low power dedicated circuits: DWT [15, 

23], CWT [1, 4, 14] and FT [33]. 

 

2.1 Features analysed  

The features selected for comparison from the 97 shortlisted publications have been 

summarised in Table 1 and the number of publications that utilise each of these features is 

also listed. The core features are categorized in to: 17 time domain, 8 DWT based, 4 

CWT based and 6 FT based features. There are 35 core features present, and then the 

DWT based features and 2 FT based features (power and spectral entropy) are calculated 

multiple times, based upon using different frequency bands from the time-frequency 

transformation. In this study, well-established frequency bands for epileptiform activity 

(0–25Hz [8]) have been selected, which at the same time reduce signal disruptions due to 

high frequency artefacts [7, 8, 25]. For the DWT, these frequency bands result from a 

standard five scale decomposition of the input EEG signal and span: D3 (12.5–25Hz); D4 

(6.25–12.5Hz); D5 (3.125–6.25Hz); and A5 (0.16–3.125Hz).The same frequency bands 

were selected for the two FT features. Details on the full calculation for each feature and 

the implementation of the respective pre-processing methods can be found in the 

supplementary material. 

 

2.2 Comparison methods  

To investigate the performance of each individual feature listed in Table 1, each feature is 

tested in turn using the simple seizure detection algorithm illustrated in Fig. 1.  

The core operation of this algorithm is as follows. First, the input EEG discrete-time 

signal (resampled at 200Hz) is split into non-overlapping 2 s epochs e and the feature 

F(e) calculated for each epoch. To distinguish between seizure and non-seizure epochs 

based upon F(e), a fixed threshold β is used. If F(e) > β, the epoch is marked as ictal, 

otherwise it is interictal and this provides the output to be compared to expert markings 

present in prerecorded EEG signals.(Note that for features that are expected to reduce 

during a seizure, a detection will occur if the normalized feature falls below β.) A simple 

threshold allows the performance of each feature to be investigated in turn and by running 

the algorithm multiple times with different values for the detection threshold β, the trade-
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off between correct detections and incorrect detections for the feature can also be 

investigated.  

As the aim here is to investigate the performance of each feature in turn, the signal 

conditioning and post-processing used are kept to a minimum. From Fig. 1, the recorded 

EEG data is high pass filtered with a cut-off frequency of 0.16 Hz to ensure all data is in-

line with the International Federation of Clinical Neurophysiology recommendation [24]. 

For post-processing, prior to applying the threshold, the calculated feature in each epoch 

F(e) is normalized to restrict its value between (0,1) and correct for different amplitudes 

of the input EEG data. This normalization is done using a peak detector to find the 

maximum value of the feature F(e) over time and using this value to normalize F(e). This 

method has two main advantages: firstly, the normalization does not use the raw EEG 

signal, reducing any errors caused by high amplitude artefacts; and secondly, as the 

maximum is calculated over time the normalized feature will never exceed one. At the 

start of each record, the epoch value e equals 1, the peak value z(e) is set to F(e), and only 

updated if any subsequent value of F(e) exceeds z(e− 1).The normalized feature N(e) is 

then calculated as N(e)= F(e)/z(e) and compared to the detection threshold β. In cases 

where F(e) is always negative, it is multiplied by −1 prior to normalization.  

To generate the final detection decision, the algorithm in Fig. 1 is applied to each channel 

of EEG data separately. The output of the algorithm is a vector of non-overlapping 

epochs classified as either seizure (marked as binary 1) or non-seizure epochs (marked as 

binary 0). The vector of classified epochs is then passed through a bitwise logical OR 

operator, where the number of inputs equals the number of channels being tested. Hence, 

if an epoch has been detected as a seizure in a single channel, then the final detection 

decision is that it is a seizure event and the same epoch is marked as a seizure event 

across all channels. Using this method, the information across all channels is utilized 

without biasing the algorithm towards their location and montage, and furthermore an 

electrode disconnection in a single channel would have a minimal effect on the output of 

the algorithm.  

 

2.3 Performance metrics  

To assess the utility of each feature for indicating the presence of ictal activity, and the 

associated computational complexity, five different performance metrics are used here. 

The sensitivity, specificity and area under the sensitivity-specificity trade-off curve are 

standard metrics used for assessing the performance of an offline seizure detection 

algorithm. The relative complexity and overall Figure-Of-Merit are new metrics 
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introduced here to allow the computational complexity for online algorithms to be 

investigated simultaneously. 

2.3.1 Sensitivity  

The sensitivity indicates how many expert marked seizure epochs are correctly identified 

by the algorithm. A high sensitivity is wanted for good performance. If the number of 

epochs correctly marked in record r is TPr, and the total number of seizure epochs in the 

record is Sr, the reported sensitivity is the arithmetic mean of the individual sensitivity 

values in each record out of a total of R records and is computed as  
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Note that as the sensitivity is calculated on a per-epoch basis this metric does not reflect 

the number of total seizures that have been detected. For example, a 50% sensitivity 

means that 1349 out of 2698 seizure epochs have been correctly detected, but not 

necessarily that at least one epoch has been detected in every expert marked seizure. To 

quantify the presence or absence of each seizure, the same sensitivity has been 

additionally calculated using a windowing method for seizure epochs: when one or more 

seizure epochs are detected within a single expert marked seizure, then the seizure is 

considered detected. Hence for each record containing one expert marked seizure, TPr is 

either zero or one and Sr = 1.It should be noted that there is no windowing for non-seizure 

epochs and the specificity calculation explained below is valid for both methods of 

calculating the sensitivity. 

