
Università degli Studi di Camerino
School of Advanced Studies

Dottorato di Ricerca in Scienze dell’Informazione
e Sistemi Complessi - XXII Ciclo

Settore Scientifico Disciplinare INF/01
Informatica

Dipartimento di Matematica e Informatica

A Semantic Framework for
Declarative and Procedural

Knowledge
Relatore Dottorando

Prof. Flavio Corradini Leonardo Vito

Commissione

Prof. Knut Hinkelmann

Dr. Pietro Lió

Prof. Sauro Longhi

Anno Accademico 2008-2009

Università degli Studi di Camerino
School of Advanced Studies

Doctor of Philosophy in Information Science And
Complex Systems - XXII Cycle

Dipartimento di Matematica e Informatica

A Semantic Framework for
Declarative and Procedural

Knowledge

Advisor PhD Candidate

Prof. Flavio Corradini Leonardo Vito

Advisory Board

Prof. Knut Hinkelmann

Dr. Pietro Lió

Prof. Sauro Longhi

Academic Year 2008-2009

for those who work at the quality life improvement

Abstract of the Dissertation

In any scientific domain, the full set of data and programs has reached an
-ome status, i.e. it has grown massively. The original article on the Se-
mantic Web describes the evolution of a Web of actionable information, i.e.
information derived from data through a semantic theory for interpreting
the symbols. In a Semantic Web, methodologies are studied for describing,
managing and analyzing both resources (domain knowledge) and applications
(operational knowledge) - without any restriction on what and where they
are respectively suitable and available in the Web - as well as for realizing
automatic and semantic-driven workflows of Web applications elaborating
Web resources.

This thesis attempts to provide a synthesis among Semantic Web tech-
nologies, Ontology Research, Knowledge and Workflow Management. Such a
synthesis is represented by Resourceome, a Web-based framework consisting
of two components which strictly interact with each other: an ontology-based
and domain-independent knowledge manager system (Resourceome KMS) -
relying on a knowledge model where resource and operational knowledge are
contextualized in any domain - and a semantic-driven workflow editor, man-
ager and agent-based execution system (Resourceome WMS).

The Resourceome KMS and the Resourceome WMS are exploited in or-
der to realize semantic-driven formulations of workflows, where activities are
semantically linked to any involved resource. In the whole, combining the
use of domain ontologies and workflow techniques, Resourceome provides a
flexible domain and operational knowledge organization, a powerful engine
for semantic-driven workflow composition, and a distributed, automatic and
transparent environment for workflow execution.

Acknowledgements

Writing a thesis is a solitary affair that cannot be done alone. First of all, I
wish to express my sincere gratitude to my advisor, Prof. Flavio Corradini,
and my promoter, Prof.ssa Emanuela Merelli: this work would not have been
possible without them. Their direction and support have been invaluable.
Hours and hours of discussions, suggestions and disagreements allowed me to
understand the field and the nature of research itself. Their encouragement
throughout the years has helped me tremendously.

I would like to thank Dott.ssa Diletta Romana Cacciagrano for being
involved in this work as much as she was, being a very active participant in
this research all the time. Her suggestions and discussions have had a lot of
influence on this work.

I would like to express my gratitude to all the current and former CoSy
research group members, which have contributed with their knowledge and
expertise to improve this project.

I am very grateful to Formal Methods research group members. In partic-
ular, I would like to thank Prof. Jos Baeten, at the University of Eindhoven
where I spent seven months of my PhD . . . I cannot never forget their hospi-
tality.

I am deeply grateful to the GRUPPO LOCCIONI for its collaboration
and support in carrying out the Resourceome project.

Most importantly, my gratitude goes to my grandparents, for their love
and support, for always being there for me, for always believing in me. Last
but not least I would like to thank Cristiana.

List of Publications

[BCMV06] Ezio Bartocci, F. Corradini, E. Merelli, and L. Vito. Model driven
design and implementation of activity-based applications in hermes.
In F. De Paoli, A. Di Stefano, A. Omicini, and C. Santoro, editors,
WOA, volume 204 of CEUR Workshop Proceedings. CEUR-WS.org,
2006.

[CCCTV] D. Cacciagrano, F. Corradini, R. Culmone, L. Tesei, and L. Vito. A
model-prover for constrained dynamic conversations. In Gabriele Kot-
sis, David Taniar, Eric Pardede, and Ismail Khalil Ibrahim, editors,
iiWAS, pages 630–633. ACM, 2008.

[CCCV] D. Cacciagrano, F. Corradini, R. Culmone, and L. Vito. Dynamic
constraint-based invocation of web services. In Mario Bravetti, Manuel
Núñez, and Gianluigi Zavattaro, editors, WS-FM, volume 4184 of Lec-
ture Notes in Computer Science, pages 138–147. Springer, 2006.

[CCCV09] D. Cacciagrano, F. Corradini, Rosario Culmone, and L. Vito. Constraint-
based dynamic conversations. Networking and Services, International
conference on, 0:7–12, 2009.

[CCGLMPV07] N. Cannata, F. Corradini, S. Gabrielli, L. Leoni, E. Merelli, F. Pier-
sigilli, and L. Vito. Intuitive and machine-understandable representa-
tion of the bioinformatics domain and of related resources with re-
sourceomes. In Proceedings of NETTAB 2007. A Semantic Web
for Bioinformatics: Goals, Tools, Systems, Applications, pages 35–46,
2007.

[CCMPV09] N. Cannata, F. Corradini, E. Merelli, F. Piersigilli, and L. Vito. To-
wards bioinformatics resourceomes. In Biomedical Data and Applica-
tions, Studies in Computational Intelligence, ISBN: 978-3-642-02192-
3, page Chapter 1, 2009.

x

[CCMPV07] N. Cannata, F. Corradini, F. Piersigilli, E. Merelli, and L. Vito. Se-
mantic resource management in mas. In Matteo Baldoni, Antonio
Boccalatte, F. De Paoli, Maurizio Martelli, and Viviana Mascardi, ed-
itors, WOA, pages 42–47. Seneca Edizioni Torino, 2007.

[CCMV09] D. Cacciagrano, F. Corradini, E. Merelli, G. Romiti, and L. Vito. Re-
sourceome: a multilevel model and a semantic web tool for managing
domain and operational knowledge. In Proceeding of SEMAPRO 09,
Malta, 2009.

[CMPRV09] F. Bartocci, C. Cacciagrano, F. Corradini, E. Merelli, and L. Vito.
Ontology-driven automation of in-silico experiments. In Proceeding of
BIOSYSCOM 10, 2010 - Cancun, Mexico, 2009.

Contents

Abstract of the Dissertation v

Acknowledgements vii

List of Publications ix

List of Figures xv

I Introduction 1

1 Introduction 3
1.1 Semantics in the Knowledge Representation 3
1.2 Motivations and Objectives 4

1.2.1 Structure of the Thesis 6

II Background 9

2 Semantic Web 11
2.1 Semantic Web . 11

2.1.1 Semantic Web Technologies 12
2.2 Ontology . 14

2.2.1 Philosophical Background 14
2.2.2 Ontology in Information Science 14
2.2.3 A formal approach . 14
2.2.4 OWL Ontology Web Language 15
2.2.5 Description Logic . 20
2.2.6 The family of AL-languages 22

xii CONTENTS

2.2.7 SKOS: Simple Knowledge Organization System 23

3 Distributed Computation 25

3.1 The SOA Paradigm . 26

3.2 The Mobile Agent Paradigm 27

3.3 Hermes, an agent-oriented FIPA Compliant system 29

3.3.1 Hermes Middleware 29

3.3.2 Distributed Process Specification 34

III Resourceome Ontology Framework 37

4 Resourceome 39

4.1 Introduction . 39

4.2 The main features of the Resourceome knowledge model . . . 40

4.2.1 Top knowledge level 43

4.2.2 Base knowledge level 44

4.2.3 Application knowledge level 46

4.3 Hybrid Conceptualization in Resourceome 47

4.3.1 An example of Conceptualization in Resourceome . . . 48

4.4 Anti-Rigid Properties and Social Roles in Resourceome 49

4.5 Related Works . 50

4.6 Resourceome and Ontology Evolution 51

4.6.1 Usage-Driven Ontology Changes by Resourceome . . . 52

IV Distributed Computation 55

5 Distributed Workflow 57

5.1 Workflow Management System 57

5.2 Petri nets . 58

5.3 High level Petri nets . 59

5.3.1 Workflow Nets . 59

5.4 Adding roles to Workflow Specification 62

5.5 Interactive Components Specification 63

5.5.1 BRICs notation . 63

5.5.2 Mapping roles with structured components 65

5.5.3 Mapping activities . 68

5.5.4 An example . 69

CONTENTS xiii

6 Web Service Integration 71
6.1 A CLiX-constrained WSDL interface 73

6.1.1 An Example: Electric Circuits and Kirchhoff’s First Law 74
6.2 Modeling valid constrained client-server conversations 76
6.3 The FOG automata model . 77
6.4 The FOA grammar model . 78
6.5 From FOG automata to FOA grammars 80
6.6 A parser for valid sequences of valid invocation stubs 82
6.7 A simple authentication service 84

V Implementation 87

7 Resourceome Knowledge Management 89
7.1 Resourceome Knowledge Lifecycle 89
7.2 Models and Meta-models . 91

7.2.1 XPDL ontology . 92
7.2.2 Resourceome KMS architecture 93
7.2.3 XPDLCompiler . 96

VI Biology Application Domain 99

8 Application Domain 101
8.1 Bioinformatics Resources . 101

8.1.1 A Universe in Expansion 101
8.2 Biology Domain . 108
8.3 Resourceome for semantic-driven in-silico experiments 108
8.4 An ontology-driven design of an in-silico experiment 109
8.5 Related Work . 111

VII Conclusion 117

9 Conclusions 119

VIII Appendix 121

A Resourceome Web-tool 123
A.1 Resourceome Web-tool . 123

A.1.1 Workspace . 123

xiv CONTENTS

A.1.2 Workflow Editor . 124
A.1.3 Workflow Monitoring Tool 126
A.1.4 Workflow Publishing Tool 128

B XPDL-ontology 131
B.1 XPDL introduction . 131
B.2 Creating XPDL semantics . 131

B.2.1 Basic modelling approach 131
B.2.2 Linking XPDL ontology with another ontology 134

Bibliography 137

List of Figures

2.1 Semantic Web layers . 13

3.1 Distributed computing paradigms and their level of abstraction. 25

3.2 SOA’s Find-Bind-Execute Paradigm 27

3.3 3-Layered Architecture of Hermes Mobile Computing Platform. 29

3.4 Final result produced by McDuckAgent.java 34

3.5 Graphic notations for procedure specification 35

4.1 The Resourceome model. 41

4.2 Classic Conceptualisation. 42

4.3 Resourceome Conceptualization. 42

4.4 Social roles classic representation. 44

4.5 Social role representation in Resourceome. 44

4.6 Resourceome ontology example. 49

4.7 Proton topic modeling example. 51

4.8 Ontology Evolution . 51

4.9 Resourceome conceptualization 53

4.10 Case1 . 54

4.11 Case 1 Ontology Evolution. 54

5.1 A subprocess . 60

5.2 Special transitions and their translation 60

5.3 Routing primitives . 61

5.4 Resource trigger . 62

5.5 From User to Role-Based Workflow Specification 64

5.6 BRICs notation . 65

5.7 Basic skeleton component . 66

5.8 Scheduler component . 66

xvi LIST OF FIGURES

5.9 From Role-Based Workflow to Interactive Components Speci-
fication . 67

5.10 Mapping activities . 68

6.1 Client-side automatic generation of valid stubs. 73

6.2 XML Schema . 75

6.3 The monitoring/validation framework. 85

6.4 The authentication protocol Class Diagram. 86

7.1 Resourceome Knowledge Lifecycle Idea. 90

7.2 Hermes Software Architecture 95

7.3 UserAgent and Agent main methods 97

8.1 The is-a hierarchy of the resource ontology 106

8.2 Some examples of non-hierarchical relationships in the Re-
source Ontology . 107

8.3 Semantic search of a Database Retrieval activity concerning
Protein. 111

8.4 Conceptual Map of Activity getSwissProtEntryByEntryName 112

8.5 Drag and Drop of an activity into the workflow. 112

8.6 Editing a workflow in Resourceome. 113

8.7 Results obtained during workflow execution. 114

8.8 Visualization of a PDB file using Jmol in Resourceome. 114

8.9 Publishing of a workflow. 115

A.1 Load workspace dialog and the panel displaying classes and
inviduals. 124

A.2 Conceptual maps of the individual Enzyme 125

A.3 The workflow editor . 126

A.4 The boolean formula editor 127

A.5 Execution history, results panel and visualization plugins. . . . 128

A.6 A view of the publishing interface 129

A.7 A list of ontology-driven values in the simplified interface . . . 129

B.1 XML definition of Application element 132

B.2 OWL definition of Application element 133

B.3 XML definition of Applications 133

B.4 Datatypes declaration in XPDL schema 133

B.5 OWL rappresentation of the Datatypes group 134

B.6 Graph representation of the Activity class in Resourceome on-
tology . 134

LIST OF FIGURES xvii

B.7 Graph representation of the Activity class in Resourceome on-
tology after linking with the XPDL ontology 135

Part I

Introduction

Chapter 1
Introduction

Today, knowledge is considered to be the most important resource in any
domain. It can be defined as all of the information needed by a human being
(or a machine), organized to carry out a task. However, how to find specific
knowledge from the massive information shared on Internet is a difficult work,
even if accessing it is more and more easily. More and more information is
available on-line every day: the greater the amount of on-line information, the
greater the demand for tools that process and disseminate this information. It
is no longer possible just to navigate through gigabytes of data and programs
on CD-ROMs and the World Wide Web.

Information searching is also a key issue in the knowledge sharing: correct
informations will bring success and the others will cause failure. The possi-
bility to share and reuse knowledge is central for any knowledge-based system
and infrastructure. For this purpose, knowledge engineers and system ana-
lysts play the role of bringing knowledge forth and making it explicit: they
display the implicit knowledge about a domain in a form that programmers
can encode in algorithms and data structures.

1.1 Semantics in the Knowledge Representa-

tion

Conceptualization offers an abstract simplified view of a reality. Recent ad-
vances in knowledge representation, reasoning, computational linguistics, and
other related fields have demonstrated the advantages of developing a ref-
erence ontology or set of component-based reference ontologies for a given
domain.

Ontology is the term borrowed from the philosophy where the meaning is

4 CHAPTER 1. INTRODUCTION

predominantly on the study of being; in the computer science, ontology spec-
ifies the representational vocabulary with which knowledge-based systems
represent knowledge. According to Guarino, ontology can be understood as
an intentional semantic structure used to capture and encode the implicit
rules constraining the structure.

Ontologies are aimed at answering the question: What kinds of objects
exist in one or another domain of the real world and how are they interre-
lated? [11]. Thus, ontology is used to capture knowledge asset objects in the
organization so that they can be reasoned about or be otherwise used and
processed.

1.2 Motivations and Objectives

The original article on the Semantic Web [130] describes the evolution of a
Web of actionable knowledge, i.e. knowledge derived from data through a
semantic theory for interpreting the symbols.

There are numerous types of knowledge, but they are generally distin-
guished between knowing something (declarative or domain knowledge) and
knowing how do something (procedural or operational knowledge): the first
refers to our memory for concepts, facts, or episodes, whereas the latter refers
to the ability to perform various tasks. Procedural knowledge may also begin
as declarative knowledge and then be proceduralized with practice.

In a Semantic Web, methodologies are studied for describing, managing,
analyzing and invoking both domain and operational knowledge - without
any restriction on what and where it is suitable and available in the Web.

This thesis attempts to provide a synthesis among Semantic Web tech-
nologies, Ontology Research, Knowledge and Workflow Management, in ac-
cording to the idea described in [130]. Such a synthesis is represented by
Resourceome, a Web-based framework consisting of two components which
strictly interact with each other: an ontology-based and domain-independent
knowledge manager system (Resourceome KMS) - relying on a knowledge
model where resource and operational knowledge are contextualized in any
domain - and a semantic-driven workflow editor, manager and agent-based
execution system (Resourceome WMS).Resourceome proposes the combined
use of domain ontologies and workflow techniques to realize a semantic guide
for:

- a flexible knowledge organization, thanks to a well-structured ontolo-
gization;

- a semantic-driven workflow definition, thanks to a framework for the

CHAPTER 1. INTRODUCTION 5

assembly of (semantically) well-formed workflows from (semantically)
heterogeneous resources;

- a distributed, automatic and transparent execution of workflow, thanks
to an agent-oriented layer implementing a Migrating Workflow Model [200].

On the one hand, Resourceome KMS supports:

- the splitting of domain and resource concepts into two distinct ontolo-
gies – Domain Ontology and Resource Ontology – in such a way to
formalize the resource conceptualization and then to contextualize its
use in one or more specific domains;

- the definition of a well-structured Task Ontology for modeling the work-
flow activity space. This feature allows the use of Resourceome to sup-
port a high level, semantic-driven process specification language that
is independent of any specific formalism (XPDL, BPMN, etc.).

On the other hand, Resourceome WMS provides a Web-based environ-
ment to manage the knowledge base, to define semantic-driven workflows and
to execute them.

The main and innovative contribution of this work is not in the use of
ontologies and Semantic Web technologies on their own, but how ontologies
and Semantic Web technologies are used:

- Resourceome KMS differs from most existing semantic KMSs, each
of which is well-typed for a specific domain. Resourceome knowledge
model allows to conceptualize either specific resources or any other
arbitrary resource space.

The flexibility of this knowledge conceptualization is a consequence of
keeping, at the same time, a physical separation and a logical interop-
eration among domain, resource and activity concepts: the knowledge
space is partitioned in three ontologies (Domain, Resource and Task
Ontologies) and appropriate relationships among their respective (most
general) concepts have been defined in order to keep information for
each activity about its execution context, the roles that perform it, any
involved resource and interchanged information, a possible implemen-
tation code, its preconditions and effects.

- Also Web Services, as self-contained software components exposing spe-
cific functionalities on the Internet, are indexed simply as resources in
the Resource Ontology and, for this reason, can be involved in a work-
flow defined by Resourceome WMS. In order to allow them to be auto-
matically and properly invoked, Resourceome KMS has been enriched

6 CHAPTER 1. INTRODUCTION

with a theoretical framework - namely, two conversation specification
language-independent models for valid client-server conversations - and
a fully XML-based practical environment - namely, a parser associated
to XML constrained grammar rules - in order to realizing at runtime
valid sequences of valid Web Service invocations (where valid is in-
tended w.r.t. message parameters and transitions among exchanged
messages).

- Resourceome WMS can capture not only the experimental method but
also constraints and goals associated to a workflow. Also this feature
is a consequence of the Resourceome knowledge conceptualization flex-
ibility, which can support both search and discovery of services, inter-
operation between them and, as a natural consequence, the realization
of semantic-driven workflows.

Moreover, Resourceome WMS also exploits the agent-oriented tech-
nology, allowing workflow engines coupled with single user experiment
specifications to be dynamically generated. More precisely, the agent-
based technology permits to embed application domain features inside
the agent knowledge and proactiveness and mobility inside the agent
behavior. The resulting workflow engine is a multiagent system, i.e. a
distributed, concurrent system, typically open, flexible, adaptive and
mobile.

1.2.1 Structure of the Thesis

The rest of the Thesis is organized as follows:

- Chapter 2 introduces the Semantic Web and describes the knowledge
conceptualization by ontology, with some remarks about description
logic, while Chapter 3 provides a brief introduction about Hermes
middleware as a framework for distributed computation.

- Chapter 4 provides a semantic model for declarative and procedural
knowledge representation called Resourceome. The model, originally
proposed in “Time to organize the bioinformatics resourceome” [34],
is represented here using formal languages and is extended introducing
a task ontology.

- Chapter 5 is devoted to discuss the issues related to a distributed work-
flow engine relying on agent technologies.

CHAPTER 1. INTRODUCTION 7

- Chapter 6 presents a formal model for describing, verifying and realiz-
ing dynamic invocations of Web Services, being Web Services one of the
main resources available through Http protocol, as well as one of the
newest approaches of distributed computing. In particular, a formal
framework for valid client-server communication protocol is proposed
and studied.

- Chapter 7 describes theResourceome Knowledge Management lifecycle
idea, that is on the basis of the Resourceome Web tool to manage
declarative and procedural knowledge.

- Chapter 8 presents a possible application domain of Resourceome, i.e.
a biological scenario where domain experts (in this case bioinformatics)
can manage biology resources and drive in-silico experiments.

- Finally, Chapter 9 ends the dissertation highlighting the main contri-
butions of the conceptual and implemented framework described in this
Thesis.

Part II

Background

Chapter 2
Semantic Web

The innovative value of ontology-based solutions stems from the factors that
distinguish ontology-based methods from conventional baseline technologies
already available in the traditional Kwonledge Management toolset, ranging
from whiteboards, relational databases, expert systems to content classica-
tion solutions. In order to crystallize the potential of ontology-based meth-
ods, we first need to take a closer look at the fundamentals of ontologies.
This will help us to identify the role and the scope of ontology use in KM
applications and will lead us to a simple classication of ontology applications,
namely the Semantic Web Tent.

2.1 Semantic Web

The Semantic Web is a project for the creation of a universal medium for in-
formation exchange by giving meaning (semantics), in a manner understand-
able by machines, to the content of documents on the Web. The Semantic
Web is defined as “an extension of the current Web in which information is
given well-defined meaning, better enabling computers and people to work in
cooperation” [130]. It is a project aimed to make Web pages understandable
by computers, so that they can search Web sites and perform actions in a
standardized way.

The Semantic Web allows Web entities like software agents, users and
programs, to interoperate, dynamically discovering and using resources and
its metadata, extracting knowledge, and solving complex problems.

But as the concept of metadata could not yet be clear, here follows a
definition.

Surfing the Web, generally people follow links bringing to resources iden-

12 CHAPTER 2. SEMANTIC WEB

tified by a URI. A resource is not an independent entity, but can be accompa-
nied by information describing it. This machine-understandable information,
generally called “metadata” can be used by software agents to properly use
the resources. As metadata are data, they can be:

• Stored as data, in a resource, that can contain information about its
own or another resource. A document metadata can be contained in
the document or in another one.

• Described by other metadata, and so on.

Although metadata are needed to annotate and describe Web content and
to allow machine-to-machine operation, it is necessary complex automated
processing to give semantic meaning to each Web resource. Semantic de-
scription can also applied to the processes, for example represented as web
services. Thanks to semantic web services can be discovered and automati-
cally composed.

A layered model of the Semantic Web comprises:

• A set of Web resources, with a unique, global identity, described by
metadata and with rules for inferring new metadata knowledge through
ontologies.

• A set of basic services such as reasoners over metadata and ontologies.

• A set of high-level applications developed through basic services.

In the next section an overview of some of these semantic technologies
will be presented.

2.1.1 Semantic Web Technologies

The Semantic Web can be built through the layers of Web technologies and
standards. The layers are presented in Figure 2.1:

• The Unicode and Uniform Resource Identifier layers make sure that it is
using international characters sets and providing means for identifying
the objects in Semantic Web, respectively.

• The XML layer with namespace (NS) and schema definitions make sure
the Semantic Web definitions can be integrated with the other XML
based standards.

CHAPTER 2. SEMANTIC WEB 13

Trust

Proof

Logic
framework

Rules

Ontology

RDF Schema

RDF M&S

XML Namespaces

URI Unicode

S
ig
n
at
u
re

E
n
cr
y
p
ti
o
n

1

Figure 2.1: Semantic Web layers

• With the Resource Description Framework (RDF) (W3C standard) and
RDFSchema (RDFS) it is possible to make statements about objects
with URI and define vocabularies that can be referred to by URIs.

• The Ontology layer supports the evolution of vocabularies as it can
define relations between different concepts (see also Section 2.2).

• A digital signature is an electronic signature that can be used to au-
thenticate the identity of the sender of a message or the signer of a
document. The Digital Signature layer ensures that the original con-
tent of the message or document is unaltered.

• The top layers Logic, Proof and Trust, are currently being researched.
The Logic layer concerns the writing of rules, while the Proof layer ex-
ecutes the rules and evaluates together with the Trust layer mechanism
for applications, whether to trust the given proof or not.

The main intent of the Semantic Web is to give machines autonomous
access to information resources in order to support humans.

In the following sections we will introduce the basic technologies to build the
Semantic Web.

14 CHAPTER 2. SEMANTIC WEB

2.2 Ontology

Knowledge Representation is developed as a branch of artificial intelligent
and it applies theory and technique from Logic (providing formal structure
and role of inference), Ontology (defining the kind of things that exist in the
application domain) and Computation (supporting the application).

2.2.1 Philosophical Background

Ontology is the study of existence, of all entities that make up the world.
Ontology as a branch of philosophy is the science of what is, of the kinds
and structures of objects, properties, events, processes and relations in every
area of reality. Philosophical ontology is what is standardly called descriptive
ontology. It seeks not explanation but rather a description of reality in
terms of a classification of entities that is exhaustive in the sense that it
can serve as an answer to such questions as: (i)What classes of entities are
needed for a complete description and explanation of all the goings-on in the
universe?(ii)What classes of entities are needed to facilitate the making of
predictions about the future? Sometimes a division is made between formal
and material (or local) ontology. Formal ontology is domain-neutral; it deals
with those aspects of reality (for example parthood and identity) which are
shared in common by all material regions. Material ontology deals with those
features which are specific to given domains.

2.2.2 Ontology in Information Science

The ontology-based approach has gained currency in recent years in the field
of computer and information science; in particular, it has become popular
especially in domains such as knowledge engineering, natural language pro-
cessing, cooperative information systems, intelligent information integration,
and knowledge management. In the world of information systems, an ontol-
ogy is a software (or formal language) artefact designed with a specific set of
uses and computational environments in mind. An ontology is often some-
thing that is ordered by a specific client in a specific context and in relation
to specific practical needs and resources.

2.2.3 A formal approach

Definition 2.2.1 An ontology is a tuple O = (C,R,≤,⊥, |, σ) where:

1. C is a finite set of concept symbols;

CHAPTER 2. SEMANTIC WEB 15

2. R is a finite set of relation symbols;

3. ≤ is a reflexive, transitive and anti-symmetric relation on C (a partial
order);

4. ⊥ is a symmetric and irreflexive relation on C (disjointness);

5. | is a symmetric relation on C (coverage); and

6. σ : R→ C+ is the function assigning to each relation symbol its arity;
the functor (−)+ sends a set C to the set of finite tuples whose elements
are in C.

When an ontology O = (C,R,≤,⊥, |, σ) is used in a particular application
domain, we need to populate it with instances (or individuals). First, we will
have to classify objects of a set X according to the concept symbols in C by
defining a binary classification relation |=C .This will determine a classifica-
tion C = (X,C, |=C). Next, we will have to specify over which instances the
relations represented by the symbols in R are to hold, thus classifying finite
tuples of objects of X to the relation symbols in R by defining a binary clas-
sification relation |=R. This will determine a classification R = (X+, R, |=R).
Both classifications will have to be defined in such a way that the partial order
≤, the disjoints ⊥, the coverage |, and the arity function σ are respected:

Definition 2.2.2 A populated ontology is a tuple Õ = (C,R,≤,⊥, |, σ) such
that C = (X,C, |=C) and R = (X+, R, |=R) are classifications and O =
(C,R,≤,⊥, |, σ) is an ontology.

We say the ontology is correct when, for all x, x1, x2, . . . , xn ∈ X, c, d ∈
C, r ∈ R, and σ(r) = 〈c1, c2, . . . , xn〉

1. if x|=Cc and c ≤ d, then x|=Cd;

2. if x|=Cc and c⊥d, then x 6|=Cd;

3. if c | d, then x|=Cc or x|=Cd;

4. if 〈x1, . . . , xn〉|=Rr then xi|=Rci, for all i = 1, . . . , n.

