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SUMMARY 
 

Sodium naproxen, a member of the class of non-steroidal anti-inflammatory drugs 

(NSAIDs), exists in one anhydrous form and four hydrated ones: one monohydrate, two 

dihydrate and one tetrahydrate. Sodium naproxen (SN) forms can be summarised as 

follows: 

• the anhydrous sodium naproxen (ASN) is the commercialised form; 

• the monohydrated sodium naproxen (MSN), is obtained by dehydration of the 

dihydrated sodium naproxen (DSN), according to Kim and Rousseau (2004); 

• the dihydrated sodium naproxen (DSN) is obtained by exposing the ASN to 55% 

RH according to Di Martino et al. (2001); 

• the dihydrated sodium naproxen (CSN) is obtained by crystallizing sodium 

naproxen from water, according to Di Martino et al. (2001) and Kim and Rousseau 

(2004); 

• the tetrahydrated form (TSN) is obtained by exposing the ASN at 75% RH 

according to Di Martino et al. (2007). 

The hydration state of SN may strongly influence its physico-chemical and 

technological properties and consequently its bioavailability. Water exposure during 

storage or pharmaceutical processing can cause changes in the crystal lattice of the 

starting material. Therefore, a profound understanding and characterisation of SN solid 

state and phase transitions throughout storage or processing are important in predicting 

and defining its technological performance. 

 i

In fact, it was observed that following wet granulation process by high-shear mixer-

granulator, the drug hydrated to the tetrahydrated form. Performing two different drying 

procedures, granules of different water content and crystallographic characteristics were 

obtained. This means that differences in drying procedures could lead to products of 

different crystallographic properties. The behaviour under compression revealed that one



SUMMARY 

of the batches offered the best tabletability and compressibility. These results make it 

possible to state that differences in the crystallographic properties and water content of 

sodium naproxen are such that different hydration/drying processes can alter the drug 

crystal form and thus the tabletability of the resulting granules.  

Next, the water uptake of ASN during storage was evaluated. A correlation between 

water uptake by ASN at two different relative humidities and modifications in tableting and 

densification behaviour under hydration exists. Models for the hydration kinetics of ASN at 

55% and 86%, corresponding to the formation of the dihydrated and tetrahydrated forms 

respectively, were evaluated assuming Eyring’s dependence on temperature. Tabletability, 

compressibility, compactibility and densification behaviour were determined using an 

instrumented single punch tablet machine. 

Kinetic data is consistent with a model where water molecules enter the crystal 

preferentially along hydrophilic tunnels existing in the crystal structure and corresponding 

to the propionate side chain. Water inclusion perturbs the crystallographic structure, 

causing slight structural changes according to the amount and associated to an increase in 

entropy. The interposition of water molecules between SN molecules weakens 

intermolecular bonds, and these sites can behave like sliding planes under compression. 

Such structural changes may explain the improved compression behaviour and modified 

densification propensity mechanism. Kinetic data describing the water hydration 

mechanism of ASN explains in an original way the improved tableting and densification 

properties under hydration. 

Because different hydration/dehydration processes can alter the drug crystal form, the 

isothermal dehydration of some of SN hydrates was observed by thermogravimetry at 

several temperatures. The rate of water removal from the crystal was used to determine the 

mechanism of dehydration in the solid state, by fitting results with selected expressions 

corresponding to the most common solid-state processes. The water loss was then 

evaluated according to Eyring’s equation, and both changes in activation enthalpy (ΔH*) 

and activation entropy (ΔS*) were estimated from rate constant values. Experiments made 

it possible to distinguish different dehydration mechanisms for these hydrate forms, and in 

particular, to discern the dehydration behaviour of CSN and DSN dihydrate forms. These 
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results add new evidence supporting the X-ray powder diffraction study and showing 

different patterns for these two forms. X-ray powder diffractometry evaluation of the phase 

transitions occurring during dehydration of these two dihydrate forms showed that they 

vary according to dehydration temperature. 

To finalize our study, the technological and mechanical properties of several solid 

forms of SN were investigated. Particular attention has been made in order to reduce 

differences, among the samples, in crystal habit, particle size and distribution, amount of 

absorbed water, so that only the hydration degree and the crystalline structure might affect 

the technological behaviour of powders. Thus, the compression behaviours were 

determined by using an instrumented single punch tablet machine and evaluated through 

the tabletability, compressibility and compactibility analysis. The results showed that the 

compression ability was influenced by the hydration degree and the crystalline form. In 

general, the tabletability was mainly due to the ability of particles to close up by 

establishing numerous bonds. 

 

Keywords: Sodium naproxen; Hydrates; Hydration; Dehydration; Wet granulation; High-

Shear Mixer-Granulator; Tabletability; Compressibility; Densification; Thermal analysis, 

X-ray powder diffraction. 
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INTRODUCTION  

 

I.1. AIMS OF THE STUDY 

 

ASN can be differently hydrated or dehydrated according to the vapour pressures 

during storage and pharmaceutical processing. The hydration/dehydration processes 

promote changes in crystallographic structure. The changes in crystallographic structure 

can influence drug performance, such as mechanical behaviour, stability, dissolution rate 

and often bioavailability. Because of this, the physico-chemical drug metastability must be 

fully evaluated before and during the technological development.  

The main objective of this thesis was to investigate the influence of the solid state 

properties on the technological performance of sodium naproxen in its different hydrate 

forms. In addition, it is essential to carefully evaluate if changes in the experimental 

procedures of technological processes or storage conditions may affect the physico-

chemical stability of the hydrate forms.  

Several objectives may be therefore sequentially considered: 

• Demonstrate that technological processes such as wet-granulation/drying 

procedures can strongly influence the crystallographic form of SN.  

• Prove that differences in compression behaviour of SN can be ascribed to hydration 

degree, so that the behaviour of the active raw material under compression will be 

examined at different hydration degrees.  

• Explore the mechanism of crystal hydration from anhydrous SN to DSN and TSN. 

• Analyse the effect of hydration on the compression properties and densification 

mechanism of SN powders. 

• Establish a relationship between the hydration of SN at different relative levels of 

humidity and its tableting and densification behaviour. 

• Investigate if differences in tableting and densification behaviour result from the 

mechanisms of water inclusion inside the crystal and the consequent perturbations 

caused by them. 

• Clarify the dehydration mechanism of some of the hydrated forms of SN. 

 2
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• Describe differences between the two dihydrate forms of SN obtained by two 

different procedures (hydration at a relative humidity of 55% and crystallization 

from water). 

• Describe the phase transitions during dehydration according to the starting material 

and the experimental temperature. 

• Clarify the effect of water inclusion in the crystal lattice and the effect of crystalline 

structure on the compression behaviour of sodium naproxen. 
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I.2. SOLID STATE IN PHARMACEUTICAL SCIENCES    

 

Solid is the most commonly encountered phase in pharmaceutical practise (Cui, 

2007). The accurate choice and the fully characterization of the solid phase influence the 

quality of  manufacturing process, the performance and the bioavailability of the final 

dosage form of the drug.  

Solid phase can be classified, based upon the order of molecular packing, into two 

major types of subphases that are crystalline form and amorphous form (Figure 1.1).  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.1.  

Schematic representation of solid state forms.  

 

When applied to solids, the adjective, crystalline, implies an ideal crystal in which 

the structural units, termed unit cells, are repeated regularly and indefinitely in three 

dimensions in space (Figure 1.2.a and 1.2.b). The unit cell has a definite orientation and 

shape defined by the translational vectors, a, b, and c, and hence has a definite volume, V, 

that contains the atoms and molecules necessary for generating the crystal.  

 

SOLIDS

CRYSTALLINE FORM AMORPHOUS FORM

POLYMORPHS PSEUDOPOLYMORPHS DESOLVATES

HYDRATES SOLVATES

SOLIDS

CRYSTALLINE FORM AMORPHOUS FORM

POLYMORPHS PSEUDOPOLYMORPHS DESOLVATES

HYDRATES SOLVATES

 4



INTRODUCTION  

 

 

 

 

 

                                                                                                                          

 

(a) 

 

 

 

 

 

 

 

 

           

(b) 

 

Figure 1.2 

Unit cell with cell dimensions (a) and three dimensional structural organization of a 

crystalline lattice (b). 

 

Each crystal can be classified as a member of one of seven possible crystal systems 

or crystal classes (Table 1.1) that are defined by the relationships between the individual 

dimensions, a, b, and c, of the unit cell and between the individual angles, a, b, and γ of the 

unit cell (Brittain, 1999). 
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Table 1.1 

Seven crystal systems 

 

 

Crystal System 

 

 
 

Axial lengths and angles  

a = b = c Cubic 
α = β = γ = 90° 

a = b ≠ c Tetragonal 
α = β = γ = 90° 

a ≠ b ≠ c Orthorhombic 
α = β = γ = 90° 

a = b = c Rhombohedral 

(Trigonal) α = β = γ ≠ 90° 

a = b ≠ c Hexagonal 
α = β = 90°, γ = 120° 

a ≠ b ≠ c Monoclinic 
α = γ = 90° ≠ β 

a ≠ b ≠ c Triclinic 
α ≠ β ≠ γ ≠ 90° 

 

 

The structure of a given crystal may be assigned to one of the seven crystal systems, 

to one of the 14 Bravais lattices, and to one of the 230 space groups (Kim, 2005).  

All the 230 possible space groups, their symmetries, and the symmetries of their 

diffraction patterns are compiled in the International Tables for Crystallography (Hahn, 

1987).  

Crystalline solids exist in three groups that are polymorphs, solvates or hydrates, 

and desolvates.  
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I.3. POLYMORPHISM AND POLYMORPHS   

 

Polymorphism is the case in which one type of molecule can arrange into different 

crystalline forms. Polymorphs have different relative intermolecular and/or interatomic 

distances as well as unit cells, resulting in different physical and chemical properties such 

as density, hardness, tabletability, refractive index, melting point, enthalpy of fusion, vapor 

pressure, solubility, dissolution rate, other thermodynamic and kinetic properties and even 

color. The different crystal structures in polymorphs arise when the drug substance 

crystallizes in different crystal packing arrangements and/or different conformations. The 

occurrence of polymorphism is quite common among organic molecules, and a large 

number of polymorphic drug compounds have been noted and catalogued (Kuhnert-

Brandstatter, 1971; Borka et al., 1990; Giron, 1995). 

 

Furthermore, stresses during processing, such as drying, grinding, milling, wet 

granulation, oven drying and compaction, are reported to accelerate the phase transitions in 

pharmaceutical solids. The degree of polymorphic conversion will depend on the relative 

stability of the phases in question, and on the type and degree of mechanical processing 

applied. Keeping these factors in mind, it is desirable and usual to choose the most stable 

polymorphic form of the drug in the beginning and to control the crystal form and the 

distributions in size and shape of the drug crystals during the entire process of development. 

The presence of a metastable form during processing or in the final dosage form often 

leads to instability of drug release as a result of phase transformation (Rodriguez-Hornedo, 

1992).  
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I.4. HYDRATES AND SOLVATES 

 

Hydrates and solvates are formed by two compounds, when solvent molecules are 

present in the crystal lattice, leading to molecular adducts with the host molecules, which is 

different from polymorphs. Adducts frequently crystallize easier because two molecules 

often can pack together with less difficulty than single molecules. Since property changes 

by solvent-incorporation are analogous to polymorphism, the phenomenon of crystal solid 

adducts that possess solvents is called pseudopolymorphism and the compounds are called 

“pseudopolymorphs”, in a sense to show their similarity to the “real” polymorphs 

(Bechtloff et al., 2001).  

If the solvent is water, the molecular adducts are termed hydrates. Hydrates are 

especially relevant for pharmaceutical development because water is prevalent in 

manufacturing dosage forms.  

The pharmaceutical importance of crystalline hydrates is summarized by Morris 

(Morris et al., 2001). The physicochemical stability and/or bioavailability of 

pseudopolymorphs may become a serious problem during new drug development.  To 

prevent possible problems, the drug substance guideline of the United State Food and Drug 

Administration (FDA) states that «for approval of a new drug, “appropriate’’ analytical 

procedures need to be used to detect polymorphs, hydrates and amorphous forms of the 

drug substance and also stresses the importance of controlling the crystal form of the drug 

substance during the various stages of product development» (Byrn et al., 1995). For 

example, study of the bioavailability of ampicillin has shown that blood serum 

concentrations of ampicillin by the anhydrous form were higher and reached earlier than 

those by the trihydrated form (Carstensen et al., 1993). It was deduced from the results of 

experiments that the differences of blood serum concentrations of ampicillin between the 

anhydrate and the trihydrate result from the differences in the aqueous solubility of those 

two forms.  

Bulk drug substances are produced by several consecutive processes and 

unintentional interconversion among pseudopolymorphs may happen very frequently 

during the processes.  For example, crystallization for the purpose of separation, 

 8
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purification, or simply solidification can lead to the production of hydrated forms.  Since 

the formation of pseudopolymorphs is affected by variables such as temperature, pressure, 

and polarity of solvents, changing operating variables during crystallization may result in 

transformation between pseudopolymorphs. Some anhydrous substances that yield 

hydrates are tamoxifen (Kojima et al., 2007), ampicilline, nitrofurantoine (Kojima et al., 

2008), azythromicin (Gandhi et al., 2002). 

Solvates may be formed when a pure organic solvent or a mixture of solvents is 

used as solvent for crystallizing the compound. Guillory et al. (1999) have discussed the 

various methods of preparation of hydrates and solvates in detail. Because solvates behave 

similarly to hydrates, common analytical techniques can be used for characterization of 

solvates and hydrates.  

Drying process is usually employed to remove solvent-residues from crystals after 

crystallization.   

If hydrated forms are wet and they are introduced into the drying process, not only 

solvents on the surface of the forms but also solvents incorporated in the lattice structures 

may be evaporated.  Therefore, drying may result in the transformation of a hydrated form 

into a new form with a lower degree of hydration (Jørgensen et al., 2002; Morris et al., 

2001; Airaksinen et al., 2003). 

Removal of solvent from the crystals by drying may have an effect on the 

interconversion from one form to the other one. Zhu and Grant (2001) have studied the 

dehydration behaviour of nedocromil magnesium pentahydrate.  

Some hydrated compounds may convert to an amorphous form upon dehydration 

and some may become chemically labile.  For example, cephradine dihydrate dehydrates to 

become amorphous and undergoes subsequent oxidation (Haleblian et al., 1969). 

Dihydrophenylalanine anhydrate (Oberholtzer et al., 1979; Threlfall, 1995) crystallizes as 

prism-shaped crystals from ether and it is stable to oxidation; however, the dihydrated form 

grows as needle-like crystals and these crystals oxidize in air producing 70% phenylalanine 

in 10 minutes.   
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Changes in hydration state of crystalline drugs substances and excipients may occur 

frequently throughout the various steps of the manufacturing process or during storage and 

consequently the final product quality will not be the same as predicted. 

Morris states that “substances may hydrate/dehydrate or solvate/desolvate in 

response to changes in environmental conditions, processing, or over time in a metastable 

thermodynamic state” (Morris et al., 1993).  

In fact, technological processes, such as aqueous granulation, particle size 

reduction, film coating, and tablet compression all provide opportunities to “trap” a 

compound in a metastable form that may “relax” to a more stable form during the life of a 

dosage form. Alternatively, a kinetically favoured but thermodynamically unstable form 

may be converted during these processes to a more stable and less soluble form.  

The phase transformations associated with exposure to water, such as during 

solubility measurements, wet granulation processes, dissolution studies and accelerated 

stability tests are likely to occur via solution mediation. Solution mediated phase trans-

formations depend upon the solution phase to provide the mobility necessary to rearrange 

in the most stable form and hence are much faster than solid-state transformations. The rate 

of a solution-mediated transformation is proportional to the solubility of the species 

involved.  

Temperature, pressure and relative humidity may increase the rate of phase 

transformation of hydrates by inducing mobility in the system. Solution-mediated phase 

transformations have been reported for many hydrate systems, such as theophylline 

crystals (Rodriguez-Hornedo et al., 1992), eprosartan mesylate (Sheng et al., 1999) and 

nedocromil sodium (Khankari et al., 1998). 

Several authors have described the influence of the different steps of manufacturing 

and of storage conditions on the phase transitions of the drugs. For example, Otsuka et al. 

have demonstrated that wet granulation process causes the transformation of 

carbamazepine anhydrous forms to carbamazepine dehydrate form (Otsuka et al., 1999).  

Sometimes, mechanical grinding of organometallic pseudopolymorphs using a 

mortar and pestle to prepare samples for powder X-ray diffraction experiments help water 

molecules become inserted into crystal lattice structures (Sukenik et al., 1975). 
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According to the study on transitions of carbamazepine (Shalaev et al., 1997), it 

was found that compression causes the instability of the dihydrated crystalline form.  

Wöstheinrich and Schmidt (2001) reported that, during spray granulation, thiamine 

hydrochloride transforms to a monohydrate and during the final drying loses its water, and 

a dehydrated anhydrate is obtained. When a dehydrated anhydrate is exposed to ambient 

conditions during tabletting, again the monohydrate is formed. After storage for four 

months at room temperature the monohydrate converts to a hemihydrate. As a result, the 

tablet hardness and disintegration times are increased. 

  High humidity conditions during storage provide the crystallisation of theophylline 

monohydrate, which has a lower dissolution rate, in tablets (Herman et al., 1989; Ando et 

al., 1992; Adeyeye et al., 1995) and pellets (Herman et al., 1988; Herman et al., 1989). 

Other examples have been reported for nitrofurantoin and caffeine, where the phase 

transformation to a hydrate form occurs in high humidity (Shefter and Highuchi, 1963; 

Otsuka et al., 1991; Ando et al., 1992).  

 

Another consideration is the frequency with which hydrates are encountered in the 

pharmaceutical practise. Focusing on active drug substances, it is estimated that 

approximately one-third of the pharmaceutical actives are capable of forming crystalline 

hydrates (Stahl, 1980). The water molecule, because of its small size, can easily fill 

structural voids and, because of its multidirectional hydrogen bonding capability, is also 

ideal for linking a majority of drug molecules into stable crystal structures (Byrn et al., 

1999). The mere presence of water in a system is not a sufficient reason to expect hydrate 

formation, because some compounds, though they are soluble in water, do not form 

hydrates. It is the activity of water in the medium that determines whether a given hydrate 

structure will form. 