 

2.3.2 Specificity  

The specificity indicates how many of the expert marked non-seizure epochs are 

incorrectly marked by the algorithm as seizure activity. A high specificity is wanted for 

good performance. Specificity is calculated as  
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where TNr is the number of true negatives (non-seizure epochs correctly classified as non-

seizures) and Br is the total number of non-seizure epochs. 
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2.3.3 Sensitivity-specificity trade-off curve and area 

Inevitably there is a trade-off between detection performance of any one feature in terms 

of the sensitivity and specificity: higher sensitivity can be achieved if lower specificity is 

tolerated. The normalization and simple detection threshold used in the algorithm (Fig. 1) 

allows this trade-off to be quantified. When β = 1, the feature F(e) across all epochs will 

fall below the threshold hence sensitivity will be 0% and specificity will be 100%. When 

β is set to zero, every epoch will be marked as ictal, and hence sensitivity will be 100% 

whilst specificity will be 0%.Varying β from zero to one illustrates the trade-off points in-

between. This can be represented as a sensitivity-specificity curve where each point 

corresponds to the algorithm performance at a different value of β.  

However, due to space limitations it is impractical to plot the full sensitivity-specificity 

trade-off curve for all 65 features investigated here. Instead the Area Under the Curve 

(AUC) calculated using trapezoidal estimation is reported. This can be thought of as the 

summary of the performance of the algorithm across all thresholds [35]: features with 

higher AUC perform better than features with a lower AUC, and an ideal algorithm 

would achieve an AUC =1. In addition, each feature has been evaluated to find the lowest 

threshold at which at least one epoch in every seizure has been detected. At this threshold, 

the epoch-based sensitivity, specificity and threshold have been reported to reflect how an 

algorithm would be used in practice where β may be selected apriori. 

2.3.4 Relative complexity 

In addition to the above metrics which quantify the detection performance of a feature, 

for online algorithms it is essential to choose features that not only have high sensitivity 

and specificity but also have minimal computational complexity. The computational 

complexity of a feature can be related to the time taken to simulate the feature in 

MATLAB as features with more processing stages (for example, additions or 

subtractions) would take longer to calculate in comparison to features with less 

processing stages. To quantify this, the relative complexity of each feature is calculated. 

This is found from the simulation time required to generate the feature F(e) and gives a 

discriminating measure of the computational complexity that is not specific to a particular 

implementation architecture. As the pre-processing techniques used (time domain, DWT, 

CWT, FT) will heavily bias the total simulation time, the computational complexity is not 

compared across the different pre-processing groups, and is instead calculated as a 

relative measure within each category by dividing the simulation time for the current 

feature by the minimum simulation time achieved by any feature within the current 

group.  
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The time taken to simulate each feature has been calculated for every 2 s epoch of EEG 

data across the entire database (almost 5 million epochs). It has been simulated on a 

standard desktop computer with a 2.4 GHz processor and 2 GB RAM running MATLAB 

version 2010b. The mode of the relative complexity values is reported here. All times 

used to calculate the relative complexity have been rounded to the nearest 10 µs. This 

precision is determined by repeatedly calculating a single feature within a single 2 s 

epoch 100 times and at 5 different times of the day, to ensure the measured time is 

repeatable. 

2.3.5 Figure-Of-Merit  

For ease of comparison between features, a Figure-Of-Merit (FOM) has been defined as  

complexityRelative

AUC
FOM   

As the maximum AUC and minimum relative complexity are 1, the FOM is limited to 

values between (0, 1) and higher numbers represent better overall performance. 

 

2.4 Test database  

Features are compared using adult scalp EEG signals with a total duration of over 172 

hours from 24 patients with a total of 47 seizures marked by medical experts for seizure 

start and end. The data was recorded during routine, ambulatory and long-term 

monitoring at the National Society of Epilepsy (UK), Katholieke Universiteit Leuven 

(Belgium) [5, 31] and Freiburg University Hospital (Germany).The database constitutes 

of 16 channels common to all records and per channel there are 2698 2 s seizure epochs 

and 308630 non-seizure epochs. Non-seizure epochs include background data and may 

include pre-ictal data, post-ictal data, interictal spikes and/or artefacts, as every epoch 

within a record that is not classified as a seizure epoch is included in this category. 

Sections likely to contain pre-ictal and post-ictal discharges or artefacts, have not been 

removed from the test database in order to test the performance of the features on data 

similar to what may be expected in a clinical or ambulatory monitoring session. Further 

details on the test database are provided in the supplementary material. 

 

3 Results  

The performance of all 65 features implemented and compared here is listed in: Table 2 

for features calculated directly from the time domain EEG signal; Table 3 for features 
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requiring DWT pre-processing; Table 4 for features with CWT pre-processing; and Table 

5 for features with FT based pre-processing. The epoch-based sensitivity and specificity 

are given for each feature at the threshold value β. This fixed threshold has been 

determined by plotting the sensitivity-specificity trade-off curve for every feature (which 

is not shown here due to space limitations), and then determining the maximum 

specificity at which at least one epoch in each of the 47 seizures is correctly detected (or 

in other words, every seizure event has been detected). Consequently, the corresponding 

epoch-based sensitivity for this specificity is noted. The relative complexity and overall 

FOM, which do not vary with the threshold β and the area under the epoch-based 

sensitivity-specificity trade-off curve, are also reported. In these tables features are sorted 

from highest to lowest FOM, and features marked with an asterisk (*) are those which are 

expected to decrease during a seizure and so have been calculated using N(e) < β in Fig. 