2.2.4 OWL Ontology Web Language

Ontologies are a critical piece of the Semantic Web puzzle and are already
used in various forms to capture knowledge in a machine understandable
language. The Web Ontology Language (OWL) is a W3C standard for the
ontology layer of the Semantic Web Framework [12]. It is being accepted

16 CHAPTER 2. SEMANTIC WEB

as the standard language for building ontologies and hence chosen for the
development of the ontology in development phase.

The OWL specification provides three levels of expressiveness with in-
creasing complexity:

1. OWL Lite supports classification hierarchies and only simple con-
straints on relations. It is easy to process but not very expressive.
For example, while OWL Lite supports cardinality constraints, it only
permits cardinality values of 0 or 1.

2. OWL DL is based on Description Logics and hence is more expressive.
It includes all OWL language constructs with restrictions such as type
separation (a class cannot be also an individual or property, a property
cannot be also an individual or class). OWL DL was designed to sup-
port the existing Description Logic business segment and has desirable
computational properties for reasoning systems.

3. OWL Full provides maximum expressiveness with the syntactic free-
dom of RDF, but provides no computational guarantees. For example,
a class can be treated simultaneously as a collection of individuals and
as an individual in its own right. Another significant difference from
OWL DL is that an owl:DatatypeProperty can be marked as an
owl:InverseFunctionalProperty. It is unlikely that any rea-
soning software will be able to support every feature of OWL Full.

Each of these sublanguages is an extension of its simpler predecessor,
both in what can be legally expressed and in what can be validly concluded.
The following set of relations hold. Their inverses do not:

• Every legal OWL Lite ontology is a legal OWL DL ontology.

• Every legal OWL DL ontology is a legal OWL Full ontology.

• Every valid OWL Lite conclusion is a valid OWL DL conclusion.

• Every valid OWL DL conclusion is a valid OWL Full conclusion.

In the beginning the first languages were used to describe and create
ontologies and tools for specific users community, particularly in the science
and e-commerce domains. They were not defined to be compliant with the
World Wide Web architecture in general, and with the Semantic Web in
particular.
OWL resolves this drawback using URI to identify resources and the RDF
linking to add the following characteristics to ontologies:

CHAPTER 2. SEMANTIC WEB 17

• Ability to be distributed among more systems.

• Scalability for the Web necessities.

• Compatibility with the Web standards as it regards the accessibility
and the internationalization.

• Opening and extension possibility.

OWL is a language for the definition of structured Web-based ontologies
allowing greater data integration and interoperability between communities
describing their knowledge domain.
OWL is based on “RDF Model and Schema” and adds a greater vocabulary
to describe classes and properties: relationship between classes (disjunction
for example), cardinality (for example, “only one”), equality, and so on.

OWL Basic Elements

Most of the elements of an OWL ontology concern classes, properties, in-
stances of classes, and relationships between these instances. This section
presents the basic language components.

Simple Classes

Many uses of an ontology will depend on the ability to reason about
individuals. In order to do this in a useful manner it is necessary a mechanism
to describe the classes individuals belong to and the properties they inherit.
Sometimes the distinction between a class and an individual is emphasized,
viewing the individual as an object and the class as a set containing elements.
The set of individuals that are members of a class will be called extension of
the class.

owl:Class, rdfs:subClassOf

The most basic concepts in a domain should correspond to classes that are
the roots of various taxonomic trees. Every individual in the OWL world is
a member of the class owl:Thing, thus each user-defined class is implicitly
a subclass of it. Domain specific root classes are defined by simply declaring
a named class. OWL also defines the empty class, owl:Nothing. For
example, let Winery, Region, and ConsumableThing be three root classes:

<owl:Class rdf:ID="Winery"/>

18 CHAPTER 2. SEMANTIC WEB

<owl:Class rdf:ID="Region"/>
<owl:Classrdf:ID="ConsumableThing"/>

Note that it has been only said that there exist classes to which have been
given these names, indicated by the “rdf:ID=” syntax. Formally, almost
nothing is known about these classes other than their existence, despite the
use of familiar English terms as labels. It is important to remember that defi-
nitions may be incremental and distributed. In particular, it will be said more
about Winery later. Within this document the Region class for example can
be referred to using “#Region”: rdf:resource=“#Region”. Another
form of reference uses the syntax rdf:about=“#Region” to extend the
definition of a resource. This use of the rdf:about=“&ont;#x” syntax
is a critical element in the creation of a distributed ontology. It permits
the extension of the imported definition of x without modifying the original
document and supports the incremental construction of a larger ontology.

The fundamental taxonomic constructor for classes is rdfs:subClassOf.
It relates a more specific class to a more general class. If X is a subclass of Y,
then every instance of X is also an instance of Y. The rdfs:subClassOf
relation is transitive. If X is a subclass of Y and Y a subclass of Z then X is
a subclass of Z.

<owl:Class rdf:ID="PotableLiquid">
<rdfs:subClassOf rdf:resource="#ConsumableThing" />

... ...
</owl:Class>

PotableLiquid now is a subclass of ConsumableThing as the labels
make deduce.

A class definition has two parts: a name introduction or reference and a
list of restrictions. Each of the contained expressions in the class definition
further restricts the instances of the defined class. Instances of the class
belong to the intersection of the restrictions. Here is a simple but incomplete
definition for the class Wine.

<owl:Class rdf:ID="Wine">
<rdfs:subClassOf rdf:resource="PotableLiquid"/>
<rdfs:label xml:lang="en">wine</rdfs:label>
<rdfs:label xml:lang="fr">vin</rdfs:label>

... ...
</owl:Class>

CHAPTER 2. SEMANTIC WEB 19

The rdfs:label entry provides an optional human readable name for
this class. Presentation tools can make use of it. The “lang” attribute
provides support for multiple languages. A label is like a comment and gives
no contribute to the logical interpretation of an ontology.

Individuals

In addition to classes, there is the need to be able to describe their mem-
bers: instances. Normally they are thought as individuals in our universe of
things. An individual is minimally introduced by declaring it to be a member
of a class.

<Region rdf:ID="CentralCoastRegion"/>

It has to be noted that the following is identical in meaning to the example
above.

<owl:Thing rdf:ID="CentralCoastRegion"/>
<owl:Thing rdf:about="#CentralCoastRegion">

<rdf:type rdf:resource="#Region"/>
</owl:Thing>

rdf:type is an RDF property that ties an individual to a class of which
it is a member. There are a couple of points to be clarified here. First,
it has been decided that CentralCoastRegion (a specific area) is mem-
ber of Region, the class containing all geographical regions. Second, there
is no requirement that the elements need to be adjacent, or even in the
same file; it has been designed Web ontologies to be distributed. They can
be imported and augmented, creating derived ontologies. If for example
the PotableLiquid concept was defined in the liquid ontology elsewhere
in the network, adding the following code had allowed to define the class
WhiteWine:

<rdf:RDF
xmlns:liquid=http://www.w3.org/TR/2004/

REC-owl-guide-0421/liquid#>
...
<owl:Class rdf:ID="WhiteWine">
<rdfs:subClassOf rdf:resource="&liquid;PotableLiquid"/>

</owl:Class>

Now will be created a new class, Grape, with an individual denoting the
Cabernet Sauvignon grape variety. Grapes are defined in the food ontology:

20 CHAPTER 2. SEMANTIC WEB

<owl:Class rdf:ID="Grape">
<rdfs:subClassOf rdf:resource="ConsumableThing"/>

</owl:Class>

and

<owl:Class rdf:ID="WineGrape">
<rdfs:subClassOf rdf:resource="Grape"/>

</owl:Class>
<WineGrape rdf:ID="CabernetSauvignonGrape"/>

There are important issues regarding the distinction between a class and
an individual in OWL. A class is simply a name and a collection of properties
which describes a set of individuals. Individuals are the members of those
sets. These classes should correspond to naturally occurring sets of things in
a domain of discourse, and individuals should correspond to actual entities.
OWL Full permits such an expressivity that allows to treat an instance as a
class and vice versa. This allows for example to state relations between an
instance and a concept; for instance it can be said that the SWISS-Prot (an
instance of the ‘Database’ concept) concerns ‘Protein’ domain (a concept).

2.2.5 Description Logic

Description Logics (DLs) are formal languages for knowledge representation
and represent the core of OWL-DL language.

DLs classify knowledge in two parts: the T-Box and the A-Box. The
T-Box contains terminological information which is general (good for repre-
senting background knowledge). The A-Box contains assertions which are
specific (good for representing sentences). Another way to see the division
between these two kinds of information is to regard the T-Box as rules which
govern our world (e.g., laws from physics, chemistry, biology, etc), and the
A-Box as depicting the world’s individuals (e.g., a table, a chair, a man, etc).

Description Logics employ the notions of concept, role and individual. Con-
cepts are classes of elements and are interpreted as a subset of a given uni-
verse. Roles are links between elements and are interpreted as binary rela-
tions of a given universe. Individuals are the elements of a given universe.
Using the letters C and D for atomic concepts, the letter R for atomic roles,
and the symbols > and ⊥ for representing the universal and bottom concepts
respectively, we give the following definition of basic description language
ALC

CHAPTER 2. SEMANTIC WEB 21

Definition 2.2.3 (ALC syntax). Let NC be a set of concept names and NR

be a set of role names. The set of ALC-concept descriptions is the smallest
set such that:

1. >, ⊥, and every concept name A ∈ NC is an ALC-concept description,

2. if C and D are ALC-concept descriptions and r ∈ NR, then
C uD,C tD,¬C, ∀r.C, and ∃r.C are ALC-concept descriptions.

The semantics of ALC is given in terms of interpretations.

Definition 2.2.4 (ALC semantics). An interpretation I = (∆I , ·I) consists
of a nonempty set ∆I, called the domain of I, and a function ·I that maps
every ALC-concept to a subset of ∆I, and every role name to a subset of
∆I ×∆I such that, for all ALC-concepts C, D and all role names r,

>I = ∆I , ⊥I = ∅,

(C uD)I = CI ∩DI , (C tD)I = CI ∪DI , ¬CI = ∆I\CI,

(∃r.C)I = {x ∈ ∆I | there is same y ∈ ∆I with 〈x, y〉 ∈ rI and y ∈ CI},

(∀r.C)I = {x ∈ ∆I | for all y ∈ ∆I, if 〈x, y〉 ∈ rI, then y ∈ CI}.

We say that CI (rI) is the extension of the concept C (role name r) in
the interpretation I. If x ∈ CI, then we say that x is an instance of C in I.

A knowledge base Σ is a pair 〈T,A〉, where T is the T-Box and A is the
A-Box:

• A T-Box T is a finite set of expressions called General Concept In-
clusions (CGI) with shape C1 v C2, where C1,C2 are concepts. The
intended meaning of C1 v C2 is that the set of individuals in C1 is
included in the set of individuals in C2. C1

.
= C2 is a notation for

C1 v C2 and C2 v C1. Formulas of T are also called terminological
axioms.

• An A-Box A is a finite set of expressions with shape a:C or (a, b):R,
where C is a concept, R a role and a,b two individuals. The first
expression means that the individual a belongs to the set of individuals
satisfying C. The second expression means that the relation R holds
between a and b. Formulas of A are called assertions.

22 CHAPTER 2. SEMANTIC WEB

2.2.6 The family of AL-languages

ALC has been extended with several features that are important in an on-
tology language, including (qualified) number restrictions, nominals, inverse
roles, transitive roles, sub-roles and concrete domains. With number re-
strictions (indicated by the letter N), it is possible to describe the number
of relationships of a particular type that individuals can participate in. The
nominal constructor allows the possibility to use individual names also within
concept descriptions: if a is an individual name, then {a} is a concept, called
a nominal, which is interpreted by a singleton set. To supporting the model-
ing of concrete properties of abstract objects such as the age, the weight, or
the name of a person, and the comparison of these concrete properties, DL is
integrate with concrete sets such as the real numbers, integers, or strings, as
well as concrete predicates defined on these sets, such as numerical, string and
constants comparisons. This features is called concrete domains(indicated by
the letter D).

The name given to a particular DL usually reflects its expressive power.
There is a relation between letters and expressivity that the constructors
provided. The letter S 1 is used for indicate “basic” DL consisting of ALC
extended with transitive roles:

• The letter H represents subroles (role Hierarchies),

• O represents nominals (nOminals),

• I represents inverse roles (Inverse),

• N represents number restrictions (Number), and

• Q represents qualified number restrictions (Qualified).

The integration of a concrete domain/datatype is indicated by appending
its name in parenthesis, but sometimes a “generic” D is used to express that
some concrete domain/datatype has been integrated. The DL corresponding
to the OWL DL ontology language includes all of these constructors and is
therefore called SHOIN (D).

1In order to avoid very long names for expressive DLs the abbreviation letter S is often
used as an abbreviation for the “basic” DL consisting of ALC extended with transitive
roles (which in the AL naming scheme would be called ALCR+).

CHAPTER 2. SEMANTIC WEB 23

2.2.7 SKOS: Simple Knowledge Organization System

In the previous section we have introduced OWL-DL and we have briefly
shown its potential based on description logic. However, who have no prac-
tice with logic can find hard to work with OWL-DL. For this and other
reasons Semantic Web, but also Knowledge Representation, needs tools that
are expressive and easy to be managed. SKOS play this role.

SKOS defines an ontology which allows to express the basic structure and
contents of concept diagrams, including thesauruses, thematic lists, heading
lists, taxonomies, terminologies, glossaries, and other kinds of controlled dic-
tionaries. The specification is divided into three parts:

• SKOS-Core [1] [2]: it defines basic concepts and relations which enable
to develop concepts and relations between them;

• SKOS-Mapping[3]: it introduces relations which allow to describe sim-
ilarities between concepts created in different ontologies;

• SKOS-Extensions[4]: it introduces extentions of the intensity of hier-
archical relations from SKOS-Core.

The fundamental element of the SKOS vocabulary is the concept. SKOS
introduces the class skos:Concept, which allows implementors to assert that
a given resource (individuals) is a concept. In SKOS semantic relations play
a crucial role for defining concepts.

SKOS Semantic Relationships

To assert that one concept is broader in meaning (i.e. more general) than
another, the skos:broader property is used, while skos:narrower property is
used to assert the inverse, namely when one concept is narrower in mean-
ing (i.e. more specific) than another. Declaring both narrower and broader
properties transitive as well as not transitive imply different reasoning be-
haviours. Another important semantic relation in SKOS-Core is skos:related.
skos:related enables the representation of associative (non-hierarchical) links
between resources (concepts, individuals).

SKOS Concepts Schema

In SKOS a concept can be defined either in relation to other concepts (as
part of an internally coherent concept scheme), or as a stand-alone resource.
The SKOS Guide defines a concept scheme as “a set of concepts, optionally
including statements about semantic relationships between those concepts”,

24 CHAPTER 2. SEMANTIC WEB

and provides the class skos:ConceptScheme for authors to assert “that a
resource is a concept”. Using the skos:hasTopConcept, concepts can be linked
to their top level concepts. It is also possible to assert that a concept belongs
to a particular concept scheme, by using the skos:inScheme property.

Combining SKOS with OWL

In SKOS, skos:Concept is defined as an OWL class; it follows that in OWL
instances of skos:Concept are individuals. Treating skos:Concept individuals
as OWL classes can be seen as a metaclass modelling approach, where SKOS
users specify class-level characteristics of SKOS concepts. That is possible
in OWL-Full, where the sets of classes and individuals do not require to be
disjointed. In OWL-DL, where disjointedness condition between classes and
individuals must be hold, users cannot use this metamodeling mechanism.
They can nevertheless use dedicated OWL properties to bridge them like in
the following example:

ex:Database rdf:type owl:Class.
ex:Protein rdf:type skos:Concept.
ex:SWISS-Prot rdf:type owl:DataBase
ex:SWISS-Prot ex:concerns ex:Protein.

We use this kind of approach as illustrated in the next chapter for defining
the Resourceome Multi-Level Ontology Model.

Chapter 3
Distributed Computation

A distributed system is a collective of independent computers, interconnected
via a network, able to collaborate on a task. Distributed computing is a type
of segmented or parallel computing, but the latter term is most commonly
used to refer to processing in which different parts of a program run simul-
taneously on two or more processors that are part of the same computer.

While both types of processing require that a program be segmented and
divided into sections that can run simultaneously, distributed computing
also requires that the division of the program takes into account the different
environments on which the different sections of the program will be running.
The paradigms of distributed computation can be presented in order to their
level of abstraction (see Fig. 3.1).

+

-

L
ev
el
o
f
A
b
st
ra
ct
io
n

Message Passing

Client-Server, Peer-to-Peer

Remote Procedure Call, Remote Methids Invocation

Network Services, Object Request Brokers, Mobile Agent

Object Space, Collaborative Application

1

Figure 3.1: Distributed computing paradigms and their level of abstraction.

In the following, we will describe two distributed computation paradigms:
the Service-Oriented architecture (SOA) and the agent-based paradigm. In

26 CHAPTER 3. DISTRIBUTED COMPUTATION

particular, we will focus on the latter one, introducing Hermes, an agent-
oriented FIPA Compliant middleware, used in Resourceome to properly sup-
port mobile and distributed computations.

3.1 The SOA Paradigm

Service-Oriented Architecture (SOA) is an architectural style for building
software applications that use services available in a network such as the
Web. It promotes loose coupling between software components so that they
can be reused. Applications in SOA are built based on services.

A service is an implementation of a well-defined business functionality,
and such services can then be consumed by clients in different applications
or business processes. SOA allows for the reuse of existing assets where
new services can be created from an existing IT infrastructure of systems. In
other words, it enables businesses to leverage existing investments by allowing
them to reuse existing applications, and promises interoperability between
heterogeneous applications and technologies.

SOA provides a level of flexibility that was not possible before in the sense
that:

• Services are software components with well-defined interfaces that are
implementation-independent. An important aspect of SOA is the sepa-
ration of the service interface (the what) from its implementation (the
how). Such services are consumed by clients that are not concerned
with how these services will execute their requests.

• Services are self-contained (perform predetermined tasks) and loosely
coupled (for independence).

• Services can be dynamically discovered.

• Composite services can be built from aggregates of other services SOA
uses the find-bind-execute paradigm as shown in Fig. 3.2. In this
paradigm, service providers register their service in a public registry.
This registry is used by consumers to find services that match certain
criteria. If the registry has such a service, it provides the consumer
with a contract and an endpoint address for that service.

More in detail, SOA relies on services exposing their functionality via
interfaces that other applications and services can read to understand how
to utilize those services, as well as it enables the development of applications
that are built by combining loosely coupled and interoperable services.

CHAPTER 3. DISTRIBUTED COMPUTATION 27

Registry

Service Consumer Service Provider

Find Register

Blind and Invoke

Contract

1

Figure 3.2: SOA’s Find-Bind-Execute Paradigm .

These services inter-operate based on a formal definition (or contract,
e. g., WSDL[96]) that is independent of the underlying platform and pro-
gramming language. The interface definition hides the implementation of the
language-specific service.

SOA-based systems can therefore function independently of development
technologies and platforms (such as Java, .NET, etc). SOA can support inte-
gration and consolidation activities within complex enterprise systems, but
SOA does not specify or provide a methodology or framework for document-
ing capabilities or services.

High-level languages such as BPEL[5] and specifications such as WS-
CDL[121] extend the service concept by providing a method of defining and
supporting orchestration of fine-grained services into more coarse-grained
business services, which architects can in turn incorporate into workflows
and business processes implemented in composite applications or portals.

3.2 The Mobile Agent Paradigm

Agents can be defined to be autonomous, problem-solving computational
entities capable of effective operation in dynamic and open environments.

They are often deployed in environments in which they move, interact,
and sometimes cooperate with other agents (including both people and soft-
ware) that have possibly conflicting aims. These environments are known as
multi-agent systems (MASs).

Since agents are autonomous entities capable of exercising choice over
their actions and interactions, act to achieve individual objectives, they can-
not, therefore, be directly invoked but can be assigned tasks by their owners.
These notions find application in relation to three distinct views, considered
below.

28 CHAPTER 3. DISTRIBUTED COMPUTATION

• Agents as design metaphor: Agents provide designers and developers
with a way of structuring an application around autonomous, commu-
nicative components, and lead to the construction of software tools and
infrastructure to support the design metaphor. In this sense, they offer
a new and often more appropriate route to the development of com-
plex systems, especially in open and dynamic environments. In order
to support this view of systems development, particular tools and tech-
niques need to be introduced. For example, methodologies to guide
analysis and design are required, agent architectures are needed for the
design of individual components, tools and abstractions are required
to enable developers to deal with the complexity of implemented sys-
tems, and supporting infrastructure (including more general, current
technologies, such as Web Services) must be integrated.

• Agents as a source of technologies: Agent technologies span a range
of specific techniques and algorithms for dealing with interactions in
dynamic, open environments. These address issues such as balancing
reaction and deliberation in individual agent architectures, learning
from and about other agents in the environment, eliciting and acting
upon user preferences, finding ways to negotiate and cooperate with
other agents, and developing appropriate means of forming and man-
aging coalitions. Moreover, the adoption of agent-based approaches is
increasingly influential in other domains. For example, MASs have al-
ready provided faster and more effective methods of resource allocation
in complex environments, such as the management of utility networks,
than previous approaches.

• Agents as simulation: MASs offer strong models for representing real-
world environments with an appropriate degree of complexity and dy-
namism. For example, simulation of economies, societies and biological
environments are typical application areas. The use of agent systems
to simulate real-world domains may provide answers to complex phys-
ical or social problems that would be otherwise unobtainable, as in the
modelling of the impact of climate change on biological populations,
or modelling the impact of public policy options on social or economic
behaviour. Agent-based simulation spans: social structures and insti-
tutions to develop plausible explanations of observed phenomena, to
help in the design of organizational structures, and to inform policy or
managerial decisions; physical systems, including intelligent buildings,
traffic systems and biological populations; and software systems of all
types, currently including e-Commerce and information agency. In ad-

CHAPTER 3. DISTRIBUTED COMPUTATION 29

dition, multi-agent models can be used to simulate the behaviour of
complex computer systems, including multi-agent computer systems.
Such simulation models can assist designers and developers of complex
computational systems and provide guidance to software engineers re-
sponsible for the operational control of these systems. Multi-agent
simulation models thus effectively provide a new set of tools for the
management of complex adaptive systems, such as large-scale online
resource allocation environments.

3.3 Hermes, an agent-oriented FIPA Com-

pliant system

In the following, we introduce Hermes, a component-based agent-oriented
FIPA Compliant system.

3.3.1 Hermes Middleware

Hermes is structured as a component-based, agent-oriented system with a
3-layer software architecture shown in Figure 7.2. In the following, we will
give a detailed description of each layer.

Figure 3.3: 3-Layered Architecture of Hermes Mobile Computing Platform.

30 CHAPTER 3. DISTRIBUTED COMPUTATION

Core Layer

It is the lowest layer of the architecture and contains base functions of the
system, such as the implementation of the inter-platform communication
protocols and agent management functions. This layer is composed of four
components: ID, SendReceive, Starter and Security.

The ID component, implements general identity management functions
by managing a repository containing information about locally generated
agents. This repository is accessed whenever we want to know the current
position of an agent. The ID component is also responsible for the creation
of the identifiers to be associated to new agents. These identifiers contain
information about birthplace, date and time of the agent’s creation. Agent
localization is simplified by information contained directly in the ID, such
as birth place. In fact, the birth place of an agent hosts information about
agent’s current location.

A second important feature of the Core is the SendReceive component.
This component implements low level inter-platform communication by send-
ing and receiving messages and agents. By using traceability services offered
by the ID component, SendReceive can easily update or retrieve the exact
position of a specific user agent.

The Starter component processes any request for agent creation. This
particular component, in fact, take an inactive agent (just created or mi-
grated), and checks it for the absence of malicious or manipulated code.
These agents, before activation, are dynamically linked to all basic services
of the platform.

During execution the agent is isolated from the Core Layer by the Basic-
Service layer. The Security component, as mentioned above, checks for the
presence of malicious code or manipulations within agent code.

BasicService Layer

This layer has five main components: Discovery, Mobility, Genesis, Commu-
nication and Security Politics.

The Discovery component searches and detects service agents. When a
user agents wants to communicate with a service, it will ask the Discovery
for the right identifier to use as the messages’s receiver. The service detec-
tion strategy can be implemented in several ways; for example by a fixed
taxonomy or by an UDDI [31], commonly used in Web Service application
domain.

The mobility component enables the movement of code across platforms [37],
it implements the interface used by the Agent component and it accesses to

CHAPTER 3. DISTRIBUTED COMPUTATION 31

components of the Core layer to send, receive and load agents. It is im-
portant to note that real communication between different locations can be
achieved only through Core’s SendReceive component, and then migration is
independent of the type of used transport.

Mobility consists on copy the agent i.e. its code and its current state and
send it to the destination platform where it will re-started in a specific point
(weak mobility). The local agent is destroyed.

The Communication component makes possible to send and receive agent-
directed messages both in an intra- and inter-platform context. Intra-platform
messages are messages sent between agents and services residing in the same
platform. Inter-platform messages are messages sent to agents residing in
different platforms (our system does not allow for remote communication be-
tween user agents and service agents). The agent requesting the dispatch of
a message does not need to know, effectively, where the target agent is; in
fact, the ID is sufficient to post correctly a message.

The Communication component uses one of the Security Policy ’s inter-
faces to ascertain whether the specific UserAgent or ServiceAgent has the
right privileges for communication. If an Agent is not authorized to use a
service, the message is destroyed. Before accessing resources and services, an
agent must authenticate itself. The identification is performed by sending
a login message to a specific ServiceAgent, as consequence the SecurityPol-
itics component jointly with the Communication component intercept the
message and unlock the communication.

The SecurityPolitics component centralizes control of permissions, pro-
tects services and resources from the user agents, and provides the adminis-
trator with an easy way to manage all permissions.

The last component of this layer is the Genesis component that enables
agent creation. A special case of agent creation is cloning, that is performed
when it is necessary to create a copy of an existing agent. The two copies
differ only for the agent identifier.

Agent Layer

The Agent Layer is the upper layer of the mobile platform and contains all
service and user agents. This component has not any interface, but it has only
several dependencies upon the BasicService Layer. The Agent component
provides a general abstract Agent class. ServiceAgent and UserAgent classes
extend this abstract class. ServiceAgent consists of agents enabling access to
local resources such data and tools. Agents in UserAgent execute complex
tasks and implement part of the logic of the application. Java programmers
can also develop UserAgent by using the API provided by Hermes Mobile

32 CHAPTER 3. DISTRIBUTED COMPUTATION

Computing Library. Listing 3.1 shows a simple demo. A MkDuckAgent
called “Della Duck” creates three sons Qui, Quo and Qua -lines 24 to 40-
by cloning itself. After clonation, each new agent starts its behaviour calling
“afterCloning” as initial method.