 

Apart from identifying and characterizing the phases during various stages of drug 

development, it is very important to gain an understanding of the dehydration/hydration 

mechanisms and kinetics. Many models have been developed to account for the 

dehydration kinetics of the crystalline hydrates (Byrn, 1982). These all assume certain 
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geometry and rely on some consistency of the system as the process proceeds. The 

dehydration kinetics to some extent will also depend upon the class of the hydrate system 

to which the drug belongs, particle size and morphology. 

 

 

I.4.1. Classification of hydrates  

 

Water molecule is small enough to fill the empty spaces formed when larger 

molecules are packed, and it interacts through hydrogen bonds to overcome some of the 

entropy of mixing. Crystalline hydrates have been classified by either structure or 

energetics aspects (Falk et al., 1973). The classification of crystalline hydrates of 

pharmaceutical interest by their structural characteristics is the most common, intuitive and 

useful approach. 

Based in their structural aspects crystalline hydrates have been classified into three 

classes (Table 1.2) and these three classes are discernible by the commonly available 

analytical techniques (Morris, 1999). 

 

Table 1.2 

Classification of crystalline hydrates 

  

Class 1 2 3 

 

Description 

 

Isolated lattice 

sites 

Lattice channels 

a. Expanded channels 

b. Lattice planes 

c. Dehydrated hydrates 

 

Metal-ion 

coordinated water 

 

The first class, isolated site hydrates, represents the structures with water molecules 

that are isolated and kept from contacting other water molecules directly in the lattice 

structure. Therefore, water molecules exposed to the surface of crystals may be easily lost. 

However, the creation of holes that were occupied by the water molecules on the surface of 
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crystals does not provide access for water molecules inside the crystal lattice. The analyses 

of the hydrates in this class show sharp Differential Scanning Calorimetry (DSC) 

endotherms, a narrow Thermogravimetry (TGA) weight loss range and sharp O-H 

stretching frequencies in the infrared spectrum. The characterization of cephradine 

dehydrate (Florey, 1973), an example of this class of hydrates, was particularly important 

for understanding and illustrating this hydrate class.  

The class two, channel hydrates, has water molecules structured in channels. The 

water molecules in this class lie continuously next to the other water molecules, forming 

“channels” through the crystal. The TGA and DSC data show interesting characteristics of 

channel hydrate dehydration. Early onset temperature of dehydration is expected and broad 

dehydration is also characteristic for the channel hydrates.  This is because the dehydration 

begins from the ends of channels that are open to the surface of crystals. Then, dehydration 

keeps on happening until all water molecules are removed through the channels.  

Ampicillin trihydrate and theophilline belong to this class and are described by Byrn (Byrn, 

1982) using light microscopy. As the crystal is heated on the microscope hot stage, the 

dehydration appears as a progressive darkening from the ends of the crystal toward the 

center. As the dehydration process continues, the crystal may change its structure or 

become amorphous. 

Class two channel hydrates are subdivided in three subclasses:  

a) expanded channels,  

b) lattice planes,  

c) dehydrated hydrates.  

The expanded channel hydrates may take up additional moisture in the channels when 

exposed to high humidity and the crystal lattice may expand. The lattice expansion can 

give changes in the dimensions of the unit cell. This is expressed in the XRPD as slight 

shifts in some or all the scattering peaks. Chromylin sodium (Cox et al., 1971) is an 

example of this behavior. 

Some hydrates have water molecules in two-dimensional order or plane and they are 

called planar hydrates. Examples of this structure are sodium ibuprofen and nedocromil 

zinc (Zhu et al., 1997). In both cases water is ion associated. In the case of nedocromil zinc, 
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the long axis of the crystal is perpendicular to the hydration plane and was observed to 

dehydrate primarily along the planar axis. 

Dehydrated hydrates are obtained when dehydration leaves an intact anhydrous 

structure that is very similar to the hydrated structure but with lower density. If there 

already an anhydrous crystalline form of the molecule exists, the dehydrated hydrate is 

classified as polymorph. Dehydrated hydrates may in principle belong to any of the classes 

discussed above or may be a class their selves. 

Ion-associated hydrates belong to the third class of hydrates.  Hydrates contain metal-

ion coordinated water and the interaction between the metal ions and water molecules is 

the major force in the structure of crystalline hydrates.  The metal–water interactions may 

be quite strong relative to the other non-bonded interactions and, therefore, dehydration 

occurs at very high temperatures (Dzidic et al., 1970). In TGA and DSC thermograms, 

very sharp peaks corresponding to dehydration of water bonded with metal ions are 

expected at high temperatures.   
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I.5. NAPROXEN AND SODIUM NAPROXEN 

 

Sodium naproxen (sodium salt of (S)-(+)-6-methoxy-α-methyl-2-naphtalene-acetic 

acid) is a non-steroidal anti-inflammatory drug (NSAID). The compound (Figure 1.3) is an 

arylacetate derivative which consists of aromatic moiety and propionate side chain, and it 

has an asymmetric carbon at the side chain (Kim et al., 1990). 

 

C
C-

H

O

O

O

CH3

CH3
Na+

 

                                                                                                      Melting point = 244-246°C 

              MW = 252,24 

                             pKa = 4,15 

Figure 1.3 

Chemical structure of sodium naproxen. 

 

Sodium naproxen is a white to creamy crystalline powder. Soluble in water and in 

methyl alcohol; sparingly soluble in alcohol; very slightly soluble in acetone; practically 

insoluble in chloroform and in toluene (USP, 27th  Edition). 

Naproxen was introduced to the market by Syntex in 1976 (Harrington, 1997). 

It is used in musculoskeletal and joint disorders such as ankylosing spondylitis, 

osteoarthritis, and rheumatoid arthritis including juvenile idiopathic arthritis. It is also used 

in dysmenorrhoea, headache including migraine, postoperative pain, soft-tissue disorders, 

acute gout, and to reduce fever.   

Naproxen is usually given by mouth as the free acid or as the sodium salt because 

the salt has much higher solubility in water than its acid free form. The doses in the 
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manufacturers product information are expressed in terms of the free acid or the sodium 

salt as appropriate for an individual preparation. Each 550 mg of naproxen sodium is 

approximately equivalent to 500 mg of naproxen.  

 

 

I.5.1. Pharmacokinetics 

 

Naproxen and naproxen sodium are readily absorbed from the gastrointestinal tract 

(Martindale, 2005). Peak plasma concentrations are attained about 1 to 2 hours after 

ingestion of naproxen sodium and in about 2 to 4 hours after ingestion of naproxen. Food 

reduces the rate but not the extent of absorption. Naproxen and naproxen sodium are also 

well absorbed rectally. 

At therapeutic concentrations naproxen is more than 99% bound to plasma proteins. 

Plasma concentrations of naproxen increase proportionally with dose up to about 500 mg 

daily; at higher doses there is an increase in clearance caused by saturation of plasma 

proteins. Naproxen diffuses into synovial fluid; it crosses the placenta and is distributed 

into breast milk in small amounts. Naproxen has a plasma elimination half-life of about 13 

hours. About 95% of a dose is excreted in urine as naproxen and 6-O-desmethylnaproxen 

and their conjugates. Less than 5% of a dose appears in the faeces.  

Sodium naproxen exists in an anhydrous form and the following four hydrated 

ones: one monohydrate, two dehydrate, and one tetrahydrate. 

 

 

I.5.2. Sodium naproxen anhydrous and hydrate forms 

 

SN is commercialized in its anhydrous form. The anhydrous form was described by 

Kim et al. (2004). The asymmetric unit of anhydrous sodium naproxen, contains two 

independent anions, denoted A and B, and two cations. In the anhydrous material, the Na+ 

ion is four-coordinate. It has four nonequivalent Na…O bonds that involve the carboxy 

groups of four different naproxen anions.   
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The evidence of the existence of hydrated forms of sodium naproxen is connected 

with previous studies performed in our laboratories (Pharmaceutical Technology 

Laboratories, University of Camerino) under the guidance of Prof. Piera Di Martino.  

Di Martino et al. (2001) described the formation of a dihydrate form of SN by both 

crystallization in water and hydration of the anhydrous form at a RH>55% and the 

evidence that two water molecules were bound to one SN molecule was established by 

elemental analysis. This technique was revealed fundamentally to quantify the number of 

water molecules bonded in the dihydrate SN, because other techniques such as KFT and 

TG do not allow to distinguish absorbed and bonded water since water loss already occur 

at temperatures  close to room temperature. 

Di Martino et al. (2007) described the hydration of the anhydrous SN to a 

tetrahydrate form by exposure at a RH>75%. 

The two previously cited studies proved that water absorption clearly promoted 

changes in the crystallographic structure of the SN, and that the two different hydrate 

structures may be formed during the hydration process, according to the RH%. In addition, 

it has been proven that the water seemed to be weakly bonded in the crystal structure, as 

demonstrated by the relatively low desolvation temperatures. This statement is in 

accordance with Allen et al. (1978) who suggested that water released at low temperature 

has very weak interaction with nearby molecules in the crystal lattice. The fact that the 

interaction of the carboxylate group with water in the forms obtained at 55% and 75% RH 

was probably rather weak was equally confirmed by solid-state 13C-NMR results (Di 

Martino et al., 2007).  

Kim et al. (2004) described the development of a monohydrate form of SN (MSN) 

by dehydration of a dihydrate form crystallized from water. The monohydrated form of SN 

was prepared by drying the dihydrate in a dessicator for 2 days. This form also appeared as 

an intermediate during the dehydration of the dihydrate and the tetrahydrate forms obtained 

respectively at 55 and 75% RH followed by X-ray powder diffractometry. 

Summarizing, in this study the following SN forms have been described: 

a) the anhydrous sodium naproxen (ASN); 
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b) the monohydrated sodium naproxen (MSN), obtained by dehydrating the 

dihydrated sodium naproxen (DSN), according to Kim and Rousseau (2004); 

c) a dihydrated sodium naproxen (DSN) obtained by exposing the ASN at 55% RH 

according to Di Martino et al. (2001); 

d) a dihydrated sodium naproxen (CSN) obtained by crystallizing sodium naproxen 

from water, according to Di Martino et al. (2001) and Kim and Rousseau (2004); 

e) the tetrahydrated form (TSN) obtained by exposing the ASN at 75% RH according 

to Di Martino et al. (2007). 
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MATERIALS AND METHODS 

 

II.1. MATERIALS 

 

Sodium naproxen (SN) (Eur. Ph. 5th Ed.; USP, 27th Edition) was kindly supplied by 

A.C.R.A.F. (Ancona, Italy) in its anhydrous form (anhydrous sodium naproxen, ASN). To 

avoid unwanted hydration, ASN was stored in a desiccator in the presence of diphosphore 

pentaoxyde (Sigma Aldrich, Stenheim, Germany).  

The mean particle diameter determined by laser diffraction method by the supplier 

was 22.82 ± 14.38 μm.  

During the present study, four different hydrated forms of sodium naproxen were used: 

• One dihydrated form (CSN) was obtained by crystallizing ASN from water (Di 

Martino et al., 2001). 25 g of sodium naproxen were dissolved under continuous 

stirring in 250 ml of demineralised water at a constant temperature of 333 K. The 

obtained solution was left to cool down spontaneously to 277 K under continuous 

stirring until crystallization occurred. The obtained crystals were then filtrated 

under vacuum filter and dried under room conditions.    

• The second dihydrated form (DSN) was obtained by exposing the ASN at a relative 

humidity of 55 ± 2%, according to the following method: 1.5 g of ASN powder 

were placed as a thin layer in a container in its turn placed in a sealed box where a 

RH% of 55% was produced by a supersaturated solution of magnesium nitrate in 

water. The RH% was checked by a thermohygrometer (Universal Enterprise Inc., 

Cambiago, Milano, Italy). The sealed box was stored at 298 ± 0.5 K in an incubator 

(Velp Scientifica, FTC 90E, Usmate, Italy). The sample was periodically weighted 

until equilibrium weight was reached (approximately 7 days). 

• The monohydrated form (MSN) was obtained by dehydrating the CSN under 

desiccation, slightly modifying the method described by Kim and Rousseau (2004). 

Briefly, the monohydrated form was obtained by drying 5 g of CSN in a desiccator 

under vacuum for 2 days at 298 K. The hydration state was checked by STA 

analysis. 
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• The tetrahydrated form (TSN) was obtained by exposing the ASN at a RH of 75 ± 

2% according the following method: 1.5 g of ASN powder were placed as a thin 

layer in a container in its turn placed in a sealed box where a RH% of 75% was 

produced by a supersaturated solution of sodium chloride in water. The RH% was 

checked by a thermohygrometer (Universal Enterprise Inc., Cambiago, Milano, 

Italy). The sealed box was stored at 298 ± 0.5 K in an incubator (Velp Scientifica, 

FTC 90E, Usmate, Italy). The sample was periodically weighted until the 

equilibrium weight was reached (approximately 10 days). 

 

All the powders were sieved in order to collect the same granulometric fraction 50-100 

μm.  

Other materials used during this study were: magnesium stearate A.C.E.F. (Fiorenzuola 

d’Arda, Piacenza, Italy), povidone (Kollidon® K30, BASF, Ludwigshafen, Germany), 

microcrystalline cellulose (MC) (Vivapur® 101, Ph. Eur., USP, J. Rettenmaier & Söhne, 

Rosemberg, Germany); the particle size distribution of the latter substance given by the 

supplier was as follows: less than 1% > 250 μm, 24% > 75 μm, 68% > 32μm. 
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II.2. ISOTHERMAL WATER SORPTION EXPERIMENTS 

 

Appropriate amounts of ASN were stored in an incubator (Velp Scientifica, FTC 

90E, Usmate, Italy) at 298 K. Powders were in turn placed in several boxes under 

appropriate RH%, obtained with saturated salt solutions, which generated a controlled 

water vapour pressure (Figure 2.1) 

  

T = 298 K 

Potassium 
acetate 

K2CO3 Mg nitrate Fructose NaCl KCl 

22%RH 43%RH 55%RH 64%RH 75%RH 86%RH

salt 

water

samples

 

Figure 2.1 

Representation of the isothermal water sorption experiment 

 

Experimental RH% was checked with a thermohygrometer (Universal Enterprise 

Inc., Cambiago, Italy). Hydration was followed by a discontinuous procedure, i.e. by 

taking and weighing samples at regular intervals until reaching equilibrium weight 

(Kontny and Zografi, 1995). Weight was checked every 10 days for three months. Assays 

were carried out in triplicate. Water uptake was calculated as a percentage of the initial 

mass of ASN. Sorption isotherms at 55% and 86% RH were established in the same 

experimental conditions, by weighing the samples twice daily. The powders recovered 

under hydration were used for the compression and densification study. The criteria for 

water uptake and water content were quite different because the mass of dried sample was 
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used as reference in the first case, while the mass of humid product was used in the second. 

Target values are indicated in Table 2.1. 

 

Table 2.1 

Target values of water uptake and water content. 

 

Formula Molecular weight Water uptake 

(%) 

Water content  

(%) 

C14H1 3O3Na 252 - - 

 

C14H1 3O3Na · 0.5H20 

 

261 

 

3.57 

 

3.45 

 

C14H1 3O3Na ·  1.0H20 

 

270 

 

7.14 

 

6.66 

 

C14H1 3O3Na ·  1.5H20 

 

279 

 

10.71 

 

9.67 

 

C14H1 3O3Na ·  2H20 

 

288 

 

14.28 

 

12.50 

 

C14H1 3O3Na ·  3H20 

 

306 

 

21.43 

 

17.64 

 

C14H1 3O3Na ·  4H20 

 

324 

 

28.57 

 

22.22 

   

 

 

 

II.3 STUDY OF HYDRATION KINETICS 

 

An experimental procedure similar to that previously described for the isothermal 

water sorption experiments was carried out to study hydration kinetics. The ASN powder 

was stored at two different RHs, 55% and 86%, at several temperatures (288, 293, 298, 303 

and 308 K) and generated in the appropriate saturated salt solutions. With the same 

discontinuous procedure as previously described, changes in weight were continuously and 
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regularly checked until equilibrium was reached. The 55% and 86% RH values were used 

because they led respectively to the dihydrated form (DSN) and the tetrahydrated form 

(TSN). 

 

 

II.4 DETERMINATION OF PARTICLE SIZE AND MORPHOLOGY 

 

For routine control of powder particle size, the measurement of the Ferret’s 

diameter of 500 particles determined by an optical microscope supplied with an objective 

of 100x (Leitz Ortholux II Pol-Bk, Wetzlar, Germany) was used. For more accurate 

particle size determination and for characterization of particle morphology the analysis by 

means of the Scanning Electron Microscopy (SEM) (Stereoscan 360, Cambridge 

Instruments, Cambridge, United Kingdom) was preferred. Samples were mounted on a 

metal stub with a double-sided adhesive tape and then recovered under vacuum with a gold 

layer of thickness of 200 Å using a metallizer (Balzer MED 010, Linchestein).  Again, 

particle size was determined by counting Ferret's diameter of 500 particles under SEM.  

 

 

II.5 SIMULTANEOUS THERMAL ANALYSIS (STA) 

 

Simultaneous Thermal Analysis (STA) enables to simultaneously analyse a sample 

for change in weight (Thermogravimetric analysis, TGA) and change in enthalpy flow 

(Differential Scanning Calorimetry, DSC). In this text, the acronyms TGA-STA and DSC-

STA will be used to refer to TGA and DSC obtained from STA. The analysis was 

performed with a Simultaneous Thermal Analyser (STA 6000, Perkin Elmer, Inc., 

Waltham, MA, USA), under nitrogen atmosphere (20 mL/min) in 0.07 ml open aluminium 

oxide pans. STA was calibrated for temperature and heat flow with three standard metals 

(tin, indium and zinc), taking into account their expected melting temperatures (505.08, 

429.75, 692.68 K respectively) and for weight with an external Perkin Elmer standard 

(Calibration Reference Weight P/N N520-0042, Material lot 91101 GB, Weight 55.98 mg, 
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01/23/08 VT). Calibration was repeatedly checked to assure deviation ≤ ± 0.3 K. Two 

different analyses were performed: a scanning analysis and an isothermal analysis. In the 

first case, samples (approximately 10 mg) were tested in quadruplicate by heating from 

293 to 393 K at a heating rate of 10 K min-1. In the second case, the isothermal dehydration 

experiments were performed at 295, 298, 301, 304, 307 and 310 K. During experiments, 

the STA furnace was heated in absence of the sample to reach the required temperature. 