1. Some specific comments on the results in each feature group are given below before 

conclusions are drawn in Section 4. 

 

3.1 Time domain features  

From Table 2, the largest area under the sensitivity-specificity trade-off curve is achieved 

by the line length of the EEG signal, and closely followed by nonlinear energy, variance, 

energy and maximum. The lowest relative complexity is achieved by line length, energy, 

maximum, minimum, total maximum and minimum, and mean. All six features were 

simulated in 10 µs, the resolution of the simulation time in the study, and hence have 

been taken as the baseline for relative complexity.  

Overall, the line length has the largest Figure-Of-Merit as it has both maximum AUC and 

minimum relative complexity. The worst performer is Shannon entropy as it has the 

highest relative complexity, although other features have lower AUC. However, while the 

difference between maximum AUC (0.77) and minimum AUC (0.53) is noticeable, the 

spread of the relative complexity is largely the deciding factor for the FOM in Table 2. 

 

3.2 DWT-based features  

Table 3 shows the performance of the eight DWT features evaluated in each of the four 

frequency ranges (D3: 12.5–25 Hz; D4: 6.25–12.5 Hz; D5: 3.125–6.25 Hz; A5: 0.16–

3.125 Hz). Looking at only the AUC value it is clear that the relative power in the D3, D4 

and D5 frequency ranges gives the best detection performance. Having an AUC> 0.8, 

these features have noticeably better seizure detection accuracy than all of the other 

features studied in this paper. Relative power in the D3 and D5 frequency bands perform 
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equally the best with AUC= 0.83. It can also be seen that within each feature the highest 

performance is consistently obtained by considering D5 (3.125–6.25 Hz) frequencies. 

When the relative complexity is analysed separately a clear divide between the different 

frequency ranges can be seen. Features in the D3 frequency range have the lowest relative 

complexity. This is to be expected, as the DWT is a multi-scale analysis and so 

components in the D3 12.5–25Hz band must be calculated prior to further decomposition 

in to the D4, D5 and A5 frequency bands and then the processing to generate the other 

features. Similarly, it is clear that features calculated in the D4 frequency range have 

lower relative complexity than those requiring a further level of decomposition to D5 and 

A5. Within features evaluated for the same frequency range, such as D3, it can be seen 

that the raw coefficients have the lowest relative complexity, followed by energy, 

variances and entropy. Relative Scale Energy (RSE) is a special case in terms of relative 

complexity, as the calculation of RSE in any frequency range requires energy in all the 

frequency bands to be computed. Hence the relative complexity of RSE in any frequency 

range is similar to features in the maximum decomposition stage, D5 and A5 frequencies.  

Across all DWT-based features, the relative power in the D3 frequency range has the 

highest FOM. There is 12.5% drop in FOM between this feature and the runners-up: 

energy (D3) and entropy (D3). 

 

3.3 CWT-based features  

Table 4 shows that the highest AUC is achieved by energy and standard deviation of the 

energy. Energy also has the lowest relative complexity and hence the highest FOM. 

 

3.4 FT-based features  

Table 5 shows that spectral entropy (in D3 and D5), power (in D3 and D5) and total 

spectral power, all perform well. Looking at relative complexity, all features except 

spectral edge frequency perform identically—any difference has been limited by the 

precision of relative complexity calculation. Consequently the spectral entropy (D3 and 

D5) and power (D5) have the highest Figure-Of-Merit. Total spectral power and power 

(D3) also perform well, with less than 3% difference in Figure-Of-Merit from the best 

performer. It should be noted that unlike the DWT-based features, with the FT there is no 

difference in the simulation time across different frequency ranges because a 512-point 

Fast Fourier Transform is calculated giving information in all frequency ranges at the 

same time. 
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3.5 Overall performance  

To illustrate the full performance trade-off, the epoch-based sensitivity and specificity is 

plotted in Fig. 2 for the highest performing feature in terms of FOM, from each of the 

pre-processing categories. The presence or absence of each seizure event as a fraction of 

47 expert marked seizures is also plotted for the same specificity and threshold β. Both 

sensitivity metrics demonstrate that the DWT relative power in the D3 12.5–25 Hz range 

achieves the best seizure detection performance across all features. Here, 80% epoch-

based sensitivity is achieved for 70% specificity whilst detecting a section of every 

seizure (100% seizures detected). For the other features, 80% epoch-based sensitivity is 

achieved at 60% specificity for line length, 40% specificity for CWT energy and 50% 

specificity for FT-based spectral entropy in the D3 range. 

 

4 Discussion  

When only the area under the sensitivity-specificity trade-off curve is used to compare 

between features considered here, relative power in the 12.5–25 Hz and 3.125–6.25 Hz 

frequency ranges performed the best in terms of seizure detection performance, while 

relative power in the 6.25–12.5 Hz frequency range and line length ranked in the top four 

respectively. This is a surprising result since only two of the 97 considered publications 

from 2000–2010 [19, 20] have used relative power and a further two publications [17, 22] 

have used line length to extract epileptic seizures from adult scalp EEG. This can be 

compared to the number of publications using variance/standard deviation (13) and 

Shannon entropy (5); DWT energy (5) and variance (5); and FT spectral entropy (7) as 

given in Table 1.  