1 package samples ;
2 import hermesV2 . ∗ ;
3 import hermesV2 . agent . ∗ ;
4

5 pub l i c c l a s s McDuckAgent extends UserAgent {
6

7 pub l i c McDuckAgent (S t r ing agentName) {
8 super (” De l la Duck”) ;
9 }

10

11 pub l i c void i n i t () {
12 r e c ep t i on () ; // I enable the r e c ep t i on
13 // o f messages f o r the f a th e r
14

15 System . out . p r i n t l n (” He l lo World ! ! ”) ;
16 System . out . p r i n t l n (” I ’m Del la Duck ! ! ! ”) ;
17

18 I d e n t i f i c a t o r temp=nul l , son1=nul l ,
19 son2=nul l , son3=nu l l ;
20

21 /∗ a f t e rC lon ing i s the f i r s t method
22 c a l l e d a f t e r the c l ona t i on ∗/
23

24 t ry {
25 son1 = c lone (” a f t e rC lon ing ” , ”Qui”) ;
26 System . out . p r i n t l n (new Date (
27 System . cur r entT imeMi l l i s ()) +
28 ” : Qui was born ! ! ”) ;
29 son2 = c lone (” a f t e rC lon ing ” , ”Quo”) ;
30 System . out . p r i n t l n (new Date (
31 System . cur r entT imeMi l l i s ()) +
32 ” : Quo was born ! ! ”) ;
33 son3 = c lone (” a f t e rC lon ing ” , ”Qua”) ;
34 System . out . p r i n t l n (new Date (
35 System . cur r entT imeMi l l i s ()) +
36 ” : Qua was born ! ! ”) ;
37 } catch (CloneException ce) {
38 System . out . p r i n t l n (ce) ;
39 }
40 Message m0=nul l ,m1=nul l ,m2=nul l ,m3=nu l l ;
41 whi le (! (m1!= nu l l && m2!= nu l l &&
42 m3!= nu l l)){
43 m0 = getMessageSynch () ;
44 temp = m0. getSenderAgentId () ;
45 i f (son1 . equa l s (temp)) m1 = m0;
46 i f (son2 . equa l s (temp)) m2 = m0;
47 i f (son3 . equa l s (temp)) m3 = m0;
48 System . out . p r i n t l n ((S t r ing)m0. getObject ()) ;
49 }
50 /∗The mother r e p l i e s to sons ∗/
51 I d e n t i f i c a t o r myId = g e t I d e n t i f i c a t o r () ;
52 m1 = new Message (myId , son1 ,
53 ”Mom: Ok Qui ! ! \n ”+
54 ” I ’ ve r e c e i v e your message . ”) ;
55 m2 = new Message (myId , son2 ,

CHAPTER 3. DISTRIBUTED COMPUTATION 33

56 ”Mom: Ok Quo ! ! \n ”+
57 ” I ’ ve r e c e i v e your message . ”) ;
58 m3 = new Message (myId , son3 ,
59 ”Mom: Ok Qua ! ! \n ”+
60 ” I ’ ve r e c e i v e your message . ”) ;
61 t ry {
62 sendMessageToUserAgent (m1) ;
63 sendMessageToUserAgent (m2) ;
64 sendMessageToUserAgent (m3) ;
65 } catch (CommunicationException ce) {
66 System . out . p r i n t l n (ce . getMessage ()) ;
67 }
68 }
69

70 pub l i c void a f t e rC lon ing () {
71 I d e n t i f i c a t o r myId = g e t I d e n t i f i c a t o r () ;
72 PlaceAddress myBPA = myId . getBornPlaceAddress () ;
73 i n t myBPAPort = myBPA. getPort () ;
74 t ry {
75 i n t port = (myBPAPort == 9100) ? 9000 : 9100 ;
76

77 PlaceAddress myMPA =
78 new PlaceAddress (myBPA. get Ip () , port) ;
79 t h i s . move(myMPA, ” afterMoving ”) ;
80 } catch (Migrat ionExcept ion me) {
81 System . out . p r i n t l n (”Migrat ionExcept ion ” + me) ;
82 }
83 }
84

85 pub l i c void afterMoving () {
86 r e c ep t i on () ; // I enable the r e c ep t i on
87 // o f messages f o r the son
88

89 I d e n t i f i c a t o r myId = g e t I d e n t i f i c a t o r () ;
90 I d e n t i f i c a t o r mother = g e tFa t h e r I d e n t i f i c a t o r () ;
91 Message m = nu l l ;
92

93 t ry {
94 m = new Message (myId , mother ,
95 getAgentName () +
96 ” : I have moved to another Place ”) ;
97 sendMessageToUserAgent (m) ;
98 } catch (CommunicationException ce) {
99 System . out . p r i n t l n (ce . getMessage ()) ;

100 }
101 m = getMessageSynch (mother) ;
102 System . out . p r i n t l n ((S t r ing)m. getObject ()) ;
103 }
104 }

Listing 3.1: McDuckAgent.java

By using “move” method -line 79- Qui, Quo and Qua migrate to a Place
different from where they were born. When they arrive in the new Place
each one calls the “afterMoving” -line 85- method. Then they notify to
their mom their moving by using “sendMessageToUserAgent” -line 97- and
“getMessageSynch” -line 101- methods. Figure 3.4 shows the final results.

34 CHAPTER 3. DISTRIBUTED COMPUTATION

Figure 3.4: Final result produced by McDuckAgent.java

3.3.2 Distributed Process Specification

Processes can be described by their starting and stopping points and by the
kind of changes that take place in between. In Physical Process, that can
be seen as continuous process, change take place continuously, and can be
associated to an analog computer. Discrete Process changes occur in discrete
steps called events and states. Typically events are interleaved with states
that represent periods of inactivity. To program the original von Neumann
machine, Neumman and Goldstine designed Flow-Charts. In Flow-Charts
boxes represent computational events while diamonds represent decisions,
where after a decision, the flow can take an alternative path. Flow-Charts
can compute any function that is computable by a Turing machine. Although
functional language can compute any computable function, they cannot be
used to enforce a particular order of execution. Procedural languages are
a good approach for such specification. Flow-Charts, State-transition Di-
agrams (Finite-State Machine) and Petri Nets are good notation tools for
representing procedures.

Petri Nets merge the ideas of both Flow-Charts and Finite-State Machine
formalism, where events of Flow-Charts are mapped into Petri Net transac-
tions, while the states of Finite-State diagrams are mapped into Petri Net
places (see Figure 3.5).

Although Flow-Charts and Finite-State Machines can represent branches
and loops, Petri Nets are a better way to specify and represent parallel and
concurrent processes as well as processes synchronization. In particular, we

CHAPTER 3. DISTRIBUTED COMPUTATION 35

Figure 3.5: Graphic notations for procedure specification

have used a Petri Net-based notation to describe semantic workflow speci-
fications, activities and related roles. Automating such processes requires a
model that describes the coordination of the activities to be executed, the
roles involved in the organization and the needed resources.

Part III

Resourceome Ontology
Framework

Chapter 4
Resourceome

Formal Knowledge Representation (KR) consists of building formal models
of a particular domain or problem in order to allow automatic reasoning and
interpretation. Such formal models are called ontologies. Ontology languages
can be used to provide formal semantics to any sort of information.

In this chapter we propose a multi-level ontology model, calledResourceome,
which can be considered as a conceptual schema to represent knowledge in
the most formal and reusable way.

4.1 Introduction

In the field of Computer Science, ontology has became popular as a paradigm
for Knowledge Representation in Artificial Intelligence, by providing a method-
ology for easier development of interoperable and reusable knowledge base.
The Handbook of Knowledge Representation [18] defines the ontology as fol-
lows: “An ontology is an explicit specification of a shared conceptualization
that holds in a particular context”. The gradual changes of the definition
of what an ontology is are interesting in their own right. Gruber’s original
definition takes ontology to be an explicit specification of a conceptualiza-
tion [6]. The introduction of the adjective shared occurred some years later,
especially in the work of Borst et al. [19]. The reference to validity in a par-
ticular context is again a later addition, and attempts to encapsulate lessons
learned in building and using ontologies in practical applications, especially
in knowledge management[21]. The original idea of ontologies is that of a
consciously engineered artifact to express intended meaning through speci-
fying the formal semantics of concepts. In the latter conception, ontologies
figure as social network-created, inseparable from the context of the commu-

40 CHAPTER 4. RESOURCEOME

nity in which they are created. These two different approaches to ontologies
do not necessarily exclude each other. In the engineering approach, an im-
portant critical issue is the distance between the engineered ontology and
its intended user or application community. In the social community ap-
proach, on the other hand, a critical issue is that in ontology extracted as a
matter-of-fact empirical (i.e. non-engineered) social phenomenon ultimately
“anything goes”: shared meaning simply becomes what any community hap-
pens to believe, without any further rational foundation or justification. As
quite an elementary point of context, ontologies are formal conceptualiza-
tions helping an actor to achieve a goal or task. Often that task involves
knowledge-intensive reasoning. The conceptual distinctions that we make
in our attempts to understand the world are not just static and descriptive
domain characterizations, but they are made to serve practical purposes of
action by someone or something in that world. We cannot detach knowledge
from action. This is clearly a pragmatic, use-oriented view of ontologies. Part
of the context surrounding the normal static ontologies is computationally
defined by explicating the reasoning task and methods in which ontologies
find their use.

4.2 The main features of the Resourceome

knowledge model

TheResourceome knowledge organization is fundamentally a multilevel ontology-
based model for semantic annotation of resources and activities, in according
to Guarino’s approach [11]. It is composed of three levels - Top knowledge,
Base knowledge and Application knowledge level (Fig. 4.1).

The Resourceome knowledge model implements the following features:

1. Separation between domain concepts (abstract and concrete concepts)
and resource concepts (only physical concepts).

In Resourceome it is possible to derive specific resources from resource
concepts w.r.t. the domain where they are conceptualized. This is
obtained by splitting the Domain Ontology (in the sense of Guarino’s
approach) into two “orthogonal” ontologies - Resource Ontology and
Domain Ontology (in our sense) - and by connecting them by a “con-
cerns” relation. This mechanism permits to parameterize the knowl-
edge representation w.r.t. the domain. As a consequence, Resourceome
is able to formalize a resource conceptualization, contextualized in and
concerned to any fixed conceptualized domain. Through the “concerns”

CHAPTER 4. RESOURCEOME 41

upper ontology

resource domain task

resource domain task

concerns concerns

to
p
le
v
el

b
as
e
le
v
el

ap
p
li
ca
ti
o
n
le
v
el

o
n
to
lo
g
y
en
g
in
n
er
s

ontology

ontologyontology

ontologyontology

ontology

resources individuals
domain concepts

SKOS individuals

as activities

ex
p
er
ts

d
o
m
ai
n

1

Figure 4.1: The Resourceome model.

relation, a more specific resource can be simply connected to the do-
main topics which it refers to, rather than introduced in the Resource
Ontology as a more specialized concept. Figure 4.2 and Figure 4.3
shows how a resource can be specialized w.r.t. a context either in the
classical approach (see Figure 4.2) or in Resourceome (see Figure 4.3).

2. Independence from different workflow views and concrete formalisms.

The behavioral aspect is the most explicit view of a workflow: it basi-
cally describes the order in which the different activities are executed.
However, a workflow is more than the mere connection of activities:
other basic aspects to consider are the organizational one - describing
the organization structure, the involved objects and roles and in which
way they are involved in the workflow - and the informational one - de-
scribing the concrete informations (or documents) associated to objects
and roles that are involved in the workflow, how and where they are
represented, and how they are propagated among different activities.

42 CHAPTER 4. RESOURCEOME

Type Type

BioInformatics Article

Artifact

Formal Method Article

paper2paper1

Literature Artifact

Article

Figure 4.2: Classic Conceptualisation.

Resource ontology

Domain ontology

Type

Type
concerns concerns

BioInformatics Article

Artifact

Concept

Formal Methods Article

paper2paper1

Literature Artifact

Article

Figure 4.3: Resourceome Conceptualization.

Usually, each view is modeled by a specific and suitable formalism: for
instance, Petri Nets, organigrams and ER diagrams respectively for
behavioral, organizational and informational aspects. For this reason,
the Task Ontology in Resourceome has been defined in order to be
independent from concrete formalisms and to catch the essence of each
view.

The Task Ontology is connected to Domain and Resource Ontologies
by abstract relations, in such a way to describe the execution context

CHAPTER 4. RESOURCEOME 43

of an activity in a semantically rich fashion. These relations link (the
most general) activity concept in the Task Ontology with (the most
general) domain and resource concepts. Specializations of these rela-
tions permit to attach the involved roles, documents and objects to a
specific activity, as well as to a domain, i.e. the context in which the
activity works. These relations provide the needed support for realizing
the semantic-driven workflow compilation process in Resourceome.

3. Representation of social roles.

The notion of role is crucial in a workflow scenario. A role is a logical
abstraction of one or more physical actors which can perform an activ-
ity. The conceptual modeling and object modeling literature considers
the roles as anti-rigid and relationally dependent unary predicates. For
example, take the role Student that is subsumed by the kind Person:
Student is anti-rigid because persons are only contingently students, for
example a person can be a student only during a short period of his life.
Additionally, Student is relationally dependent because, for a person to
be Student it requires the existence of another entity, namely a certain
University in which this person is Enrolled. Resourceome implements
the approach proposed in [14], which it has been proved to solve the
so-called “Counting-Problem”. Figure 4.4 shows how a social role can
be described as classical approach1 or in Resourceome model Figure
4.5, where:
Student ≡ Person u ∃Enrroled.Univerity u ∃ playRole.{StudentRole}
and Student(Rossi) is inferred.

In the following, we will describe in detail the multilevel architecture of
the Resourceome knowledge model.

4.2.1 Top knowledge level

The Top knowledge level is formed by an Upper Ontology describing very
general and domain-independent concepts shared across a large number of
ontologies. Several standard upper ontologies are available, for instance
DOLCE (Descriptive Ontology for Linguistic and Cognitive Engineering)
[13] and SUMO (Suggested Upper Merged Ontology) [23]. The choice of
the Upper Ontology concepts depends on what and how the knowledge is
going to be described.

1This representation suffers of the so-called “Counting Problem”, as stated in [14].

44 CHAPTER 4. RESOURCEOME

Type

is-a

is a

Rossi

Student

Animal

Person

Figure 4.4: Social roles classic representation.

Resource

Domain

Type

Type

Type

playRoleType

is a

Type

enrolled

Animal

UniversityPerson

Student

Concept

UNICAM

Rossi

StudentRole

Figure 4.5: Social role representation in Resourceome.

4.2.2 Base knowledge level

The Base knowledge level describes a specific vocabulary by specializing the
terms introduced in the Upper Ontology w.r.t. a particular domain of inter-
est.

CHAPTER 4. RESOURCEOME 45

Domain and Resource Ontologies. The Domain Ontology (in the
sense of Guarino’s approach) is split into two “orthogonal”2 ontologies: Re-
source Ontology and Domain Ontology (in our sense).

The Resource Ontology represents the kind of resources existing in the
universe of a domain. It is a representation of a physical world, since it
models the types of resources existing in the described domain. It contains
the declaration of terminology and relations in the form of OWL-DL entities.

The Domain Ontology represents the semantic relationships between the
concepts of the domain. It is implemented with a hybrid OWL-DL/SKOS
semi-formal language, in order to provide more flexible and less formal de-
scription of concepts and metadata3. A domain concept may be both a sub-
class of a domain OWL-DL class and a sub-class of SKOS-concept class. On
the one hand, SKOS permits to represent concepts as individuals of SKOS-
concept class and to join them together with more flexible relations instead
of the strict “is-a” one. On the other hand, SKOS does not provide strict
computational semantics and thus cannot be used for performing automated
tasks associated to the knowledge represented in the scheme. In the whole,
the hybrid OWL-DL/SKOS semi-formal specification of the domain offers a
great flexibility and the possibility of creating relationships between individ-
uals and domain/operational concepts: it combines the OWL-Full flexibility
- since it can describe relations between resource individuals and domain
concepts - and the OWL-DL computational power - since the adopted inter-
breeding technique does not add non-computable elements.

Task Ontology. The Task Ontology contains the declaration of ter-
minology and relations in the form of OWL-DL entities. The Base level is
substantially a meta-model for catching different workflow views (behavioral,
organizational and informational aspects), in such a way to be independent
from concrete formalisms usually used for modeling them. The pivot of this
level is represented by the generic concept of activity. Every activity executes
in a defined context (domain concept) and includes the following items:

- Role (domain concept): A logical abstraction of one or more physical
actors, usually in terms of common responsibility or position. An actor
may be a member of one or more roles. Roles specify the actor types
(e.g. researcher, teacher, etc.) that participate in the workflow and
perform activities. For maximum flexibility and re-use, activities are

2As already said in Section 4.2, the “orthogonality” is realized by a “concerns” rela-
tion, which allows us to connect the two ontologies and to parameterize the knowledge
representation w.r.t. a domain.

3SKOS is represented in OWL-DL. In detail, in OWL 2 it is possible to have an ontology
where the names of individuals can be the same as the names of classes.

46 CHAPTER 4. RESOURCEOME

assigned to roles rather than to named users. Using roles instead of
assigning a real user’s name makes changes easy to manage and it
enables a user to easily delegate and reassign activities. Every role has
a set of competencies, which describe what the people associated with
that role are allowed to do.

- A set of objects (resource concepts), which the activity eventually in-
puts, outputs and uses and/or consumes.

- Document: The set of informations (resource concepts) that are inter-
changed as part of an activity.

- A code implementing the activity.

- It possibly has preconditions and effects (rules)4.

- It is decomposed into more detailed sub-activities (task concepts).

As already said, the Task Ontology is connected to Domain and Resource
Ontologies by abstract relations - in detail, “hasRole”, “hasDocument”, “has-
ComplexInput”, “hasComplexOutput” and “concerns”. Their specializations
permit to attach the involved roles (“hasRole”), documents (“hasDocument”)
and objects (“hasComplexInput”, “hasComplexOutput”) to a specific activity,
as well as to a domain (“concerns”) or context in which the activity works.

4.2.3 Application knowledge level

The Application knowledge level introduces very specific concepts depending
on the particular domain, resources and activities.

Domain and Resource Ontologies. The Resource Ontology depth
hardly grows: as already explained in Section 4.2, in the most cases inserting
more specific resources implies connecting their more generic forms, already
in the Resource Ontology, to related domain concepts which they refer to.
Eventually, new domain concepts and new general resource concepts are in-
serted respectively in Domain and Resource Ontologies.

Task Ontology. This level models the semantic (specialization/general-
ization) relationships among concrete activities, the conditions to be met for
an activity specialization to take place, and the context each activity works
on. Basically activities can be retrieved by their name, and a minimal set
of property fields can store unlimited strings, so that any implementation is

4Actually, Resourceome does not support rules. This item is introduced for further
extensions.

CHAPTER 4. RESOURCEOME 47

possible. This layer is actually a forest, i.e. a tree for each activity: the child
(hypoactivity) of a node activity (hyperactivity) is a more specific version of
it. The activity also specifies additional constraints about the value of some
of the parameters defined by its hyperactivity. These constraints, expressed
in any form supported by Domain and Resource Ontologies, are used to de-
termine the applicability of the activity with respect to the execution of its
hyperactivity.

4.3 Hybrid Conceptualization inResourceome

As previously said, in the Resourceome knowledge model Resource and Task
Ontologies are defined in OWL-DL, while the Domain Ontology is “hybrid”,
where “hybrid” stands for a conceptualization which is partly formal and
partly semi-formal.

SKOS Core provides a model to express the basic structure and content
of concept schemes such as thesauri, classification schemes, subject heading
lists, taxonomies, many other types of controlled vocabulary and concept
schemes embedded in glossaries and terminologies. In this scenario, our
intention is to represent the Domain Ontology as a mix of ontology and
thesaurus, where thesaurus stands for a taxonomy with broader/narrower
terms, synonymous terms, top terms and related terms. Concepts in SKOS
are instances of the skos:Concept class5. This allows the representation of
both “is-a”-like and “part-of” relations using the same relation, as is common
in many thesauri.

In this situation, OWL and SKOS are used side-by-side to model different
parts of the same conceptualization: to better understand the mechanism,
in the following the first example shows how we use OWL to define classes
of Resource and their relevant properties, while the latter shows how we use
SKOS to define the Domain concept.

ex:DataBase rdf:type owl:Class
ex:concerns rdf:type owl:DataRetrival
rdfs:domain ex:Resource
rdfs:range ex:Protein
ex:Protein rdf:type owl:Class
rdfs:subClassOf skos:Concept

ex:ProteinID rdf:type ex:Protein

5Note to the reader: skos:Concept is an owl:Class, but an instance of skos:Concept may
also be an instance of owl:ObjectProperty, or of owl:Class itself

48 CHAPTER 4. RESOURCEOME

ex:SwissProtProteinIdentificator rdf:type ex:Protein
ex:SwissProtProteinIdentificator skos:broader ex:ProteinID

Finally, a relation (concerns) between Domain and Resource concepts
links the two conceptualizations.

This kind of specification is perfectly compatible with OWL-DL, and does
not place any constraints on our choices for the semantics of skos:Concept.
Although SKOS and OWL vocabularies are used in the same graph, the
“SKOS and OWL streams” are effectively kept separate. Relationships be-
tween concepts are captured using e.g. skos:narrower, skos:broader and
skos:related, rather than rdfs:subClassOf. In the Resourceome knowledge
model, every individual of skos:Concept or subclass of skos:Concept repre-
sents a concept. From a philosophical point of view, this kind of concepts
represents the universal concept: due to this approach, we can define rela-
tionships between individuals and concepts.

Furthermore, while in SKOSskos:broader and skos:narrower properties
are defined neither transitive nor intransitive, in the Resourceome knowl-
edge model skos:broader and skos:narrower are assumed to be intransitive
relations and two new relationships, namely skos:narrowerTransitive and
skos:broaderTransitive, are defined to explicitly denote their transitive ver-
sions.

4.3.1 An example of Conceptualization inResourceome

In this example, the Resource Ontology formalizes the basic entities which
Computer Science researchers interact every day with. Our intention is to
annotate the literature resources as Articles and Books in the Formal Meth-
ods context. In this case we identify the Formal Method research topic, in
particular the Process Algebra topics (Process Calculi). Two kinds of process
algebra are CCS and ASP. The Resource Ontology describes the Article and
Book artifacts, while the Domain defines the concepts that arise into For-
mal Methods topics. Using SKOS, we build a thesaurus of Research Topics,
where Formal Methods is a concept schema and Process Algebra is a top
concept of this schema as much as his synonymous Process Calculi. ACP
and CCS are narrower concepts of both Process Algebra and Process Cal-
culi. Using concerns relationship, we can classify the paper1 and paper2 in
CCS and ASP respectively, as showed in Fig. 4.6

CHAPTER 4. RESOURCEOME 49

is a

Type

is a

exatMath

Narrower

Type Type

hasTopConcept

is ais a

Concerns

Narrower

Type

Narrower

hasTopConcept

is a

is a

Type

is ais a

Narrower

Concerns

is a

DomainConcept

Resource

ResearchTopics

ProcessAlgebra

CCS

ConceptSchema

Thing

ProcessCalculi

Book

paper1 paper2

LiteratureResource

ACPArticle

FormalMethods

Figure 4.6: Resourceome ontology example.

4.4 Anti-Rigid Properties and Social Roles in

Resourceome

Some entities appear just because are social conventions in various ways on
communities of agents; these kinds of entities can be social concepts like Stu-
dent, President, Engineer or individuals like Rossi is a Student at University
of Camerino or Bianchi is a Ph.D Student at the same University.

Intuitively, it is possible to distinguish two senses of sociality.

• In the first sense, here investigated, an entity is social if it is an im-
material product of a community: in this sense, “social” is roughly
synonymous of “conventional”. Guarino suggests that such roles must

50 CHAPTER 4. RESOURCEOME

be anti-rigid, i.e. they are properties that are contingent (non-essential)
for all their instances. The ontological nature of the contexts that de-
termine roles, and he individuates and analyzes in detail three kinds
of role: Relational Roles (ways of participation in a relation), Proces-
sual Roles (ways of participation in an event), and Social Roles. Social
Roles are concepts that can be played by certain entities, when they
enter in relationships with other entities.

• Social roles (in the broader sense) and statuses have similar features:
entities have statuses; statuses are created, accepted, and destroyed
by a community of agents needing a notion of collective acceptance.
Statuses are strongly connected to status functions which have the
form: “X counts as Y in context C”, where X is a (physical or non
physical) entity, Y is a status, and C a context.

As introduced above, the Resourceome knowledge model allows to rep-
resent anti-rigid properties like social role in a flexible and intuitively way.
Thinking about the relational role “enrolled”, a Student is a Person enrolled
in a University. But also a working student is a Person enrolled in some
University. It is obvious that Working Student is Person enrolled in some
University and working in some Enterprise. University system must also
manage Enterprise for distinguishing this kind of Student.

In the Resourceome model, this scenario can be expressed as follows:

• Student ≡ Person u ∃Enrolled.University u ∃ playRole.{StudentRole}
• WorkingStudent ≡ Person u ∃Enrolled.University
u∃ playRole.{WorkingStudentRule}

This kind of restrictions describes anonymous classes (i.e. unnamed class):
the anonymous classes contain all of the individuals that satisfy the restric-
tions, i.e. all of the individuals that have the relationships required to be a
member of the class.

4.5 Related Works

As related work we would like to mention PROTON. The PROTON (PROTo
ONtology) ontology has been developed in the SEKT project as a lightweight
upper-level ontology, serving as the modeling basis for a number of tasks
in different domains. In PROTON ontology, schema-ontology and topic-
ontology describe respectively extensional semantics and intensional seman-
tics. Anyway, PROTON as Resourceome suggests to separate this two kinds
of ontology adopting the following principles:

CHAPTER 4. RESOURCEOME 51

• The class hierarchy of the schema-ontology should not be mixed with
topic hierarchies.

• Representing topics as instances of the Topic class avoids the compu-
tational intractability inherent in allowing classes as property values.

The Topic class is a bridge between topic- and schema-ontologies. The
specific topics should be defined as instances of the Topic class (or of a
sub-class of it) (see Fig. 4.7, where InformationResource belongs to same
schema-ontology and Topic is the top-class of topic-ontology). The Topic

Figure 4.7: Proton topic modeling example.

class represents a top-class for linkage of logically informal taxonomies, while
the instances of Topic are the only concepts in PROTON which are defined
to serve as topics. We believe that this kind of approach is confuse and con-
fusing. A “hybrid” conceptualization, as proposed in Resourceome, provides
a better way to represent this kinds of conceptualizations.

4.6 Resourceome and Ontology Evolution

Ontologies, similarly to the parts of the world that they describe, need to
change continuously to be effective. In Stajanovic et al.(2002) the authors
proposed a six-phase Ontology evolution process, as depicted in Figure 4.8.

Capturing Representation Semantic
of Change Propagation Implementation Validation

Figure 4.8: Ontology Evolution Process

52 CHAPTER 4. RESOURCEOME

The ontology evolution process starts with the Capturing Change phase,
either from explicit requirements or from the change discovery results. In this
phase, Ontology engineers adapt the ontology to some new requirements by
explicit feedback about the ontology’s usability that end-users provide: this
type of changes are called explicit requirements or top-down changes.

In the following, we will sketch how Resourceome can support Ontology
engineers to discover any anomaly during the Capturing Change phase and,
in particular, how Resourceome results to be a suitable knowledge model for
top-down changes.

4.6.1 Usage-Driven Ontology Changes byResourceome

One of the main issues in developing ontologies resides in the hierarchy of
concepts. Stajanovic (2004) defines data-driven change discovery as the is-
sue of deriving ontological changes from the ontology instances by applying
techniques such as data-mining, Formal Concept Analysis (FCA) or various
heuristics. For example, one possible heuristic might be:

If no instance of a concept C uses any of the properties defined for C, but
only properties inherited from the parent concept, C is not necessary.

Another interesting example may be taken always form Stajanovic (2004):

Let us assume that in the initial hierarchy, the concept X has ten sub-
concepts (c1, c2, . . . c10), that is an ontology engineer has found that these ten
concepts correspond to the users’ needs in the best way. However, the usage
of this hierarchy in a longer period of time showed that about 95% of the
users are interested in just three sub-concepts of these ten. This means that
95% of the users, as they browse the hierarchy, find irrelevant 70% of the
sub-concepts.

In order to make this hierarchy more suitable to users’ needs, there would
be two useful ways for re-adapting the initial hierarchy:

Expansion: to move all seven irrelevant subconcepts down in the hierarchy
by grouping them under a new sub-concept g (see Figure 4.9(c) taken
from).