After this, once the sample was introduced in the apparatus, a short period was 

required to stabilize the balance prior to data collection, during which some dehydration 

occurred, accounting for slightly lower than expected values of weight loss, especially at 

higher temperatures. This phenomenon has been previously described by Taylor and York 

(1998). In the present study, this fact is of particular importance because, as previously 

stated (Di Martino et al., 2001) desolvation of hydrated forms of SN already occurs close 

to room temperature. Thus, during the equilibration phase of the STA microbalance, a 

certain amount of water can be lost when the sample is subjected to the anhydrous nitrogen 

gas flux, before the analysis is actually started. 

 

 

II.6 DIFFERENTIAL SCANNING CALORIMETRY (DSC) 

 

Differential Scanning Calorimetry (DSC) analysis was also performed on a Pyris 1 

(Perkin Elmer, Co. Norwalk, USA) equipped with a cooling device (Intracooler 2P, 

Cooling Accessory, Perkin Elmer, Co. Norwalk, USA). A purge of dry nitrogen gas (20 

mL/min) was used for all runs. DSC was calibrated for temperature and heat flow using a 

pure sample of indium and zinc standards, respecting the same criteria previously 

described for STA. Sample mass was about 3-4 mg and aluminium perforated pans were 

used (Di Martino et al., 2001). Each run was performed in triplicate from 293 K to 553 K 

at a heating rate of 10 K/min. To avoid confusion with DSC-STA results, this last 

technique will be identified as conventional DSC. 

 

 25



MATERIALS AND METHODS 

II.7 X-RAY POWDER DIFFRACTION (XRPD) 

 

X-ray powder diffractometry (XRPD) was used to follow changes in the crystalline 

phase during dehydration processes. For this purpose, a Philips PW 1730 (Philips 

Electronic Instruments Corp., Mahwah, NJ, USA) as X-ray generator for Cu Kα radiation 

(λα1 = 1.54056 Å, λα2 = 1.54430 Å) was used. The experimental X-ray powder patterns 

were recorded on a Philips PH 8203. The goniometer supply was a Philips PW 1373 and 

the channel control was a Philips PW 1390. Data were collected in the discontinuous scan 

mode using a step size of 0.01° 2θ. The scanned range was 2° to 40° (2θ). 

 

 

II.8 PARTICLE WETTABILITY 

 

Particle wettability was determined by the capillary rise wetting method, based on 

Washburn’s equation, the theoretical basis of which was reported by Lazghab et al. (2005). 

An appropriate quantity of particles was packed into a glass cylinder in order to obtain 

reproducible bed porosity. The tube (12 cm long and 1 cm internal diameter), closed on 

one end with a sintered glass filter, was then joined to a scale (1/100000 precision), and 

then the solvent was placed in a container positioned under the tube and brought in contact 

with the filter. The tube was weighed every second until the particle bed became saturated, 

that is, when the mass ceased to increase. The rate of liquid penetration through the powder 

bed was used to calculate the contact angle (Lazghab et al., 2005). 

     

 

II.9 WET GRANULATION  

 

Wet granulation was performed in a high-shear mixer-granulator (Romaco, Lucca, 

Italy) equipped with a 2.6 L capacity vertical bowl, with a 3-blade impeller that can rotate 

at an interval speed of 50-1500 rpm, and with a vertical chopper that rotates at a fixed 
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speed of 6000 rpm. The binder liquid was added through a spray nozzle placed at the top of 

the bowl cover, with constant feeding of the liquid ensured by a peristaltic pump. The 

temperature inside the bowl was kept constant by water circulating in a jacket, and a 

temperature probe facilitated temperature control inside the bowl. Three different granule 

batches were produced: a drugless (placebo) batch and two medicated batches (MB). The 

placebo batch was composed of 5% povidone and 95% microcrystalline cellulose. The two 

medicated batches (MB), batch A and batch B, were obtained from the same wet granule 

batch, which will be indicated as the wet medicated batch (WMB). Medicated batches A 

and B also included 5% povidone, but instead of the 95% microcrystalline cellulose in the 

placebo, they contained 40% of this substance and 55% of ASN.  The wetting liquid, a 5% 

W/W solution of povidone in water, was added to the placebo and the MB for the 

granulation, in quantities of 70 ml/100g of solid weight and 35ml/100g of solid weight 

respectively. Granulation conditions are summarized in Table 2.2, where granulation 

parameters are indicated for dried mixing, liquid addition, and proper granulation. The 

same granulation procedure was always used for all three batches in order to avoid 

variables caused by differences in process (Table 2.2) (Holm, 1997).  Two liters of powder 

were processed in the bowl.  

 

Table 2.2 

Experimental conditions used during wet granulation in the high-shear mixer-granulator 

 

Granulation 

phases 

Time 

(sec) 

Impeller 

speed 

(rpm) 

Temperature

(K) 

Chopper 

(rpm) 

Vacuum 

Dried mixing 100 300 298 No No 

Liquid addition 300 600 298 No No 

Granulation 900 600 298 6000 No 
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The initial densities of powder mixes before granulation were 0.3605 and 0.4423 

g/cm3 respectively for placebo and MB formulations.  

The power consumption profile was recorded for each formulation during the 

granulation process, as the granulating liquid was being added, until the overwetting point 

(paste formation) was reached. The power consumption of the impeller was recorded with 

Labtech® Realtime Vision Version 3.0 (1998) software and expressed in comparison with 

the granulating liquid amount. The stages of wet granulation are explained afterwards in 

results section. The stage III corresponds to the agglomeration stage of wet granules. 

 

 

II.10 CHARACTERIZATION OF PHYSICAL PROPERTIES OF GRANULES 

 

The degree of liquid saturation percentage (DLS%) of wet granules was determined 

according to Saleh et al. (2005) through the calculation of the granule apparent density, 

which represents the ratio of the mass of a binder-free granule to its volume including the 

intra-particle voids. To measure this parameter, a sample of wet granules was subdivided 

into narrow size fractions by screen sieving. Each fraction was analyzed separately as 

follows: a significant sample of wet granules (at least 200) was counted and oven-dried at 

323 K for 24h. It must be specified that granules recovered after this drying procedure are 

composed of SN that is not completely dehydrated (as proven by the presence of some 

typical peaks of SN hydrated forms, as explained later). Assuming that the selected 

granules were spherical particles of homogeneous density and diameter, the granule 

apparent density, ρg, was calculated by equation (1): 
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                                  (1) 

 

where n is the number of particles in the analyzed sample, c is the mass fraction of the dry 

material in the granulating liquid, d is the mean particle size of the examined granule 

population, and mw and md are masses of wet and oven-dried samples, respectively. 
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The intra-particle void fraction was calculated by equation (2) 
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where ρs is the true density of the dry powder, experimentally measured using a helium 

pychnometer (Accupyc 1330, Micromeritics, Norcross, USA). 

The DLS of granules was defined as the portion of the overall intra-particle space 

occupied by the granulating liquid, and was calculated according to equation (3). 
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ρl is the density of granulating liquid. 

This study assessed two different drying procedures with a high-shear mixer-

granulator, after preliminary examinations showed that drying by oven or dessicator was 

not satisfactory.  

Our first procedure, used with both the placebo and batch A, consisted of drying 

granules under vacuum at room temperature (298 K) in the high-shear mixer-granulator, 

while the second  procedure (batch B) employed the same equipment, method, and time, 

but at a temperature of 313 K. According to these procedures, the chopper was stopped, the 

impeller blade velocity was lowered to 100 rpm in order to limit friction forces acting on 

particles, and the temperature inside the bowl was checked and set to 298 K for the placebo 

batch and medicated batch A, while a temperature of 313 K was used for medicated batch 

B. Next, the batches were subjected to the drying phase under vacuum for 1800 sec. 

Once dried, granules were sieved according to the method <786> of the USP 27 

through sieves of the following ISO nominal aperture: 1000, 800, 710, 630, 500, 355, 250, 

180 μm. Fractions higher than 1000 μm and those lower than 180 μm were discarded. 
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The appropriate drying period of time was evaluated, taking into account the loss 

on drying percentage LOD(%) and the friability index (FI). Before deciding upon the 

above-described drying methods and the period of 1800 seconds, a number of methods and 

times were tested, taking into account the loss on drying percentage LOD(%) and the 

friability index (FI). Our preliminary assays established that drastic drying conditions and 

increasing drying time did not decrease LOD(%), but dramatically increased FI (results not 

given). The mechanical action on the granule surface promotes its pulverization. In the 

attempt to produce granules containing a completely anhydrous sodium naproxen form, we 

examined such drying tools as a tray-oven (without vacuum) and a desiccator (under 

vacuum) to. In the case of the oven, we found that T > 333 K caused darkening of the 

granule surface. So, for our experiments, we fixed a limit temperature of 323 K, which was 

also used for DLS% calculation. The drying in the desiccator resulted unsatisfactory as 

well, as it was slow and inefficient. With both drying methods, the granules still contained 

hydrated forms of sodium naproxen in the granule core, as proven by X-ray powder 

diffraction study, which revealed the presence of some peaks of the hydrated forms. All 

drying experiments in static bed gave resistant granules.  

These preliminary examinations assessing the oven and the dessicator did not 

indicate them as a viable drying method for this study, and so for the final experiments we 

settled on the high-shear mixer-granulator, with the advantage to complete the process in 

the same apparatus.   

 

 

II.11 TECHNOLOGICAL PROPERTIES OF GRANULES 

 

The loss on drying percentage (LOD%) was determined with a thermal scale 

(Scaltec Instruments, SMO 01, Göttingen, Germany), by heating an appropriate amount of 

ground granules at 393 K until a constant weight was attained. Results are the mean of four 

measurements and are calculated on wet basis. 

True particle densities, necessary to determine the tablet porosity during 

compression and densification, were measured using a helium pychnometer (Accupyc 
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1330, Micromeritics, Norcross, USA) with a cell of 10 cm3. The particle density represents 

the mean of ten measurements. Each sample was analyzed three times and the result is the 

mean of three different determinations. 

Porosity was determined with an Autopore 9220 mercury porosimeter 

(Micromeritics, Norcross, USA). An intrusion measure was executed into the range 

between 3.45 kPa and 414 MPa. Results are the mean of 10 measurements.  

Friability was determined three times with a standard rolling-drum apparatus 

(Tecnogalenica, Milano, Italy) in conformance with the European Pharmacopoeia 5.3 

edition (2006) (described in the “Friability of uncoated tablets” section). Granules, of 

sieving fraction of 180-1000 μm, were subjected to 200 rotations in the apparatus, and 

passed again through the 180 μm sieve. The Friability Index (FI) expresses the ratio 

between the broken granules mass passed through the 180 μm sieve, and initial granule 

mass: the more the FI approaches 1, the more friable the granules.  

Bulk and tapped densities were determined by measuring the volume of carefully 

weighed samples. Carr’s Index (1965a, 1965b) was determined from initial and tapped 

sample volumes (Tecnogalenica, Milano, Italy).  

 

 

II.12 STUDY OF COMPRESSION PROPERTIES OF GRANULES 

 

The compression study was performed on a high tech mini rotary press (Piccola 10, 

Ronchi, Milano, Italy) equipped with a computerized control system to detect and analyze 

force-signals (pressing force and ejection force) and with ten flat 11.28 mm-diameter 

punches. Magnesium stearate addition directly to the granules as lubricant was eschewed 

for fear that it might influence the results; hence, a discontinuous compression procedure 

was chosen and samples were manually introduced into only one die. Die and punches 

were pre-lubricated with a 1% magnesium stearate suspension in ethanol 96% (v/v). The 

granule mass was always constant in order to obtain 1000 mg tablets. The force at the 

upper punch was progressively increased and recorded. Results for each compression force 

were the mean of five measurements. Thickness and diameter of intact ejected tablets were 
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measured with a manual micrometer (Mitutoyo, Japan) immediately after ejection. Tablet 

porosity was calculated from tablet dimensions, mass, and powder density. Crushing force 

was measured immediately after compression with a tablet strength tester (Erweka, type 

TBH30, Germany). Tensile strength Q (Fell and Newton, 1970) was calculated according 

to equation 4: 

 

                                                            
dt
HQ

π
2

=               (4) 

 

where H is the tablet crushing strength, d the diameter and t the thickness of the tablet.  

 

 

II.13 STUDY OF COMPRESSION PROPERTIES OF POWDERS 

 

Compression was carried out in an instrumented single punch tablet machine 

(Frogerais OA, Vitry, France), equipped with flat punches of 11.28 mm in diameter. 

Two sets of tablets were prepared for each powder.  The powder mass was adapted 

so as to reach a maximal compression pressure of 150 ± 5 MPa (first set, to study 

tabletability and compressibility) or a porosity value of 10 ± 0.1% (second set, to study 

compactibility) (Joiris et al., 1998; Sun and Grant, 2001). Results are the mean of five 

measurements. The die depth was fixed at 10.00 mm and the upper punch displacement for 

an empty die at 7.50 mm. External lubrication was obtained by compressing 

microcrystalline cellulose along with 1% W/W magnesium stearate. For each tablet, an 

appropriate amount of powder was weighed and introduced manually into the die. The 

machine was started and measures were recorded at a frequency of 2000 Hz. The length of 

pressure application on the powder (compression and decompression) was about 150 ms. 

 Once recovered, mass, thickness and crushing strength of tablet were measured, 

with scales (Precisa XT220 A), a micrometer (Mitutoyo, Japan) and a strength tester 

(Tablet Tester 8M, Schleuniger, Switzerland) respectively. Correction of displacement 
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transducer data for machine looseness and punch deformation was carried out according to 

Juslin and Paronen (1980). 

Pressure transmission through the powder bed in the die was estimated by 

comparing maximal compression pressures on the upper and lower punches. Transmission 

coefficient corresponds to the ratio of lower punch and upper punch values. 

Once recovered, mass, thickness and crushing strength of tablets were measured. 

Tensile strength was determined as previously. 

 

 

II.14 STUDY OF THE DENSIFICATION BEHAVIOUR 

 

The densification behaviour of powders was studied using Heckel’s equation 

(1961): 
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where D is the relative density of the compressed powder bed at applied pressure P. K is 

the slope of the straight linear portion of Heckel’s plot and the reciprocal of K is the mean 

yield pressure (PY).  

The constant A is the sum of two densification terms: 
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According to Doelker (1994), D0’ corresponds to the relative density of the powder 

at the moment when the last recorded applied pressure is still nil and B is the densification 

due to particle fragmentation.  
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Constants A and B can be expressed as relative densities using: 
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Heckel’s profiles were established from single compression cycles on tablets 

compressed approximately at 150 MPa. Parameters PY, DA, D0’, DB’ were calculated using 

a precompression pressure value of 2.0 MPa. Several methods have been described to 

select a linear region of the Heckel function in order to determine Heckel constants. 

  Following Paronen and Ilkka (1996), we selected a range of measurement points 

where the linear regression coefficient was as high as possible. This corresponded for both 

samples to the 50 to 100 MPa range, with coefficient values superior to 0.998. Each value 

is a mean of five measurements. 

Total elastic recovery (TER) was calculated according to Armstrong and Haines-

Nutt (1974): 
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where t1 is the minimal thickness of the powder bed in the die and t2 is  tablet thickness. 

Tablet porosity (ε) was calculated from weight, volume and apparent powder 

density. Minimal porosity (εmin) refers to powder porosity when maximal compression 

force was applied during each compression cycle. It was determined from weight, die 

dimensions and apparent powder density using a helium pychnometer (Accupic 1330, 

Micromeritics, Norcross, USA), with a cell of 10 cm3. Results are the mean of 10 

measurements. Densities of ASN, DSN and TSN were respectively 1.377 ± 0.008, 1.343 ± 

0.006 and 1.337 ± 0.005. The density of intermediate hydrates was calculated by averaging 

apparent powder densities as a function of water content.  
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III. PHYSICO-CHEMICAL AND TECHNOLOGICAL 

PROPERTIES OF SODIUM NAPROXEN GRANULES 

PREPARED IN A HIGH-SHEAR MIXER-GRANULATOR 
 

 

Tablets of anhydrous sodium naproxen were produced by wet granulation using a 

high-shear mixer-granulator. Drug hydrated to the tetrahydrated form, as observed by X-

ray powder diffractometry. After wet granulation, authors performed then two different 

drying procedures, obtaining granules of different water content and crystallographic 

characteristics. The first procedure dried granules in the high-shear mixer-granulator by 

applying vacuum at room temperature (batch A), while the second employed the same 

apparatus and time, under vacuum at 313 K (batch B). X-ray powder diffractometry 

revealed that the sodium naproxen contained in batch A granules was a mixture of 

dihydrated and tetrahydrated forms, (as demonstrated by the coexistence of peaks typical 

of both hydrated forms), while that of batch B granules was a mixture of monohydrated 

and tetrahydrated forms. This means that differences in drying procedures could lead to 

products of different crystallographic properties. The behaviour under compression was 

evaluated, revealing that batch A offered the best tabletability and compressibility. These 

results make it possible to conclude that differences in the crystallographic properties and 

water content of sodium naproxen are such that different hydration/drying processes can 

alter the drug crystal form and thus the tabletability of the resulting granules. 
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III.1 WET GRANULATION AND TECHNOLOGICAL CHARACTERIZATION 

OF GRANULES 

 

XRPD studies (Figure 3.1) revealed the suitability of the excipients chosen for this 

study, in particular, their compatibility with the raw material in the granulations. 

 

 

Figure 3.1 

XRPD patterns of the starting materials anhydrous sodium naproxen (ASN), 

microcrystalline cellulose (MC), povidone (PVP K30) and of the physical mixture (PM) of 

MC (40%) and PVP K30 (5%). 