When computational complexity is also considered, the DWT relative power in the 12.5– 

25Hz frequency range gives the best Figure-Of-Merit (0.80). Thus, provided the DWT 

can be implemented within the power constraints of an online EEG system [15, 23], this 

feature is the best choice on both fronts. Although relative computational complexity has 

not been compared between different feature groups in order to avoid bias due to the 

implementation of the pre-processing method, it should be noted that the computational 

complexity of implementing a time domain feature with low relative complexity, will 

nevertheless be lower than features from other feature groups, as time domain features do 

not require an extra pre-processing stage. Given this, the line length also has a very high 

FOM (0.77). Comparing the best CWT and FT features to the line length, the best 

features in these feature categories have both a lower AUC than line length and require an 

additional pre-processing stage, and would thus not be an optimal choice. Consequently 
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the best performing features are line length and DWT relative power in 12.5–25 Hz 

frequency band, and the choice of which feature(s) should be selected will depend on the 

performance and power consumption requirements of the seizure detection system. 

Regardless, it is interesting to note that line length has been previously reported to be 

amongst the best performing features for neonatal seizures [10]. (The other features in 

[10] performed differently in this study although this performance variation is expected, 

due to the well known differences between adult and neonatal EEG [6].)  Considering 

only adult, scalp EEG based seizure detection—as the most common type of EEG 

recording, and also the EEG recording that is most frequently contaminated with 

biological artefacts (such as eye blinks and muscle activity) making the accurate detection 

of seizures more difficult—the most comprehensive feature comparison study compares 

16 features [30] whilst two other studies compare 9 features [19, 20]. In [20], relative 

power is reported to be one of the best features for seizure detection, but the study did not 

discuss performance variation over frequency. Although separate publications have 

reported line length and relative power to be amongst the best features, it is important to 

note that this study not only evaluates the largest number of features, but also addresses 

performance variation across frequencies, on minimally pre-processed scalp EEG of adult 

patients and also takes into consideration the computational complexity of each feature, 

thus evaluating performance as a trade-off between detection accuracy (AUC) and 

computational complexity.  

In conclusion, this study quantifies the performance of 65 features tested on minimally 

pre-processed human scalp EEG, in terms of their sensitivity, specificity, area under the 

sensitivity-specificity trade-off curve and relative computational complexity. Here, DWT 

relative power evaluated in the 12.5–25 Hz frequency range and line length calculated on 

the raw EEG signal were found to be the best performers, although, these features have 

only been used in 4 seizure detection algorithms published in the last decade. This work 

thus provides key new insights into seizure detection algorithm design and in particular, 

these results allow designers of emerging online seizure detection algorithms to better 

focus their design effort. 
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Table 1 The sixty-five features compared in this study, including features calculated in frequency 

bands D3, D4, D5 and A5 marked with † 

Category Feature Number of papers 

Time domain Complexity 4 

 Energy/power 4 

 Fractal dimension 3 

 Kurtosis 3 

 Line length 2 

 Maximum 2 

 Mean 2 

 Minimum 2 

 Mobility 3 

 Non-linear energy 2 

 Relative derivative 2 

 Shannon entropy 5 

 Skewness 2 

 Total maxima and minima 2 

 Variance/standard deviation 13 

 Zero crossing 4 

 Zero crossing of first derivative 2 

DWT Bounded variation † 2 

 Coefficients † 4 

 Energy † 5 

 Entropy † 4 

 Relative bounded variation † 2 

 Relative power † 2 

 Relative scale energy † 2 

 Variance/standard deviation † 5 

CWT Coefficient z-score 1 

 Energy 2 

 Entropy 1 

 Standard deviation of energy 1 

FT Median frequency 2 

 Peak frequency 3 

 Power † 4 

 Spectral edge frequency 2 

 Spectral entropy † 7 

 Total spectral power 3 
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Table 2 Performance of time domain features. Features denoted with * decrease during seizure. 

Feature Sensitivity 

(%) 

Specificity 

(%) 

β AUC Relative 

complexity 

FOM 

For ≥1 epoch detected in every 

seizure 

Line length 85.54 52.06 0.40 0.77 1.0 0.77 

Energy/power 95.95 15.59 0.02 0.74 1.0 0.74 

Maximum 88.82 35.46 0.25 0.74 1.0 0.74 

Minimum 89.01 25.71 0.20 0.72 1.0 0.72 

Total minima and maxima 98.10 00.30 0.55 0.67 1.0 0.67 

Mean 78.59 35.45 0.10 0.64 1.0 0.64 

Non-linear energy 84.39 51.55 0.15 0.76 2.0 0.38 

Fractal dimension 72.08 25.18 0.80 0.53 4.0 0.13 

Zero crossing 64.63 47.62 0.75 0.61 5.0 0.12 

Zero crossing of first 

derivative 

72.07 33.00 0.92 0.60 5.0 0.12 

Variance 95.98 15.67 0.02 0.75 7.0 0.11 

Relative derivative 86.28 19.47 0.10 0.66 12.0 0.05 

Mobility 58.94 60.30 0.75 0.63 14.0 0.05 

Skewness 89.53 11.19 0.10 0.58 14.0 0.04 

Kurtosis 78.56 18.85 0.02 0.54 14.0 0.04 

Complexity 80.13 27.01 0.30 0.64 20.0 0.03 

Shannon entropy * 92.95 12.49 0.75 0.63 31.0 0.02 
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Table 3 Performance of DWT-based features. Features denoted with * decrease during seizure. 