Reduction: to remove all seven irrelevant concepts, while redistributing
their instances into the remaining sub-concepts or the parent concept
4.9(d) taken from).

Thanks to the resources sharing by its domain, the Resourceome model
can play a role in the ontology evolution. Consider the next scenario:

CHAPTER 4. RESOURCEOME 53

Figure 4.9: An example of the non uniformity in the usage of concepts.

Let us assume that in the initial hierarchy, the concept X represents some
concept in the Resource Ontology hierarchy - proposed by an Ontology engi-
neer - while the Domain Ontology contains the following concept definitions:

• Concept(dc1), Concept(dc2) and,

• exatMatch(dc1, dc2),

• where Concept(dc1), Concept(dc2) stand for skos:Concept types .

Let us suppose that users add ten individuals x1, x2, . . . , x10 | X(xi) ∀ 1 ≤
i ≤ 10. After a period of time, the users’ annotations produces the following
configurations:

Case 1(Figura 4.10):

• concerns(xi, dc1), ∀ 1 ≤ i ≤ 9, and

• concerns(x10, dc2).

This situation suggests to the Ontology engineers to expand the hierarchy
by creating a new concept (class) X1 | X1 v X (see Figure 4.11) with an
associated label that specifies the concept dc1, being much relevant of dc2 ,
and moves all instances x1, x2, . . . , x10 belong X1.

54 CHAPTER 4. RESOURCEOME

Resource Domain

x2, ... , x8︸ ︷︷ ︸ x9 x10

X

x1

dc2dc1

Figure 4.10: Case1

Resource

x2, x3, ... , x8︸ ︷︷ ︸
X1

x9 x10

X

x1

Figure 4.11: Case 1 Ontology Evolution.

Case 2:

• concerns(xi, dc1), ∀ 1 ≤ i ≤ 5, and

• concerns(xi, dc2) ∀ 6 ≤ i ≤ 10.

In this case, Ontology engineers can create two new concepts (classes)
X1, X2 | X1 v X, X2 v X and X1 ≡ X2 with associated labels that identify
concepts dc1 and dc1, respectively. After that, all instances must be moved
t.c. X1(xi) ∀ 1 ≤ i ≤ 5 and X2(xi) ∀ 6 ≤ i ≤ 10.

Part IV

Distributed Computation

Chapter 5
Distributed Workflow

This chapter is devoted to define a Petri net-based methodology showing
how a user workflow-based application specification can be translated into
Interactive Components. As a case study, this methodology will be applied in
Hermes [48], an agent-based middleware, for the design and the execution of
activity-based applications in distributed environment introduced above (see
Section 3.3.1 in the background chapter). All these notions are preparatory to
understand Chapter 7, where finally we will present ad integrated framework
consisting of Resourceome and Hermes for running semantic workflows in
distributed environments.

5.1 Workflow Management System

Workflow Management Systems (WMSs) provide an automated framework
for managing intra- and interprise business processes. A WMS is defined by
WfMC as:“A system that defines, creates and manages the execution of work-
flows through the use of software, running on one or more workflow engines,
which is able to interpret the process definition, interact with workflow partic-
ipants and, where required, invoke the use of IT tools and applications.” [61].
The most part of implemented WMS are based on a client/server architec-
tural style. In these systems, the workflow enactment is entrusted to a central
component, that acts as a server and is responsible for the correct execution.
These systems lack the flexibility, scalability and fault tolerance required for
a distributed cross-organizational workflow; in fact a monolithic architecture
does not allow the execution of workflow or parts of it over distributed and
heterogeneous systems. To overcome these limitations, a Migrating Work-
flow Model (MWM) has been proposed in [47]. In this model, instances of a

58 CHAPTER 5. DISTRIBUTED WORKFLOW

workflow or parts of it can migrate; i.e., it is possible to transfer the code and
the whole execution state, including all data gathered during the execution,
between sites participating in workflow’s execution. This model provides two
main benefits. First, migrating workflow decreases efficiently traffic network;
usually code implementing workflow specification is less heavy to transfer
than the amount of data needed during its execution. The second asset
concerns the possibility for the workflow to be executed even in mobile and
weekly network connected devices. This model requires a suitable middle-
ware to guarantee code mobility support.

5.2 Petri nets

A Petri net [57] is a directed bipartite graph with two node types called places
and transitions. The nodes are connected via directed arcs. Connections
between two nodes of the same type are not allowed. Places are represented
by circles and transitions by boxes or bars. According to [56], an ordinary
Petri net can be defined as a 4-tuple, PN = (P, T, F,M0) where:

1. P = {p1, p2, · · · , pm} is a finite set of places,

2. T = {t1, t2, · · · , tn} is a finite set of transitions,

3. F ⊆ (P × T) ∪ (T × P) is a set of arcs (flow relation),

4. M0 : P → N is the initial marking function,

5. P ∩ T = � and P ∪ T 6= �.

Ordinary means that all arcs have weight 1.

A place p is called an input place of a transition t if and only if there exists
a directed arc from t to p. Place p is called an output place of transition t if
and only if there exists a directed arc from p to t. We use •t, t• to denote
respectively the set of input places and the set of output places a transition
t. The notation •p and p• identifies instead the set of transitions sharing p
as input place and as output place respectively.

At any time a place contains zero or more tokens, drawn as black dots.
A marking function M ∈ P → N is the distribution of tokens over places
and represents the state of PN . In this definition we do not consider any
capacity restrictions for places. The number of tokens may change during
the execution of the net.

CHAPTER 5. DISTRIBUTED WORKFLOW 59

Transitions are the active components in a Petri net: they change the state
of the net according to the following firing rule:

1. A transition t is said to be enabled if and only if each input place p is
marked with at least one token.

2. An enabled transition may fire. If transition t fires, then t consumes
one token from each input place p of t and produces one token in each
output place p of t.

5.3 High level Petri nets

A High-level Petri Net (HLPN) [41] is a PN with three main extensions:

• Extension with color - in Coloured Petri Net (CPN) [55] tokens are
typed and each token has a value often referred as color. Transitions
determine the values of the produced tokens on the basis of the values of
the consumed tokens. Moreover preconditions can be specified taking
into account the color of tokens.

• Extension with time - using time extension, tokens receive a timestamp
value that indicates the time from which the token is available. A token
with timestamp 10 is available for the consumption by a transition only
from moment 10. A transition is enabled only at the moment when each
of the tokens to be consumed has a timestamp equal or subsequent to
the current time.

• Extension with hierarchy - hierarchical extension allows to model com-
plex processes more easily by dividing the main process into ever-
smaller subprocesses to overcome the complexity. Here we use the
notation proposed by Wil van der Aalst [62], where a subprocess is a
transition represented by double-border square as Figure 5.1 shows.

5.3.1 Workflow Nets

Workflow Nets (WF-nets) [62] are a subclass of HLPN where tasks are rep-
resented by transitions and conditions by places. A WF-net satisfies two
requirements. First of all, it must contain at least two special places: i and
o. Place i is a source place with •i = �. Place o is a sink place with

60 CHAPTER 5. DISTRIBUTED WORKFLOW

Figure 5.1: A subprocess

o• = �. Secondly, it must hold that if we add a transition t∗ which connect
place o with i - i.e. •t∗ = {o} and t∗• = {i} - then the resulting Petri net
is strongly connected -from each node there exists a directed path to every
other node-. This requirement avoids dangling tasks and/or conditions. In
order to make the WF-net suitable for workflow process modelling a set of
notational extensions was applied to the standard Petri net definition. In
particular, as referred [62], the author of WF-net added to the classical Petri
net transition a set of special transitions (AND split, AND join, XOR split,
XOR join, AND/OR split), shown in Figure 5.2 with their translations, to
express branching decisions in a more compact and user friendly way.

Figure 5.2: Special transitions and their translation

CHAPTER 5. DISTRIBUTED WORKFLOW 61

In the workflow theory [60], routing primitives are defined as a set possible
basic patterns that determine which tasks need to be performed and in which
order.

Using the prevoius defined special transitions as control flow, a set of four
basic routing primitives can be obtained as Figure 5.3 shows:

1. Sequential routing - task A is executed before task B,

2. Alternative routing - either task A or task B are executed non deter-
ministically,

3. Concurrent routing - task A and task B are executed concurrently,

4. Iterative routing - task B is repeated.

In order to model dependencies between the workflow process and its opera-
tive environment three different constructs named “triggers” were added to
the standard Petri net - resource, message and time trigger. In this paper
we will consider only the resource trigger. In this particular case, a trigger is
associated to a specific resource needed to execute a task. As Figure 5.4 we
can consider a trigger as special place linked with the transition representing
a task. When the needed resource is not available this place is empty and

Figure 5.3: Routing primitives

the transition is not enabled, while if it contains a token it means that the
resource is available and the task related to the linked transition could be
executed. In the following sections we will consider interactive components
as computational resources able to execute tasks under particular cases. The
resource trigger can be assigned to every transition and is represented by a
small, self-explaining icon (⇓) near the associated transition symbol as Figure
5.4 shows.

62 CHAPTER 5. DISTRIBUTED WORKFLOW

resource
trigger

no trigger
(automatic)

trigger place

Figure 5.4: Resource trigger

5.4 Adding roles to Workflow Specification

A workflow process specification defines which tasks need to be executed
and in what order. A set of cases, identified by pre- and postcondition,
are handled by executing tasks in a specific order. A task which needs to
be executed for a specific case is called work item [59]. A workflow spec-
ification is the composition of both primitive and complex work items. A
primitive work item can be directly executed. A complex work item - called
subprocess in [59] - must be specified before it can be used; the specifica-
tion of a subprocess is a workflow of complex and primitive work items. By
using subprocesses the specification of workflows is simplified because they
enhance both hierarchical specification and reuse: we can use an already
existing subprocess without having care of its specification. Work items are
generally executed by a resource that can be either a machine - i.e. printer
or a fax -, a computational entity - i.e. an agent - or a person. Resources
are allowed to deal with specific work items. Grouping resources into classes
facilitates the allocation of work items to resources. A resource class based
on the capabilities of its members is called role. A work item which is being
executed by a specific resource is called an activity.

A workflow designer, whose primary expertise is generally in the applica-
tion domain, should be free to focus on coordinating domain specific activities
rather than being concerned with the complexity of a domain specific activity
or resources involved to execute it. Users in fact may ignore the topological
organization of the distributed environment and resource classes available.

The first step of the proposed methodology translates a user workflow
specification to a role-based workflow specification. During this step each
work item is assigned to a role able to perform it. This operation could
be made manually or automatically. In the first case, an expert user can
assign role by itself, while in the second case an activity repository store

CHAPTER 5. DISTRIBUTED WORKFLOW 63

all informations about complex activities and the user knows only there is
an automatic mapping from domain specific work items and activities. This
resource allocation is applied recursively in all work items of each subprocess.

Figure 5.5 shows an example in Bioinformatics. In this case, a bioscientist
has designed an in-silico experiment - shown on the top of the Figure 5.5 -
to globally align some omologous sequences to a given one. This workflow
involves five main work items :

1. get gene seq - given a gene id, retrieves the gene DNA sequence,

2. search genbank omologous - given a DNA sequence, retrieves a set of
DNA sequence omologous from NCBI Genbank [43],

3. search PDB omologous - given a DNA sequence, retrieves a set of DNA
sequence omologous from the Protein Data Bank (PDB)[44],

4. merge seqs - merges two or more set of sequences in a set of sequences,

5. global alignment - given a set of DNA sequences, calculates the global
alignment.

In the Role-based Workflow Specification - shown on the bottom of Fig-
ure 5.5 - subprocesses search genbank omologous, search PDB omologous and
merge seqs are substituted with the corresponding set of primitive work
items. Each primitive work item is assigned to a specific role. In this case
we have three roles A, B and C. Roles are translated into Interactive Com-
ponents in the next step.

5.5 Interactive Components Specification

In the second step, the Role-based Specification is translated into Interactive
Components. In order to specify the behaviour of each component indepen-
dently from the corresponding generated code, we use BRICs [49], another
Petri net-based notation.

In the following, we provide transformation rules to translate WF-net to
BRICs notation.

5.5.1 BRICs notation

Block Representation of Interactive Components (BRICs) [49] is an high-level
language for the design of MultiAgent systems based on a modular approach.
A BRIC component - see Figure 5.6 (a) - is a software structure characterized

64 CHAPTER 5. DISTRIBUTED WORKFLOW

Figure 5.5: From User to Role-Based Workflow Specification

externally by a certain number of input and output terminals and internally
by a set of components.

Every component is an instance of a class, which describes its internal
structure. A structured component is defined by the assembly of the its
subcomponents. The input terminals of the structured components are linked
to the input terminals of the the sub-components and is also possible to
combine terminals of the composite components with sub-components as
showed in Figure 5.6 (b).

The behaviour of elementary components is described in terms of a Petri
net-based formalism. The default net formalism normally used in BRIC is
colored Petri nets with inhibitor arcs.

Figure 5.6 (c) represents the general form of a transition. A transition is
defined by entry arcs, exit arcs and pre-condition of activation. Entry arcs
are carriers of a condition, in the form of the description of a token including
variables. When the place contains a token corresponding to this description,
the arc is validated. There are three categories of entry arcs:

1. Standard arcs, denoted a1, · · · , an, trigger the transition only if they
are all validated consuming tokens which act as triggers and deleting
them from input places.

2. Inhibitor arcs, denoted i1, · · · , im, inhibit the triggering of the transi-
tion if they are enabled without deleting tokens from the input place.

3. Non-consumer arcs, denoted b1, · · · , bk, work as standard arcs, but they
do not delete the input tokens.

CHAPTER 5. DISTRIBUTED WORKFLOW 65

Figure 5.6: BRICs notation

An exit arc associates a transition with an output place producing in this
position new tokens that depend on the tokens used for triggering the tran-
sition. The pre-condition associated with a transition relates to the external
conditions. The components communicate by exchanging information along
communication links which connect output terminals to the input terminals.
Information is transported through the net in the form of tokens.

A token is either an elementary piece of information whose value is a
mere presence or absence, or a predicate in the form p(l1, · · · , ln), where
each li represents a number or a symbol in a finite alphabet. Other important
assumptions concerning this notation are:

1. Input terminals are considered as places, thus names of input terminals
are taken to be place identifiers.

2. Any direct link between an input terminal of an incorporating compo-
nent and an input terminal of incorporated component is assumed to
comprise a transition, in accordance with Petri net design rules.

5.5.2 Mapping roles with structured components

The translation from a role-based workflow to interactive components speci-
fication requires the definition of a structured component skeleton that rep-
resents a role-specific implementation.

As Figure 5.7 shows, the basic skeleton has two essential capabilities.
First, since it must be able to receive messages from the other external com-
ponents asynchronously, we specify a subcomponent called MessagesQueue

66 CHAPTER 5. DISTRIBUTED WORKFLOW

Figure 5.7: Basic skeleton component

Figure 5.8: Scheduler component

that stores messages as colored tokens following a First In First Out (FIFO)
approach. Each message is defined in the form:

<sender>: <address> << <Act, Pre, Pa>

where sender is the identifier of the component sending the message, address
is the identifier of the component to which the message is addressed. Act
and Pre are respectively the activity to be chosen and the pre-condition to
be set, Pa is a possible input parameter for the activity -null value means
no parameters.

In the basic skeleton we specify a second subcomponent, called Scheduler,
providing, as Figure 5.8 shows, a set of places and transitions to receive
tokens from MessagesQueue and to schedule the execution of a set of tasks
following the order and cases defined by the role-based workflow specification.
Scheduler component has four main places:

CHAPTER 5. DISTRIBUTED WORKFLOW 67

Figure 5.9: From Role-Based Workflow to Interactive Components Specifi-
cation

1. Scheduler Input (SI) - a token in this place means a new message for
the scheduler.

2. Schedule Place (SP) - after tA firing produces a colored token in SP in
the form:

<Act, Pre, Pa>

Each Scheduler component contains a set of n Act components and
∀tBi,ki

we define an entry arc ei,ki
with the description:

<i, k, Pa>

where 1 < i < n, 1 < ki < mi and mi is number of pre-conditions for
Acti. A token in SP matching with a description of an entry arc ei,ki

enables the corresponding transition tBi,ki
. The entry arc description

for the transition tD is defined as:

<null, null, null>

68 CHAPTER 5. DISTRIBUTED WORKFLOW

3. Idle Place (IP) - when this place contains a token the Scheduler is
waiting for a new message.

4. Dead Place (SP) - the transition tD when is enabled produce a token
in SP inhibiting the transition tA. Consequently the Scheduler cannot
receive any token in SP place. This place is called dead, because a
token here stops the behaviour of this component. When this happens
tD can produce also a token for the external components to stop their
behaviour too:

<me>: <All> << <null, null, null>

5.5.3 Mapping activities

An Interactive Component (IC) is an executor of a piece of workflow speci-
fication. The final behaviour of an IC is obtained by plugging the activities
of the corresponding role into the basic skeleton previously defined. Each
primitive activity defined in the Role-based specification is associated with
an Act component in ICs specification. Figure 5.10 shows how the routing
constructs in Figure 5.3 are mapped into Act components.

Figure 5.10: Mapping activities

A component Acti contains an input terminal for each pre-condition of
the mapped activities, which are labelled pi,1, · · · , pi,mi

where mi is the num-
ber of the activity pre-conditions. When the routing transition tRi

fires the
token produced in pRi

enable the task transition tTi
-representing a task to

be execute by an IC- is enabled iff IP is not empty. The colored token pro-
duced by tTi

is a message - as previously defined - for its and/or other ICs

CHAPTER 5. DISTRIBUTED WORKFLOW 69

MessageQueue.

5.5.4 An example

Figure 5.9 shows, on the top a Role-based specification using all possible
routing primitives and on the bottom the translation in ICs specification. For
each role in the first corresponds to an IC in the latter. All pre-conditions
and activities are mapped into Act components adding the right routing
transitions and are plugged in the Scheduler of the IC basic skeleton.

An Act component produce at least a message describing which are the
next IC, Act component and input terminal to be reach and an optional
parameter for the task transition. The field address in the message specifies
which are the receiver IC and an entry arc is assumed from this output
terminal and the external input terminal of the IC specified.

Chapter 6
Web Service Integration

Web Services are SOA-based software components that expose specific func-
tionality on the Internet (see Chapter 2 to recall the SOA paradigm). For
this reason, they can be considered resources - and, as a consequence, can be
conceptualized as resources in the Resourceome model - and can be involved
in the definition of workflows - i.e. can be invoked by specific tasks or activ-
ities in the Resourceome model by Web protocols and data formats such as
HTTP and XML.

However, it is well-known that it is very hard to guarantee automatic
interoperability among different applications. This is particularly evident
in the Web scenario, where clients perform run time queries in search of
services, services provide some given capabilities, and both systems try to
automatically communicate by exchanging messages.

Correct service invocations are very difficult to achieve for several reasons
as, for instance, lack of semantic information exposed by the service inter-
action interfaces, their heterogeneity and the fact that the set of exchanged
messages between client and service - called conversation - is not based on a
fairly rigid request-response interaction style. Several standards and models
have been defined in order to fill this gap:

- On the lowest layer, the Web Service Description Language (WSDL)
[96] is the standard used for publishing abstract and concrete descrip-
tions of Web Services - including the schema of exchanged messages, the
name and type of operations that the service exposes and some simple
interaction patterns. A WSDL document is analogous to a collection
of methods and their signatures, together with information about the
syntax of the inputs and the outputs. In particular, the parameters
types are defined by XML Schema [92], which provides a simple syntax
to constrain the operation parameters but does not allow complex con-

72 CHAPTER 6. WEB SERVICE INTEGRATION

straints to be expressed (for instance, in XML Schema it is impossible
to define inter-dependencies and dynamic constraints).

- On the middle layer, a multitude of specifications for describing con-
versations - some examples are [120], [122], [121] and [123] - defines a
structured language expressing (temporal, priority, etc.) relationships
between the exchanged messages.

- On the uppermost layer, concrete platforms provide the client-side gen-
eration of stubs from XML Schema-typed WSDL descriptions for single
and multi-step invocations of Web Services. Stubs allow Web Services
to be invoked by programming languages (e.g. Java). Their basic func-
tionalities are marshalling and unmarshalling of service parameters:
the former functionality is used to serialize parameters to XML format
and to produce a SOAP [97] message, while the latter acts as the vice
versa.

Since on the one hand XML Schema cannot express complex constraints
and, on the other hand, the available models and specifications for client-
server conversations do not express constraints both on message parameters
and transitions among exchanged messages, a classic stub does not allow a
service to be properly invoked and, as a consequence, does not allow a valid
client-server conversation based on valid exchanged messages to be realized
- where valid is intended w.r.t. message parameters and transitions among
exchanged messages.

In this scenario, we propose a theoretical and practical framework for re-
alizing a dynamic monitoring/validation of valid sequences of valid invocation
messages. Our contribution is structured as follows:

- first, we define a framework that preserves static and dynamic integrity
constraints of invocation parameters. The main ingredients of the
framework are: WSDL, CLiX [73], a language for constraint speci-
fication in XML that allows the specification of static and dynamic
integrity constraints, and reflection mechanisms for managing complex
user-defined types. The proposed framework is entirely based on XML-
based technologies and allows only provably correct Web Services in-
vocations be forwarded by client-side checking CLiX formulas.

- then, we define two conversation specification language-independent
models - the first based on first-order guarded automata and the latter
based on attribute grammars - for describing valid client-server conver-
sations.

CHAPTER 6. WEB SERVICE INTEGRATION 73

- finally, we build a parser for realizing a dynamic monitoring/validation
of valid sequences of valid invocation messages.

6.1 A CLiX-constrained WSDL interface

The first step consists of defining an XML-based framework allowing the
client-side automatic generation of stubs, for properly invoking Web Ser-
vices. The proposed framework is presented schematically in Fig. 6.1 and is
described in detail in the following.

Figure 6.1: Client-side automatic generation of valid stubs.

The core of this framework is CLiX, an XML-based logic language allow-
ing constraints on XML documents to be expressed by a mixture of First-
order logic and XPath expressions. On the server side:

- the service WSDL description is enriched with CLiX logic formulas,
expressing static and dynamic integrity constraints of the invocation
parameters, and CLiX formulas are linked to the WSDL document by
a namespace1.

1It follows that CLiX is independent from the service description, i.e. every (XML)
formalism can be freely chosen to describe the service.

74 CHAPTER 6. WEB SERVICE INTEGRATION

- the Web Service makes available the WSDL description of its signature,
the XML Schema modeling inputs and outputs and the set of its specific
CLiX formulas.

On the other side, the client activity consists on two steps:

- producing a stub by means of a concrete platform, starting from the
WSDL description and the XML Schema.

For our purpose, WSDL2Java [80], a concrete platform translating
WSDL descriptions into stubs for invoking services by Java language,
has been modified in order to allow a complex types handling on the
fly.

- checking the (XML) serialized translation of the generated stub w.r.t.
the set of CLiX formulas, before forwarding the service invocation.

The marshalling operation is enriched with OpenCLiXML[74], an open
source Java implementation of the freely available CLiX specification
from Systemwire [119], in order to support the validation of (XML)
serialized stubs w.r.t. both XML Schema and CLiX formulas. In par-
ticular, the validator provides optimized rules processing against data
represented in XML, including inter-document checks.

6.1.1 An Example: Electric Circuits and Kirchhoff’s
First Law

A lot of computational problems (flow control, GIS, optimization, etc.) make
use of graphs; constraints can be very complex and can involve several param-
eters. Consider, for instance, a Web service able to elaborate descriptions of
electric circuits verifying Kirchhoff’s First law. The service models a circuit
as an oriented and weighted graph. Vertexes and edges symbolize crossing
points and conductors, respectively. The edges are oriented and weighted,
since direction and intensity are parameters characterizing the electricity.

In this case, a circuit verifies Kirchhoff’s First law if and only if

At any point in it, where charge density is not changing in time,
the sum of currents flowing towards that point is equal to the sum
of currents flowing away from that point.

A sound electric circuit, i.e. an electric circuit verifying Kirchhoff’s First
law, can be modeled by a graph, equipped by the following constraints:

1. There is no loop;

CHAPTER 6. WEB SERVICE INTEGRATION 75

2. There is no source vertex, i.e. vertex having no incoming edge;

3. There is no shaft vertex, i.e. vertex having no outgoing edge;

4. For every vertex, the sum of incoming edges values equals to the sum
of outgoing edges values.

Notice that some integrity constraints can not be validated at run time,
i.e. on a partial graph, but only when the graph is completed. It suffices to
consider item 4: whenever a vertex is created, the constraint expressed by
item 4 does not hold as long as appropriate edges are added. Even precon-
ditions and postconditions are not useful to validate this constraint before
completing the graph. This fact justifies the use of a validator after mar-
shalling input and output parameters.

Figure 6.2 shows graphically the XML Schema, embedded in the service
WSDL document, modeling the input type (e.g. the graph).

Figure 6.2: XML Schema

The following rules model the constraints expressed in items 1 and 2,
respectively:

<clix:rule id="rule-item1">
<clix:forall var="vertex" in="/graph/vertex">

<clix:forall var="edge" in="$vertex/edge" >
<clix:notEqual op1="$vertex/@id" op2="$edge/@to" />

</clix:forall>
</clix:forall>

</clix:rule>

76 CHAPTER 6. WEB SERVICE INTEGRATION

<clix:rule id="rule-item2">
<clix:forall var="vertex" in="/graph/vertex">

<clix:exists var="edge" in="/graph/vertex/edge" >
<clix:equal op1="$vertex/@id" op2="$edge/@to" />

</clix:exists>
</clix:forall>

</clix:rule>

Regarding item 3, both the constraint expressed by XML Schema (e.g.
every vertex has at least one edge) and CLiX rule-item1 suffice to ensure
that there is no shaft node in the input graph.

Finally, item 4 can be expressed in CLiX as follows:

<clix:rule id="rule-item4">
<clix:forall var="vertex" in="/graph/vertex">

<clix:forall var="edge" in="/graph/vertex/edge">
<clix:equal op1="sum($edge/value)"

op2="sum($edge/@to=$vertex@id)"/>
</clix:forall>

</clix:forall>
</clix:rule>

6.2 Modeling valid constrained client-server

conversations

The next step consists of defining a language-independent model for describ-
ing valid client-server conversations based on valid exchanged messages -
where valid is intended w.r.t. message templates and transitions. Without
loss of generality, we only assume to handle a generic XML-based document
describing conversations, a WSDL document describing message schema2 and
CLiX.

The first model we propose is obtained by extending the boolean guarded
automata model [113] as follows: (i) by imposing first-order logic guards, (ii)
by expressing them as CLiX rules, (iii) by describing message types as WSDL
operation parameters, as well as (iv) by optimizing the automaton memory
representation as a finite vector of XML variables and (v) by modeling the
automaton history - made of sent/received message instances - as a simple
concatenation of XML documents.

The second model we propose is based on attribute grammars [115] -
i.e. context-free grammars equipped with a finite set of attributes, a set of

2The proposed framework also fits on a scenario where message templates are described
by XML schema [92].

CHAPTER 6. WEB SERVICE INTEGRATION 77

evaluation rules and a set of logical conditions for attribute values - which is
more suitable than the first model to build a parser for realizing a dynamic
monitoring/validation of valid sequences of valid invocation messages.

6.3 The FOG automata model

In this section, we define the first model for valid first-order constrained
client-server conversations, where valid is intended w.r.t. a set of CLiX rules.

Notation 6.3.1 We denote by W c a generic (XML-based) document de-
scribing a client-server conversation; by Wm a generic XML-based docu-
ment containing the templates of any Wc conversation message, and by G
a set of CLiX rules constraining Wc and Wm (message) XML elements; by
M = {mk|k ∈ [1...n], n ≥ 1} the finite set of message types involved in Wc

and described in Wm; by Mi and Mo the finite sets of respectively inbound
and outbound message types in M = Mi∪Mo; by x(d) the d’s XML scheme.