 

Povidone’s XRPD patterns are typical for an amorphous material, with two broad 

flat curves without crystalline peaks. Similarly, the XRPD patterns of MC show wide 

reflections characteristic of this material: one broad flat curve and one sharper peak were 

observed at the angular ranges of 12-18° 2θ and 20-24° 2θ respectively. The XRPD 

patterns of SN, the raw material used for the present study, comply with those of the 
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anhydrous form, as confirmed by comparing them with known patterns (Di Martino et al., 

2007).  

In the same Figure, the XRPD patterns of the mixture with the same dry 

composition as that used for wet granulation are given and compared to the XRPD patterns 

of ASN.  

The presence of excipients does not significantly interfere with the ASN patterns: 

we can only observe a slight decrease in peak intensity, a slight baseline curvature between 

13-16° 2θ, due to the presence of the first flat curve of the MC, and a broadening of peaks 

between 21-24° 2θ, due to the overlap with the broad peak of MC.  

Predicting the appropriate amount of liquid to add to powders for wet granulation is 

important but difficult, because suitable moisture content varies with pharmaceutical 

formulation and powder characteristics.  

Crystal structure, water solubility, porous structure, and the ability to form crystal 

hydrates are factors determining the mechanism of water absorption in the solid 

(Dawoodbhai and Rhodes, 1989) and thus the amount of water required for wet granulation.  

In the present study, the appropriate amount of granulating liquid was determined 

through the power consumption method used by Leuenberger (1982). The granulating 

liquid, composed of a 5% W/W solution of povidone in water, was progressively added 

through constant feeding, while each batch was processed in the high-shear mixer-

granulator.  

In Figure 3.2, power consumption profiles (PCP) of both placebo and WMB are 

reported. For each graph, four stages are indicated, according to Betz et al. (2003). 
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Figure 3.2 

Power consumption profiles (PCP) for placebo (a) and wet medicated batch (WMB) (b). 

(stages I-IV are explained in the text). 

 

Stage I corresponds to initial liquid/powder mixing, while in stage II we can observe a 

progressive increase of work done by the impeller, due to the increased resistance exerted 

by the mass under wetting. During this phase the build up of liquid bridges between the 

powder particles begins and the first granules are formed (pendular phase). Stage III, the 

plateau region, when the granulating liquid is added and fills more inter-particle voids, is 
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considered appropriate for getting usable granules. In stage IV with the increase of water 

there is a consequent abrupt increase of resistance by the wet mass. Stage III corresponds 

to the funicular state. The capillary state is reached at the end of the stage IV. After these 

four stages, the water content dramatically increases with a loss of mass consistency. The 

length of stage III is different for the placebo and the medicated batch: for placebo, the 

appropriate liquid amount ranges approximately between 69-71 ml every 100 g of powder, 

while less liquid is necessary when SN is introduced into the formula. In this case, a 

quantity of 34-36 ml every 100 g of powder is necessary to reach the plateau region.  

Because the high water solubility of SN reduces the granulation liquid amount, a fact 

confirmed by the results of wettability studies. Contact angles (θ ) of placebo and 

medicated batch are 45.00 ± 2.37 and 21.00 ± 1.24 respectively. Contact angle can be 

considered a measure of particle wettability (Ebube et al., 1997; Simons et al., 2004; 

Rondeau, 2003; Pont et al., 2001; Zhang et al., 2002) such that the lower the contact angle, 

the higher the wettability. Particle wettability is higher for the medicated batch because of 

the presence of SN as a highly hydrophilic drug, which can partially dissolve in water and 

partially absorb water in its crystalline lattice, in spite of the lower quantity of granulating 

liquid. These results are also supported by the DLS%, which reflects particle wettability, 

and thus particle hydrophilicity. In Figure 3.3a, the mean granule size, d, is expressed as a 

function of the DLS%; it shows the granule growth with the increase of granulating liquid 

addition. Placebo granules grow faster than those in the WMB, in which the SN, which is 

soluble in the binder liquid, keeps granule growth under control. In Figure 3.3b, the DLS% 

is expressed as a function of the percentage of the mass ratio between the introduced liquid 

and the total dry powder (L/S %). The DLS% increases according to the granulating liquid 

amount and reflects the results of the PCP. 
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Figure 3.3 

Mean particle size of granules expressed as a function of the degree of liquid saturation 

DLS% (a) and DLS% expressed as a function of the percentage of liquid introduced to the 

total dry powder (L/S%) (b), for the placebo and wet medicated batch (WMB). 

 

According to a few preliminary assays, the liquid amount was fixed as 70 and 35 

ml for every 100 g of powder, respectively for placebo and MB. Some additional details, 

particularly regarding the reason for choosing this liquid amount for the medicated batch, 

will be given below. 
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When wet granules were analysed by XRPD, no differences were identified for the 

placebo batch, whether powder was dried or wetted (results not given). On the contrary, 

WMB exhibited significant changes, with an alteration of the typical ASN patterns, and the 

appearance of the pattern typical of the tetrahydrated form. In Figure 3.4, the XRPD 

patterns of wet granules are compared to both the anhydrous physical mixture and 

tetrahydrated sodium naproxen (TSN). In this case, this analysis revealed that the 

tetrahydrated form of wet granules was pure, and no peaks related to different SN forms 

were present. TSN was previously described by Di Martino et al. (2007). This hydrated 

form was obtained by exposing the ASN to a temperature of 298 K at an RH% higher than 

75%. The hydration of SN to TSN has not been yet described by any alternative methods. 

 

 
Figure 3.4 

XRPD patterns of physical mixture, before wetting and after wetting. The latter is done in 

comparison with that of pure tetrahydrated form (TSN). 

 

During preliminary studies devoted to establish the granulating liquid amount at the 

steady flow stage and assess the influence of phase conversion, several experiments were 

carried out by checking XRPD patterns in relation to the granulating liquid amount. 
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Within this scope, experiments were performed to determine whether the patterns 

had typical diffraction peaks of each crystalline form in a zone where no peaks of the other 

forms existed: 18.5 (2θ) and 19.5 (2θ) were chosen respectively for ASN and TSN. Peak 

intensities were evaluated and expressed as percentages with respect to the maximum 

intensity of the same peak when form was pure. Figure 3.5 represents results of three 

different experiments and shows that the progressive decrease of ASN peak intensity is 

accompanied by a concomitant increase of TSN peak intensity. 

 

 
Figure 3.5 

XRPD peak intensity percentage versus granulating liquid amount. The analyzed peaks are 

positioned at 18.5 (2θ) and 19.5° (2θ) for ASN and TSN respectively. 

 

This means that during this transition, no other phases appeared that were different 

from ASN and TSN forms. The 35ml/100g amount of granulating liquid was the minimum 

amount required to obtain the pure tetrahydrated form. Since 35ml/100g also corresponds 

to the required liquid addition for funicular state, it was selected for further granulations. 

The WMB was halved and the resulting batches A and B subjected to different 

drying procedures, as previously described. The XRPD patterns of batch A were compared 
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to those of different SN forms, such as ASN, monohydrated sodium naproxen (MSN), 

dehydrated sodium naproxen (DSN), and tetrahydrated sodium naproxen (TSN). Results 

are given in Figure 3.6, where some typical peaks were assigned to specific SN forms. 

In particular, the peaks at 3.98, 11.77, 21.60 and 24.36 (2θ) could be clearly 

identified as DSN, and those at 17.07 and 20.42 (2θ) were identified as the TSN form. 

 

 
Figure 3.6 

XRPD patterns of medicated batches dried under vacuum at 298 (batch A) and 313 K 

(batch B), and XRPD patterns of sodium naproxen anhydrous (ASN), monohydrate (MSN), 

dihydrate (DSN) and tetrahydrate (TSN). 
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It must also be noted that the ASN form was present only in traces, because typical 

and intensive peaks of this form are only distinguishable as very small peaks. Other peaks 

could not be identified as any form, because they are common to all hydrated forms: 15.90, 

19.29 and 23.77 (2θ). In any case, it is significant that these peaks were absent in the ASN 

form. These observations lead to the conclusion that batch A was mainly composed of a 

mixture of DSN and TSN.    

As previously explained, batch B was dried with the second procedure, and 

subsequently its crystallographic characteristics were analysed and typical patterns were 

compared to those of known SN structures. Some peaks (12.69, 18.26, 20.95, 22.90 2θ) 

could be easily identified as MSN, a form previously described in the literature (Kim and 

Rousseau, 2004; Kim et al., 2005; Di Martino et al., 2007). 

In addition, the peak at 15.97 (2θ) could be clearly identified as either MSN or TSN. 

The possibility that traces of TSN were present in this batch was corroborated by 

the presence of a peak at 4.29 (2θ), typical of either the ASN or TSN. Because of the 

absence of typical and intensive ASN peaks, it was possible identify as the peak at 4.29 

(2θ) to TSN. These observations allowed the conclusion that in batch B, SN mainly existed 

as MSN with some traces of TSN.  

In concluding this paragraph, it is necessary to clarify that all other attempts to 

obtain completely dehydrated granules, in which sodium naproxen was present only in its 

anhydrous form, were unsuccessful. In fact, the use of more drastic drying conditions such 

as higher temperature or prolonged drying time yielded highly friable granules, drying the 

granule surface, but leaving the core hydrated. This fact was proven by sieving the 

granules, separating the powder produced from the granule surface from the intact granules, 

and analyzing them by XRPD: while the powder generated from the granule surface was 

characterized by ASN peaks, the core of the granules were still characterized by peaks 

consistent with hydrated forms.  
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III.2 TECHNOLOGICAL CHARACTERIZATION OF GRANULES 

 

The three granule batches were analysed for LOD(%), porosity, FI, density, and 

flowability, and results are indicated in Table 3.1.  

 

Table 3.1 

Technological properties of granules of the three different batches. Results refer to the 

sieved granule fraction of 180-1000 μm. 

 

  

Placebo 

 

Batch A 

 

Batch B 

 

LOD (%) 

 

 

2.32 ± 0.37 

 

7.20 ± 0.93 

 

 

4.50 ± 0.29 

 

 

Porosity (%) 

 

 

42.28 ± 3.27 

 

47.23 ± 4.98 

 

49.33 ± 5.37 

 

Friability 

index 

 

 

0.55 ± 0.15 

 

0.38 ± 0.09 

 

0.48 ± 0.28 

App. particle 

density 

(g/cm3) 

 

1.430 ± 0.001 

 

1.484 ± 0.001 

 

1.473 ± 0.002 

Bulk density 

(g/cm3) 

 

 

0.68 ± 0.12 

 

0.75 ± 0.15 

 

0.72 ± 0.11 

 

Tapped 

density 

(g/cm3) 

 

0.77 ± 0.53 

 

0.81 ± 0.36 

 

0.79 ± 0.24 

 

 

Carr’s Index 

 

 

11.54 

 

7.70 

 

8.86 
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In spite of the higher granulating liquid amount added to the placebo formula, the 

LOD(%) (2.32 ± 0.37) for this formulation was lower than that of both MBs. In fact, batch 

A and batch B exhibited a LOD(%) of 7.20 ± 0.93 and 4.50 ± 0.29 respectively, the 

expression of the different hydration degrees reached at the end of drying procedure, 

reflecting the ability of SN to keep water in its crystalline lattice by forming hydrates. 

Granule porosity % reflected the DLS% and the drying degree, with batch B > batch A > 

placebo. 

During the wetting phase, SN is hydrated to the tetrahydrated form with the 

consequence of a change in the crystallographic structure. The subsequent drying process 

promotes further crystallographic changes and escaping water yields place to pores. This 

explains the higher porosity % of medicated batches with the respect to placebo batch. The 

higher porosity % of batch B compared to batch A was due to the more drastic drying 

conditions, that gave rise to the development of a more porous structure. 

Drying also influenced friability, as FI ranked in the order: placebo > batch B > 

batch A. In this case, an higher friability index is associated to a lower water content 

(LOD%).     

Granule particle density, determined by helium pychnometry, is given in Table 3.1 

and here compared to that of starting materials, microcrystalline cellulose (1.5578 ± 0.0002 

g cm-3) and anhydrous sodium naproxen (1.351 ± 0.001 g cm-3). The apparent particle 

density of placebo batch, mainly composed of MC, is anyway lower than that of pure MC, 

because of the presence of povidone (apparent particle density 1.1755 ± 0.0002 g cm-3). 

Differences in apparent particle densities with medicated batches reflect differences 

in batch composition (placebo and medicated batches) and, more particularly, differences 

in the degree of drug hydration: the SN hydration results in an increase of apparent particle 

density as a consequence of a change in crystallographic structure. Initial and tapped 

densities were ranked in the order: placebo < batch B < batch A. The Carr’s Indexes were 

always very good and appropriate for free flowing materials such as granules.  

Granule size distribution is given in Figure 3.7, which shows similar behaviour for 

the three batches. 
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Figure 3.7 

Granule size distribution of the three granule batches determined by the sieve method. 

 

The three granule batches compressed in the rotary press exhibited different 

compression ability (Figure 3.8). The latter was evaluated in terms of tabletability, which is 

the capacity of a material to give tablets of specified strength under the effect of 

compression pressure (Joiris et al., 1998). It is expressed in Figure 3.8a as tablet tensile 

strength versus compression pressure. 
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Figure 3.8 

Tensile strength (a) and tablet porosity (b) versus compression pressure for placebo and 

medicated batches. 

 

The tabletability of the three batches can be evaluated as a function of compression 

pressure range. In our experiments, the placebo batch, composed for the most part of MC 

(95%), exhibited the highest tabletability only at low compression pressures. In fact, in the 

compression range of 28-52 MPa, only the placebo gave tablets of sufficient tensile 

strength, while both medicated batches required higher compression pressures to yield 

tablets of appreciable strength. Tensile strength of placebo tablets progressively increased 
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only up to 80 MPa, after which the tensile strength remained constant whatever the 

compression pressure. At pressures over 80 MPa, the placebo exhibited no change in 

tabletability, in spite of the excellent compression properties of MC when used as diluent 

in direct compression (Dreu et al., 2005).  

Batch A exhibited the best compression behaviour in the pressure range between 60 

and 230 MPa: tabletability was good and tablet tensile strength increased proportionally 

with the increments in compression pressure reaching satisfying tablet tensile strengths. 

Batch B exhibited very poor tabletability for compression pressures lower than 100 

MPa: it was impossible to recover tablets, because they were too soft. It exhibited lower 

tabletability than the placebo batch in the compression pressure range of 100-140 MPa, but 

its tabletability was higher than that of the placebo for compression pressures over 140 

MPa. Comparison of batches A and B tabletability shows the best tabletability of batch A. 

For example, to get tablets of 1.0 MPa tensile strenght, batch A must be compressed at a 

compression pressure of 70 MPa, while a compression pressure of 150 MPa is necessary 

for the batch B. In addition, it must be noted that the maximum recorded tablet tensile 

strength for batch B was 1.2 MPa at a compression pressure of 260 MPa, compared to 1.6 

MPa for batch A obtained at a compression pressure of 240 MPa.  

Tabletability is strongly related to compressibility, which is the ability of a material 

to undergo a reduction in volume as a result of an applied pressure (Joiris et al., 1998). 

This is expressed in Figure 3.8b as tablet porosity versus compression pressure. Here we 

can observe that for the placebo batch, porosity diminished markedly as compression 

pressure increased (with a total porosity reduction of 60%). The two medicated batches 

exhibited similar behaviour in reducing volume under compression, although batch A 

tablet porosity was always the lowest one, confirming better tableting performance than 

batch B. Batch A underwent a total porosity reduction of about 95%, while batch B 

underwent a total porosity reduction of 88%. Batch B required higher compression 

pressures to reach tablet porosity similar to that of batch A.  
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IV. INFLUENCE OF CRYSTAL HYDRATION ON THE 

MECHANICAL PROPERTIES OF SODIUM NAPROXEN 
 

 

The aim of the study presented in this chapter is to establish a correlation between 

water uptake by anhydrous sodium naproxen (ASN) at two different relative humidities and 

modifications in tableting and densification behaviour under hydration.  

Water uptake was evaluated at different relative humidities. Models for the 

hydration kinetics of ASN at 55% and 86%, corresponding to the formation of the 

dihydrated and tetrahydrated forms respectively, were evaluated assuming Eyring’s 

dependence on temperature. Tabletability, compressibility, compactibility and 

densification behaviour were determined using an instrumented single punch tablet 

machine. 

Kinetic data are consistent with a model where water molecules enter the crystal 

preferentially along hydrophilic tunnels existing in the crystal structure and corresponding 

to the propionate side chain. Water inclusion perturbs the crystallographic structure, 

causing slight structural changes according to the amount and associated to an increase in 

entropy. The interposition of water molecules between sodium naproxen molecules 

weakens intermolecular bonds, and these sites can behave like sliding planes under 

compression. Such structural changes may explain the improved compression behaviour 

and modified densification propensity mechanism. Kinetic data describing the water 

hydration mechanism of ASN explains in an original way the improved tableting and 

densification properties under hydration. 
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IV.1 ISOTHERMAL WATER SORPTION EXPERIMENTS 

 

Results of isothermal water sorption experiments on ASN at 298 K are given in 

Figure 4.1. 

 

A B 

 

Figure 4.1 

Sodium naproxen water uptake expressed versus relative humidity % (A) and versus time 

(B). 

 

For relative humidity (RH) lower than 55%, water uptake was very low after 10 

days of exposure. A weight increase corresponding to 2 water molecules for one ASN 

molecule was noted. This was followed by a rather short plateau, then a second water 

uptake corresponding to two additional water molecules at 76% RH, and finally by a 

plateau above 76% RH. These results are in agreement with those of Di Martino et al. 

(2007). The first plateau corresponds to the formation of dihydrated sodium naproxen 

(DSN), while the second one corresponds to that of tetrahydrated sodium naproxen (TSN). 

It should be noted that the curve obtained after 90 days at different RH% is identical, with 

the exception of the dot at 43%, where water uptake considerably increased with time due 

to the slow formation of the dihydrated form at this RH% value. This phenomenon was 

previously described by Kontny and Zografi (1995) for other hydrated systems. The 

kinetics of water uptake at 298 K at RHs of 55% and 86% are given in Fig. 4.1b. At 55% 
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RH, DSN formation required a latency period of some days. At 86% RH, TSN formation 

started immediately and was more rapid.  
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Figure 4.2 

XRPD patterns of powders under hydration. (a) ASN starting material (A), after 6 days of 

exposure to 55% RH (50% hydration) (B), and completely hydrated DSN powder (C). 