Feature Frequ

-ency 

range 

Sensitivity 

(%) 

Specificity 

(%) 

β AUC Rela 

-tive  

compl 

-exity 

FOM 

For ≥1 epoch detected in every 

seizure 

Relative power D3 71.32 79.67 0.02 0.83 1.04 0.80 

Energy D3 88.02 23.20 0.08 0.71 1.01 0.70 

Entropy D3 87.47 25.52 0.06 0.71 1.01 0.70 

Coefficients D3 56.43 74.83 0.45 0.69 1.00 0.69 

Variance D3 88.00 23.14 0.08 0.71 1.04 0.69 

Relative power D4 73.28 76.12 0.02 0.81 1.35 0.60 

Energy D4 93.18 13.82 0.04 0.70 1.34 0.53 

Entropy D4 90.33 18.40 0.04 0.70 1.34 0.53 

Variance D4 90.33 18.62 0.06 0.70 1.34 0.52 

Bounded variation * D3 61.26 43.80 0.45 0.53 1.02 0.52 

Relative bounded variation D3 38.98 71.39 0.86 0.54 1.03 0.52 

Coefficients D4 48.63 76.71 0.50 0.66 1.33 0.49 

Relative power D5 62.99 84.67 0.04 0.83 1.68 0.49 

Relative bounded variation D4 49.52 68.40 0.84 0.63 1.36 0.46 

Bounded variation D4 42.26 74.01 0.88 0.61 1.35 0.46 

Energy D5 86.54 33.32 0.08 0.75 1.66 0.45 

Variance D5 86.44 33.54 0.08 0.75 1.66 0.45 

Entropy D5 86.96 32.95 0.06 0.75 1.66 0.45 

Variance A5 96.23 13.68 0.01 0.73 1.66 0.44 

Entropy A5 95.11 16.83 0.01 0.73 1.66 0.44 

Energy A5 96.40 12.75 0.01 0.73 1.66 0.44 

Relative power A5 80.94 51.28 0.01 0.73 1.68 0.44 

Coefficients A5 39.34 84.90 0.50 0.68 1.65 0.41 

Bounded variation A5 39.57 83.38 0.88 0.67 1.68 0.40 

Relative bounded variation A5 56.68 69.77 0.78 0.67 1.69 0.40 

Coefficients D5 37.01 84.64 0.60 0.65 1.65 0.39 

Relative bounded variation D5 42.01 79.98 0.88 0.66 1.69 0.39 

Bounded variation D5 30.33 87.67 0.94 0.66 1.68 0.39 

Relative scale energy D5 50.95 72.36 0.60 0.65 1.66 0.39 

Relative scale energy D3 76.91 34.38 0.15 0.62 1.66 0.37 

Relative scale energy D4 62.41 51.97 0.35 0.61 1.66 0.37 

Relative scale energy * A5 81.44 25.88 0.80 0.57 1.67 0.34 
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Table 4 Performance of CWT-based features. 

Feature Sensitivity 

(%) 

Specificity 

(%) 

β AUC Relative 

complexity 

FOM 

For ≥1 epoch detected in every 

seizure 

Energy 81.74 37.61 0.10 0.72 1.00 0.72 

Standard deviation of 

energy 

83.94 30.12 0.06 0.70 1.03 0.68 

Coefficient z-score 74.62 50.90 0.20 0.69 1.06 0.65 

Entropy 48.36 71.09 0.90 0.63 1.56 0.40 
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Table 5 Performance of FT-based features. 

Feature Frequ 

-ency 

range 

Sensitivity 

(%) 

Specificity 

(%) 

β AUC Rela 

-tive 

compl-

exity 

FOM 

For ≥1 epoch detected in 

every seizure 

Spectral entropy D3 87.98 33.65 0.02 0.74 1.0 0.74 

Spectral entropy D5 81.68 40.11 0.06 0.73 1.0 0.73 

Power D5 85.07 33.29 0.08 0.73 1.0 0.73 

Total spectral power - 87.66 24.74 0.06 0.72 1.0 0.72 

Power D3 89.66 21.04 0.06 0.72 1.0 0.72 

Spectral entropy A5 91.63 22.22 0.01 0.70 1.0 0.70 

Power A5 90.73 22.90 0.02 0.70 1.0 0.70 

Spectral entropy D4 92.45 19.38 0.02 0.69 1.0 0.69 

Power D4 90.42 19.32 0.06 0.68 1.0 0.68 

Peak frequency - 92.23 17.01 0.10 0.64 1.0 0.64 

Median frequency - 83.45 32.17 0.10 0.64 1.0 0.64 

Spectral edge frequency - 56.24 49.37 0.80 0.55 7.8 0.07 
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Figure legends 

Fig. 1 Flowchart of the single channel seizure detection algorithm used to compare features.  