First, we abstract from the tuple 〈Wc,Wm ,G〉, replacing it with its guarded
automaton-based representation.

Definition 6.3.1 A First-Order guarded (FOG) automaton associated to
〈Wc,Wm ,G〉 is A=〈S,M,H, q0, qn, δ,G〉, where:
i. S = {qt | t ∈ [0...n], n ∈ N} is a finite set of states;
ii. M = Mi ∪Mo is as above described;
iii. H = 〈h1, ..., h|M |〉 is a vector of XML local variables, where ∀j ∈
[1...|M |], vj is associated to mj ∈M ;
iv. qo ∈ S is the initial state and qn ∈ S is the final state3;
v. G={g(i,k) = g(qi,mk, 〈d1, ..., d|M |〉) CLiX rule}, such that qi ∈ S, mk ∈M
and ∀j ∈ [1...|M |], dj ∈ {hj(i), λ}.
vi. δ = {(qi, (l, g(i,k)), Qi)} is a state transition relation, where qi ∈ S, Qi ⊆ S,
l ∈ {mk|mk ∈Mi} ∪ {mk|mk ∈Mo} and g(i,k) ∈ G.

Message types and local variables are XML documents. Each local vari-
able hj in H corresponds to a message types mj in M . ∀qi ∈ S and
∀j ∈ [1...|M |], hj(i) denotes an XML document - the history of mj until
the state qi - obtained by enqueuing all the sent/received message instances,
until the state qi, that correspond to the type mj. Each transition τ ∈ δ is
in one of the following two forms:
(receive-transition) τ = (qi, (mk, g(i,k)), Qi), where mk ∈ Mi: the transition
nondeterministically changes the state of the automaton from qi to qp ∈ Qi,

3q0 and qn can coincide.

78 CHAPTER 6. WEB SERVICE INTEGRATION

it removes the received message instance (of type mk) from the input queue
and it updates hk in H, corresponding to mk, by the concatenation of the
received instance, in the case g(i,k) holds;

(send-transition) τ = (qi, (mk, g(i,k)), Qi), where mk ∈ Mo: the transition
nondeterministically changes the state of the automaton from qi to qp ∈ Qi,
it appends the sent message instance (of type mk) to the input queue of the
client and it updates hk ∈ H, corresponding to mk, by the concatenation of
the sent instance, in the case g(i,k) holds.

Definition 6.3.2 Let A = 〈S,M,H, q0, qn, δ,G〉 be a FOG automaton as-
sociated to 〈Wc,Wm ,G〉. Given a guard g(i,k) = g(qi,mk, 〈d1, ..., d|M |〉) ∈ G,
〈d1, ..., d|M |〉 denotes the actual context in qi of g(i,k), obtained filtering out all
the local variables such that no XML attribute of theirs is involved in g(i,k).

Notation 6.3.2 Let Wm be a WSDL document. We denote by Om the set
of operation in Wm; for every o ∈ Om, by pin(o) and pout(o) the sets of
respectively input and output/fault parameters of o. We also assume that
Wc and Wm are related as follows: for each operation o ∈ Om, for every
pk ∈ pin(o) (resp. pout(o)), for every mk ∈ Mi (resp. Mo), x(mk) = x(pk)
holds. We formally define this kind of relationship between Wc and Wm as
follows.

Definition 6.3.3 Let A = 〈S,M,H, q0, qn, δ,G〉 be a FOG automaton asso-
ciated to 〈Wc,Wm ,G〉, and let Wm be a WSDL document. W = 〈A,Wm〉 is
stable if and only if ∀qi1 ∈ S such that (qi1 , (mk1 , g(i1,k1)), Qi1) ∈ δ:
i. ∃o ∈ Om s.t. pin(o) = {pk1} and x(pk1) = x(mk1);

ii.∃qih ∈Qi1(2 ≤ h ≤ 3) s.t. (qih ,(mkh
,g(ih,kh)),Qih) ∈ δ iff pout(o) ={pkh

| 2 ≤
h ≤ 3} and x(pkh

)=x(mkh
).

The stability assumption (Definition 6.3.3) implies that it is possible to
use everywhere the WSDL operation parameter pk in place of the message
mk, and that the actual context of any guard in G only involves Wm operation
parameter XML schema.

6.4 The FOA grammar model

In the following, we introduce some background knowledge on the attribute
grammar model. Expert readers can skip the topic and jump to Section 6.5.

CHAPTER 6. WEB SERVICE INTEGRATION 79

Definition 6.4.1 A context-free grammar is a tuple G = 〈N, T, s,P〉, where
N is a finite set of nonterminal symbols, T is a finite set of terminal symbols,
s ∈ N is the start symbol and P is a set of productions of the form X0 ::=
X1X2 . . . Xm−1Xm, where X0 ∈ N , X1X2 . . . Xm−1Xm ∈ (N∪T)+ and m ≥ 1.

The language associated to a context-free grammar G is denoted by L(G)
and it is the set of strings w ∈ T ∗ which can be derived by the start symbol
s applying a finite number of productions in P :

L(G) = {w ∈ T ∗| s ∗
=⇒ w}

where S
∗

=⇒ w means that s = β0 =⇒ β1 =⇒ . . . =⇒ βk−1 =⇒ βk = w, and
∀i ∈ [1..k], βi−1 =⇒ βi means that βi−1 = uX0v, βi = uX1X2 . . . Xmv and
X0 ::= X1X2 . . . Xm−1Xm ∈ P .

Definition 6.4.2 A derivation tree t over a context-free grammar G is a
tree labeled with symbols from (N ∪ T) s.t.:
i. the root of t is labeled with s;
ii. for every interior node n0 with children n1, . . . , nm, there exists a pro-
duction X0 ::= X1X2 . . . Xm−1Xm such that ∀i ∈ [0..m], lab(ni) = Xi (in
left-to-right order), where lab(ni) denotes the label of the node ni;
iii. every leaf node is labeled with a terminal.

We denote by tG(w) a derivation tree over G, where w = lab(f1) . . . lab(fh)
and ∀j ∈ [1..h], fj is a leaf node in tG(w). Obviously L(G) = {w ∈ T ∗|∃t =
tG(w)}.

Now, we can give the definition of a First-order attribute (FOA) grammar.

Definition 6.4.3 A FOA grammarG is a context-free grammarG=〈N, T, s,P〉,
enriched with the following elements:

i. Attribute grammar vocabulary: it is a tuple 〈At,S,I,A〉:
- At is a finite set of attributes;
- S, I, A are functions from (N ∪ T) to the powerset of At;
- ∀X ∈ (N ∪ T), A(X) = I(X) ∪ S(X) is the set of attributes, I(X) is the
set of inherited attributes, S(X) is the set of synthesized attributes of X;
- ∀X ∈ N , I(X) ∩ S(X) = ∅;
- ∀X ∈ T , S(X) = I(X) = ∅;
- I(S) = ∅.
ii. Evaluation rules: Denoting D(A(X)) the semantic domain of A(X), then
∀X0 ::= X1...Xm ∈ P , it holds:
- ∀A ∈ S(X0) there is a function

80 CHAPTER 6. WEB SERVICE INTEGRATION

r1 :D(A(X1))×..×D(A(Xm)×D(I(X0)) 7−→ D(S(X0));
- ∀A ∈ I(Xk) (k ∈ [1..m]) there is a function
r2 :D(A(X0))×D(S(X1))×..×D(S(Xm)) 7−→ D(I(Xk));

iii. First-order logical conditions: ∀X0 ::= X1...Xm ∈ P , there is a set of
first-order logical formulas

{φ | φ is defined on D(A(X0))× ..×D(A(Xm))}.

Definition 6.4.4 Given a FOA grammar G, a derivation tree tG(w) over G
is valid if and only if (i) all the attribute values conform to the evaluation
rules and (ii) all the logical conditions are true.

Definition 6.4.5 The language associated to a FOA grammar G is L(G)=
{w ∈ T ∗|∃t= tG(w) and tG(w) is valid}.

FOA grammar specifications define the dependencies among attributes.
Such specifications must exhibit certain properties - for instance, depen-
dencies must not be circular. However, there are methods transforming an
attribute grammar in such a way such properties hold.

6.5 From FOG automata to FOA grammars

It is not surprising that a conversation specification is closely related to the
finite state automata formalism: in fact, a conversation can be viewed as
a sequence of message symbols accepted from a finite state automaton. At
the same time, a guarded automaton can be mapped into a regular attribute
grammar4, and also the vice versa: Proposition 6.5.1 is an example of encod-
ing from guarded automata into (regular) attribute grammars.

Regarding the expressive power on boolean logic of guarded automata -
i.e. regular attribute grammars - w.r.t. non-regular attribute grammars, the
main results are summarized in [117, 116]: (i) guarded automata can accept
the same class of languages as Turing machines; (ii) the terminating guarded
automata with finite variable domains accept regular languages; (iii) simple
guarded automata - with unrestricted variable domains - can accept at least
some context sensitive languages; (iv) guarded automata, where attributes
are set of variables without structure, cannot accept context-free languages.

If we take into account first-order logic, it is not so clear how regular at-
tribute grammars and non-regular ones are related in term of expressiveness.
Anyway, we could think about first-order constrained conversations which

4A regular attribute grammar is an attribute grammar where the unconstrained set of
productions is regular, in the sense of Chomsky’s language hierarchy.

CHAPTER 6. WEB SERVICE INTEGRATION 81

can be easier specified by non-regular attribute grammars than by regular
ones: it suffices to take into account any conversation where the sequence
of invocations includes either operation trade-off or memory-based proper-
ties. For instance, consider the non-regular attribute grammar G with start
symbol s and set of productions P so defined:

{s ::=m1Bm2 g1(m1,m2);B ::=m1m2 g2(m1,m2)}
where g1 and g2 a first-order logical conditions on m1,m2.

G models a conversation where (i) two WSDL operations, we say O1 and
O2, are defined with input parameters respectively m1 and m2, (ii) the se-
quence of O1 (invocations) has to precede the one of O2, (iii) the number of O1

(invocations) equals the one of O2, and (iv) for any O1 and O2 (invocation),
constraints g1 and g2 have to be satisfied.

Although guarded automata are suitable to specify the most of existing
conversations, attribute grammars look as a good compromise in terms of
expressivity, constraint complexity and amount of variables - above all for
modeling more complex (i.e. non-regular) conversations. For this reason,
the input for our monitoring/validation framework is given in the form of at-
tribute grammar. Another reason behind the choice of specifying constrained
conversations in the form of attribute grammars is related to constraint as-
pects: the scope of a conversation constraint includes both message tem-
plates and transitions; it follows that a constraint can be put neither only
in a conversation document - since here we could only define conditions to
able/disable message transitions - nor in a WSDL document - since here we
could only define conditions to well-type messages. Logical conditions in at-
tribute grammars are associated to productions (i.e. transitions) and they
involve symbol attributes (i.e message attributes): for this reason, they look
suitable to encode conversation constraints.

In the following, we define an attribute grammar associated to a conver-
sation C = 〈Wc,Wm ,G〉 by encoding a guarded automaton associated to C
into the attribute grammar formalism.

Definition 6.5.1 Let W = 〈A,Wm〉 be stable. A FOA grammar GW =
〈N, T, s,P〉 associated to A = 〈S,M,H, q0, qn, δ,G〉 is defined as follows:

i. T = {I(m i)|mi ∈Mi} ∪ {O(m o)|mo ∈Mo};
ii. N = {< Q j >| qj ∈ S};
iii. s = < Q 0 >;

iv. P = Prq ∪ Prs, where:
Prq = {< Q i > ::= I(m k)< Q j > g(i,k)} ∪

{< Q l > ::= I(m h) g(l,h)} s.t.

82 CHAPTER 6. WEB SERVICE INTEGRATION

qi, qj,ql∈S, qj ∈Qi(j 6= n), qn ∈ Ql, (qi, (mk, g(i,k)), Qi), (ql,(mh, g(l,h)),Ql)∈δ;
Prs = {< Q i > ::= O(m k)< Q j > g(i,k)} ∪

{< Q l > ::= O(m h) g(l,h)} s.t.

qi, qj,ql∈S, qj ∈Qi(j 6= n), qn ∈ Ql, (qi, (mk, g(i,k)), Qi), (ql, (mh, g(l,h)), Ql)∈
δ;

v. (Attribute grammar vocabulary): it is a tuple 〈At,S,I,A〉:
- At = H;

- For every < Q i > ∈ N , A(< Q i >) = I(< Q i >) = 〈h1(i), ..., h|M |(i)〉
(i.e. S(< Q i >) = ∅);
- I(< Q 0 >) = 〈h1(0), ..., h|M |(0)〉, where ∀j ∈ [1...|M |], hj(0) = λ;

vi. Evaluation rules: For every < Q i > ::= I/O(m k) < Q j > g(i,k) in P ,
there is the function r2 such that r2(〈h1(i), ..., h|M |(i)〉) = 〈h1(j), ..., h|M |(j)〉;
vii. (First-order logical conditions): Given< Q i > ::= I/O(m k)< Q j >g(i,k)

(respectively < Q i > ::= I/O(m k) g(i,k)) in P , g(i,k) is the CLiX rule associ-
ated to the transition (qi, (mk/mk, g(i,k)), Qi) ∈ δ ((qi., (mk/mk, g(i,k)), Qi) ∈ δ
and qn ∈ Qi).

Notice that client’s and service’s productions belong to the same grammar
GW; however, there is no ambiguity among productions corresponding to
client’s requests (Prq) and the ones corresponding to service’s responses (Prs).

6.6 A parser for valid sequences of valid in-

vocation stubs

In the following, we describe in detail the monitoring/validation framework,
based on attribute grammars.

1. Let C = 〈Wc,Wm ,G〉 be a constrained client-server conversation, where
Wm is a WSDL document - being Wm and Wc syntactically related by
a stability relationship - and G is a CLiX rule document. C can be in
the form of either an XML-formatted guarded automaton or an XML-
formatted attribute grammar. In the first case, a slave parser worries
to translate it in the form of an associated XML-formatted attribute
grammar GW.

2. Given GW, the slave parser links by namespaces respectively nonter-
minals with WSDL operations, terminals with WSDL operation pa-
rameters, CLiX rule arguments with WSDL element attributes. It also

CHAPTER 6. WEB SERVICE INTEGRATION 83

marks grammar productions in order to distinguish those ones corre-
sponding to client’s requests and those ones corresponding to service’s
responses.

3. A programmer freely uses S to write any client’s business logic involving
any operation invocation sequence. We denote by S the stub produced
by WSDL2Java and by J a client business logic on S j0; q 1.Invoke(m i1);
j1[(m o1)]; q 2.Invoke(m i2); j2[(m o2)]; ...; q n.Invoke(m in); jn[(m on)].

q x.Invoke(m ix) denotes the invocation of a method Invoke on q x

with input instance m ix, and its effects consist of (i) marshalling and
packing a SOAP message to invoke the corresponding WSDL operation
ox with the corresponding input instance mix - that associated to m ix5,
and (ii) activating a master parser. j0 denotes any Java code which does
not involve an invocation, and jx[(m ox)] denotes any Java code which
does not involve an invocation and possibly involves an output/fault
instance mox - that one associated to m ox6 - relative to a previous
invoked operation ox.

4. The master parser inputs GW and Wm. Since (i) nonterminals and
terminals in GW are linked by namespaces to respectively Wm opera-
tions and operation parameters, then any grammar production of the
form < Q x > ::= I(m ix) [< Q j >]7 g(x,ix) corresponds to a pos-
sible q x.Invoke(m ix). The master parser looks for deriving in GW

m i1[m o1]m i2[m o2]...m in[m on]8.

(Request case) The master parser triggers an error when q x.Invoke(m ix)
in J is not correct w.r.t. the conversation protocol, i.e. when it cannot
apply a production < Q x > ::= I(m ix) [< Q j >] g(x,ix).

(Response case) Analogously, it triggers an error whenever a jx(m ox)
in J is not correct w.r.t. the conversation protocol, i.e. when it cannot
apply a production < Q x > ::= O(m ox) [< Q j >] g(x,ox). Otherwise,
it invokes the validator OpenCLiXML.

5A SOAP message contains all the WSDL operation, input - and eventually output/-
fault - message names involved in the current invocation.

6The symbol [(m ox)] denotes zero or one occurrences of (m ox) - i.e. respectively jx
and jx(m ox). The latter denotes the case when the code involves an output/fault instance
associated to m ox and relative to a previous invoked operation ox, where ox prototype
includes an output/fault parameter mox. We recall that the correspondence is contained
into the received SOAP message.

7The symbol [< Q j >] denotes zero or one occurrences of < Q j >.
8The symbol [m ox] denotes zero or one occurrences of m ox.

84 CHAPTER 6. WEB SERVICE INTEGRATION

5. OpenCLiXML checks m ix (respectively m ox) w.r.t. the CLiX rule
linked to g(x,ix) (respectively to g(x,ox)) and an XML history document
H, containing the concatenation of all the input and output/fault in-
stances.

- If the validation is positive:

(Request case) the SOAP message generated from q x.Invoke(m ix) is
forwarded to the network (i.e. the invocation is fired) and the input
instance contained in it is appended in H.

(Response case) the output instance is extracted from the received
SOAP message, it is appended in H, it is unmarshalled and the corre-
sponding object is assigned to m ox.

- In the opposite case: the master parser catches the OpenCLiXML
exception and it returns informations about the error. In the (Request
case) the invocation is not fired.

The above procedure allows the programmer: (i) to automatically gen-
erate a message sequence m i1[m o1]m i2[m o2]...m in[m on] which belongs to
the conversation protocol associated to the service; (ii) to forward an invoca-
tion message only after a validation step (items 5-6) - hence without waiting
for service acks, error messages and other additional informations; (iii) to
precisely detect which requests(/responses) have triggered an error.

Fig.6.3 shows the monitoring/validation framework in terms of relation-
ships among components. Labels in boxes denote documents, those ones in
ovals denote processes and those ones in diamonds denote exceptions.

6.7 A simple authentication service

Suppose to design a simple authentication service as follows: (i) the client
is required either to register by a Registration form, or to login by a Login
form; (ii) after filling a Registration form, the client can only access to a
Login one; (iii) after filling a Login form, the client is allowed to enter the
system only if either it has already registered in a past session and login user-
name is valid, or he has just filled a Registration form in the current session
and login username is valid; (iv) the allowed max number of failed logins is
3. In terms of WSDL document, we could define a Login operation, with
LoginRQ as input parameter, ValidLoginRS and InvalidLoginRS re-
spectively as output and fault parameters, and a Registration operation,
with RegistrationRQ and RegistrationRS respectively as input and
output parameters.

A FOA grammar GW is defined in the following.

CHAPTER 6. WEB SERVICE INTEGRATION 85

client side server side

GW

Wm

Wc

G

Wm

Wc

G

S J

H

OpenCLiXML

WSDL2Java

slave parser

master parser

exception

1

Figure 6.3: The monitoring/validation framework.

< Q 0 > ::= < Q 1Registration > < Q 2Login >

< Q 1Registration > ::= I(m 1)< Q 3OutRegistration >

< Q 2Login > ::= I(m 2)< Q 4OutLogin > rule1 ∧ rule2
< Q 3OutRegistration > ::= O(m 3)< Q 2Login >

< Q 4OutLogin > ::= O(m 4)< Q 1Registration >

O(m 4)< Q 2Login > O(m 5)

m1 = RegistrationRQ m4 = InvalidLoginRS
m2 = LoginRQ m5 = ValidLoginRS
m3 = RegistrationRS

rule1 :
context LoginRQ inv :
(self.RegistrationRS− > notEmpty() &&
self.RegistrationRS.RegistrationRQ− > notEmpty()) implies
self.RegistrationRS.RegistrationRQ.login = self.username

rule2 :
context LoginRQ inv :
LoginRQ.allInstances− > count(InvalidLoginRS) <= 3

For simplicity, the grammar is not in XML format and constraints are
written as OCL formulas9. At this aim, Fig.8.3 shows the authentication

9It is well-known that the first-order logical fragment of OCL can be encoded into

86 CHAPTER 6. WEB SERVICE INTEGRATION

RegistrationRQ
username
password

RegistrationRS
...

LoginRQ
username
password

ValidLoginRS
...

InvalidLoginRS
...

context LoginRQ inv:
self.RegistrationRS->notEmpty() &&
self.RegistrationRS.RegistrationRQ->notEmpty() implies
self.RegistrationRS.RegistrationRQ.username=self.username

context LoginRQ inv:
LoginRQ.allInstances->count(InvalidLoginRS) <= 3

0..1 0..1

RegistrationRQ RegistrationRS

RegistrationRS

LoginRS

0..1

0..1

0..1

0..1ValidLoginRS

LoginRS

0..10..1

LoginRQInvalidLoginRS

0..1 0..1

InvalidLoginRS LoginRQ

InvalidLoginRS

RegistrationRQ0..1

0..1

1

Figure 6.4: The authentication protocol Class Diagram.

protocol above described in term of Class Diagram. Each class models an
operation parameter with its WSDL attributes; analogously, each OCL for-
mula translates a constraint. LoginRQ.allInstances denotes the set of
LoginRQ instances, while LoginRQ.allInstances->
count(InvalidLoginRS) denotes the number of LoginRQ instances as-
sociated to InvalidLoginRS ones.

CLiX.

Part V

Implementation

Chapter 7
Resourceome Knowledge
Management

Information systems aim to give support to the individual user for informa-
tion access, retrieval and store. In order to support knowledge workers during
their tasks of information search, location, and manipulation, a system must
provide information suitable for a particular user needs, and it must be able
to facilitate the information sharing and reusage. The Knowledge Manage-
ment and its associated tools aim to provide an environment where people
may create, learn, share, use and reuse knowledge, for the benefit of the
organization, the people who works in it, and the organization’s customers.

In this chapter, we describe how the Resourceome multi-level model can
provide the above mentioned features, as well as can capture and share the
procedural knowledge. Another aspect of Resourceome model is that it can
be used for the collaborative ontology development.

7.1 Resourceome Knowledge Lifecycle

TheResourceome model allows domain-experts to add and share both declar-
ative and procedural proper knowledge in every kind of domain. Now we will
describe the Resourceome lifecycle and how it can be used to make proce-
dural knowledge explicit. Making procedural knowledge explicit can be done
using the business process modeling (BPM) approach. In the literature there
is no uniform point of view on the BPM lifecycle number of phases. It varies
depending on the chosen granularity to identify the phases. Basically, there
are the following phases: process modeling, process implementation, process
execution, and process analysis. Usually business analysts or business man-

90 CHAPTER 7. RESOURCEOME KNOWLEDGE MANAGEMENT

agers create process models and analyze process models from the business
point of view while IT engineers are involved in process implementation and
execution phases.

!
Execution

design

Results

Declarative Knowledge

Procedural Knowledge

R
es
o
u
rc
e

D
o
m
ai
n

T
as
k

XPDL-BPMN ontology

process
ontology

1

Figure 7.1: Resourceome Knowledge Lifecycle Idea.

A business process consists of a set of activities that are executed in some
organization according to some rules in order to achieve certain goals. It is
now well-accepted that there are different aspects of the business processes
that can be modeled and investigated independently. The three basic aspects
are:

Behavioural: The behavioural aspect defines the order in which the tasks
of a business process are instantiated and in which the correspond-
ing activities are executed. Note that the order of the execution does
not need to be sequential, it can be a partial order representing the
dependencies among the activities.

Organizational: Describes the organization structure and, in particular,
the resources and agents.

CHAPTER 7. RESOURCEOME KNOWLEDGE MANAGEMENT 91

Informational: All information involved in a business process can be con-
sidered to be documents or resource1, where a document is an artifact
representing some piece of information.

As previously introduced, the Resourceome model can specify the orga-
nizational and informational aspect of a business process in some context or
domain since:

• it allows us to define activities in the Task Ontology, as well as the
relations between them and the relations that describe the resources
that are needed by the activities themselves;

• it allows business process behaviour to be specified independently from
a specific formalism.

Moreover, Resourceome makes possible to specify procedural knowledge.
It is well-known that a workflow is a partial or total automation of a process,
in which a collection of activities must be executed according to certain
procedural rules. The main advantages of automated workflows relate to
effectiveness, reproducibility, reusability of procedures and of intermediate
results and traceability. Sometimes, domain experts are able to define the
proper workflow and they would like to share and execute the proper workflow
on the fly without involving IT engineers, even if the program could give
incorrect output results. This kind of approach allows to specify procedural
workflow by domain experts driven by semantics. This specified workflow
represents the base knowledge of procedural knowledge, while the running
workflow results can enrich the Resourceome base knowledge adding new
resources (individuals) (Fig. 7.1).

7.2 Models and Meta-models

In this section, we discuss the concepts of models, meta-models and (work-
flow) instances. We focus on the concepts of workflow models, typically based
on control-flow captured in procedural process notations.

A model is an abstraction of the real world. In this case, we can use
different formalism to define behavioural aspect of workflow, for instances
the Petri Nets and Workflow Nets. In order to use a formalism, we need to
define its concepts and notation. This can be done by providing a meta-model

1In some systems, information is stored in a relational database. In those cases, we
can consider the tuples in the database as documents. Other information can be stored
or captured by the Web Service meaning.

92 CHAPTER 7. RESOURCEOME KNOWLEDGE MANAGEMENT

for the formalism, thus the meta-model defines the language used to express
the model. OWL can be used to define this meta-model. In Resourceome
we use XPDL ontology as meta-model and a Web based workflow editor
tool based on WF-nets as a model. The instance of the workflow, a XPDL
ontology instance represents the procedural base knowledge. XPDL can be
also executed by a workflow engine.

7.2.1 XPDL ontology

XPDL has been introduced to allow process model exchange between infor-
mation systems, most of which are based on proprietary workflow models. A
detailed XPDL-ontology description can be found in the appendix B(pag. 131).
Now we will focus on some advanced features of ontologized XPDL.

XPDL-ontology represents the informal underlying semantics of XPDL in
a formal and expressive Web ontology language. Adding semantics to XPDL
using OWL, allows reasoning and sharing of the processes definition. The
ontologized process XPDL model can be interlinked and enriched with busi-
ness knowledge in existing background ontologies, in our case Resourceome.
Another feature is the interchanging resource in the workflow execution when-
ever some resources are not available. In this scenario the workflow engine can
use an equivalent resource involved in the activity if the equivalent resource is
defined in the ontology. The basic aspect defined above, mbehavioural, rgan-
isational and informational can be mapped in XPDL ontology as follows:

Behavioural: (Control Aspect) Process type constitutes the primary mod-
elling element. It groups related activities, data, and resources to-
gether. Activities in XPDL represents the reusable task behaviour in a
process and takes one of the following types, a triggered event, a route
activity that constrains the ordering of activities or a block activity;

Organisational: The organisational aspect in an XPDL document is only
weakly defined; a process participant is simply a token of the follow-
ing types: resource set, resource, organizational unit, role, human, or
system. Anyway resources, as well as the other types, can be linked to
the Resourceome axiomatized formal ontology, providing in this way
formal semantics.

Informational: As the organizational aspect, we provides semantics using
Resourceome.

CHAPTER 7. RESOURCEOME KNOWLEDGE MANAGEMENT 93

7.2.2 Resourceome KMS architecture

The main actors, which are involved in Resourceome KMS, are:

• the Resourceome knowledge model as a registry of available resources
and activities;

• a Web-based graphical interface for composing, entering data, watching
execution, displaying results;

• an archive to store and share workflow descriptions, results of execu-
tions and related traces;

• a set of programming interfaces able to dialogue with remote activities;

• a set of visualization capabilities for displaying different types of results.