(b) ASN starting material (A), after 2 days of exposure to 86% RH (50% hydration) (B), 

and completely hydrated TSN powder (C). 
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These curves were used to prepare the samples for tableting experiments. Powders 

under hydration were checked by XRPD. These analyses showed that, at an RH of 55%, 

when water uptake was not still complete, powders were composed of a mixture of ASN 

and DSN, without any intermediate crystalline form, such as for example monohydrate 

sodium naproxen (MSN). 

This result is clearly shown in Figure 4.2a, where XRPD patterns of sodium 

naproxen exposed to 55% RH are presented when hydration was at 50%, as well as those 

of ASN, the starting material, and DSN, the completely hydrated form. 

The intermediate form is clearly composed of a mixture of the two pure forms 

(ASN and DSN), and no peaks of any other forms, such as MSN, were visible. Peak 

intensities are proportional to water sorption and results concord with previously published 

data (2007), showing that typical ASN peaks progressively decrease as DSN peaks appear, 

without any other different forms. Similarly, at an RH of 86%, when water uptake was not 

still complete, powders were composed of a mixture of ASN and TSN, without any 

intermediate crystalline form such as, for example, MSN or DSN, as can be seen in Figure 

4.2b. These results are in agreement with those of Di Martino et al. (2007). 

Figure 4.3 shows the particle morphology of ASN, the starting material, and of the 

completely hydrated and now pure forms, DSN and TSN. This evaluation, together with 

particle size, is important particularly afterwards, when interpreting compression and 

densification behaviour. Particles are irregular with smoothed edges; there are no obvious 

differences between the three products and hydration does not seem to affect particle 

morphology. 
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 (a) 

 (b) 

 (c) 

 

Figure 4.3 

SEM microphotographs of ASN (a), completely hydrated DSN after exposure to 55% RH 

(b), completely hydrated TSN after exposure to 86% RH (c) 
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Particle sizes and distributions are given in Figure 4.4. No differences occurred as a 

consequence of hydration and slight variations among the three products are not 

statistically relevant.  
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Figure 4.4 

Particle size and distribution of sodium naproxen particles. ASN: anhydrous sodium 

naproxen; DSN: dihydrated sodium naproxen; TSN: tetrahydrated sodium naproxen. 
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IV.2 STUDY OF HYDRATION KINETICS 

 

To describe the process of water addition into the crystal, the following general 

equation was considered: 

 

                                                       
( )α⋅=

α f)T(k
dt
d

                       (10) 

  

where k(T) is the rate constant at temperature T and α , the fractional degree of reaction, 

represents  the fraction of water added at time t, that is: 

 

TM
M

=α
            (11) 

 

where M is the mass of water in the sample at time t and MT is the total mass of water in 

the sample at the end of hydration. The relationship between α  and time is embodied in 

the function f(α), which in turn depends on the reaction model followed by water addition. 

Integration of equation (10) at constant temperature gives: 

 

        
∫∫ ⋅=⋅=α=

α
α t

t)T(kdt)T(k)(g
)(f

d

0

1

0                      (12) 

 

The rate constant k(T) may be considered as  follows, based on Eyring’s dependence on T: 
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Tk)T(k B

                     (13) 

 

where ΔS* is the activation entropy, ΔH* is the activation enthalpy, R is the gas constant, 

kB is  Bolzmann’s constant and h is Planck’s constant. 
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Both ΔS* and ΔH* can be estimated from rate constant values determined by 

isothermal measurements (at several temperatures), provided g(α) is known. Table 4.1 

gives selected expressions (Šesták and Gunnar, 1971; Dong et al., 2002) for g(α) 

corresponding to the most common solid-state processes.  

 

Table 4.1 

Algebraic expressions corresponding to the most common mechanism generally used to 

describe changes in solid state (Šesták and Gunnar, 1971; Dong, et al, 2002). 

 

Model g(α) Mechanism (description of equation) 

A2 ( )[ ]2
1

1ln α−−  
one-dimensional growth of nuclei (Avrami-Erofeyev 

equation, n=2) 

A3 ( )[ ]3
1

1ln α−−  
two-dimensional growth of nuclei (Avrami-Erofeyev 

equation, n=3) 

A4 ( )[ ]4
1

1ln α−−  
three-dimensional growth of nuclei (Avrami-Erofeyev 

equation, n=4) 

R1 α one-dimensional phase boundary reaction (zero-order 

mechanism) 

R2 ( )2
1

11 α−−  
two-dimensional phase boundary reaction (contracting 

cylinder) 

R3 ( )3
1

11 α−−  
three-dimensional phase boundary reaction (contracting 

sphere) 

D1 α2 one-dimensional diffusion 

D2  

( ) ( ) ααα +−− 1ln1  

 

two-dimensional diffusion 

D3 
( )

2

3
1

11 ⎥⎦
⎤

⎢⎣
⎡ −− α  

 

three-dimensional diffusion (Jander’s equation) 

D4 ( )3
2

1
3
21 αα −⎟

⎠
⎞

⎜
⎝
⎛ −  

 

three-dimensional diffusion (Ginstling-Brounshtein 

equation) 
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Table 4.2 

Eyring’s parameters for hydration process. 

 

  

Eyring plot 

 

 

Hydration 

Condition 

 

Model 

 

T (°C) 

 

K (sec-1) 

 

r 

ΔH* 

(kJ mol-1) 

ΔS* 

(J K-1 

mol-1) 

 

r 

15 7.590·10-9 0.942 

20 9.780·10-8 0.947 

25 9.722·10-8 0.898 

30 1.886·10-7 0.970 

 

55% RH 

First step 

 

 

D1 

35 3.670·10-7 0.950 

 

 

122.4 

 

 

+30.8 

 

 

0.910

15 3.05·10-6 0.978 

20 3.12·10-6 0.984 

25 3.21·10-6 0.965 

30 3.37·10-6 0.974 

 

55% RH 

Second 

step 

 

 

A2 

35 3.65·10-6 0.992 

 

 

5.0 

 

 

-332.6 

 

 

0.999

15 2.88·10-6 0.996 

20 3.69·10-6 0.998 

25 4.51·10-6 0.996 

30 5.06·10-6 0.994 

 

 

86% RH 

 

 

 

A2 

35 6.06·10-6 0.989 

 

 

24.1 

 

 

-266.5 

 

 

0.992

15 1.39·10-6 0.997 

20 1.69·10-6 0.995 

25 2.02·10-6 0.996 

30 2.27·10-6 0.988 

 

 

86% RH 

 

 

R2 

35 2.75·10-6 0.985 

 

 

22.0 

 

 

-280.2 

 

 

0.997

 

 

Plots were placed according to kinetic equations shown in Table 4.1 and their 

conformity assessed by the least-square method. The function that best fitted the hydration 
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data was selected, and the corresponding values of k were determined. By fitting Eyring’s 

expression to these values the activation enthalpy and entropy of the process could be 

determined. 

Table 4.2 and Figure 4.5 give the results of ASN hydration at two different relative 

levels of humidity and at different temperatures.  

At 55% RH, reaction occurred in three stages (Figure 4.5a). 
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Figure 4.5 

Sodium naproxen hydration rate at different experimental temperatures. (a) NS exposed to 

55% RH; (b) NS exposed to 86% RH. 
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The induction period of nucleation, which is the initial reaction step, was rather 

long in time, but insignificant in weight increase. During the subsequent stage at the 

interface, i.e. the acceleratory period, weight increased with time, and this was followed by 

a decay period. The experimental M versus t curves had a sigmoid shape. Values suggest 

that hydration proceeded according to the model reported in Table 4.2. In the present case, 

such curves could only fit one of the models reported in Table 4.1 and so fitting was 

performed separately for the induction period and for the acceleratory-decay period. The 

first hydration period involved a D1 model, i.e. one-dimensional diffusion. When a gas 

molecule is fixed to a solid substratum, the ΔS* should be negative, because the gas 

molecule loses degrees of translation freedom. However, a positive and non-negligible ΔS* 

was obtained during the induction period, meaning that the freedom degrees of the 

activated state compensated for the loss of freedom degrees by water. Enthalpy value 

(ΔΗ*) was high, suggesting that introduction of the water molecule greatly modified the 

rigid structure of the crystal. Eyring’s parameters suggest that the entry of the water 

molecule alters the crystalline form towards a more expanded structure, in which the 

hydrated solid has more freedom degrees than the anhydrous one.  

The second stage of the hydration reaction is best described by an A2 model 

(Avrami-Erofeyev equation, n=2), which indicates that reaction is controlled by one-

dimensional growth of nuclei. ΔS* (–332.7 J K-1 mol-1) was now negative and reflected the 

expected entropy loss of water molecules entering the solid. On the other hand, the 

enthalpy change (ΔH* = 5.0 kJ mol-1) was much lower than during the induction period, 

suggesting that there was little enthalpic hindrance to the growth of the new phase.   

To sum up,  the hydration process for ASN exposed to 55% RH occurred in two 

steps: firstly, water molecules diffused inside the crystal, accessing through hydrophilic 

sites present in the crystal (1st step corresponding to the D1 model  and then water reacted 

with surrounding SN molecules to create  new bonds and rearrange  molecules (2nd step 

corresponding to the A2 model ).  

A rather different reaction model is involved when the solid is exposed to 86% RH 

(Table 4.2, Figure 4.5b). In this case the induction period, if any, was no more than a few 
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hours, i.e. shorter than the time interval chosen for the experimental design. Two different 

reaction models gave a very good fit for g(α) versus  t:  

a) the one-dimensional growth of nuclei (Avrami-Erofeyev equation, n=2), 

i.e. the same involved in the second stage of hydration at 55% RH and  

b) the two-dimensional phase boundary reaction (contracting cylinder, R2 

model).  

The ΔS* values for the two models, both negative and quite similar to each other, 

were similar to that found for the second hydration stage at 55% RH. Also the ΔH* values 

were quite similar to each other (respectively 24.1 or 22.0 kJ mol-1), but higher than the 

value found for the second hydration stage at 55% RH. Then at 86% RH, when four water 

molecules rather than two entered the lattice, hydration was accompanied by a greater 

enthalpy change, probably due to more notable crystallographic changes. 

To sum up, and by analogy with hydration results at 55% RH, the R2 model (two 

dimensional phase boundary reaction) seems the most probable mechanism, because again 

it implies water diffusion through pre-existing hydrophilic channels, then the association of 

water with polar groups capable of forming hydrogen bonds with water.  

 

 

IV.3 COMPRESSION BEHAVIOUR 

 

Before compression, all the hydrated powders were analysed by TGA to verify 

whether hydration occurred as expected. It should be noted that in the case of sodium 

naproxen TGA does not make it possible to distinguish between bound and absorbed water. 

This fact has also been previously highlighted by Kim et al. (2005) and Di Martino 

et al. (2001) and is due to the fact that the loss of bound water starts at quite low 

temperatures close to those favouring the loss of absorbed water.   

All the tested products showed very favourable behaviour under compression and 

no capping, sticking or seizing problems arose during the present study. 

Results are given in Figure 4.6a (tabletability), 4.6b (compressibility), 4.6c 

(compactibility). In these Figures, the unit used to represent the amount of water is the 
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Mean Stoichiometric Coefficient (MSC), which is, the number of water molecules per 

molecule of SN. It is of paramount importance to keep in mind that this number is a mean 

number, because hydrates in formation are mixtures of anhydrous and hydrated forms, and 

not intermediate hydrates.  

The tabletability of ASN was relatively good. The tensile strength after 

compression at 150 MPa was 1.25 MPa. The values for the hydrated forms were higher: 

2.59 MPa for DSN and 3.30 MPa for TSN. Tensile strength of hydrates in formation was 

proportional to MSC (Figure 4.6a).  

At 55% RH, the progressive formation of DSN corresponded to a progressive 

increase in tablet resistance, indicating a very significant correlation between tabletability 

and water content. At 86% RH, the progressive formation of TSN yielded a bell trend, with 

a maximal tensile strength of 3.95 MPa for an MSC of 3. Beyond this point, the increase in 

water content corresponded to a decrease in tensile strength. The compression behaviour of 

hydrated samples was compared to that of physical mixtures (PM) prepared by gently 

mixing different proportions of pure ASN and DSN or pure ASN and TSN in a mortar. 

Compression of physical mixtures of ASN and DSN (ASN : DSN of 75 : 25 or 50 : 

50), or ASN and TSN (ASN : TSN of 12.5 : 87.5 and 75 : 25), corresponding to MSCs of 

0.5 and 1, was then carried out. For the same water amount, the tabletability of physical 

mixtures was lower than that of hydrates in formation. It is clear that the way in which 

water is distributed among the particles is fundamental. 

In the case of physical mixtures, water is present in one portion of particles, while 

the other portion is anhydrous. However, in hydrates in formation, the water involved in 

hydration may be assembled in the periphery of particles, while the centre remains dry. 

This phenomenon is compatible with the typical structure of “channel hydrates” (Morris, 

1999). Kim (2005) observed a similar situation under optical microscopy, but the other 

way round, during the dehydration of MSN to ASN: there was initial dehydration at the 

periphery of the particles followed by progression of the phenomenon to the centre of the 

crystal parallel to the channels. 
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Figure 4.6 

Tabletability (a), compressibility (b) and compactibility (c) of SN hydrated forms. Each 

point is the mean of five independent determinations and is given with the 95% confidence 

interval. Solid symbols correspond to hydrates in formation at 55% (blue) and 86% (red). 

The open symbols correspond to the physical mixtures of ASN and DSN (blue) and ASN 

and TSN (red). 
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To have a better understanding of the profiles of tabletability, other representations 

are required. Tablets can be considered as the dispersion of particles in the air. Their 

cohesion comes from the intermolecular strength among particles that can act only when 

distances are very small (Nyström and Karehill, 1996). Any variation in tablet cohesion 

can thus theoretically be caused either by a modification of interparticle distances or an 

alteration in the intensity and/or the number of bonds. These phenomena can be explained 

by interpreting the compressibility and compactibility results.   

Water greatly modifies the compressibility of SN. After compression at 150 MPa, 

tablet porosity changes from 12.1% for ASN to 7.2% for DSN and 2.4% for TSN. The 

compressibility of hydrates in formation is presented in Figure 4.6b. The porosity of tablets 

produced at 150 MPa progressively decreases as a function of water content. This porosity 

reduction is comparable, whatever the water uptake, at 55% or 86%. A Pearson’s test 

carried out on the data shows that a very good correlation exists between tablet porosity 

and MSC (r= -0.97, p<0.0001). Compressibility data of physical mixtures is not presented 

in the same Figure, because it is exactly superposed over that of hydrates in formation. 

These results show that SN particles are closer together in water for the same 

compression pressure. The tabletability of SN is therefore increased by the presence of 

water. However, such evidence is inadequate to explain the differences observed between 

DSN and TSN, between hydrates in formation and those between physical mixtures and 

the bell profile of the tabletability of TSN. This is the reason why it is also essential to 

consider compactibility, which makes an assessment of the strength of interparticle bonds 

possible. The basic concept for a compactibility study is to make and compare the 

mechanical resistance of tablets of the same porosity for any substance under study. As 

proximity between particles is the same, the differences observed can be attributed to the 

number and/or intensity of interparticle bonds. For this study therefore, new tablets must 

be produced and porosity fixed at 10%, a value at which it is possible to recover tablets for 

any powder under study. The tensile strengths are 1.45, 1.83 and 1.77 MPa respectively for 

ASN, DSN and TSN at 10% porosity. As these values are quite close, they are not very 

informative and so the complete profiles of hydrates in formation and of physical mixtures 

are given in Figure 4.6c. It can be observed that for the very first water content tested 
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(MSC 0.5), the compactibility of DSN and TSN in formation abruptly increased to reach 

the values of 2.18 and 2.57 MPa respectively. These values changed little as water content 

increased, giving the profile of compactibility as a plateau. The last value on each curve 

(corresponding to DSN and TSN completely formed) was significantly lower, and more 

pronounced for TSN. In addition, the evolution of compactibility for physical mixtures was 

completely different and remained intermediate between the values measured for ASN and 

complete hydrates. All this information is compatible with a hydration model in which 

water enters into the anhydrous particles through pre-existing channels and thus remains 

confined at the periphery of the crystals, causing an abrupt modification to particle surface  

and thus  to interparticle bonds. The higher compactibility of TSN in formation compared 

to DSN may account for its better tabletability. It must be considered that the tetrahydrated 

form can already be formed at lower RH% (up to 64 %) as proven by water sorption 

isotherms.  Exposure to higher humidity levels (as in the case of 86% RH) can imply that a 

part of the water is involved in the hydration of the crystal (to form the tetrahydrated 

structure) and excess water is absorbed inside the tunnels and on the crystal surface. 

Consequently, it is possible to assume that at the end of hydration, when the 

crystalline structure is “saturated”, the available water is adsorbed on the surface of the 

particles, covering them with a thin film that reduces the possibility of interparticle bonds. 

However, as it is impossible to quantify exactly the water absorbed by TGA, as 

previously explained, this can only be a supposition. Water distribution in physical 

mixtures is completely different, yielding samples of lower compactibility than that of 

hydrated forms and practically uninfluenced by mixture composition.  

 

 

IV.4 DENSIFICATION MECHANISM 

 

The study of the compression behaviour of SN showed that hydration water 

significantly increased compressibility. The objective of the densification study is to obtain 

information about the mechanisms related to compressibility changes. 
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The first step in the study was to identify in which phase (compression or 

decompression) the compressibility modifications due to hydration take place. Figure 4.7 

shows the effect of hydration on the minimal porosity of tablets in formation, at the end of 

compression phase (Figure 4.7a), and on the elastic recovery of tablets during 

decompression. Results are given in Table 4.3. 
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Figure 4.7 

Minimal porosity (a) and elastic recovery (b) expressed versus MSC. Each point is the 

mean of five independent determinations and is given with the 95% confidence interval. 