Fig. 2 Sensitivity-specificity trade-off curves as the detection threshold β is varied. Curves are 

plotted for the best performing feature (in terms of FOM) from each of the feature groups (time 

domain, DWT, CWT, FT) 
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Supplementary material 

 

This supplement is divided in to three parts: literature review details are given in Section 

1; full calculations of the features implemented in this study is described in Section 2; and 

details on the test EEG database are covered in Section 3. 

 

1 Literature review details 

This section is further divided into three parts. Section 1.1 discusses the inclusion criteria 

used to select seizure detection publications for this literature review and full details on 

the 97 short-listed publications have also been covered here. Next, the method used to 

segment the algorithms described in the 97 publications into pre-processing, feature 

extraction and post-processing methods is described in Section 1.2. It is important to note 

that any processing carried out before or after feature extraction will affect the 

performance of the feature. Hence, four popular pre-processing techniques have been 

selected in Section 1.3 and the study has been limited to features that are calculated after 

these four processing methods. Full calculations of the features implemented in the study 

are given in Section 2. 

Post-processing and classification after feature extraction is kept constant for all features 

in this study and described together with the seizure detection algorithm in the main text. 

 

1.1 Publications reviewed 

Ninety-seven publications dealing with seizure detection algorithms using scalp EEG data 

from adult patients were used to select the features to investigate in this study. These 

publications were short-listed by searching IEEExplore and Google Scholar for articles 

published between 2000 and 2010 which contain the following words in the title: ‘ictal’, 

‘seizure’ or ‘EEG’ and did not contain the terms: ‘neonatal’, ‘child’, ‘animal’, ‘onset’ or 

‘predict’. Returned articles were reviewed to ensure that only seizure detection algorithms 

tested on scalp EEG recordings, and not tested solely on neonatal or paediatric patients, 

were included. It should be noted that many publications do not specify the age group of 

the patients, and such publications have been included here if their test EEG database 

contained scalp EEG records. There are 45 journal publications and 52 conference 

publications. Full details of the 97 publications are given below. 
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1.2 Algorithm segmentation 

Based upon these 97 publications, the process of seizure detection is broken down here 

into three principal stages: signal conditioning and pre-processing to condition the 

recorded EEG signal; feature extraction where the characteristic features of the EEG trace 

are calculated; and post-processing and classification where these features are combined 

and used to make a decision as to whether a seizure is present in the current EEG. The 

initial two stages are now considered in turn, and in particular the pre-processing methods 

evaluated in terms of their popularity and possible low power hardware implementation. 

This is necessary as low computational complexity features, which rely on power 

intensive pre-processing are of course not suitable for consideration. 

 

1.3 Signal conditioning and pre-processing 

Pre-processing methods reported in more than one of the 97 publications studied have 

been summarized in Table A1 below. It is clear that basic filtering techniques (low pass 

and band pass in particular) are exceptionally popular. This is mainly due to the presence 

of high frequency artefacts in scalp EEG signals, and restricting the frequencies present to 

those principally of interest for epileptiform activity (0–25 Hz) can help alleviate their 

impact. High pass and notch filters are less common, although such filters are often 

incorporated into the EEG recording hardware itself. Indeed the International Federation 

of Clinical Neurophysiology recommends high pass filtering the signal with a cut-off 

frequency of less than or equal to 0.16 Hz to remove any dc offset.  

It is also clear that other spectral estimation methods, artefact rejection techniques and 

blind source separation have also been popular, although these categories encompass a 

wide variety of techniques that have been grouped together here. In contrast, the Discrete 

Wavelet Transform (DWT) and the Fourier Transform (FT) are also popular and more 

specific. These transforms, in addition to the Continuous Wavelet Transform (CWT), 

have been previously implemented as low power dedicated circuits as discussed in the 

main text. Features extracted after applying each of these pre-processing methods, in 

addition to features derived from the time domain signal (which requires no pre-

processing), are discussed in Section 2. 
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Table A1 Signal conditioning and pre-processing methods used in more than one of the 97 

publications considered. 

Category Method Number of papers 

Signal conditioning Artefact rejection 10 

 Band pass filter 27 

 High pass filter 4 

 Low pass filter 23 

 Mean correction 2 

 Notch/band stop filter 4 

 Re-montaging 4 

 Windowing 2 

Transforms Continuous Wavelet Transform (CWT) 4 

 Discrete Wavelet Transform (DWT) 21 

 Fourier Transform (FT) 13 

 Hilbert Transform 2 

 Wavelet Packet Transform 4 

 Other spectral estimation methods 13 

Others Auto-regressive modelling 8 

 Blind source separation 12 

 Empirical mode decomposition 2 
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2 Features implemented in this study 

From the 97 short-listed adult, scalp EEG seizure detection publications, a total of 65 

features derived from four pre-processing methods – time domain, Discrete Wavelet 

Transform (DWT), Continuous Wavelet Transform (CWT) and Fourier Transform (FT) – 

were selected for investigation in terms of their detection performance (sensitivity, 

specificity, area under the sensitivity-specificity trade-off curve) and relative complexity. 

Full details on the calculations used to generate each of these features are given below. 

All features are calculated on non-overlapping 2 s epochs of EEG data. 

 

2.1 Time domain features 

These features are calculated on each non-overlapping epoch of the raw input EEG 

signal. Here the input signal is denoted x(n) where n is the sample number in time. N is 

the total number of samples in an epoch. 

– Complexity [2, 50, 59, 90] and defined here as 

x
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where σ denotes the standard deviation of the signal x, x′ is the first derivative of the 

input signal and x′′ is the second derivative. 