A workflow specification is translated into a workflow engine by means of
a compilation process involving three main components:

The graphical interface: it enables the definition of workflow as (primi-
tive and complex) activity in the XML Process Definition Language
(XPDL) [194] and XPDL ontology, as well as the execution of existing
or previous saved workflows, the monitoring of their execution state
and the management of the produced results.

An XPDL compiler: it is an Hermes special component which trans-
lates workflows specifications into interactive component-based specifi-
cations and generates the code to be executed on Hermes middleware
(see below). The associated workflow specification is the coordination
model that describes how the generated agents cooperate to reach a
particular goal.

Hermes middleware: it provides the run-time environment for executing
of workflows as mobile and distributed code. In particular, it enables,
transparently to users, the interaction with the external resources, i.e.
invoked applications, and the migration of workflow executors to dif-
ferent sites.

Resourceome tool is a software 3-layer software architecture as shown in
Fig. 7.2: user layer, system layer and runtime-layer.

• At the user layer, it allow managing both declarative and procedural
knowledge by means of adding new instance resource and and specify
their application as a workflow of activities using the graphical nota-
tion.

94 CHAPTER 7. RESOURCEOME KNOWLEDGE MANAGEMENT

• At the system layer, it provides a context-aware compiler to generate
a pool of user mobile agents from the workflow specification.

• At the run-time layer, it supports the activation of a set of specialized
service agents, and it provides all necessary components to support
agent mobility and communication.

The main difference between the run-time layer and the system layer
is how agents function in each. ServiceAgents in the run-time layer are
localized to one platform to interface with the local execution environment.
UserAgents in the system layer are workflow executors, created for a specific
goal that, in theory, can be reached in a finite time by interacting with other
agents. Afterwards that agent dies. Furthermore, for security UserAgents
can access a local resource only by interacting with ServiceAgent that is the
“guard” of the resource.

It follows a detailed description of the main components and functionali-
ties of each layer.

User Layer

The user layer is based on both ontology and workflow technologies. While
theResourceome knowledge management system, using a graphical interface,
provides the knowledge based of the application domain, the Resourceome
workflow management system provides to users a set of programs for inter-
acting with the workflow management system. In particular, there are two
main groups of programs: programs for specifying, managing and reusing
existing workflow specifications, and programs enabling administration and
direct interaction with the workflow management system. The workflow ed-
itor is the program that supports the workflows specification by composing
activities in a graphical environment. Activities used in a workflow are con-
figured by specifying input parameters and their effects are recognizable as
modification of state variables or modification on the environment’s status.

The workflow editor enables the composition of both primitive and com-
plex activities. A primitive activity is an activity that can be directly exe-
cuted. Users can specify primitive activity without knowing the real imple-
mentation. A complex activity is an activity that must be specified before it
can be used.

By using complex activities the specification of workflows is simplified
because they enhance both hierarchical specification and reuse: we can use
an already existing complex activity without caring of its specification.

Users can use complex activities and stored workflows to increase pro-
ductivity when specifying new workflows. Moreover, large libraries of both

CHAPTER 7. RESOURCEOME KNOWLEDGE MANAGEMENT 95

Figure 7.2: Hermes Software Architecture

domain specific primitives and complex activities can be loaded to specialize
the editor for a specific application domain.

System Layer

System Layer provides the needed environment to map a user-level workflow
into a set of primitive activities. The execution of such activities is coordi-
nated by a suitable model: it implements them at user level by autonomous
software entities UserAgent, able to react to the environment changes where
they are executed; moreover, it hides any implementation details at the ex-
ecution environment. Finally, a compiler generates a pool of user mobile

96 CHAPTER 7. RESOURCEOME KNOWLEDGE MANAGEMENT

agents from the workflow specification.

Run-time Layer

Run-time Layer, at the bottom of the architecture, provides primitives and
services which are essential for agent mobility and resource access. The kernel
is the Hermes platform for mobile computing, which provides primitives
for discovery, mobility, communication, and security. As already described,
the overall structure of the system is very complex, it supports abstract
specifications that are mapped into a complex distributed and coordinated
flows of activities over a large-scale distributed system.

7.2.3 XPDLCompiler

XPDLCompiler receives an XPDL document and generates the Java bytecode
implementing Interactive Components. A lexical and syntax analyzer per-
forms the validation and the parsing of the XPDL document using the Java
Architecture XML Binding [58]. After this first phase, the compiler checks if
the activities used in the workflow specification have a corresponding imple-
mentation in UAIR (User Implementation Activity Repository). Each role
is translated in an Agent skeleton, an extension of Hermes UserAgent Java
class. As Figure 7.3 shows, a UserAgent provides the needed communication
methods to interact with other UserAgents. Then, for each activity, the cor-
responding implementation code in UAIR is plugged into an Agent skeleton
and each internal scheduler is set. The Java code generation is performed us-
ing Apache Velocity (http://jakarta.apache.org/velocity/) template engine.
Finally, using the Java compiler, the generated bytecode can be loaded into
Hermes middleware.

In order to handle this complexity and to support the reusability of ex-
isting artifact during the development of a middleware system for a specific
application domain, we designed Hermes kernel following a component-
based [33] approach.

CHAPTER 7. RESOURCEOME KNOWLEDGE MANAGEMENT 97

Figure 7.3: UserAgent and Agent main methods

Part VI

Biology Application Domain

Chapter 8
Application Domain

8.1 Bioinformatics Resources

We introduce the reader to the universe of bioinformatics, concentrating
our attention on bioinformatics resources, like e.g. databases, articles and
programs.

8.1.1 A Universe in Expansion

Bioinformatics can be seen as a very dynamic and turbulent universe in con-
tinuous expansion. Its expansion speed is increasing and new regions are
suddenly created. Bursts of new topics [167] can be often observed as well
as the deadening of other ones. Buzzwords quickly enter the scene [163].
Metaphors are frequently used in teaching and research as well as in divul-
gation of science. One of the most famous metaphors in life science paints
the genome as the “book of life” [174].

Bioinformatics originates from the encounter of the two universes of com-
puter science and life sciences. The growing amount of knowledge acquired
in molecular biology, coupled with the technological evolutions (constant
improvements and miniaturizations; the first impacts from the nanotech-
nologies) initiated to produce unimaginable quantity of data. Therefore the
marriage with a science able to organize, manage, elaborate and represent
such heaps of information was an unavoidable one. On the other hand, also
the (much more recent than biology) science of informatics is strongly charac-
terized by constant technological advancement and exponential growth. The
empirical Moore’s law1 (the number of transistors on a chip doubles about

1http://www.intel.com/technology/mooreslaw/

102 CHAPTER 8. APPLICATION DOMAIN

every two years) can naturally be transferred from semiconductor industry
to many other fields (e.g. growth of DNA sequence database, number of
internet Web sites). The whole system evolves as a positive feedback circuit.
From data, new information and knowledge are derived, in turn catalyzing
new technologies which consequently yield higher amount of data. Scientists
working in this area are becoming used to data deluges and overflows [131].
An impressing logarithmic graph at GenomeNet2 reports the growth of the
main molecular databases. Concerning DNA sequences the new generation
of sequencers has hundreds times higher production rates with a cost per
Megabase of a tenth or a hundredth in comparison to the previous genera-
tion. So we can expect a further hike in the production of DNA sequences
and in the number of sequenced organisms. In general it is also increas-
ing the variety of the data. The anarchy in microarray experiments at the
beginning of the new millennium required the definition of standards (i.e.
MIAME [134]). Similarly, to bring order in the - now maybe too abused -
field of systems biology, standards have been defined for data in metabolic
modeling (MIRIAM [166]), proteomics experiments (MIAPE [186]), molec-
ular interaction experiments (MIMIx [173]).

The pioneering computational analysis of molecular data and information
started even before the 1970s [175]. The term “bioinformatics” was first used
by Hwa Lim in the late 1980s [177]. But the community, after all these years
is still asking “what is bioinformatics?” [150] and “who are the bioinformati-
cians?”. We suggest to identify three different levels of bioinformaticians
with respect to their relations to resources.

At the basic level we can collocate the simple users of bioinformatics re-
sources. In the pre-WWW age, resources were databases (composed of a
few records) and programs, to be installed in local computers. The WWW
contributed undoubtedly to the affirmation of bioinformatics. The fact that
every data could be freely accessed on a database in the internet from every-
body, from everywhere in the world and at every time, revolutioned science.
HTML interfaces rendered simpler the execution - online - of algorithms on
generally remote, huge and complex data. It was not necessary anymore to
bother about programs and databases installation, license, versioning, oper-
ating systems, hardware requirements and system management skills. Nowa-
days, for every molecular biologists and every scientist involved in “omics”
disciplines, bioinformatics simply offers the common daily tools. The suffix
“omics” became very famous up from the late 1990s to indicate the paradigm
shift of research: from the study of a single molecule (e.g. a gene, a protein)
to the study of the entire population of such molecules as a whole (e.g. the

2http://www.genome.ad.jp/en/db growth.html

CHAPTER 8. APPLICATION DOMAIN 103

genome, the proteome). Probably with the announcement of the comple-
tion of the first draft of the human genome in the year 2000, bioinformatics
reached the status of “big science”, becoming popular in the media and to
the common people.

At the second level we can find the users which assemble resources. In
the decade around the year 2000, complex repetitive bioinformatics analyses
were automatized in form of programs written with script languages (e.g.
Perl). Besides being very compact and permitting rapid programs devel-
opment, such languages are mostly ideal also for performing sophisticated
text analysis and pattern matching. Some of them are even endowed with
dedicated bioinformatics libraries (e.g. Bioperl3). Now, most of the bioinfor-
matics programs as well as database queries, can be invoked remotely as Web
Services available somewhere in the internet. Web pages with HTML form
have been developed for human beings, but being not standards and without
any precise semantics and syntax, they could not be tackled automatically by
programs. Also the affirmation of XML4 as a standard for data interchange
contributed firmly to acquire a complete machine interoperability. Remote
programs sparse over the internet can talk - and understand - with each other
using standard protocols. Scripts to execute “in-silico” bioinformatics exper-
iments have been now substituted by workflows of Web Services, which can
be composed in a very simple visual manner. Therefore, also users without
any programming skill can easily assemble them.

At the higher level we pose the developers of resources. Either they
could be the computational biologists, which develop the algorithms, subse-
quently implemented as stand alone programs or Web applications, accessible
through HTML forms or Web Services. Or they could be the database de-
velopers, which expose their data or information, probably obtained also
through complex computations and filtering. Here still emerges the founda-
tional binomial of bioinformatics bioinformatics = database + computational
biology. The latter could in some way remember the notable algorithms +
data structure = programs [189].

To give an idea of the dynamicity of bioinformatics we do list the ti-
tles of the articles in the “trends guide to bioinformatics” edited by Mark
Boguski in 1998 [133]: Text-based database searching, Fundamentals of
database searching, Practical database searching, Computational genefind-
ing, Multiple-alignment and -sequence searches, Protein classification and
functional assignment, Phylogenetic analysis and comparative genomics, Func-
tional genomics, Databases of biological information. We can make a com-

3http://www.bioperl.org/
4http://www.w3.org/XML/

104 CHAPTER 8. APPLICATION DOMAIN

parison with the categories adopted from 2005 - only seven years later - by
the journal Bioinformatics for classifying its articles: Genome analysis, Se-
quence analysis, Structural bioinformatics, Gene expression, Genetics and
population analysis, Data and text mining, Databases and ontologies, Sys-
tems biology. Gene Expression, with its inflation of microarray experiments
- but now already in a descending phase - could maybe have been glimpsed
in 1998’s Functional genomics. Text mining, ontologies and systems biology
arose instead rather “unexpectedly” and today constitute probably some of
the most active research area in bioinformatics. A good introductions to
biological literature mining can be found in [163]. The “manifesto” of com-
putational systems biology was launched by Kitano at the dawn of the new
millennium [164, 165]. Evolving research trends in bioinformatics have been
analyzed in 2006 also by Wren and collaborators [176], through a statistical
analysis of the occurence of MeSH5 terms in the Bioinformatics Journal ab-
stracts. Unfortunately MeSH terms concern biomedicine and do not actually
provide a proper classification of bioinformatics tasks.

Now it has become extremely hard for a scientist to be a “plenary” bioin-
formatician, following the development of the whole area. The galaxies of
the bioinformatics universe are too many, too big and too distant among
each other. Being aware of all the resources available in the whole domain
is a “mission impossible”. For this reason, adopting the same “ome” suffix
used in indicating the wide amount of a molecular population, we termed
“Resourceome” the full set of bioinformatics resources. In this chapter we
describe how an intuitive semantic index of bioinformatics resources could
be built for being understood (and reasoned) also by computers.

A Resource Ontology

It is not easy to build a universally accepted classification schema for bioin-
formatics resources, as the assignment of semantics to the concepts of actor
and artifact is not a trivial task. A shared ontology is needed to properly
annotate resources and for this reason here we give an example of how this
task can be done. We describe a Resource Ontology that formalizes the
basic entities with which scientists interact every day. This essential Re-
source Ontology - by definition built on a is-a taxonomy - allows to classify
bioinformatis resources.

Besides expressing particular concepts identifying specific kinds of re-
sources, we introduced also non-hierarchical semantic relationships, to im-
prove automatic inference processes and to understand the dependences be-

5http://www.nlm.nih.gov/mesh/

CHAPTER 8. APPLICATION DOMAIN 105

tween different resources.
The first step consists in identifying the main classes of bioinformatics

resources that we want to represent. Some domain independent methodolo-
gies and directions to properly design high quality and consistent biomedical
ontologies can be found in [127], [159] and [192].

In a Resource Ontology, a generic Resource can be represented by two
general kinds of concepts: Actor and Artifact (see Figure 8.1).

Intuitively Actor represents resources where humans have a protagonist
role, e.g. Person, with sub-concept Author, and Institution, which in turn
includes Research Group, Firm, Organization, University, Institute, Depart-
ment, Division.

As Artifact we mean concepts like Event, Educational Artifact, Project,
Informatics Artifact, Methodology, Literature Resource.

In particular as Event we consider Seminar, Meeting and Conference.
Educational Artifact resources include Tutorial, Course and Learning Object
(for e-learning).

Literature Resource considers Book, Conference Proceeding, Article and
Journal. Besides literature resource, another important class is that of In-
formatics Artifact. This concept includes Artifact for Data Representation,
Artifact for Knowledge Representation and Computational Resource.

Under Artifact for Data Representation we have File and Database which
undoubtedly have an historical place in bioinformatics. Artifact for Knowl-
edge Representation includes the Classification System, such as Ontology,
and Semantic Web Prototype.

Another very important branch is Computational Resource, which in-
cludes Algorithm and Program. The latter can be specialized into Stand
Alone and Web Based programs, which includes the Web Service class of
programs.

We felt the necessity to consider also some auxiliary concepts. In partic-
ular they permit to take into account data features like format (an instance
could be e.g. “FASTA format”) and type (e.g. “DNA sequence” or “in-
teger”). To maintain the ontology as generic and reusable as possible, we
hypothesized a domain-specific Domain Data Type class. Features like data
format and type are becoming essential in bioinformatics data and processes
integration. For example, in a bioinformatics workflow management system,
it would be very helpful to have formally defined the input and output data
type of programs and web services. This will allow to correctly compose and
enact them or to suggest to the user the available tools for a specific data
type.

In the Resource Ontology some attributes should be assigned to the root
concept, in order to give more specific information on the instances belonging

106 CHAPTER 8. APPLICATION DOMAIN

Figure 8.1: The is-a hierarchy of the resource ontology

to its sub-concepts. Some examples can be:

• name: the name of the instance. This is a functional attribute, i.e. it
is possible to have only one name for each instance;

CHAPTER 8. APPLICATION DOMAIN 107

• description: a string allowing to give a precise description of the in-
stance. It is possible to have just one description for each instance;

• author: the creator of the instance in the Resourceome;

• creation date: the date of creation of the instance. Clearly it is possible
to have only one creation date for each instance;

• URI: the URI of the instance. If it is an URL than the resource can be
accessed directly on the Web.

Besides these general attributes, sometimes there is the need of defining
other attributes for the description of a particular resource, e.g. abstract
(which must be functional) for an Article resource, or license for an Infor-
matics Artifact.

Figure 8.2: Some examples of non-hierarchical relationships in the Resource
Ontology

We also suggest some useful non-hierarchical relationships for the Re-
source Ontology (see fig. 8.2): Informatics Artifact uses Informatics Ar-
tifact ; Actor collaborates with Actor and creates Artifact ; Author
writes Literature Resource.

108 CHAPTER 8. APPLICATION DOMAIN

One of the most important relations is Literature Resource cites Lit-
erature Resource. Usually, in the bioinformatics domain Literature Resource
describes Resource.

For most of the relations just described, it is possible to define inverse
ones, e.g. Literature Resource is cited by Literature Resource or Lit-
erature Resource is written by Author. The collaborates with
relation is symmetric.

8.2 Biology Domain

The biological domain and operational universe recalls in some way a global
and distributed data structure and algorithm space, on which in-silico exper-
iments could be thought as transparent and automatic computational pro-
cedures, i.e. independent from semantics, heterogeneity and distribution of
the involved resources and tools. It follows that the bioinformatic metaphor,
which aims to identify the whole biological space to a virtual biological desk-
top, implies in-silico experiments to be able to automatically integrate (and
access to) heterogeneous and distributed databases and computational tools.

A concrete and functional implementation of this vision should necessarily
resort on (i) a lower semantic labeling mechanism of all existing resources-
data and applications-algorithms, (ii) an upper semantic-driven mechanism
for building workflows on this labeled biological space, and (iii) an intelligent
technology which allows mobile, distributed and well-balanced computations
to be supported.

8.3 Resourceome for semantic-driven in-silico

experiments

In-silico experiments are described as processes of activities - laboriously ex-
ecuted in a large, distributed and dynamic environment - to test hypotheses,
derive a summary and search for patterns. As a consequence, they are nat-
urally specified as workflows of activities that implement data and control
analysis processes in standardized but dynamic environments.

It is well-known that a workflow is a partial or total automation of a
process, in which a collection of activities must be executed according to
certain procedural rules. The main advantages of automated workflows relate
to effectiveness, reproducibility, reusability of procedures and of intermediate
results and traceability. which are also fundamental features to validate a
scientific experiment. These are the main reasons why the Resourceome

CHAPTER 8. APPLICATION DOMAIN 109

environment for assembling, managing and executing in-silico experiments
recalls - in its structure and in some functionalities - a Workflow Management
System (hence the acronym WMS).

Similarly to [196], Resourceome WMS permits to define any in-silico ex-
periment specification as an activity workflow and to translate it into mobile
code supported by Hermes middleware6. However, differently from [196]
and other traditional WMSs, the Resourceome knowledge model allows each
workflow activity to be automatically linked to its context, roles, objects and
documents, i.e. it enables a fully semantic-driven mechanism for realizing in-
silico experiments on a biological domain. As a consequence, Resourceome
WMS can naturally capture not only the experimental method behind an
in-silico experiment, but also the associated constraints and goals.

In particular, Resourceome WMS provides two interfaces - user and ad-
ministrator - with different privileges about definition, selection and execu-
tion of experiments related to specific goals. In the first case, simple users can
only select experiments from a finite list of goals, eventually specify goal pa-
rameters driven by Resourceome KMS interface (i.e. navigating in a control
way on Domain and Resource Ontologies, as well as adding new OWL-DL
resource individuals and relationships and new SKOS concepts respectively
on the Resource and Domain Ontology application level) and visualize the
obtained results. In the latter case, the administrator can edit experiments,
selecting the appropriate and involved domain, resource and activity concepts
(and eventually accessing to any knowledge model level), associate specific
goals and store them.

8.4 An ontology-driven design of an in-silico

experiment

In this section we provide an example of a process data retrieval inResourceome.
The goal is to edit a workflow of activities in order to obtain and to visual-
ize all crystallographic structures related to a swissprot protein identificator.
In order to accomplish the goal of the proposed workflow, we need to infer
all the activities that belong to the class Database Retrieval concerning the
concept Protein.

Fig. 8.3 shows the semantic search in Resourceome. The syntax used is a
triple Concept, Relation, Target. In our case we have Concept=Database Retrieval,
Relation=corcern and Target=Protein. Using the conceptual map as shown

6Due to the lack of space, middleware architecture is not discussed here and we refer
to [202] for further details.

110 CHAPTER 8. APPLICATION DOMAIN

in Fig. 8.4 is possible to get more informations about the activities found as
the input needed and the produced output.

After the user has chosen the proper activity, can drag and drop it directly
in an activity element of the workflow editor as the Fig. 8.5 shows.

The activities used in a workflow can be configured with several param-
eters, in this way it is possible to reuse the same activity for different work-
flows. In this case the chosen activity takes in input a protein identificator.
A user can specify the order of activities execution using special control-flow
patterns.

The Sequence pattern allows to execute an activity after another. It is
generally used when the output of an activity must be piped as input of the
subsequent. In the workflow example in Fig. 8.6, the SWISSPROT entry
file obtained by Activity 0 is piped as input of the Activity 1 that extracts
the cross-references of the SWISSPROT entry to the other database. The If
pattern defines a conditional routing where the choice of the activity to be
executed is case-driven. An error or exception can be caught and considered
as special case, so that the workflow becomes fault tolerant and the execution
can select an alternative path when something goes wrong.

The Iteration is a pattern enabling the cyclic execution of one or more
activities. When a special case occurs the control-flow leaves the cycle and
the workflow execution continues. The arrow on the left hand side of the
graphical notation addresses the direction of the execution. In the proposed
workflow Iteration 0 control-flow allows to evaluate each the cross-reference
Activity 2, to choose through If 0 control-flow those that refer to crystallo-
graphic structures, to fetch (Activity 3) them from the protein data bank and
to store (Activity 4) as results.

Even if is not used in our example another possible control-flow is the
Concurrence pattern that enables the parallel execution of two or more ac-
tivities. It is possible to assign each of these concurrent activities to different
performers corresponding to the Workflow Executors. In this case, the code
mobility, supported by Hermes middleware [202], can be exploited to improve
the computational load balancing of a workflow.

As Fig. 8.7 shows, during the execution of the workflow, it is possible
to monitor the obtained results and/or to interact with it whenever the in-
silico experiment requires a conditional input from the user at run-time.
Resourceome provides also several plugins to visualize in a proper way the
results. An example is the integration of the Jmol applet that, as Fig. 8.8 il-
lustrates, is used in this case for the 3D visualization of the crystallographic
structures fetched. Once the workflow is defined and tested by a bioin-
formatic user, through Resourceome is possible to publish it and make it
available to a biologist that can use it without explicitly knowing its imple-

CHAPTER 8. APPLICATION DOMAIN 111

Figure 8.3: Semantic search of a Database Retrieval activity concerning Pro-
tein.

mentation as Fig. 8.9 shows.

8.5 Related Work

Regarding KMSs in somewhat similar toResourceome, we can cite iTools [203]
and BioNavigation [201]. The iTools framework aims at the classification and
integration of the resources developed at the seven US’ National Center for
Biomedical computing. It is characterized by a taxonomy-like user friendly
interface for browsing the managed resources, which are tools. The updat-
ing of resource metadata is delegated through interfacing (XML, SOAP and
WSDL) external softwares. In the present version, iTools does not manage,
differently from Resourceome, any semantic relationship (Object Property)
between resources, but only the properties (Data Property) of the visualized

112 CHAPTER 8. APPLICATION DOMAIN

Figure 8.4: Conceptual Map of Activity getSwissProtEntryByEntryName

Figure 8.5: Drag and Drop of an activity into the workflow.

individuals. iTools relies on three user classes: expert editors, registered and
general users. Only editors may update the iTools resource descriptions. Reg-
istered users may submit new resource descriptions (or updates), retrieve or
comment on resources and their descriptions. General users may only browse
the iTools resources. The main difference with Resourceome is the metadata
representation model, which in iTools is a simple resource taxonomy.

BioNavigation metadata representation philosophy is similar to that of
Resourceome. BioNavigation’s physical graph connecting data sources can
be compared with our Resource Ontology and its conceptual graph can be

CHAPTER 8. APPLICATION DOMAIN 113

Figure 8.6: Editing a workflow in Resourceome.

compared with our Domain Ontology. The mapping between the two graphs
is in our system formalized by the relation “concerns” and its sub-relations.
However, differently from BioNavigation, the Resourceome knowledge repre-
sentation allows one to manage also individuals and its ontologies are pub-
lished on the Semantic Web.

Regarding WMSs for creating and enacting workflows in the biologi-
cal domain, Taverna [207], Wildfire [210], Pegasys [208], Kepler [195], MS-
Analyzer [198] are some of the most representative platforms. Taverna - a
part of MyGrid project [209] - has mainly the aim to integrate Web Services
by workflows specified in a choreography language: XML Simple conceptual
unified flow language (XScufl [207]). Recently it has been equipped with
BioMoby [205] plugin that allows the user to access BioMoby [211], a well-

114 CHAPTER 8. APPLICATION DOMAIN

Figure 8.7: Results obtained during workflow execution.

Figure 8.8: Visualization of a PDB file using Jmol in Resourceome.

known registry of Web services used in bioinformatics.

Being Taverna editor embedded with its engine in a Java stand-alone
application, it is quite heavy, for an end-user, to download it.

Wildfire [210] is another WMS that provides an integrated environment

CHAPTER 8. APPLICATION DOMAIN 115

Figure 8.9: Publishing of a workflow.

for the construction and execution of workflows based only on Jemboss [199]
applications. Pegasys system enables bioscientists to create and manage se-
quence analysis workflows. It includes numerous analytical tools and provides
database capacities to maximize information captured during the execution
of a workflow.

All the above mentioned WMSs describe, often with different expressive
power, an in-silico experiment without using standard workflow specification
languages. Moreover, they are characterized by a monolithic architecture,
which does not allow the execution of workflows, or parts of them, over a
distributed and heterogeneous environment due to lack of flexibility, scalabil-
ity and fault tolerance, features required for a distributed cross-organizational
workflow.

Kepler and MS-Analyzer attempt to overtake the above-mentioned limits.
Kepler is a workflow tool based on a extension of the MoML language [206]:
it is obtained by introducing the concept of a Director to define execution
models and monitor workflows, where Web and Grid services, Globus Grid
jobs and GridFTP can be used as components.

116 CHAPTER 8. APPLICATION DOMAIN

MS-Analyzer is the nearest software platform for bioinformatics experi-
ments to Resourceome. However, differently from the latter, it is strongly
customized for proteomic domain: it allows the integrated preprocessing,
management and data mining analysis of proteomic data and it provides var-
ious services that implement spectra management and preprocessing. In par-
ticular, the composition and execution of such services is carried out through
an ontology-based workflow editor and scheduler that uses specific domain
ontologies, namely WekaOntology and ProtOntology7.

7WekaOntology is an ontology of the data mining domain that is used to describe the
tools of the Weka suite [212] and has been enriched by the description of relevant datasets
and preprocessing algorithms. ProtOntology models concepts, methods, algorithms, tools
and databases relevant to the proteomic domain, and provides a biological background to
the data mining analysis.

Part VII

Conclusion

Chapter 9
Conclusions

In this Thesis, a semantic framework for declarative and procedural knowl-
edge, called Resourceome, has been proposed. Resourceome is an ontology-
based and domain-independent formal model for semantic annotation of re-
sources and activities, in according to Guarino’s approach [11]. It was born
as an extension of the knowledge model proposed in [34] to organize the
amount of resources in the biological domain.

It keeps the same name of the solution proposed in [34] but, differently
from it, can be adopted in any application domains (as well as the biologi-
cal one) and can also handle the procedural knowledge. As a consequence,
business process modeling as well as workflow specification and execution are
topics which have been investigated in the definition of Resourceome. In par-
ticular, distributed workflow execution using multi-agent systems, together
with the Web Service paradigm, have been studied and taken into account.