Solid symbols correspond to hydrates in formation at 55% (blue) and 86% (red). The open 

symbols correspond to the physical mixtures of ASN and DSN (blue) and ASN and TSN 

(red). 
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Table 4.3  

Compressibility values and Heckel’s parameters, expressed with their 95% confidence 

intervals, of tablets produced at 150 MPa. Each value is the mean of five independent 

determinations. 

 

RH 

(%) 

 
MSC 

 
ε (%) 

 
εmin (%) 

 
RE (%) 

 
Py (MPa) 

 
D0’ 

 
DB’ 

 

0 

 

12.1±0.3 

 

7.4±0.3 

 

5.30±0.19

 

125.1±0.9

 

0.583±0.002 

 

0.186±0.002

 

0.5 

 

10.9±0.3 

 

7.2±0.3 

 

4.12±0.17

 

113.4±0.9

 

0.552±0.003 

 

0.179±0.002

 

1 

 

9.4±0.2 

 

6.3±0.2 

 

3.44±0.06

 

104.0±1.0

 

0.576±0.001 

 

0.152±0.001

 

1.5 

 

8.5±0.2 

 

5.7±0.3 

 

3.12±0.08

 

97.8±0.1 

 

0.584±0.006 

 

0.136±0.006

 

 

 

 

55 

 

2 

 

7.2±0.3 

 

5.0±0.1 

 

2.39±0.05

 

92.9±1.0 

 

0.605±0.002 

 

0.120±0.001

 

0 

 

12.1±0.3 

 

7.4±0.3 

 

5.30±0.19

 

125.1±0.9

 

0.583±0.002 

 

0.186±0.002

 

0.5 

 

10.5±0.2 

 

6.9±0.1 

 

4.02±0.20

 

110.1±0.6

 

0.566±0.002 

 

0.161±0.001

 

1 

 

9.5±0.2 

 

6.5±0.2 

 

3.34±0.09

 

106.6±1.6

 

0.572±0.002 

 

0.149±0.003

 

1.5 

 

8.7±0.3 

 

5.7±0.4 

 

3.00±0.10

 

99.4±2.2 

 

0.582±0.004 

 

0.137±0.004

 

2 

 

6.6±0.3 

 

4.4±0.2 

 

2.35±0.10

 

87.3±2.3 

 

0.585±0.003 

 

0.132±0.005

 

3 

 

3.8±0.2 

 

1.9±0.1 

 

1.98±0.15

 

61.4±2.8 

 

0.609±0.003 

 

0.131±0.007

 

 

 

 

86 

 

4 

 

2.4±0.2 

 

0.7±0.2 

 

1.80±0.28

 

47.6±2.0 

 

0.642±0.003 

 

0.162±0.006

MSC = Mean Stoichiometric Coefficient; ε = tablet porosity; εmin = minimal porosity; Py = 

mean yield pressure. 
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These results clearly show that two different mechanisms contribute to the increase 

in compressibility. When hydration starts, minimal porosity changes little, while elastic 

recovery decreases. Afterwards, minimal porosity decreases while elastic recovery levels 

off at a low value. The limit between these two phases is located at a stoichiometric 

coefficient of 1.5. It is visible in Figure 4.7b which presents the whole evolution of 

compressibility.  Results corresponding to the same MSC are similar, whether water uptake 

has occurred at 55% or 86% RH. 

The second step in the densification study focuses on the way the particle is 

deformed during the compression phase. This is done by analysing the parameters of 

Heckel’s equation (Table 4.3). 

These values show that ASN particles fragment during compression (high DB’ and 

Py) and that they change progressively during hydration, indicating a modification in the 

densification mechanism, from fragmentation to plastic deformation (lower Py). With TSN 

the peculiarity is the association of a high DB’value to a low Py value, corresponding to the 

high compressibility of this product. Results registered during this second part of the work 

are similar for the common stoichiometric coefficients, independently of the RH% used for 

water uptake (55 or 86% RH). 

Results of the densification study are confirmed by examining the general profiles 

of Heckel’s cycles. The cycles obtained for tablets produced at the same final porosity of 

10% are given in Figure 4.8. For low water content, the decrease in the initial curve is 

clearly evident, and corresponds to the change from volume reduction by fragmentation to 

plastic deformation. The decrease in elastic recovery is also clearly evident, as can be 

noted by the decompression phase which becomes more horizontal. For the highest water 

content, the increased slope in the climbing part of the cycle can be observed with maximal 

pressure, which becomes weaker and weaker to obtain tablets of 10% porosity.    
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(a) 

(b) 

Figure 4.8 

Heckel’s cycles for tablets of 10% porosity. Tablets are produced from SN under hydration 

at 55 (a) and 86% RH (b) RH. Each curve corresponds to whole values recorded while 

producing one tablet. 

 

Modification in the densification mode is at the origin of the tabletability and 

compactibility improvement to be seen at the very start of hydration. Indeed, as explained 

above, the water captured at the initial phase of hydration may be concentrated in the 

periphery of the crystal. This external zone can become highly deformable, increasing the 

interparticle contact surface. This hypothesis is compatible with the fact that TSN, which is 

more plastic than DSN, also displays greater compactibility. 
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IV.5 RELATIONSHIP BETWEEN HYDRATION AND THE MECHANICAL 

PROPERTIES OF SN 

 

The crystallographic structure of naproxen acid has been described as monoclinic 

(Ravikumar et al., 1985; Kim et al., 1987) and the presence of the Na atom in the salified 

form does not modify this (Kim et al., 1990). The Na atom participates in an “O…Na” type 

interaction where Na is simultaneously linked to four oxygen atoms forming a tetramer 

that stabilizes the structure (Kim et al., 1990). Di Martino et al. (2001, 2007) have 

classified the hydrated forms of SN as “channel hydrates” according to Morris (1999). 

During the hydration process, water molecule access into the crystal is limited by 

the presence of some hydrophobic sites, mainly formed by the π cloud of the naphthalene 

rings. Water molecules can thus move preferentially from the periphery of the crystals 

along hydrophilic tunnels existing in the crystal structure and corresponding to the 

propionate side chain. Water molecules can then be easily accommodated between the SN 

molecules by forming hydrogen bonds with both Na and/or O atoms. The dimensions of 

the tunnel can be dependent on the number of water molecules placed in the tunnel (two 

for the dihydrate and four for the tetrahydrated). The conformational changes associated 

with hydration promote crystallographic modifications. Consistently with this, hydrated 

forms of sodium naproxen can be considered as “expanded channel hydrates” (Morris, 

1999). In this hydrated form, the water molecules converge on channels in the crystal 

structure, causing the distance between some crystalline planes to be increased 

proportionally to the amount of water. In this kind of structure, the water molecules are 

mainly bound together by hydrogen bonds and interact little with the host molecule. Thus, 

water molecules can easily move into the channel, bringing about easy and progressive 

hydration or dehydration of the crystals. This can explain the progressive increase in 

plastic deformation of hydrated forms which is proportional to the increase in water inside 

the crystal, as well as the modification in the densification mechanism from fragmenting to 

plastic deformation. This also accounts for the differences between the dihydrated and 

tetrahydrated forms. The intermolecular spaces occupied by water molecules behave like 

“sliding planes” for plastic deformation. In a previous study, Sun and Grant (2001) 
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explained the greater tableting propensity of the monohydrated form of p-hydroxybenzoic 

acid in its anhydrous form through the combination of a larger interparticle bonding area, 

thanks to the presence of water, and higher bonding strength. In fact, in the monohydrated 

form, the water molecules fill the spaces between the layers and facilitate the plastic 

deformation of the crystals by maintaining a larger separation between the zigzag-shaped 

planes. 
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V. MECHANISMS FOR DEHYDRATION OF THREE 

SODIUM NAPROXEN HYDRATES 
 

 

In the present work, it is observed the isothermal dehydration of some of naproxen 

hydrates by thermogravimetry at several temperatures. The rate of water removal from the 

crystal was used to determine the mechanism of dehydration in the solid state, by fitting 

results with selected expressions corresponding to the most common solid-state processes. 

The water loss was then evaluated according to Eyring’s equation, and both 

changes in activation enthalpy (ΔH*) and activation entropy (ΔS*) were estimated from 

rate constant values. Experiments made it possible to distinguish different dehydration 

mechanisms for these hydrate forms, and in particular, to discern the dehydration 

behaviour of two different dihydrate forms, one obtained by crystallizing sodium naproxen 

from water (CSN) and the other obtained after exposure to 55% RH (DSN).  

These results add new evidence supporting the X-ray powder diffraction study 

carried out in this work, showing different patterns for these two forms. X-ray powder 

diffractometry evaluation of the phase transitions occurring during dehydration of these 

two dihydrate forms showed that they vary according to dehydration temperature.   
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V.1 PHYSICAL CHARACTERIZATION OF STARTING SAMPLES 

 

All the samples under study were firstly characterized for their mean particle size, 

which was as follows:  

• ASN: 75.0 ± 2.7 μm;  

• MSN: 80.3 ± 4.5 μm;  

• DSN: 78.2 ± 3.9 μm;  

• CSN: 74.5 ± 1.7 μm;  

• TSN: 79.1 ± 2.5 μm.  

From these results, it is possible to deduce the very high particle size similarity, 

aspect of paramount importance to correctly interpret the results presented afterwards. 

Anhydrous and hydrated forms of SN have already been described above (Kim and 

Rousseau., 2004; Di Martino et al., 2007). In Figure 5.1, the results of STA analysis, 

simultaneously showing TGA and DSC thermograms, are reported for all the forms 

described previously 

 

 

 
(Figure 5.1 follows next page) 
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Figure 5.1 

Thermograms of Simultaneous Thermal Analysis (STA) of the anhydrous and hydrated 

forms of sodium naproxen carried out at 10 K/min. Bolt line corresponds to the TGA-STA 

analysis; broken line corresponds to DSC-STA analysis. ASN: anhydrous sodium 

naproxen; MSN: monohydrate sodium naproxen; DSN: dihydrate sodium naproxen; TSN: 

tetrahydrate sodium naproxen; CSN: crystallized sodium naproxen. 

 

. 
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In order to summarize some important physicochemical characteristics of these 

forms, theoretical and experimental water contents determined by TGA-STA are listed in 

Table 5.1 and also compared to values previously reported in the literature. 

 

Table 5.1 

Summary of water content determined by thermogravimetry (TGA-STA) of anhydrous and 

hydrated sodium naproxen forms. Experimental results are compared to those reported in 

literature. 

 

  TGA-STA (% W/W) 

 Theoretical water 

content (%W) 

Data from literature Data of the present work 

 

ASN 

 

0.00 

0.05 ± 0.01 a 

0.39 ± 0.03 b 

 

0.07 ± 0.02 

 

MSN 

 

6.66 

 

6.83 ± 0.29 a 

 

6.68 ± 0.02 

 

DSN 

 

12.49 

 

12.90 ± 0.04 b 

 

12.87 ± 0.24 

 

TSN 

 

22.21 

 

20.68 ± 0.48 b 

 

21.55 ± 0.13 

 

CSN 

 

12.49 

 

12.96 ± 0.66 a 

 

12.92 ± 0.31 
 a Kim and Rousseau. 

b Di Martino et al. 

 

Table 5.1 shows that samples produced for the present study are all in compliance 

with the expected values. In particular, it must be noted that two different dihydrate SN are 

mentioned, the crystallized sodium naproxen (CSN) obtained by crystallizing SN from 

water (Di Martino et al., 2001; Kim and Rousseau, 2004) and the dihydrate sodium 
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naproxen (DSN) obtained by exposing anhydrous SN powder to 55% RH (Di Martino et 

al., 2007). 

X-ray powder diffraction analysis was first performed at the beginning of this study 

in order to check the crystallographic form of the powders being used. Patterns, given in 

Figure 5.2, were thus compared to those previously reported in the literature. 
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CSN

 

 

Figure 5.2 

XRPD patterns of the anhydrous and hydrated forms of sodium naproxen. ASN: anhydrous 

sodium naproxen; MSN: monohydrate sodium naproxen; DSN: dihydrate sodium 

naproxen; TSN: tetrahydrate sodium naproxen; CSN: crystallized sodium naproxen. 

 

The patterns of all the structures comply with those presented in previous papers: 

ASN and CSN comply with Kim and Rousseau (2004) and Di Martino et al. (2007); MSN 

complies with Kim and Rousseau (2004); and DSN and TSN comply with Di Martino et al. 

(2007). Of striking interest is the fact that the two hydrated forms, DSN and CSN, display 
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some differences in XRPD patterns, even though they have similar water content. In 

particular in the region of low angles, XRPD patterns of DSN and CSN show very high 

similarity, and all high intensity reflections of DSN are present in CSN, but slightly shifted 

to lower angles (3.8, 7.9, 11.8 2θ). This fact can probably reflect an expansion of the unit 

cell, indicating at the same time a high degree of structural similarity between the two 

dihydrates. In addition, several peaks of the two forms overlap (17.5, 19.2, 21.6, 23.7 2θ) 

and other peaks, typical of the CSN, are absent in the DSN (15.3, 16.3, 18.1, 20.2, 22.7, 

24.1, 25.3 2θ). 

As previously stated, this work also aims to describe differences between these two 

dihydrate forms and to ascertain whether they behave differently under dehydration. For 

this reason, these two dihydrate forms will be considered independently as different solids 

in the present chapter.    

 

 

V.2 DEHYDRATION KINETICS 

 

Detection of the dehydration process mechanism is based on the rate of water 

removal from crystal, which can be expressed as 

 

( )αα kf
dt
d

=
            (14)  

 

where α is defined as the fraction of water removed at time t, that is, 

 

                                                         T

T

M
MM −

=α
            (15)  

 

where MT is the initial mass of water in the sample, and M is the mass of water in the 

sample at time t. The relationship between water content in a crystal sample (α) and time is 

embodied in the function g(α), which in turn depends on the mechanism of water removal. 
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Integration of equation (14) at constant temperature gives: 

 

      
∫∫ ⋅=⋅=α=

α
α t

t)T(kdt)T(k)(g
)(f

d

0

1

0                                    (16)  

 

The rate constant k(T) may be considered as follows, based on Eyring’s dependence 

on T: 

 

         
⎟
⎠
⎞

⎜
⎝
⎛ Δ−

⎟
⎠
⎞

⎜
⎝
⎛ Δ

=
RT

*Hexp
R

*Sexp
h
Tk)T(k B

                     (17)  

 

where ΔS* is the activation entropy change, ΔH* is the activation enthalpy change, R is the 

gas constant, kB is  Boltzmann’s constant and h is Planck’s constant. Both ΔS* and ΔH* 

can be estimated from rate constant values determined by isothermal measurements (at 

several temperatures), provided g(α) is known. The kinetics of solid-state reactions can be 

classified into (a) diffusion controlled, (b) phase boundary controlled, and (c) nucleation 

and growth controlled reactions (Sharp et al., 1963). Table 4.1 represented in chapter IV 

gives selected expressions (Šesták, 1971; Dong et al., 2002) for g(α) corresponding to the 

most common solid-state processes. Plots were placed according to kinetic equations 

shown in Table 4.1 and their conformity assessed by the least-squares method. The 

function that best fitted the hydration data was selected, and the corresponding k values 

were determined. By fitting Eyring’s expression to these values, the changes in enthalpy 

and entropy of the activation process could be determined. 

In order to best support and explain the discussion of the kinetic results, a general 

premise is now given. 

In a kinetic process involving the reaction A → B, an energy map may be supposed 

versus the reaction coordinate where it is possible to find a region of highest energy level. 
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This maximum energy level corresponds to the “activated complex”. In an 

activated complex, the chemical bonds of A (or a part of them) are partially modified or 

excited. 

In the present study, i.e. sodium naproxen dehydration, two different processes can 

be identified: the first one corresponding to the detachment of water molecules, the other 

corresponding to the diffusion of the detached water molecule. 

The first process leads to the breakage of the naproxen – water bonds. It is possible 

to assume that in its active state (activated complex) the bond salt-water is weaken even if 

not entirely broken, and the relative constant strength lower. Therefore, one may expect 

that the vibration mode possesses smaller spacing between energetic levels (vibrational 

levels that convert towards translational levels). Therefore, one may expect positive ΔS*. 

On the contrary, all the values deduced from the Eyring’s equation are negative, 

with the exception of only one (the first dehydration of TSN). This suggests that while the 

weakening of the salt-water bond occurs, the molecules are arranged more closely, fact that 

reduces the possibility of their movements. Summarizing, the analysis of enthalpic and 

entropic parameters of the activation process indicates that in the sodium naproxen 

dehydration two different phenomena are present: the weakness of the salt - water bond 

and the arrangement of the molecules. They play an opposed role, the first one giving a 

positive contribution to the ΔS* and the other a negative one.     

Kim and Rousseau (2004) have already described the dehydration model for MSN, 

showing that the MSN is formed by maintaining the dihydrate form crystallized from water 

(in the present work identified as CSN) in a desiccator at 0 % RH for 2 days. The water 

loss occurred in one step according to a three-dimensional diffusion model.  

We repeated the Kim and Rousseau (2004) study of CSN dehydration kinetics 

under the same experimental conditions in order to compare the behaviour under 

dehydration of our two different dihydrated forms. 