– Energy/power [52, 61, 81, 84] and defined here as 
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– Fractal dimension [2, 58, 69] and defined here using Katz’s algorithm as 
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where d is the maximum of all points x(n) minus the starting value x(1) within an epoch. 

L is the absolute sum of distances between adjacent points. 

– Kurtosis [10, 50, 61] and defined here as 
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where μx is the mean of the input signal within the epoch. 
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– Line length [43, 50] and defined here as 
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– Maximum [70, 79] and defined here as the largest value within an epoch 
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– Mean [79, 87] and defined here as 
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– Minimum [70, 79] and defined here as the smallest value of x(n) within an epoch 

))((min nxF   

– Mobility [2, 50, 90] and defined here as 

x

xF


 '  

where σ denotes the standard deviation of the signal x and x′ is the first derivative of the 

input signal. 

– Non-linear energy [50, 58] and defined here as 
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– Relative derivative [46, 47] and defined here by initially calculating the absolute 

derivative within the epoch 
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frequency Sampling
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To generate the feature F the mean of the absolute derivative g(n) within the current 

epoch is divided by the standard deviation of g(n) over 30 s ending 1 minute prior to last 

epoch. 

 

 

 



15 

– Shannon entropy [8, 10, 50, 61, 85] and defined here as 
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where pn(x) is the probability of x(n) occurring within an epoch of N values. For example, 

if x(n) = {1,1,3,5,6...} then the probability of 1 occurring is 2/N. 

– Skewness [10, 50] and defined here as 
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where μx is the mean of the input signal within the epoch. 

– Total minima and maxima [50, 87] and defined here as F is the total number of local 

maxima and minima within an epoch. A local maxima or minima occurs when 

01.0
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– Variance/standard deviation [2,10,32,41,50-52,55,59,66,70,79,90] and variance 

has been defined here as 
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where μx is the mean of the input signal within the epoch. The standard deviation 

is the square root of this. 

– Zero crossing [41, 50, 70, 87] and calculated here by initially subtracting the 

mean of the input EEG x(n) within an epoch 

xnxny  )()(  

The feature F is then given by the total number of positive going zero crossings 

within the epoch where a positive going zero crossing is defined as 

  )5(and)( nyny  

where ε = 0.01 μV. 

– Zero crossing of first derivative [50, 52] and defined here as above for the zero 

crossing, but calculated on the first derivative of the input signal x′. 
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2.2 Discrete Wavelet Transform-based features 

The following features are calculated using the Discrete Wavelet Transform (DWT) 

(MATLAB built-in function) with the commonly used Daubechies-4 wavelet. The 

features are computed only for frequencies below 25 Hz to match the frequencies of 

interest for epileptiform activity. To do this, the input EEG signal x(n) is split into non-

overlapping epochs of N samples and each epoch is decomposed into five levels of detail 

coefficients and one level approximation coefficient covering the frequency ranges 

– D3: 12.5 – 25 Hz. 

– D4: 6.25 – 12.5 Hz. 

– D5: 3.125 – 6.25 Hz. 

– A5: 0.16 – 3.125 Hz. 

Each of the basic features defined below is calculated separately in each one of these 

frequency bands. 

The feature definitions below use the terminology that there are M frequency ranges 

(M = 4) and current frequency range is i. At each frequency range, a total of K wavelet 

coefficients have been produced with k indexing a particular coefficient. 

 

– Bounded variation [46, 47] and defined here as 
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– Coefficients [58, 74–76] and defined here as 
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– Energy [50, 55, 65, 74, 83] and defined here as 
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– Entropy [53, 54, 58, 63] and defined here as 
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– Relative bounded variation [46, 47] and defined here such that the bounded variation in 

the current epoch defined above, and the feature Fi is generated by dividing this by the 

mean of the bounded variation over a 30 s period ending 1 minute prior to the last epoch. 
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– Relative power [46, 47] and defined here by first calculating the foreground power in 

the current epoch e 

}{median)(
2

ii DeFG   

The background power is then the foreground power tracked over the past 120 epochs 

using a decaying memory with constant λ = 0.99923 
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Finally the relative power is the ratio of foreground to background power 
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– Relative scale energy [46, 47] and defined here by initially calculating the energy in 

frequency band i 
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where N is the number of samples in an epoch. The relative scale energy is then 

calculated as the energy in frequency band i as a fraction of the total energy in the 0.16–

25 Hz frequency range 
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– Variance/standard deviation [19–21, 58, 74] and variance is defined here as 
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where μD is the mean of the wavelet coefficients in the frequency range i. The standard 

deviation is the square root of this. 
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2.3 Continuous Wavelet Transform-based features 

The following features are calculated based upon the Continuous Wavelet Transform 

(CWT) (MATLAB built-in function) of each non-overlapping epoch of the input EEG 

signal x(n). The CWT mother wavelet and analysis scale/frequency are defined for each 

feature separately below. Here the CWT coefficients are denoted as Ck where k is the 

coefficient index and there are a total of N coefficients at each analysis frequency. 

 

– Coefficient z-score [9] and defined here by initially calculating the CWT using the 

Symlet5 wavelet centred at 4.2 Hz. The coefficient z-score is then calculated as 
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where μC is the mean of the CWT coefficients and σC is their standard deviation. 