Furthermore, a Web-based tool, namely a semantic knowledge manage-
ment system together with a semantic-driven workflow specification and ex-
ecution environment, was built on the top of Resourceome.

Finally, the biology domain has been investigated as a case study and the
Web-based tool has been customized as an environment for semantic-driven
in-silico experiments.

In conclusion, we believe that the whole Resourceome semantic frame-
work (model and tools) can be useful - but it is not limited - to any kind of
organization, research group or SIG:

• to specify and to share the proper know-how;

• to identify relevant information and exploit that information (domain
and procedural knowledge) in the context of specific knowledge pro-
cessing tasks;

120 CHAPTER 9. CONCLUSIONS

• to support the user in a variety of knowledge-based activities. To give
an idea, we can cite discovery and organization of information resources;
extraction of task-relevant information using information harvesting
and knowledge editing techniques; retrieval, integration and transfor-
mation of domain-relevant knowledge using semantic query capabili-
ties; use of semantic reasoning techniques to support domain-relevant
business processes.

Part VIII

Appendix

Appendix A
Resourceome Web-tool

A.1 Resourceome Web-tool

This section will provide a deeper view of the Resourceome tool, with a
detailed analysis of its key features. In particular this part will attempt to
explain the recommended usage of the software, giving an idea of its high
potential. The Resourceome framework mainly consists of two components
strictly interacting each other:

• Resourceome KMS, a graphical interface for theResourceome ontology-
based Knowledge Management System

• The Workflow Editor, Monitoring and Publishing Tools, constituting
together the Resourceome WMS.

A.1.1 Workspace

The workspace is the piece of software responsible for the knowledge manage-
ment and the place where the knowledge itself is stored in form of ontology.
Consequently, the user can load a specific workspace according to the spe-
cific domain in which he wants to operate. The content of a workspace is
graphically organised in two trees:

• The Class Tree: each node is an ontology class and can be expanded
to display subclasses.

• The Individuals Tree: shows the individuals belonging to the se-
lected concept in the class tree.

124 APPENDIX A. RESOURCEOME WEB-TOOL

Figure A.1: Load workspace dialog and the panel displaying classes and
inviduals.

One of the most interesting features of the software is the innovative visual-
ization component, designed to provide a graphical view for the relations and
classes of an individual; the resulting conceptual map, based on the HTML5
canvas tag, is provided in vector format, so can be zoomed without losing
any detail. The tool also supports different visualization algorithms: Dot,
Circo, TwoPi, Neato and Fdp.
In fig. A.2, it’s possible to observe the conceptual maps for the individual
’Enzyme’: on the left, the class diagram is rendered with the Dot engine,
while, on the right, the Circo engine is responsible for the visualization of
the relation diagram.
Moreover, Resourceome allows to perform changes to the underlying ontol-

ogy at runtime; such operations are:

• Add class/subclass

• Add relation: the user has the possibility to specify if the relation
is Functional, Inverse Functional, Transitive, Symmetric, Asymmetric,
Reflexive or Irreflexive.

• Add data property

A.1.2 Workflow Editor

The workflow editor can be considered the core of the Resourceome WMS;
this graphical tool makes possible to design complex workflows of activities

APPENDIX A. RESOURCEOME WEB-TOOL 125

Figure A.2: Conceptual maps of the individual Enzyme

with the minimum effort for the user, and besides, differently from other
traditional WMSs, the Resourceome knowledge model allows each workflow
activity to be automatically linked to its context, roles, objects and docu-
ments; as a result, the process definition is strongly ontology-driven.
In other words, the user can find the activities as individuals in the workspace
ontology, and simply can drag and drop them in the workflow editor; an ac-
tivity can be configured with several input/output parameters, each of them
has associated its own datatype. Resourceome allows the following advanced
operations on parameters:

• Piping: this operation is used when, for example, it’s necessary to
pipe the output parameter, named out 1, of an activity as the input
parameter, named in 1, for another activity; this can be easily per-
formed with a drag and drop of the parameter reference for out 1 in
the textbox used to set the value for in 1.

• Resources Fetching: parameters can not only be set manually or
with a link to another parameter, but Resourceome enables getting the
required data also from the knowledge base located in the workspace;
after having chosen an individual, the software prompts the user to se-
lect among the individual’s data properties and the involved parameter
will be set with the value of the chosen property.

A user can specify the order of activities execution using the following special
control-flow patterns:

126 APPENDIX A. RESOURCEOME WEB-TOOL

Figure A.3: The workflow editor

• Sequence: allows to execute an activity after another.

• If: defines a conditional routing where the choice of the activity to be
executed is case-driven.

• Iterator: enables the cyclic execution of one or more activities until the
boolean condition is true.

• Concurrence: enables the parallel execution of two or more activities.

• Default Exception: allows to define the activity to be executed if an
exception or an error is previously caught.

• Terminate: allows the forced termination of the workflow.

As mentioned before, the If and the Iterator patterns needs a boolean con-
dition to be specified, and Resourceome also provides a graphical editor for
building a boolean formula; this editor allows the composition of logical ports
(and, or, not), the comparisation between string or integer values and the
inputting of boolean values.

A.1.3 Workflow Monitoring Tool

This component of the Resourceome WMS makes possible the monitoring of
the running workflows as well as the online visualization or the download of
the results produced by a specific workflow.
In particular, this tool doesn’t only provide the list of the running workflows,

APPENDIX A. RESOURCEOME WEB-TOOL 127

Figure A.4: The boolean formula editor

but also the whole execution hystory: for each listed workflow, the following
informations are rendered:

• Workflow Id

• Workflow Name

• Launch timestamp

• Termination timestamp

• Duration

• User

• Status (Compiling, Running, Finished, Compilation Error, Runtime
Error)

The Results panel updates automatically when selecting a workflow and
shows the data outputted during its execution. Each result has its own
datatype, so that Resourceome can associate the right plugins to visualize
the data: for example an XML result can be rendered as plain text, as HTML
or as a tree, while a molecular result can be opened as plain text or with the
Jmol plugin.

128 APPENDIX A. RESOURCEOME WEB-TOOL

Figure A.5: Execution history, results panel and visualization plugins.

A.1.4 Workflow Publishing Tool

It is evident that Resourceome is a software suited to users with basic in-
formatic skills, so this component has been designed to make the workflows
available to the common user through a simplified interface. With the pub-
lishing tool, the expert user, after having designed and tested his workflow,
can publish it, so that the end user has only to set some possible parameters
and launch the execution of the goal, without explicitly knowing the imple-
mentation of the underlying workflow.
On the other hand, the following informations must be provided in order to
publish a goal:

• Unique name

• Description (optional)

• A set of bindings

’Binding’ is the term denoting an activity parameter intented to be set by the
end user. For each binding it’s necessary to specify a name to display in the
simplified interface and if the parameter is optional or required. Besides, it’s
possible to associate a concept from the workspace to help the input choice
of the end user: for example, if the user is expected to enter the name of
a city to launch a goal, Resourceome allows the workflow designer to drag
and drop the concept City from the class tree to the binding panel; in the
resulting goal, the field City will have associated a set of acceptable values,
obtained from the individuals belonging to the City class.

APPENDIX A. RESOURCEOME WEB-TOOL 129

Figure A.6: A view of the publishing interface

Figure A.7: A list of ontology-driven values in the simplified interface

Appendix B
XPDL-ontology

In this Chapter we describes the XPDL ontology specified through Web onl-
tology language (OWL-DL) and then how to link it with a organisational and
informational resources and activities described in Resourceome ontology.

B.1 XPDL introduction

The XML Process Definition Language (XPDL1) is a format standardized
by the Workflow Management Coalition (WfMC2) to interchange Business
Process definitions between different workflow products, ie between different
modeling tools and management suites. XPDL defines an XML schema for
specifying the declarative part of workflow / business process.

B.2 Creating XPDL semantics

In the next pages is described how to create semantic for XPDL and link it
with an ontology that describes activities and resources in a specific domain.
XPDL just defines the sintax (an XML schema) for specifying the declarative
part of workflow / business process, so the first step is to create an ontology
that describes the semantic of the XPDL format.

B.2.1 Basic modelling approach

The first step of creating an ontology over the XPDL format consists of map-
ping every single elmenent to its respective OWL rappresentation. The basic

1http://www.wfmc.org/xpdl.html
2http://www.wfmc.org/

132 APPENDIX B. XPDL-ONTOLOGY

<xsd : element name=” Appl i ca t ion ”>
<xsd : complexType>

<xsd : sequence>
<xsd : element r e f=”xpdl : De sc r ip t i on ” minOccurs=”0”/>
<xsd : cho ice>

<xsd : element r e f=”xpdl : FormalParameters ”/>
<xsd : element r e f=”xpdl : Externa lRe fe rence ” minOccurs=”0”/>

</xsd : cho ice>
<xsd : element r e f=”xpdl : ExtendedAttr ibutes ” minOccurs=”0”/>

</xsd : sequence>
<xsd : a t t r i b u t e name=” Id” type=”xsd :NMTOKEN” use=” requ i r ed ”/>
<xsd : a t t r i b u t e name=”Name” type=”xsd : s t r i n g ”/>

</xsd : complexType>
</xsd : element>

Figure B.1: XML definition of Application element

approach is:

Each XML complex type element is mapped to an OWL class and each
XML simple type subelement or attribute is converted to a data property.

For each XML complex type subelement an object property that descibes
what relationship the parent has with it is created.

Each XML group element is mapped to a superclass of all its subelements
(see figure B.5 and B.4).

Following we report how some interesting elements were mapped with
this approach.

Complex element: Application

Application is a complex element defined as shown in figure B.1. It has
at least the attribute Name and have a subelement FormalParameters or a
subelement ExternalReference.

Name is an attribute so we need to create a data property that represent
the relationship between an entity of type Application and a it’s name. We
created the hasName property that has as domain Application and as range
a string.
Application is a complex type so it’s mapped to an OWL class as shown in
figure B.2.

We can assert that it must have exactly one data property hasName of
type String but we cannot assert that it has exactly one object property has-
FormalParameters or exactly one object property hasExternalReferece be-
cause the minOccurs value of the second one is 0. In fact we can have an

APPENDIX B. XPDL-ONTOLOGY 133

<SubClassOf>
<Class URI=”&XPDL−Ontology ; App l i ca t ion ”/>

<DataExactCardinal i ty c a r d i n a l i t y=”1”>
<DataProperty URI=”&XPDL−Ontology ; hasName”/>
<Datatype URI=”&xsd ; s t r i n g ”/>

</DataExactCardinal ity>
</SubClassOf>

Figure B.2: OWL definition of Application element

application like this:

<xsd : element name=” App l i ca t i on s ”>
<xsd : complexType>

<xsd : sequence>
<xsd : element r e f=”xpdl : App l i ca t ion ” minOccurs=”0”

maxOccurs=”unbounded”/>
</xsd : sequence>

</xsd : complexType>
</xsd : element>

Figure B.3: XML definition of Applications

So we have to define an object property hasApplication that is not func-
tional (we can have more than one Application in each Applications element)
that have as domains entities of Applications class and as range entity of Ap-
plication class.

Group element: Datatypes

<xsd : group name=”DataTypes”>
<xsd : cho ice>

<xsd : element r e f=”xpdl : BasicType”/>
<xsd : element r e f=”xpdl : DeclaredType”/>
<xsd : element r e f=”xpdl : SchemaType”/>
<xsd : element r e f=”xpdl : Externa lRe fe rence ”/>
<xsd : element r e f=”xpdl : RecordType”/>
<xsd : element r e f=”xpdl : UnionType”/>
<xsd : element r e f=”xpdl : EnumerationType”/>
<xsd : element r e f=”xpdl : ArrayType”/>
<xsd : element r e f=”xpdl : ListType”/>

</xsd : cho ice>
</xsd : group>

Figure B.4: Datatypes declaration in XPDL schema

Datatypes is defined as an xsd:group composed of a choice between other
xml elements (as shown in figure B.4) i.e. it is one of BasicType, Declared-
Type, Schematype, ExternalReference, RecordType, UnionType, Enumera-
tionType, ArrayType or ListType.

In our ontology we defined it as the union of it’s subelements as shown
in figure B.5

134 APPENDIX B. XPDL-ONTOLOGY

<Equiva lentClasses>
<Class URI=”&XPDL−Ontology ; DataTypes”/>
<ObjectUnionOf>

<Class URI=”&XPDL−Ontology ; ArrayType”/>
<Class URI=”&XPDL−Ontology ; BasicType”/>
<Class URI=”&XPDL−Ontology ; DeclaredType”/>
<Class URI=”&XPDL−Ontology ; EnumerationType”/>
<Class URI=”&XPDL−Ontology ; Externa lRe fe rence ”/>
<Class URI=”&XPDL−Ontology ; ListType”/>
<Class URI=”&XPDL−Ontology ; RecordType”/>
<Class URI=”&XPDL−Ontology ; SchemaType”/>
<Class URI=”&XPDL−Ontology ; UnionType”/>

</ObjectUnionOf>
</Equiva lentClasses>

Figure B.5: OWL rappresentation of the Datatypes group

B.2.2 Linking XPDL ontology with another ontology

DataBase Retrieval
Activity

DataManipolation

Activity

Activity

Figure B.6: Graph representation of the Activity class in Resourceome on-
tology

Now that we have defined a consistent ontology that represent an XPDL
we have to link it with the one representing our resources and activity. In
the following example we show how we can link them by simply making
equivalent the classes of the two ontologies that have the same meaning.
In figure B.6 is showed a graph representation of the class Activity in the
Resourceome ontology.

We can assert that Application is an equivalent class of Activity.
As shown in figure B.7 Activity is now equivalent to Application that

inherit all its subclasses. We can now define an Activity, add a name to it
and, of course, the hasFormalparamters properties (if present) and state that
this is an Application. In this way we added knowledge to the meaningless
Application element in XPDL.

APPENDIX B. XPDL-ONTOLOGY 135

Application

Activity ≡ ApplicationDataBase Retrieval
Activity

DataManipolation
Activity

Activity

Figure B.7: Graph representation of the Activity class in Resourceome on-
tology after linking with the XPDL ontology

Bibliography

[1] SKOS Core Guide. http://www.w3.org/TR/2005/WD-swbp-skos-core-guide-20051102.

[2] SKOS Core. http://www.w3.org/2004/02/skos/core.rdf

[3] SKOS Mapping. http://www.w3.org/2004/02/skos/mapping.rdf

[4] SKOS Extensions. http://www.w3.org/2004/02/skos/extensions.rdf

[5] T. Andrews, F. Curbera, H. Dholakia, Y. Goland, J. Klein, F.k Leymann,
K. Liu, D. Roller, D. Smith, S. Thatte, I. Trickovic, and S. Weerawarana.
Business Process Execution Language for Web Services Version 1.1, July
2002. 49, 81, 86, 111

[6] Thomas R. Gruber. A translation approach to portable ontology specifi-
cations. Knowl. Acquis., 5(2):199–220, 1993.

[7] E. Bartocci, F. Corradini, E. Merelliand L. Vito, “Model driven design
and implementation of activity-based applications in Hermes”, Proc. of
the 7th WOA 2006 Workshop, From Objects to Agents (2006).

[8] A. Bernstein, and M. Deanzer, “The next system: Towards true dy-
namic adaptions of semantic web service compositions (system descrip-
tion)”, Proc. of the 4th European Semantic Web Conference (ESWC’07),
Springer (2007).

[9] F. Corradini, and E Merelli, “Hermes: agent-based middleware for mobile
computing”, Mobile Computing, LNCS, 3465, pp. 234–270 (2005).

[10] T.R. Gruber, “A translation approach to portable ontology specifica-
tions”, Knowledge Acquisition, 5(2), pp. 199-220 (1993).

138 BIBLIOGRAPHY

[11] N. Guarino, “Formal Ontology in Information Systems: Proceedings of
the 1st International Conference June 6-8, 1998, Trento, Italy” (1998).

[12] F. Baader, I. Horroks, and U Sattler, “In Festschrift in honor of Jorg
Siekmann Hutter and Stephan” , in W3C Recommendation.

[13] C. Masolo, S. Borgo, A. Gangemi, Guarino, N., Oltramari, A. and
L. Schneider, “Wonderweb deliverable d17. The wonderweb library of
foundational ontologies and the dolce ontology” (2002).

[14] C. Masolo, G. Guizzardi, L. Vieu, E. Botazzi and R. Ferrario, “Rela-
tional roles and qua-individuals”, Proc. AAAI Fall Symposium on Roles,
an Interdisciplinary Perspective, pp. 103–112 (2005).

[15] K. Morik, and M. Scholz, “The miningmart approach to knowledge dis-
covery in databases”, Proc. of the International Conference on Machine
Learning, Springer, pp. 47–65 (2004).

[16] OWLViz. www.co-ode.org/downloads/owlviz (15.07.2009)

[17] The Protégé Ontology Editor and Knowledge Acquisition System.
http://protege.stanford.edu (15.07.2009)

[18] C.P Gomes, H. Kautz, A Sabharwal, and B Selman. 2008. Satisfiability
solvers. In van Harmelen, F., Lifschitz, V., and Porter, B., eds., “Hand-
book of Knowledge Representation” . Elsevier.

[19] P. Borst, H. Akkermans, and J. Top “Engineering ontologies”, Int. J.
Human-Computer Studies 46 (1997), 365-406.

[20] A.W Scheer. “ARIS - Vom Geschftsprozess zum Anwendungssystem”,
Springer (1998).

[21] P. Mika, J.M. Akkermans, “Towards a New Synthesis of Ontology Tech-
nology and Knowledge Management, Knowledge Engineering Review”
19:4 (2004), 317-345

[22] SKOS Parser. http://oaei.ontologymatching.org/
2008/skos2owl.html (15.07.2009)

[23] Suggested upper merged ontology (sumo). http://www.
ontologyportal.org (15.07.2009)

[24] SUPER Project. http://www.ip-super.org/ (15.07.2009)

BIBLIOGRAPHY 139

[25] A Suyama, N. Negishi, and T Yamaguchi, “CAMLET: A platform for
automatic composition of inductive learning systems using ontologies”,
Proc. of PRICAI’98, LNCS, 1531, pp. 205–215, (1998).

[26] R Wirth, C. Shearer, U. Grimmer, T.P Reinartz, J Schloesser, C Bre-
itner, R. Engels, and G Lindner, “Towards process-oriented tool support
for knowledge discovery in databases”, Proc. of the First European Sym-
posium on Principles of Data Mining and Knowledge Discovery, LNCS,
1263, pp. 243–253 (1997).

[27] M. Angeletti, A. Baldoncini, N. Cannata, F. Corradini, R. Culmone,
C. Forcato, M. Mattioni, E. Merelli, and R. Piergallini. Orion: A spatial
multi agent system framework for computational cellular dynamics of
metabolic pathways. In Proceedings of Bioinformatics ITalian Society
(BITS) Meeting, Bolgna, Italy, 2006.

[28] E. Bartocci, D. Cacciagrano, N. Cannata, F. Corradini, E. Merelli, and
L. Milanesi. A GRID-based multilayer architecture for bioinformatics. In
Proceedings of NETTAB’06 Network Tools and Applications in Biology,
Santa Margherita di Pula, Cagliari, Italy, 2006.

[29] E. Bartocci, F. Corradini, and E. Merelli. BioWMS: A web based work-
flow management system for bioinformatics. In Proceedings of Bioinfor-
matics ITalian Society (BITS) Meeting, Bologna, Italy, 2006.

[30] E. Bartocci, F. Corradini, and E. Merelli. Building a multiagent system
from a user workflow specification. In Proceedings of Workshop From
Objects to Agents - WOA, 2006.

[31] T. Bellwood, L. Clément, D. Ehnebuske, A. Hately, M. Hondo, Y. L.
Husband, K. Januszewski, S. Lee, B. McKee, J. Munter, and C. von
Riegen. UDDI version 3.0. Published specification, Oasis, 2002.

[32] D. Bonura, F. Corradini, E. Merelli, and G. Romiti. Farmas: a MAS
for extended quality workflow. In 2nd IEEE International Workshop on
Theory and Practice of Open Computational Systems. IEEE Computer
Society Press, 2004.

[33] D. Bonura, L. Mariani, and E. Merelli. Designing modular agent
systems. In Proceedings of NET.Object DAYS, Erfurt, pages 245–263,
September 2003.

[34] N. Cannata, E. Merelli, and R. B. Altman. Time to organize the bioin-
formatics resourceome. PLoS Comput Biol., 1(7) e76, 2005.

140 BIBLIOGRAPHY

[35] F. Corradini and E. Merelli. Hermes: agent-based middleware for mobile
computing. In Mobile Computing, volume 3465, pages 234–270. LNCS,
2005.

[36] Enhydra. Jawe. http://jawe.enhydra.org/, 2003.

[37] A. Fuggetta, G. Picco, and G. Vigna. Understanding code mobility.
IEEE Transaction of Software Engineering, 24(5):352–361, May 1998.

[38] D. Hollingsworth. The Workflow Reference Model, January 1995.

[39] E. Merelli, R. Culmone, and L. Mariani. Bioagent: a mobile agent
system for bioscientists. In NETTAB Workshop on Agents Nd Bioinfor-
matics, Bologna, July 2002.

[40] WfMC. Xml process definition language (xpdl). WfMC standard, W3C,
October 2005.

[41] W. Aalst. Putting Petri nets to work in industry. Computers in Industry,
25(1):45–54, 1994.

[42] T. Andrew, F. Curbera, H. Dholakia, Y. Goland, and et al. Business
process execution language (bpel) for web services version 1.1. Technical
report, IBM, 2003.

[43] D. Benson, I. Karsch-Mizrachi, D. Lipman, J. Ostell, and D. Wheeler.
Genbank. Nucleic Acids Res., 34:D16–20, 2006.

[44] H. Berman, J. Westbrook, Z. Feng, G. Gilliland, T. Bhat, W. H., S. I.N.,
and B. P.E. Wildfire: distributed, grid-enabled workflow construction and
execution. Nucleic Acids Res., 28(1):235–42, 2000.

[45] A. Bertolino, F. Corradini, P. Inverardi, and H. Muccini. Deriving test
plans from architectural descriptions. In ICSE, pages 220–229, 2000.

[46] A. Bertolino, P. Inverardi, and H. Muccini. An explorative journey from
architectural tests definition downto code tests execution. In ICSE, pages
211–220. IEEE Computer Society, 2001.

[47] A. Cichocki. Migrating workflows and their transactional properties.
PhD thesis, 1998. Adviser-Marek Rusinkiewicz.

[48] F. Corradini and E. Merelli. Hermes: agent-based middleware for mobile
computing. In Mobile Computing, volume 3465, pages 234–270. LNCS,
2005.

BIBLIOGRAPHY 141

[49] J. Ferber. Multi-Agent System: An Introduction to Distributed Artificial
Intelligence. Addison-Wesley, 1999.

[50] I. Foster and C. Kesselman. The Grid: Blueprint for a Future Computing
Infrastructure. Morgan Kaufmann Publishers, San Francisco, CA, 1998.

[51] I. T. Foster, N. R. Jennings, and C. Kesselman. Brain meets brawn:
Why grid and agents need each other. In AAMAS, pages 8–15. IEEE
Computer Society, 2004.

[52] A. Group. Vtl reference guide. http://jakarta.apache.org/velocity/docs/vtl-
reference-guide.html.

[53] T. Hey and A. E. Trefethen. Cyberinfrastructure for e-Science. Science,
308(5723):817–821, 2005.

[54] N. R. Jennings. An agent-based approach for building complex software
systems. Commun. ACM, 44(4):35–41, 2001.

[55] K. Jensen. Coloured Petri Nets. Basic concept, analysis methods and
practical use. EATCS monographs on Theoretical Computer Science.
Springer-Verlag, Berlin, 1996.

[56] T. Murata. Petri nets: Properties, analysis and applications. In Pro-
ceedings of the IEEE, volume 77, pages 541–580, April 1989.

[57] C. A. Petri. Kommunikation mit Automaten. PhD thesis, Institut für
instrumentelle Matematik, Bonn, 1962.

[58] Sun. Java architecture for xml binding (jaxb).
http://java.sun.com/webservices/jaxb/.

[59] W. van der Aalst. The application of petri nets to workflow management.
The Journal of Circuits, Systems and Computers, 8(1):21–66, 1998.

[60] W. M. P. van der Aalst, A. H. M. ter Hofstede, B. Kiepuszewski, and
A. P. Barros. Workflow patterns. Distributed and Parallel Databases,
14(1):5–51, 2003.

[61] WfMC. Workflow management coalition terminology and glossary. Tech-
nical Report WFMC-TC-1011, Workflow Management Coalition, 1999.

[62] K. v. H. W.M.P. van der Aalst. Workflow Management Models, Methods
and Systems. MIT Press, Cambridge, 2002.

142 BIBLIOGRAPHY

[63] WfMC. Xml process definition language (xpdl). WfMC standard, W3C,
October 2005.

[64] H. Boley, S. Taber, G. Wagner: Design Rationale of RuleML: A Markup
Language for SemanticWeb Rules. Proc. of SWWS’01 (2001).

[65] G. Wagner, S. Tabet, H. Boley: MOF-RuleML: The Abstract Syntax of
RuleML as a MOF Model. OMG Meeting. Boston (2003).

[66] M. Paolucci, N. Srinivasan, K. Sycara: Adding OWL-S to UDDI, im-
plementation and throughput. First International Workshop on Semantic
Web Services and Web Process Composition (SWSWPC 2004).

[67] P. Haase, L. Stojanovic: Consistent Evolution of OWL Ontologies. Proc.
of the Second European Semantic Web Conference (ESWC 2005). LNCS
3532 (2005) 182–197.

[68] M. Richters, M. Gogolla: On Formalizing the UML Constraint Language
OCL. Proc. of 17th Int. Conf. Conceptual Modeling (ER’98). LNCS 1507
(1998) 449–464.

[69] I. Horrocks, P. Patel-Schneider, H. Boley, S. Tabet, B. Grosof,
M. Dean: SWRL: A Semantic Web Rule Language: Combining OWL
and RuleML. W3C Member Submission (2004). http://www.w3.
org/Submission/SWRL.

[70] B. Grosof, R. Volz, S. Decker: Description logic programs: Combining
logic programs with description logic. Proc. of the Twelfth International
World Wide Web Conference (WWW 2003).

[71] J. Warmer, A. Kleppe: The Object Constraint Language: Precise Mod-
eling with UML. Addison-Wesley (1998).

[72] XlinkIt: A Consistency Checking and Smart Link Generation Service.
ACM Transactions on Software Engineering and Methodology (2002)
155–185.

[73] CLiX: Constraint Language in XML. www.clixml.org/clix/1.0.

[74] Open CLiX: an open source CLiXML Schema Validator.
http://clixml.sourceforge.net

[75] RuleML. The Rule Markup Initiative. Date 22nd October 2004.
www.ruleml.org.

BIBLIOGRAPHY 143

[76] The Schematron Assertion Language.
http://www.ascc.net/xml/schematron

[77] UML: Unified Model Language. www.uml.org

[78] XML Path Language (XPath) Version 2.0. W3C Recommendation.
http://www.w3.org/TR/xpath20

[79] WSDL: Web Service Definition Language. www.w3.org/TR/wsdl.

[80] WSDL2Java. http://ws.apache.org/axis/java/user-guide.html

[81] W3C Web Services Activity. www.w3.org/2002/ws

[82] OWL-S, DAML Web Service Ontology.
http://www.daml.org/services/owl-s

[83] Klasse Objecten. OCL Center: OCL Tool.
http://www.klasse.nl/ocl/index.htm

[84] Object Constraint Language Specification. version 2.0.
www.klasse.nl/ocl/ocl-subm.html

[85] Web Service Semantics: WSDL-S. www.w3.org/Submission/WSDL-S

[86] W3C XML Schema. www.w3.org/XML/Schema

[87] The Alloy analyzer, http://alloy.mit.edu/.