Figure 5.3a plots the percentage of the dehydrated fraction of CSN versus time, 

according to the isothermal temperature used during the experimental procedure.  
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Figure 5.3 

Plot of dehydration rate at different experimental temperatures expressed as weight 

decrease versus time. (a) CNS; (b) DSN; (c) TSN. 
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Table 5.2 

Thermodynamic parameters for dehydration determined from TGA-STA measurements as 

a function of temperature 

 
 Eyring plot 

Hydrated 

form 

 
Model 

 
T  (K) 

 
k (sec-1) 

 
R2 

ΔH* 

(kJmol-1) 

ΔS*  

(JK-1mol-1) 

 
r 

ΔG° 

(kJmol-1) 

295 1.523E-4 0.967 

298 2.038E-4 0.981 

301 1.923E-4 0.987 

304 2.920E-4 0.988 

307 3.250E-4 0.981 

C
SN

 
 

Fi
rs

t d
eh

yd
ra

tio
n 

 

 

 

R2 

310 5.532E-4 0.991 

 

 

 

57.2 

 

 

 

-15.0 

 

 

 

0.9 

 

 

 

61.7 

295 0.375E-4 0.980 

298 0.557E-4 0.989 

301 0.577E-4 0.967 

304 0.649E-4 0.967 

307 0.733E-4 0.995 

C
SN

 
 

Se
co

nd
 d

eh
yd

ra
tio

n 

 

 

 

D3 

310 0.932E-4 0.999 

 

 

 

37.3 

 

 

 

- 24.3 

 

 

 

0.9 

 

 

 

44.6 

295 1.512E-4 0.994 

298 2.035E-4 0.996 

301 2.495E-4 0.988 

304 3.018E-4 0.984 

307 4.097E-4 0.990 

 
D

SN
 

 

 

 

 

R2 

310 5.073E-4 0.982 

 

 

 

56.7 

 

 

 

-15.1 

 

 

 

0.9 

 

 

 

61.3 

295 0.827E-4 0.999 

298 1.320E-4 0.998 

301 2.120E-4 0.995 

304 3.020E-4 0.988 

307 4.337E-4 0.987 

T
SN

 
 

Fi
rs

t d
eh

yd
ra

tio
n 

 

 

 

D3 

310 5.624E-4 0.987 

 

 

 

95.4 

 

 

 

+0.1 

 

 

 

0.9 

 

 

 

95.4 

295 1.510E-3 0.999 

298 1.650E-3 0.995 

301 1.870E-3 0.996 

 

 

R1 

304 2.040E-3 0.996 

 

 

23.1 

 

 

-26.6 

 

 

0.9 

 

 

31.0 

307 1.473E-2 0.999  

D1 310 2.071E-2 0.998 

 

- 

 

- 

 

- 

 

- 

307 1.727E-2 0.996 

T
SN

 
 

Se
co

nd
 d

eh
yd

ra
tio

n 

 

D2 310 2.036E-2 0.996 

 

- 

 

- 

 

- 

 

- 
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The dehydration proceeds exponentially with time and is a function of temperature, 

the dehydration rate increasing with temperature. During the period used in these 

experiments, 100% dehydration was achieved only at higher temperatures (304, 307, 310 

K), while dehydration was incomplete at 295, 298, 301 K. 

 

By plotting these data according to the equations given in Table 4.1, parameters for 

the dehydration process were calculated and reported in Table 5.2. 

Curves did not fit any models reported in Table 4.1 and thus were split into two 

separate parts at their inflection point, where a decrease in dehydration rate was observed. 

The inflection point was located by calculating the first derivative thanks to the programme 

Origin® v. 7.0383 (1991-2002) (Northampton, MA, USA). Fitting was thus performed 

separately for the initial dehydration phase and the final dehydration phase, because it 

seemed that there were two different hydration steps. In fact, the present study shows that 

mechanisms for water removal of CSN are in compliance with those previously reported 

by Kim and Rousseau (2004) and that, in both studies, water was removed in two different 

steps. During the first one, water was removed according to a R2 model, i.e. a two-

dimensional phase boundary reaction, a mechanism in which water is dissociated from the 

crystal lattice. During the second step, water was removed according to a D3 model, i.e. 

three-dimensional diffusion, a mechanism in which water moves through hydrophilic 

channels or defects in the crystal. The activation enthalpy for the first step is comparable 

and of the same order (57.17 kJ mol-1) to that of the previous study (67.2 kJ mol-1). By 

contrast, the activation energy of the second dehydration period reported in the present 

study (37.31 kJ mol-1) is significantly lower than that of Kim’s results (98.6 kJ mol-1). In 

fact, sample preparation, surface area, bulk density, particle size, flow rate, and RH of the 

drying stream may affect dehydration rate, and thus it is not surprising that the rate 

constants obtained in this work do not agree with previous results, as also proven in other 

studies (Zhu et al., 2001). According to Taylor and York (1998), it is possible that 

activation energies are similar for the first dehydration phase because the dissociation of 

water from the crystal lattice is not affected by particle size, while the lower activation 

energies of the second dehydration phase can be explained by small particle size. In fact, 
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the second phase, in which water diffuses through the crystal channels, can be enhanced by 

the greater particle surface of the smaller particles (Agbada and York, 1994). Similarly, 

Sakata et al. (2004) showed that the activation energy for the dehydration of untreated 

creatine monohydrate was slightly higher than that of the pulverized form, but that the 

dehydration occurred with the same mechanism. 

Dong et al. (2002) postulated that the dehydration of monohydrated neotame 

occurred in two steps: (a) dissociation of water with the breakage of bonds, and then (b) 

diffusion of water through channels in the crystal. Kim and Rousseau (2004) drew upon 

this same concept to describe the dehydration of CSN. So, the present results can be 

oriented towards the same conclusion.  

In addition, this study also includes evaluation of activation of the process. The rate 

constant k was considered to be dependent on T according to Eyring’s equation. One could 

expect a positive ΔS* for the reasons previously discussed. Actually, the negative and the 

non-negligible ΔS* means that the system moving from reactant area to product area, along 

the reaction coordinate, loses degrees of freedom. In this case, an alternative evaluation of 

the order degree as a consequence of water removal can be done. In both stages, the 

entropy change for the activation process is negative. According to Kim et al. (2005) the 

removal of water results in changes in physical and energetic environments in the unit cell. 

After dehydration, spaces previously occupied by water are vacated and sodium cations 

and naproxen anions rearrange themselves into a new lattice, as previously explained.   

Different kinetics are involved during the dehydration of the dihydrate form 

obtained by hydration at 55% RH (DSN). In Figure 5.3b, the percentage of the dehydrated 

fraction of the DSN is plotted versus time, according to the isothermal temperature used 

during the experimental procedure. Profiles differ from those previously reported for CSN: 

in particular, complete dehydration is reached for most of the isothermal temperatures (298, 

301, 304, 307 and 310 K) within 80 minutes and only at the lower temperature of 295 K 

dehydration was incomplete, the dehydrated fraction reaching 90%. Plotting these data 

with the equations in Table 4.1, parameters for the dehydration process were calculated 

(Table 5.2). In this case, good fits were obtained by plotting all the experimental data, 

meaning that the dehydration most likely occurs in only one step. This can indicate that all 

 84



RESULTS AND DISCUSSION 

the water molecules are lost simultaneously and there are no different resistances in 

controlling the removal rate of water molecules. Water molecules were removed in all 

cases according to the R2 model, i.e. the two-dimensional phase boundary reaction. This 

mechanism is thus the same described for the removal of water during the first dehydration 

step of CSN. This result implies that in the case of DSN as well, water is removed after the 

dissociation of water from the crystal lattice. Thus, only one activation value has been 

calculated (60.4 kJ mol-1). This value is comparable to that calculated for the removal of 

water from CSN during the first dehydration period. Also in this case, the activation 

entropy change is slightly negative, meaning that the system loses degrees of freedom 

during the activation process. The explanation for this occurrence is the same as that 

previously described for CSN, related to the fact that solid-solid transition proceeds from a 

less ordered state towards a more ordered activated state. In the case of DSN, the diffusion 

phase of water molecules through the crystalline structure seems to be absent. In the 

author’s opinion, this conclusion is not entirely true, as it does not comply with the 

thermograms obtained by conventional DSC analysis carried out at 10 K/min, where 

double peaks are clearly evident (Figure 5.4a). Prior to comment the results given in the 

Figure 5.4, a clarification is necessary. DSC-STA thermograms are clearly different from 

thermograms recorded by conventional DSC at same heating rate (10 K min-1). Differences 

in environmental conditions such as changes in pressures may affect the water removal 

from solids (Di Martino et al., 2001). In this study, DSC-STA thermograms were carried 

out in open pans because only these conditions permit a correct quantitative evaluation, as 

was the objective of this analysis (Di Martino et al., 2001). On the contrary, conventional 

DSC was carried out in perforated pans to create a slight overpressure that enables to 

highlight that dehydration may proceed in different steps according to the hydrate under 

study and according to the heating rate, as it will be discussed later.  
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(a) 

(b)

(c) 

Figure 5.4 

Conventional DSC scans of sodium naproxen hydrates at different heating rates. (a) DSN; 

(b) CSN; (c) TSN. 
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Thus, the presence of double peaks in conventional DSC thermograms can justify 

the suggestion that dehydration occurs in more than one step and that different energy 

changes are required to promote water removal. In fact, the two dehydration curves start at 

different temperatures, possibly due to the fact that conventional DSC thermograms are 

kinetically recovered, while dehydration experiments were carried out in isothermal 

conditions and at different temperatures, rather close to the room temperature.  

To support this idea, authors repeated the conventional DSC of DSN at different 

heating rates (Figure 5.4a). 

As long as the heating rate decreased, the two dehydration curves fused together, 

forming only one curve. On the contrary, the same analysis carried out on CSN revealed 

the presence of two different peaks even at the heating rate of 0.1 K min-1 (Figure 5.4b). It 

is the author’s opinion that the limiting reaction step in DSN dehydration is the breakage of 

the hydrogen bonds between water and the SN molecule. The diffusion of water molecules 

and their escape from the crystal are facilitated by the fact that water molecules can pass 

through pre-existing channels. Thus, in isothermal conditions this phase can be masked by 

the previous, and most limiting, step. Some considerations can support this hypothesis. In 

the chapter IV of this thesis, the authors described the hydration kinetics of ASN when 

exposed to 55% of RH. This hydration process occurred in two steps: first, water 

molecules diffuse inside the anhydrous crystal, according to a one-dimensional diffusion 

mechanism. This means that water could access the crystal following only one direction, 

corresponding to hydrophilic planes present in the crystal. Second, once in contact with the 

SN molecule, water could react with SN, creating hydrogen bonds, a reaction that favours 

slight rearrangements of the crystallographic structure. The slight negative value of ΔS* of 

the two-dimensional phase boundary reaction can be observed in the fact that dehydration 

does not cause much crystal rearrangement. In the present study, we can thus assume that, 

during the dehydration of DSN, water can easily move through the same channels through 

which it had access during hydration. The case is different for CSN, which is formed by 

dissolving and crystallizing SN from water. Since the lattice is formed by nucleation and 

progressive crystal growth, with water molecules included in the crystal structure, once the 

bonds between SN and water are broken during the first stage of dehydration, the water 
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molecules cannot pass through escape channels, but must diffuse through the hydrophilic 

sites of the crystals or through crystalline defects formed during the SN crystal growth. 

Thus, there are different degrees of resistance to water escape from the crystal. This 

conclusion can be supported by the differences in the XRPD patterns of CSN and DSN. In 

addition, both dehydration phases are fundamental during CSN dehydration, a fact further 

supported by the DSC experiments: a very low heating rate (0.1 K min-1) of CSN is unable 

to fuse the two phases, which remain clearly evident (Figure 5.4b).  

In the present study, dehydration of the tetrahydrate form of SN was also studied. 

The dehydration profiles of TSN differ from those previously reported for the dihydrate 

forms (CSN and DSN), and vary according to the dehydration temperatures (Figure 5.3c). 

At lower temperatures (from 295 to 304 K), the dehydration proceeds exponentially in a 

very short time period, approaching a limiting value, which is in any case lower than 100% 

(approximately 70-80%). At higher temperatures (307 and 310 K), the first part of the 

dehydration curves is followed by an inflection point, which is in turn followed by a new 

increase in dehydration rate. In this case, the dehydration is complete during the 

experimental period, reaching a dehydrated fraction of 100%. Because integration of each 

whole curve did not fit with the expressions described in Table 4.1, we split each curve at 

the inflection point and considered dehydration as a multi-step process.  

During the first dehydration phase, water was removed according to the (D3) model, 

i.e. three-dimensional diffusion (Jander’s equation), which describes the diffusion of water 

through channels present in the crystal. This mechanism has been used to describe the loss 

of water from CSN during the second dehydration phase and to describe the loss of water 

from MSN (Kim and Rousseau, 2004). This model D3 means that the dissociation of water 

with the breakage of bonds between water and SN molecules does not precede the 

diffusion phase, as instead previously described for CSN. The reason can be found in the 

fact that TSN can be described as a channel hydrate: some water molecules form hydrogen 

bonds with the oxygen atoms of the carboxylic group and with the sodium ion of SN; the 

lattice is able to incorporate further water into presumably non-specific sites, and this 

excess of water molecules in their turn form hydrogen bonds with the other water 

molecules. This model is in accordance with Allen et al. (1978) who describe water 
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released at low temperatures because of very weak interactions with nearby molecules in 

the crystal lattice, as is the case with TSN (Di Martino et al., 2007). Probably the strength 

of bonds between water molecules is higher than the interaction between SN and water 

molecules. This can also explain the slight positive ΔS*, which can be ascribed to the gain 

of freedom of water molecules during the activation process.  

For the second dehydration phase, a good fit was calculated only for the 

experimental temperatures from 295 to 304 K, which comply with the R1 model, i.e. a 

one-dimensional phase boundary reaction (zero-order mechanism). This mechanism, in 

which the hydrogen bonds between SN and water are broken, is independent of the amount 

of species involved in the process. The negative value of ΔS* may be explained as 

previously reported. 

The points recovered at 307 and 310 K do not fit the same model, but rather both 

the D1 (one-dimensional diffusion) and D2 (two-dimensional diffusion) models, which are 

quite similar and indicate that water is released as a consequence of a diffusion process. 

The inability to fit all the temperatures with the same model is rare, but not inconsistent, 

and some examples have been given in the literature. Zhu et al. (2001) reported that 

fenoprofen calcium dihydrate followed different dehydration kinetics at low and high 

temperatures. Han and Suryanarayanan (1998) showed that carbamazepine dihydrate 

followed three-dimensional nucleation at lower temperatures, while a two-dimensional 

phase boundary mechanism controlled dehydration at higher temperatures. At 313 K, the 

dehydration of theophylline was found to be a two-step process, while at 320 K it was a 

single step process (Duddu et al., 1995). 

In the case of SN, the result may depend on a discontinuity in the dehydration 

behaviour according to the temperatures. The dehydration curves of TSN indicate that 

dehydration behaviour at 307 and 310 K is clearly different from that at lower temperatures. 

This means that at higher temperatures, water is involved more in a diffusion 

mechanism than in a breakage of hydrogen bonds. The higher amount of heat supplied to 

the system for dehydration facilitates this process. Because only two values for each 

mechanism have been calculated, ΔH* and ΔS* values were not taken into account. The 
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multi-step dehydration process of TSN is clearly evident in DSC thermograms carried out 

at different heating rates (Figure 5.4c). 

ΔH* and ΔS* enabled the calculation of Gibbs free energy (ΔG°) from the well 

known Gibbs equation. Results are given in Table 5.2 and they decrease in the order TSN 

first dehydration > CSN First dehydration > DSN dehydration > CSN second dehydration 

> TSN second dehydration. Less positive is the Gibbs free energy, easier is the formation 

of the activated state. In other words, more negative is this function, higher is the driving 

force of the reaction. According to the reported results, the highest driving force is 

observed for the TSN second dehydration.   

 

 

V.3 X-RAY POWDER DIFFRACTION STUDY 

 

In order to follow the structural changes that occur in DSN, TSN and CSN under 

dehydration, XRPD studies were carried out. Checks were performed on the powders 

exposed to the same temperatures used during the isothermal dehydration (295, 298, 301, 

304, 307, and 310 K).  

During dehydration, the evolution with time of each phase was assessed by 

collecting a series of XRPD patterns on different portions taken at several time intervals 

from the same sample (Di Martino et al., 2007). Each sample under study (DSN, TSN and 

CSN) was maintained in isothermal conditions at all the temperatures used for the 

dehydration kinetic experiments. The presence of typical diffraction peaks for each 

crystalline form was monitored in the patterns. Peaks were chosen in a region where no 

peaks for the other forms were present: 8.6° (2θ) for ASN; 14.7° (2θ) for MSN; 7.9° (2θ) 

for DSN; 13.8° (2θ) for TSN; and 18.1° (2θ) for CSN.  
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Figure 5.5 

Plots’ describing the phase conversions at different temperatures of sodium naproxen 

forms during the isothermal dehydration experiments. (a-b) DSN; (c-d) TSN; (e-f) CSN. 

 

Peak intensities were evaluated and expressed as percentage with respect to the 

maximum intensity of the same peak when the form is pure. Figure 5.5 shows the results of 

the two extreme temperatures, the lower one, 295 K, and the highest one, 310 K. 
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During the dehydration of DSN, the ASN form immediately appears at the 

beginning of the reaction and progressively increases as long as the dehydration of the 

DSN occurs. Traces of MSN also appear. At the end of the dehydration experiment carried 

out at the lowest temperature, the SN is not completely dehydrated; rather, it is composed 

of a mixture of ASN with some traces of MSN. Similar behaviour is observed at the 

highest temperature, except that the dehydration is complete and the only form present at 

the end of the process is ASN. Intermediate temperatures exhibit intermediate behaviour. 

At 295 K, TSN dehydrates while the DSN form progressively increases. Slight 

amounts of MSN also appear during the initial phases of dehydration. The dehydration 

proceeds with the appearance of ASN, and is not complete at the end of the experiment, 

with a mixture of ASN and DSN evident. At 310 K, the phases involved in the dehydration 

are the same, but the dehydration is complete at the end of the experiment. Intermediate 

results were observed for intermediate temperatures. 

At 295 K, CSN progressively dehydrates by converting into MSN. As the 

dehydration proceeds, ASN also appears, but dehydration is not complete at the end of the 

experiment, when a mixture of CSN, MSN and ASN is present. At 310 K, the phases 

involved in the dehydration are the same, but the dehydration is complete.  
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VI. MECHANICAL PROPERTIES OF DIFFERENT 

ANHYDROUS AND HYDRATED FORMS OF SODIUM 

NAPROXEN 
 

 

The aim of the study presented in this chapter is to investigate the technological 

and mechanical properties of several solid forms of sodium naproxen: the anhydrous form 

(ASN), one dihydrated form obtained after exposure at a relative humidity of 55% (DSN), 

one dihydrated form obtained by crystallization from water (CSN), the monohydrated form 

obtained by dehydration from DSN, the tetrahydrated form obtained by exposure at a 

relative humidity of 75% (TSN). 