– Energy [9, 52] and is calculated here using the Symlet5 CWT centred at 4.2 Hz as 
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– Entropy [62] and calculated here using the Mexican hat CWT centred at frequency j. 

Firstly the Mexican hat CWT is performed at S scales/centre frequencies, with the centre 

frequencies spanning the frequency band i (the same frequency bands used with the 

DWT-based features.) This is used to give the energy in the frequency band i 
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Then the Mexican hat CWT is performed with a total of T scales covering the 0.5–50 Hz 

frequency band and the sum of the energy across all frequency ranges i found 
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Finally, the entropy is calculated as 
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– Standard deviation of energy [9] and calculated here using Symlet5 CWT centred at 

4.2 Hz. The feature F is computed as the standard deviation of the coefficients Ck. 
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2.4 Fourier Transform-based features 

The following features are calculated based upon the Fourier Transform (FT) of the input 

EEG signal x(n). In all cases the FT is obtained by applying a 512-point Fast Fourier 

Transform (FFT) (MATLAB built-in function) to each epoch of the raw EEG data. Here 

Sm are the Fourier coefficients in frequency bin m, and the spectral power in frequency 

bin m is denoted by pm and given by Sm
2
. 

 

– Median frequency [2, 55] and defined here as 

)}(median{arg m
m

pF   

That is, the frequency at which the power pm is approximately equal to 50% of the 

maximum power. 

– Peak frequency [50, 58, 61] and defined here as the frequency at which the maximum 

power occurs 

)}(max{arg m
m

pF   

– Power [32, 49, 50, 90] and defined here as 

 mi pF  

where pm is summed into the four different frequency ranges i, as used with the DWT 

features above. 

– Spectral edge frequency [50, 90] and defined here as the frequency below which 90% 

of the total spectral power in the 2–20 Hz frequency band lies. 

– Spectral entropy [2, 50, 54, 55, 58, 62, 63] and defined here as 

 mmi ppF 2log  

where pm is summed for the four different frequency ranges i, as used with the DWT 

features above. 

– Total spectral power [50, 55, 58] and defined here as the sum of pm within the 2–20 Hz 

region. 
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3 Test database 

Features are compared using adult scalp EEG signals with a total duration over 172 hours 

from 24 adults with a total of 47 seizures marked by medical experts for seizure start and 

end. The data was recorded during routine, ambulatory and long-term monitoring at the 

National Society of Epilepsy (UK), Katholieke Universiteit Leuven (Belgium) and 

Freiburg University Hospital (Germany). Records analysed have been selected to not 

contain any discontinuities. These records were not marked for interictal events and have 

not been screened to remove artefact prone recordings. Details of the records present in 

the test database have been listed in Table A2. Here, all records that contain an expert 

marked seizure also contain non-seizure sections (or epochs), and there is only a single 

seizure in each seizure record.  

All data has been sampled at or above 200 Hz and has been re-sampled to 200 Hz prior to 

testing. Features are tested using the 16 channels common to all records: C3, C4, CZ, F3, 

F4, FZ, F7, F8, FP1, FP2, O1, O2, T3, T4, T5 and T6. Per channel, there are 2698 2 s 

seizure epochs and 308630 non-seizure epochs present. Non-seizure epochs include 

background data and may include pre-ictal data, post-ictal data, interictal spikes and/or 

artefacts, as every epoch within a record that is not classified as a seizure epoch is 

included in this category. Artefact-prone data and sections likely to contain pre-ictal and 

post-ictal discharges have not been removed from the test database, in order to test the 

performance of the features on data similar to what may be expected in a clinical or 

ambulatory monitoring session. It should also be noted that as the data is divided into 

non-overlapping epochs, there are special cases where an epoch contains the start or end 

of an expert marked seizure in addition to non-seizure data. These are also classified as 

seizure epochs, as such epochs are deemed to contain ictal information which is of 

medical interest. 
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Table A2 Details of records present in the test database 

Subject Age Sex Total recording 

duration 

(HH:MM:SS) 

Seizure Non-seizure 

Records / 

Events 

Epochs Records Epochs 

1 53 F 02:20:50 1 59 1 4167 

2 22 F 00:05:10 1 4 0 151 

3 33 F 34:02:06 3 148 39 61126 

4 56 F 66:59:37 7 417 78 120195 

5 41 F 21:26:31 7 1168 16 37430 

6 35 M 10:45:20 1 38 0 19322 

7 35 M 12:04:50 1 51 0 21694 

8 28 F 00:10:59 2 44 0 286 

9 60 M 03:31:13 2 118 1 6220 

10 33 M 04:08:57 1 49 2 7421 

11 23 F 01:14:10 2 26 0 2200 

12 34 M 02:05:27 1 8 1 3756 

13 - M 04:16:07 3 116 2 7569 

14 22 F 00:49:59 1 48 1 1452 

15 35 F 00:31:55 6 58 0 901 

16 46 F 00:06:12 1 75 0 111 

17 - - 00:26:42 3 51 0 751 

18 - F 00:38:36 3 54 0 1105 

19 - M 00:09:05 1 166 0 107 

20 47 F 02:00:11 0 0 1 3606 

21 45 F 00:46:19 0 0 2 1390 

22 43 M 00:15:15 0 0 1 458 

23 47 M 02:00:11 0 0 1 3606 

24 28 F 02:00:11 0 0 1 3606 

Total 172:55:53 47 2698 147 308630 
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