[88] BPML, http://www.bpmi.org/.

[89] OCL 1.4 syntax checker, http://www.klasse.nl/ocl/.

[90] OCL V. 2.0, http://www.klasse.nl/ocl/ocl-subm.html/.

[91] OCLE 1.0, http://lci.cs.ubbcluj.ro/ocle/.

[92] W3C XML Schema, http://www.w3.org/xml/schema/.

[93] WS-CDL, http://www.w3.org/tr/ws-cdl-10/.

[94] WSCI, http://www.w3.org/tr/wsci/.

[95] WSCL, http://www.w3.org/tr/wscl10/.

[96] WSDL, http://www.w3.org/tr/wsdl/.

[97] SOAPhttp://www.w3.org/TR/soap/

144 BIBLIOGRAPHY

[98] XPath V. 2.0, http://www.w3.org/tr/xpath20/.

[99] K. Anastasakis, B. Bordbar, G. Georg, and I. Ray. UML2Alloy: A
challenging model transformation. pages 436–450. 2007.

[100] D. B. Aredo. A framework for semantics of UML Sequence Diagrams
in PVS. Journal of Universal Computer Science, 8(7):674–697, 2002.

[101] A. D. Brucker and B. Wolff. A proposal for a formal OCL semantics
in Isabelle/HOL. In TPHOLs ’02: Proceedings of the 15th International
Conference on Theorem Proving in Higher Order Logics, pages 99–114,
London, UK, 2002. Springer-Verlag.

[102] T. Bultan, X. Fu, R. Hull, and J. Su. Conversation specification: a new
approach to design and analysis of e-service composition. In WWW ’03:
Proceedings of the 12th international conference on World Wide Web,
pages 403–410, New York, NY, USA, 2003. ACM Press.

[103] D. Cacciagrano, F. Corradini, R. Culmone, and L. Vito. Dynamic
constraint-based invocation of Web Services. In M. Bravetti, M. Nez, and
G. Zavattaro, editors, WS-FM, volume 4184 of Lecture Notes in Computer
Science, pages 138–147. Springer, 2006.

[104] H. Foster, S. Uchitel, J. Magee, and J. Kramer. Model-based veri-
fication of Web Service compositions. pages 152–163. IEEE Computer
Society, 2003.

[105] X. Fu, T. Bultan, and J. Su. Analysis of interacting BPEL Web Ser-
vices. In WWW ’04: Proceedings of the 13th international conference on
World Wide Web, pages 621–630, New York, NY, USA, 2004. ACM.

[106] M. D. M. Gallardo, P. Merino, and E. Pimentel. Debugging UML
designs with model checking. Journal of Object Technology, 1:101–117,
2002.

[107] G. Georg, J. Bieman, and R. France. Using Alloy and UML/OCL to
specify runtime configuration management: A case study. In Practical
UML-Based Rigorous Development Methods - Countering or Integrating
the eXtremists. Volume P-7 of LNI., German Informatics Society, pages
128–141, 2001.

[108] G. J. Holzmann. The model checker SPIN. Software Engineering,
23(5):279–295, 1997.

BIBLIOGRAPHY 145

[109] H. Hussmann, B. Demuth, and F. Finger. Modular architecture for a
toolset supporting OCL. In A. Evans, S. Kent, and B. Selic, editors, UML
2000 - The Unified Modeling Language. Advancing the Standard. Third
International Conference, York, UK, October 2000, Proceedings, volume
1939 of LNCS, pages 278–293. Springer, 2000.

[110] R. Marcano and N. Levy. Transformation rules of OCL constraints into
B formal expressions. In J. Jürjens, M. V. Cengarle, E. B. Fernandez,
B. Rumpe, and R. Sandner, editors, Critical Systems Development with
UML – Proceedings of the UML’02 workshop, pages 155–162. Technische
Universität München, Institut für Informatik, 2002.

[111] M. Richters and M. Gogolla. Validating UML models and OCL con-
straints. pages 265–277. Springer, 2000.

[112] D. Cacciagrano, F. Corradini, R. Culmone, and L. Vito, Dynamic
constraint-based invocation of Web Services, Proc. of WSFM 2006,
LNCS, 4184, pp. 138-147, 2006.

[113] X. Fu, T. Bultan, and J. Su, Analysis of interacting BPEL Web Ser-
vices, in the proc. of WWW 04 (the 13th international conference on
World Wide Web), ACM, pp. 621-630, 2004.

[114] H. Foster, S. Uchitel, J. Magee, and J. Kramer, Model-based verifica-
tion of Web Service compositions, IEEE Computer Society, pp. 152-163,
2003.

[115] D. Knuth, Semantics of context-free languages, Theory of Computing
Systems, 2(2), pp. 127-145, 1968.

[116] M. Meriste and J. Penjam, Attributed models of executable specifica-
tions, Proc. of PLILPS 95 (the 7th International Symposium on Program-
ming Languages: Implementations, Logics and Programs), pp. 459-460,
1995.

[117] J. Penjam, Attributed Automata: A formal model for protocol specifi-
cation, technical report ISRN KTH/IT/R94/30SE, 1994.

[118] G.J. Holzmann, The model checker SPIN, Software Engineering, 23(5),
pp. 279-295, 1997.

[119] C. Nentwich, L. Capra, W. Emmerich, and A. Finkelstein, Xlinkit:
a consistency checking and smart link generation service, ACM Trans.
Interet Technol., 2(2), pp. 151-185, 2002.

146 BIBLIOGRAPHY

[120] BPML, http://www.bpmi.org/20.02.2009

[121] WS-CDL, http://www.w3.org/tr/ws-cdl-10/20.02.2009

[122] WSCI, http://www.w3.org/tr/wsci/20.02.2009

[123] WSCL, http://www.w3.org/tr/wscl10/20.02.2009

[124] Christopher J.O. Baker, Arash Shaban-Nejad, Xiao Su, Volker
Haarslev, and Greg Butler. Semantic web infrastructure for fungal en-
zyme biotechnologists. J. Web Sem., 4(3):168–180, 2006.

[125] Nicola Cannata, Emanuela Merelli, and Russ B. Altman. Time to
organize the bioinformatics resourceome. PLoS Comput Biol., 1(7):e76,
2005.

[126] PG Baker, CA Goble, S Bechhofer, NW Paton, R Stevens, and A Brass.
An ontology for bioinformatics applications. Bioinformatics, 15(6):510–
520, 1999.

[127] Jonathan B. L. Bard and Seung Y. Rhee. Ontologies in biology: design,
applications and future challenges. Nature Reviews Genetics, 5(3):213–
222, 2004.

[128] Ezio Bartocci, Diletta Cacciagrano, Nicola Cannata, Flavio Corradini,
Emanuela Merelli, Luciano Milanesi, and Paolo Romano. An Agent-based
Multilayer Architecture for Bioinformatics Grids. IEEE transactions on
Nanobioscience, 6(2):142–148, 2007.

[129] Sean Bechhofer, Robert D. Stevens, and Phillip W. Lord. Gohse: On-
tology driven linking of biology resources. J. Web Sem., 4(3):155–163,
2006.

[130] T. Berners-Lee, J. Hendler, and O. Lassila. The semantic web. Sci
Am., 284:34–43, 2001.

[131] Judith A. Blake and Carol J. Bult. Beyond the data deluge: Data inte-
gration and bio-ontologies. Journal of Biomedical Informatics, 39(3):314–
320, 2006.

[132] Olivier Bodenreider and Robert Stevens. Bio-ontologies: current trends
and future directions. Brief Bioinform, 7(3):256–274, 2006.

[133] M.S. Boguski. Bioinformatics–a new era. Trends Guide to Bioinfor-
matics, Trends Supplement, pages 1–3, 1998.

BIBLIOGRAPHY 147

[134] Alvis Brazma, Pascal Hingamp, John Quackenbush, Gavin Sherlock,
Paul Spellman, Chris Stoeckert, John Aach, Wilhelm Ansorge, Cather-
ine A. Ball, Helen C. Causton, Terry Gaasterland, Patrick Glenisson,
Frank C.P. Holstege, Irene F. Kim, Victor Markowitz, John C. Matese,
Helen Parkinson, Alan Robinson, Ugis Sarkans, Steffen Schulze-Kremer,
Jason Stewart, Ronald Taylor, Jaak Vilo, and Martin Vingron. Minimum
information about a microarray experiment (miame)- toward standards
for microarray data. Nat Genet, 29(4):365–371, 2001.

[135] Sergey Brin and Lawrence Page. The anatomy of a large-scale hyper-
textual web search engine. Computer Networks, 30(1-7):107–117, 1998.

[136] Kenneth H. Buetow. Cyberinfrastructure: Empowering a ”Third Way”
in Biomedical Research. Science, 308(5723):821–824, 2005.

[137] Declan Butler. Mashups mix data into global service. Nature,
439(7072):6–7, 2005.

[138] Nicola Cannata, Flavio Corradini, and Emanuela Merelli. A re-
sourceomic grid for bioinformatics. Future Generation Comp. Syst.,
23(3):510–516, 2007.

[139] Nicola Cannata, Flavio Corradini, Emanuela Merelli, Andrea Omicini,
and Alessandro Ricci. An agent-oriented conceptual framework for sys-
tems biology. In Corrado Priami, Emanuela Merelli, Pedro Pablo Gon-
zalez, and Andrea Omicini, editors, T. Comp. Sys. Biology, volume 3737
of Lecture Notes in Computer Science, pages 105–122. Springer, 2005.

[140] Mario Cannataro et al. Algorithms and databases in bioinformatics:
Towards a proteomic ontology. In ITCC (1), pages 322–328. IEEE, 2005.

[141] Yi-Bu Chen, Ansuman Chattopadhyay, Phillip Bergen, Cynthia Gadd,
and Nancy Tannery. The Online Bioinformatics Resources Collection at
the University of Pittsburgh Health Sciences Library System–a one-stop
gateway to online bioinformatics databases and software tools. Nucl.
Acids Res., 35(suppl 1):D780–785, 2007.

[142] Sarah Cohen-Boulakia, Susan B. Davidson, Christine Froidevaux, Zoé
Lacroix, and Maria-Esther Vidal. Path-based systems to guide scientists
in the maze of biological data sources. J. Bioinformatics and Computa-
tional Biology, 4(5):1069–1096, 2006.

[143] The Gene Ontology Consortium. Gene ontology: tool for the unifica-
tion of biology. Nature Genet., 25.

148 BIBLIOGRAPHY

[144] Remko de Knikker, Youjun Guo, Jin-long Li, Albert Kwan, Kevin Yip,
David Cheung, and Kei-Hoi Cheung. A web services choreography sce-
nario for interoperating bioinformatics applications. BMC Bioinformat-
ics, 5(1):25, 2004.

[145] David De Roure and James A. Hendler. E-science: The Grid and the
Semantic Web. IEEE Intelligent Systems, 19(1):65–71, 2004.

[146] David De Roure, Nicholas R. Jennings, and Nigel R. Shadbolt. The
Semantic Grid: A future e-science infrastructure. Grid Computing, 2003.

[147] R.P. Dellavalle, E.J. Hester, L.F. Heilig, A.L. Drake, J.W. Kuntzman,
M. Graber, and L.M. Schilling. INFORMATION SCIENCE: Going, Go-
ing, Gone: Lost Internet References, 2003.

[148] Andreas Doms and Michael Schroeder. GoPubMed: exploring PubMed
with the Gene Ontology. Nucl. Acids Res., 33(suppl 2):W783–786, 2005.

[149] Zhuo Fang, Jiong Yang, Yixue Li, Qing ming Luo, and Lei Liu. Knowl-
edge guided analysis of microarray data. pages 401–411, 2006.

[150] David A. Fenstermacher. Introduction to bioinformatics. JASIST,
56(5):440–446, 2005.

[151] Ian Foster and Carl Kesselman. The Grid: Blueprint for a Future
Computing Infrastructure. Morgan Kaufmann Publishers, San Francisco,
CA, 1998.

[152] Ian T. Foster, Nicholas R. Jennings, and Carl Kesselman. Brain meets
brawn: Why grid and agents need each other. In AAMAS, pages 8–15.
IEEE Computer Society, 2004.

[153] Joanne A. Fox, Scott McMillan, and B. F. Francis Ouellette. Con-
ductin Research on the Web: 2007 Update for the Bioinformatics Links
Directory. Nucl. Acids Res., 35(suppl 2):W3–5, 2007.

[154] Michael Y. Galperin. The Molecular Biology Database Collection: 2007
update. Nucl. Acids Res., 35(suppl 1):D3–4, 2007.

[155] Yong Gao, June Kinoshita, Elizabeth Wu, Eric Miller, Ryan Lee, Andy
Seaborne, Steve Cayzer, and Tim Clark. Swan: A distributed knowledge
infrastructure for alzheimer disease research. J. Web Sem., 4(3):222–228,
2006.

BIBLIOGRAPHY 149

[156] Yolanda Gil. On agents and grids: Creating the fabric for a new gen-
eration of distributed intelligent systems. J. Web Sem., 4(2):116–123,
2006.

[157] L. Grivell. Mining the bibliome: searching for a needle in a haystack?
EMBO Reports, 3(3):200–203, 2002.

[158] N. Guarino. Formal ontologies and information systems. In Proceedings
of FOIS, pages 3–15, 1998.

[159] Nicola Guarino and Christopher A. Welty. Evaluating ontological de-
cisions with ontoclean. Commun. ACM, 45(2):61–65, 2002.

[160] James Hendler. Science and the semantic web. Science, 299(5606):520–
521, 2003.

[161] Tony Hey and Anne E. Trefethen. Cyberinfrastructure for e-Science.
Science, 308(5723):817–821, 2005.

[162] NR Jennings and M. Wooldridge. Applications of intelligent agents.
In Agent technology: foundations, applications, and markets table of con-
tents, pages 3–28. Springer-Verlag New York, Inc. Secaucus, NJ, USA,
1998.

[163] Lars Juhl Jensen, Jasmin Saric, and Peer Bork. Literature mining for
the biologist: from information retrieval to biological discovery. Nat Rev
Genet, 7:119–129, 2006.

[164] H. Kitano. Foundations of systems biology. MIT Press Cambridge,
2001.

[165] Hiroaki Kitano. Computational systems biology. Nature,
420(6912):206–210, 2002.

[166] Nicolas Le Novere, Andrew Finney, Michael Hucka, Upinder S Bhalla,
Fabien Campagne, Julio Collado-Vides, Edmund J Crampin, Matt Hal-
stead, Edda Klipp, Pedro Mendes, Poul Nielsen, Herbert Sauro, Bruce
Shapiro, Jacky L Snoep, and Barry L Spence, Hugh D Wanner. Minimum
information requested in the annotation of biochemical models (miriam).
Nat Biotech, 23(12):1509–1515, 2005.

[167] Ketan K. Mane and Katy Borner. Mapping topics and topic bursts in
PNAS. PNAS, 101(suppl 1):5287–5290, 2004.

150 BIBLIOGRAPHY

[168] Herve Menager, Zoe Lacroix, and Pierre Tuffery. Bioinformatics ser-
vices discovery using ontology classification. In Proceedings of IEEE
Congress on Services (Services 2007), pages 106–113, Los Alamitos, CA,
USA, 2007. IEEE Computer Society.

[169] Emanuela Merelli, Giuliano Armano, Nicola Cannata, Flavio Corra-
dini, Mark d’Inverno, Andreas Doms, Phillip Lord, Andrew Martin, Lu-
ciano Milanesi, Steffen Moller, Michael Schroeder, and Michael Luck.
Agents in bioinformatics, computational and systems biology. Brief
Bioinform, 8(1):45–59, 2007.

[170] Eric Neumann. A life science semantic web: Are we there yet? Sci.
STKE, 2005(283):pe22, 2005.

[171] Eric K. Neumann and Denis Quann. Biodash: A semantic web dash-
board for drug development. In Russ B. Altman, Tiffany Murray, Teri E.
Klein, A. Keith Dunker, and Lawrence Hunter, editors, Pacific Sympo-
sium on Biocomputing. World Scientific, 2006.

[172] Tom Oinn, Matthew Addis, Justin Ferris, Darren Marvin, Martin Sen-
ger, Mark Greenwood, Tim Carver, Kevin Glover, Matthew R. Pocock,
Anil Wipat, and Peter Li. Taverna: a tool for the composition and en-
actment of bioinformatics workflows. Bioinformatics, 20(17):3045–3054,
2004.

[173] Sandra Orchard, Lukasz Salwinski, Samuel Kerrien, Luisa Montecchi-
Palazzi, Matthias Oesterheld, Volker Stumpflen, Arnaud Ceol, Andrew
Chatr-aryamontri, John Armstrong, Peter Woollard, John J Salama, Su-
san Moore, Jerome Wojcik, Gary D Bader, Marc Vidal, Michael E Cusick,
Mark Gerstein, Anne-Claude Gavin, Giulio Superti-Furga, Jack Green-
blatt, Joel Bader, Peter Uetz, Mike Tyers, Pierre Legrain, Stan Fields,
Nicola Mulder, Michael Gilson, Michael Niepmann, Lyle Burgoon, Javier
De Las Rivas, Carlos Prieto, Victoria M Perreau, Chris Hogue, Hans-
Werner Mewes, Rolf Apweiler, Ioannis Xenarios, David Eisenberg, Gianni
Cesareni, and Henning Hermjakob. The minimum information required
for reporting a molecular interaction experiment (mimix). Nat Biotech,
25(8):894–898, 2007.

[174] Christos Ouzounis and Pierre Mazire. Maps, books and other
metaphors for systems biology. Biosystems, 85(1):6–10, 2006.

[175] Christos A. Ouzounis and Alfonso Valencia. Early bioinformatics: the
birth of a discipline–a personal view. Bioinformatics, 19(17):2176–2190,
2003.

BIBLIOGRAPHY 151

[176] Carolina Perez-Iratxeta, Miguel A. Andrade-Navarro, and Jonathan D.
Wren. Evolving research trends in bioinformatics. Brief Bioinform,
8(2):88–95, 2007.

[177] Corrado Priami and Paola Quaglia. Modelling the dynamics of biosys-
tems. Brief Bioinform, 5(3):259–269, 2004.

[178] D. A. Quan and R. Karger. How to make a semantic web browser. In
WWW ’04: Proceedings of the 13th international conference on World
Wide Web, pages 255–265, New York, NY, USA, 2004. ACM Press.

[179] Alan Ruttenberg, Tim Clark, William Bug, Matthias Samwald, Olivier
Bodenreider, Helen Chen, Donald Doherty, Kerstin Forsberg, Yong Gao,
Vipul Kashyap, June Kinoshita, Joanne Luciano, M Scott Marshall,
Chimezie Ogbuji, Jonathan Rees, Susie Stephens, Gwendolyn Wong, Eliz-
abeth Wu, Davide Zaccagnini, Tonya Hongsermeier, Eric Neumann, Ivan
Herman, and Kei-Hoi Cheung. Advancing translational research with the
semantic web. BMC Bioinformatics, 8(Suppl 3):S2, 2007.

[180] Satya S. Sahoo, Amit P. Sheth, Blake Hunter, and William S. York.
Sembowser - semantic biological web services. In Christopher J.O. Baker
and Kei-Hoi Cheung, editors, Semantic Web. Revolutionizing Knowledge
Discovery in the Life Sciences, pages 317–340. Springer US, 2007.

[181] Michael Schroeder, Albert Burger, Patty Kostkova, Robert Stevens,
Bianca Habermann, and Rose Dieng-Kuntz. Sealifeeee: A Semantic Grid
Browser for the Life Sciences Applied to the Study of Infectious Dis-
eases. In Proceedings of HealthGRID 2006, Valencia, Spain (7th–9th June
2006), volume 120 of Studies in Health Technology and Informatics, pages
167–178, 2006.

[182] Michael Seringhaus and Mark Gerstein. Publishing perishing? towards
tomorrow’s information architecture. BMC Bioinformatics, 8(1):17, 2007.

[183] S. Sild, U. Maran, A. Lomaka, and M. Karelson. Open computing Grid
for molecular science and engineering. Journal of Chemical Information
and Modeling, 46(3):953–959, 2006.

[184] Robert Stevens et al. Tambis: Transparent access to multiple bioinfor-
matics information sources. Bioinformatics, 16(2):184–186, 2000.

[185] Robert D. Stevens, Alan J. Robinson, and Carole A. Goble. my-
Grid: personalised bioinformatics on the information grid. Bioinformat-
ics, 19(suppl 1):i302–304, 2003.

152 BIBLIOGRAPHY

[186] Chris F Taylor, Norman W Paton, Kathryn S Lilley, Pierre-Alain Binz,
Randall K Julian, Andrew R Jones, Weimin Zhu, Rolf Apweiler, Ruedi
Aebersold, Eric W Deutsch, Michael J Dunn, Albert J R Heck, Alexan-
der Leitner, Marcus Macht, Matthias Mann, Lennart Martens, Thomas A
Neubert, Scott D Patterson, Peipei Ping, Sean L Seymour, Puneet Souda,
Akira Tsugita, Joel Vandekerckhove, Thomas M Vondriska, Julian P
Whitelegge, Marc R Wilkins, Ioannnis Xenarios, John R Yates, and Hen-
ning Hermjakob. The minimum information about a proteomics experi-
ment (miape). Nat Biotech, 25(8):887–893, 2007.

[187] G. WEIß. Agent orientation in software engineering. The Knowledge
Engineering Review, 16(04):349–373, 2002.

[188] Mark D. Wilkinson and Matthew Links. BioMOBY: An open source
biological web services proposal. Brief Bioinform, 3(4):331–341, 2002.

[189] N. Wirth. Algorithms+ Data Structures= Programs. Prentice Hall
PTR Upper Saddle River, NJ, USA, 1978.

[190] Jonathan D. Wren. 404 not found: the stability and persistence of urls
published in medline. Bioinformatics, 20(5):668–672, 2004.

[191] Jonathan D. Wren. Engineering in genomics: the emerging in-silico
scientist; how text-based bioinformatics is bridging biology and artifi-
cial intelligence. Engineering in Medicine and Biology Magazine, IEEE,
23(2):87–93, 2004.

[192] Alexander C. Yu. Methods in biomedical ontology. Journal of Biomed-
ical Informatics, 39(3):252–266, 2006.

[193] Enhydra JaWE, http://www.enhydra.org/workflow/jawe/index.html

[194] Xml process definition language, http://xml.coverpages.org/XPDL20010522.pdf

[195] I. Altintas, C. Berkley, E. Jaeger: Kepler: an extensible system for
design and execution of scientific workflows. In: Proceedings 16th Inter-
national Conference on Scientific and Statistical Database Management:
21-23 June 2004; Santorini Island; Greece (2004)

[196] E. Bartocci, F. Corradini, E. Merelli, L. Scortichini: BioWMS:
a web-based Workflow Management System for bioinformatics. BMC
Bioinformatics 8(Suppl 1) (2007), http://www.biomedcentral.com/1471-
2105/8/S1/S2

BIBLIOGRAPHY 153

[197] D. Cacciagrano, F. Corradini, E. Merelli, L. Vito, G. Romiti: Re-
sourceome: a multilevel model and a Semantic Web tool for managing
domain and operational knowledge. In: P. Dini, J. Hendler, J. Noll, (eds.)
The Third International Conference on Advances in Semantic Processing
(SEMAPRO 2009). IEEE Computer Society (2009)

[198] M. Cannataro,P.H. Guzzi, T. Mazza, P. Veltri: MS-Analyzer: Intel-
ligent preprocessing, management, and data mining analysis of mass
spectrometry data on the grid. International Conference on Semantics,
Knowledge and Grid (2005).

[199] T. Carver, A. Bleasby: The design of jemboss: a graphical user inter-
face to emboss. Bioinformatics 19(14) (Sep 2003).

[200] A. Cichocki: Migrating workflows and their transactional properties.
Ph.D. thesis, University of Houston (1999).

[201] S. Cohen-Boulakia, S.B. Davidson, C. Froidevaux, Z. Lacroix, M.E. Vi-
dal, : Path-based systems to guide scientists in the maze of biological data
sources. J. Bioinformatics and Computational Biology 4(5), 1069-1096
(2006).

[202] F. Corradini, E. Merelli: Hermes: Agent-Based Middleware for Mobile
Computing. In: SFM. pp. 234–270 (2005).

[203] I.D. Dinov, D. Rubin, W. Lorensen, J. Dugan, J. Ma, S. Murphy,
B. Kirschner, W. Bug, M. Sherman, A. Floratos, D. Kennedy, H.V. Ja-
gadish, J. Schmidt, B. Athey, A. Califano, M. Musen, R. Altman, R. Kiki-
nis, I. Kohane, S. Delp, D.S. Parker, A.W. Toga: itools: a framework
for classification, categorization and integration of computational biology
resources. PLoS ONE 3(5) (2008).

[204] N. Guarino: Formal Ontology in Information Systems: Proceedings of
the 1st International Conference June 6-8, 1998, Trento, Italy. IOS Press,
Amsterdam, The Netherlands, The Netherlands (1998).

[205] E. Kawas, M. Senger, M.D. Wilkinson: Biomoby extensions to the tav-
erna workflow management and enactment software. BMC Bioinformatics
7, 523 (2006), http://www.biomedcentral.com/1471-2105/7/523.

[206] A. Lee, S. Neuendorffer: MoML - a modeling markup language in xml
- version 0.4. Tech. rep., University of California at Berkeley (2000).

154 BIBLIOGRAPHY

[207] T. Oinn, M. Addis, J. Ferris, D. Marvin, M. Senger, M. Greenwood,
T. Carver, K. Glover, M. Pocock, A. Wipat, P. Li: Taverna: a tool for the
composition and enactment of bioinformatics workflows. Bioinformatics
20(17) (Nov 2004).

[208] S.P. Shah, D.Y.M. He, J.N. Sawkins, J.C. Druce, G. Quon, D. Lett,
G.X.Y. Zheng, T. Xu, B.F.F. Ouellette: Pegasys: Software for execut-
ing and integrating analyses of biological sequences. BMC Bioinformatics
5(40) (2004).

[209] R. Stevens, A. Robinson, C. Goble: myGrid: personalised bioinformat-
ics on the information grid. Bioinformatics 19 Suppl 1 (2003).

[210] F. Tang, C. Chua, L. Ho, Y. Lim, P. Issac, A. Krishnan: Wildfire: dis-
tributed, grid-enabled workflow construction and execution. BMC Bioin-
formatics 6(1) (2005).

[211] M.D. Wilkinson, M. Links: Biomoby: An open source biological web
services proposal. Briefings in Bioinformatics 3(4), 331–341 (2002).

[212] I.H. Witten, E. Frank: Data Mining: Practical Machine Learning Tools
and Techniques. Morgan Kaufmann, San Francisco (2005).

PhD in Information Science and Complex Systems

Collection of theses

XXI-09-1 Ezio Bartocci.A Formal Framework for Modeling, Simulating and
Analyzing Network of Excitable Cells. January 2009.

XXI-09-2 Francesco De Angelis. Interoperability in e-Government Services.
January 2009.

XXI-09-3 Oliviero Riganelli. Online Public Service Delivery for Small and
Medium Size Organizations. January 2009.

XXII-10-4 Roberta Alfieri. Computational approaches to model the cell
cycle, a biological complex system. January 2010.

XXII-10-5 Andrea Cristofaro. Some constrained control problems with ap-
plications in industrial engineering. January 2010.

XXII-10-6 Barbara Re. Quality of (Digital) Services in e-Government.January
2010.

XXII-10-7 Leonardo Vito. A Semantic Framework for Declarative and Pro-
cedural Knowledge. January 2010.