Any attempts have been made in order to reduce among the samples differences in 

crystal habit, particle size and distribution, amount of absorbed water, so that only the 

hydration degree and the crystalline structure might affect the technological behaviour of 

powders. Thus, the compression behaviour were determined by using an instrumented 

single punch tablet machine and evaluated through the tabletability, compressibility and 

compactibility analysis. The results showed that the compression ability was influenced by 

the hydration degree and the crystalline form, and in general the tabletability was mainly 

due to the ability of particles to close together by establish numerous bonds. 
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VI.1 PHYSICO-CHEMICAL CHARACTERIZATION OF SN FORMS 

 

All the powders were first analyzed by XRPD to check their crystalline form by 

comparing their powder patterns with those of known forms. The analysis confirmed the 

compliance of all the powders with the crystalline forms previously characterized. In 

particular, the patterns of ASN and CSN comply with Kim and Rousseau (2004) and Di 

Martino et al. (2007); the patterns of MSN comply with Kim and Rousseau (2004), and 

those of DSN and TSN comply with Di Martino et al. (2007). Authors would emphasize 

that the two hydrated forms, DSN and CSN, possess different crystalline form, even 

though they have similar water content, as already proved in the chapter V of this Thesis.  

The interaction of water with pharmaceutical powders is one of the most important 

factors affecting their tableting performance. Water can be present in powders in different 

physical forms: as adsorbed monolayers or multilayers on the surfaces of the particles, as 

condensed water on the surface, as physically absorbed water within the particles or as 

strongly bound water (Malamataris et al., 1991). The objective of this study is to evaluate 

the influence of the water bound in the crystalline structure of SN on the compression 

behaviour, regardless the effect exhibited by the water absorbed on the particle surface. For 

this, the 50-100 μm fractions of any sample under study were stored as a thin layer on an 

aluminum plate for 2 h under vacuum and at 298 ± 2 K. This treatment was intended to 

reduce the difference in surface moisture between the samples (Sun and Grant, 2004). As 

proven by X-ray powder diffractometry, the powders are stable in these conditions and the 

treatment leveled off the possible effect of absorbed water. The fact that only negligible 

differences in the amount of absorbed water among the samples is present is well proven 

by the results in Table 6.1, where the total water content determined by STA is given 

together to the theoretical water content. 

The water content is always in compliance with the theoretical one, but it is always 

slightly higher than that expected (max 3.55%). So it is possible to assume that the excess 

of water is absorbed on the particle surface. This rough approximation is necessary because 

desolvation of hydrated forms of SN already occurs at temperatures near to room 

temperatures (Di Martino et al., 2001; Kim et al., 2005), so it is difficult to accurately 
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determine the amount of water that takes part of the crystalline structure of SN (bound 

water) and that simply absorbed into the crystal surface (unbound water).  

 

Table 6.1 

Formula and water content for the sodium naproxen forms. 

 

 

Form 

 

Formule 

Molecular 

weight 

(Dalton) 

Total water 

content 

(%) (a) 

Theoretical water 

content 

(%) 

 

ASN 

 

C14H1 3O3Na 

 

252 

 

0.066 ± 0.026 

 

0.0 

 

MSN 

 

C14H1 3O3Na · H20 

 

270 

 

6.68 ± 1.03 

 

6.66 

 

CSN 

 

C14H1 3O3Na ·  2H20 

 

288 

 

12.95 ± 1.15 

 

12.49 

 

DSN 

 

C14H1 3O3Na · 2H20 

 

288 

 

12.86 ± 2.78 

 

12.49 

 

TSN 

 

C14H1 3O3Na · 4H20 

 

324 

 

21.79 ± 2.24 

 

22.22 
 

(a) Determined by Simultaneous Thermal Analysis (STA) 
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VI.2 DETERMINATION OF MICROMERITIC PROPERTIES 

 

Another important factor that affects the technological behaviour of powders is 

represented by the initial particle size and shape, as it has been extensively demonstrated in 

previous works (Alderborn and Nyström, 1982; Sun and Grant, 2001a). As also previously 

mentioned, to assess the aim of this study it was important to level off all the parameters 

that might affect the compression behaviour, in the benefit to evaluate the degree of 

hydration and crystalline form as unique variables among the samples. For this scope, the 

same granulometric fraction was chosen for all the samples. In addition, it must be 

considered that the most part of the samples are prepared from the ASN thanks to a 

hydration process (MSN, DSN, and TSN) and as already proven previously, the hydration 

of original ASN particles does not affect neither particle size nor shape. Figure 6.1 shows 

SEM micrographs at constant resolution of SN samples. 

Not significant differences are highlighted even between the CSN (produced by 

crystallization from water) and the other samples. In general, particles of all the samples 

appear like irregular crystals composed by large particles with quite rounded and smoothed 

edges in presence with irregular and smaller particles. 

The similarity in particle morphology affects the granulometric particle distribution. 

As exhibited by the Figure 6.2, the particle size distribution is very similar for all the 

samples and non-statistically relevant differences can be highlighted. 
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        (a) ASN             (b) MSN 

  

        (c) DSN              (d) TSN 

            

                                                                    (e) CSN 

Figure 6.1 

SEM microphotographs (200x) of SN crystals. (a) ASN; (b) MSN; (c) DSN (55%RH); (d) 

TSN (76%RH); (e) CSN. 
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Figure 6.2 

Particle size and particle distribution of sodium naproxen forms. ASN: anhydrous sodium 

naproxen; MSN: monohydrated sodium naproxen; DSN: dihydrated sodium naproxen; 

TSN: tetrahydrated sodium naproxen; CSN: crystallized sodium naproxen. 

 

Other important micromeritic properties are given in Table 6.2. 

The apparent particle densities were measured to evaluate the powder densification 

through the Heckel’s equation. Apparent particle densities decrease in the order 

ASN>CSN>MSN>DSN>TSN, therefore, in general, they decrease by increasing the 

hydration degree. The only exception is given by the CSN. As it will be shown further, the 

CSN frequently will exhibit exceptions to the normal behaviour underlined for the other 

samples. 
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Table 6.2 

Micromeritic properties and results of compactibility study of sodium naproxen anhydrous 

and hydrated forms 

 

 ASN MSN CSN DSN TSN 

Apparent particle 

density  (g cm-1)(a) 

 
1.374±0.001

 
1.352±0.002

 
1.360±0.003

 
1.341±0.001 

 
1.333±0.001

Bulk density 

(g cm-1) (b) 

 
0.506±0.004

 
0.523±0.005

 
0.500±0.024

 
0.554±0.002 

 
0.570±0.003

Tapped density 

(g cm-1) (c) 

 
0.639±0.002

 
0.651±0.013

 
0.619±0.027

 
0.662±0.017 

 
0.673±0.015

 
Carr’s index (d) 

 

 
20.94 

 
18.29 

 
19.97 

 
16.27 

 
15.30 

 
σ0 (MPa) (e) 

 

 
2.05 ± 0.02 

 
2.88 ± 0.03 

 
3.50 ± 0.02 

 
2.99 ± 0.01 

 
3.47 ± 0.02 

 
R (f) 

 

 
-0.98 

 
-0.99 

 
-0.99 

 
-0.98 

 
-0.99 

 

(a) Determined by helium pychnometry. Standard deviations are also indicated. 
(b) Determined from the volume of 100 g of powder. Standard deviations are also 

indicated. 
(c) Determined from the volume of 100 g of powder after 500 tapping to constant 

volume. Standard deviations are also indicated. 
(d) Calculated from bulk and tapped densities.  
(e) Tablet tensile strength extrapolated to zero porosity in Eq. (19). The 95% 

confidence intervals are indicated. 
(f) Linear regression of the Eq. (19). 

 

The hydration degree shows a clear repercussion also on bulk and tapped densities: 

they rank in the following order CSN<ASN<MSN<DSN<TSN, therefore bulk and tapped 

densities significantly increase with increasing the hydration degree. Again, the only 

exception is represented by the CSN, whose densities are the lowest one. Particle densities 

have repercussions on powder flowability, as proven by the Carr’s indexes: Carr’s index 

decreases, and thus flowability increases, with increasing in hydration degree and, again, 
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with the exception of the CSN, that exhibits similar value than ASN. The Carr’s index, 

which indicates the ability of a powder to reduce in volume, as it will be explained later, 

affects the particle rearrangement at the initial stage of compression. 

 

 

VI.3 DETERMINATION OF MECHANICAL PROPERTIES 

 

Tabletability can be considered one of the most important mechanical characteristic 

of a solid material and it describes the effectiveness of a powder to give tablets of 

satisfactory tensile strength. In particular, tabletability describes the effectiveness of the 

applied pressure in increasing the tensile strength of the tablet and demonstrates the 

relationship between the cause, the compaction pressure, and the effect, the strength of the 

compact (Sun and Grant, 2001b). It has been defined as the capacity of a powder material 

to be transformed into a tablet of specified strength under the effect of compaction pressure 

(Joiris et al., 1998).  

Tabletability of SN samples is reported in Figure 6.3a and follows the order 

TSN>CSN>>DSN>MSN>>ASN. The tabletability of TSN is always the highest one, even 

if at higher compaction pressures (over 170 MPa) tabletabilities of TSN and CSN get 

closer.  

In fact, the tabletability curves of these two compounds appear quite linear in the 

range 20-120 MPa, where the tablet tensile strength proportionally increases with the 

compression pressure, but over this pressure the curve of the TSN gradually levels off, 

while that of CSN slightly continues to increase.     
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Figure 6.3 

Tabletability, compressibility and compactibility of SN powders. Each point is 

representative of five acquisitions and 95% confidence intervals are indicated as error bars. 
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By taking into account only ASN, MSN, DSN and TSN powders, results of 

tabletability clearly suggest that the presence of water into the crystalline structure 

enhances the tabletability and that such an enhancement increases with increasing water 

content into the lattice. This result is in agreement with results reported in the chapter IV of 

this thesis, which demonstrated that the tablet tensile strength increased with increasing the 

water content of SN during its hydration. Anyway, if the hydration was the only parameter 

affecting the tabletability, one might expect that the tabletability behaviour of DSN and 

CSN were similar because of the same hydration degree. However, CSN tabletability is 

considerably higher than that of DSN and even approaches that of the TSN at higher 

compression pressures, as previously mentioned. Since, as previously proved, particle 

morphology, particle size, total water content of these two forms are very close and small 

differences cannot explain the substantial difference in tabletability, reasons for this 

behaviour must be researched in other factors. Certainly, the crystalline form must be taken 

into account to explain powder tabletability. As proved in the chapter V, in spite of the 

same number of water molecules implied in the bound with the SN molecule, CSN and 

DSN show some differences in the X-ray powder patterns. Probably the arrangement of the 

SN molecule and the position of the water molecule inside the crystalline structure are 

different. In fact, the CSN is formed by dissolving and crystallizing SN from water and 

thus the lattice is formed by nucleation and progressive crystal growth. Water molecules 

are then progressively included in the crystal structure, as long as the crystal growth occurs. 

On the contrary, in the case of the DSN, during the hydration process, water molecules 

access through some hydrophobic sites, mainly formed by the π cloud of the naphthalene 

rings, and they can then be easily accommodated between the SN molecules by forming 

hydrogen bonds with both Na and/or O atoms (Joiris et al., 2008). These differences can 

reflect differences in the arrangement of molecules in the crystals. 

In particular, in the region of low angles, all high intensity reflections of DSN are 

present in CSN, but slightly shifted to lower angles (3.8, 7.9, 11.8 2θ). This fact can 

probably reflect an expansion of the unit cell, indicating at the same time a high degree of 

structural similarity between the two dihydrates. 
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Tabletability describes the relationship between compaction pressure and tablet 

strength, but does not provide a fundamental understanding of the relationship. Therefore, 

tabletability alone does not adequately describe the tabletability performance (Sun and 

Grant, 2001b). 

In fact, the ability of a powder to give tablet of satisfactory tensile strength can be 

related either to the number of bonds (the bonding area) (compressibility) or to the strength 

of these bonds (compactibility). 

As stated above, compressibility is the ability of a material to undergo a reduction 

in volume as a result of an applied pressure (Joiris et al., 1998). Thus, compressibility 

indicates the ease with which a powder bed undergoes volume reduction under compaction 

pressure and is represented by a plot showing the reduction of tablet porosity with 

increasing compaction pressure (Sun and Grant, 2001b) (Figure 6.3b). At the lowest 

compression pressure, the tablet porosity of ASN, MSN and DSN is the same. This means 

that, at the highest porosity, the small differences in tabletability cannot depend on the 

interparticulate bonding area. In addition, this same maximal porosity is exhibited at lower 

compression pressures by the TSN. Thus, again, differences in tabletability cannot depend 

on the interparticulate bonding area. It is also significant to observe that at the same 

minimal compression pressure, the TSN exhibits lower tablet porosity than CSN, and thus 

larger interparticulate bonding area can explain the better tabletability of TSN with the 

respect to the CSN at lower porosities. 

By increasing compression pressure, the compressibility reflects the behaviour 

observed for the tabletability: curves are aligned from the ASN to the TSN with the same 

order previously observed for tabletability (TSN>CSN>DSN>MSN>ASN). In addition, by 

considering the initial and the final porosities, the total tablet porosity decreases by 41, 55, 

67, 79 and 85% in the order ASN, MSN, DSN, CSN and TSN. Again, CSN shows 

different compressibility than that of DSN confirming that its higher tabletability can be 

related to their higher aptitude to densificate under the application of a compression 

pressure, even if porosities tend to be the same at the higher pressures. 

It must be noted that at the highest compression pressure, the TSN can reach far 

lower porosity than CSN in spite the tablet tensile strength at this same pressure was the 
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same. Therefore, one may expect that the similar tensile strength of TSN and CSN at the 

higher pressure may depend on other reasons than compressibility factors. This will be 

argued later. 

Any way, in general, it is possible to state that tabletability is affected by the ability 

of these materials to undergo a reduction in volume as a result of an applied pressure.  

Compactibility is the ability of a material to produce tablets with sufficient strength 

under the effect of densification (Joiris et al., 1998). It shows the tensile strength of a 

tablets normalized by tablet porosity (Sun and Grant, 2001b) (Figure 6.3c). In many cases, 

the tensile strength of a tablet decreases exponentially with increasing porosity 

(Ryshkewitch, 1953). In this study, the compactibility of all the samples has been 

adequately described by the Ryshkewitch’s equation (Ryshkewitch, 1953): 

 

             (19)  
εσσ ae−= 0

 

where σ is the tensile strength of porous tablets, ε is the porosity, σ0 is the tensile strength 

extrapolated to zero porosity, and a is a constant that may be linked to the pore distribution 

within a tablet. For all the powders, the tensile strength decreased exponentially with 

increasing porosity. 

Several considerations arise from the compactibility study: 

• The slope of the plot of ln(σ) versus porosity and the tensile strength extrapolated 

at zero porosity (σ0) (Table 6.2) of ASN are the lowest one, indicating the worst 

ability to reduce in porosity giving strength tablets. 

• The slope and the tensile strength extrapolated at zero porosity (σ0) of MSN and 

DSN are practically the same, indicating similar distribution of pores in the tablets 

(corroborated by similar particle size and shape) and similar mechanism in 

reducing tablet porosity as long as the compression pressure increases. 

• The slopes of the plots of the CSN and the TSN change with the compression 

pressures and they are similar between the two powders; similar slope change has 

been previously described by Sun and Grant (2004), who have assumed that the 
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change of slope of the monohydrated form of p-hydroxybenzoic acid might reflect 

a change of consolidation mechanism at higher pressures.  

• In the case of both CSN and TSN, slopes are similar in the higher porosity range 

(lower compression pressures) indicating similar initial pore distribution, due to 

similar particle size and shape, as well as similar initial particle rearrangement and 

deformation. As long as the porosity decreases (higher compression pressure) the 

densification mechanism can be modified and probably the plastic deformation 

becomes the most predominantly densification mechanism, accompanied by very 

low elastic properties. The tensile strength extrapolated at zero porosity (σ0) of the 

CSN is higher than that of TSN. 

• For the same tablet porosity, the CSN always exhibits higher tensile strength than 

TSN, in spite that TSN always exhibited better tabletability. Therefore, the higher 

tabletability of TSN is a result of its greater interparticulate bonding area 

(compressibility) and not of its greater bonding strength (compactibility), and the 

greater bonding strength of CSN and interparticulate bonding area can explain its 

better tabletability with the respect to the DSN. 

 

In order to better understand the mechanism responsible for porosity reduction, an 

evaluation of the densification under compression can be made through the Heckel’s 

analysis, which, in the present study, has been carried out by the “in die” method. The 

Heckel’s parameters are indicated in Table 6.3.  
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Table 6.3 

Heckel’s parameters obtained from a single compression cycle and total elastic recovery. 

Data are the mean of five acquisitions and 95% coefficient variation is indicated. 

 

  

ASN 

 

MSN 

 

CSN 

 

DSN 

 

TSN 

D0’            

(a 3.0  MPa) 

 
0.663±0.003

 
0.602±0.003

 
0.639±0.009

 
0.618±0.004 

 
0.631±0.009

 
DA 

 

 
0.814±0.001

 
0.728±0.002

 
0.747±0.001

 
0.733±0.001 

 
0.794±0.003

 
DB’ (DA – D0’) 

 

 
0.151±0.002

 
0.126±0.01 

 
0.108±0.010

 
0.114±0.004 

 
0.163±0.004

 
PY (MPa) 

 

 
124.5±1.4 

 
99.8±2.4 

 
85.3±0.3 

 
97.3±0.8 

 
59.0±2.2 

Total elastic 

recovery (%) 

(a) 

 

6.95±0.42 

 

4.07±0.28 

 

3.00±0.16 

 

3.07±0.05 

 

1.50±0.13 

(a) Total elastic recovery  

100
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⎛ −
=

t
ttTER

  

t1 : Minimal tablet thickness, when the maximal pressure is applied (150 MPa).  

t2 : Tablet thickness. 

 

D0’ takes into account the densification by particle slippage and rearrangement 

occurring at the initial stage of compression, when a pre-compression pressure of 3.0 MPa 

has been applied. In an earliest experiment (previous chapter), D0’ increased with 

increasing hydration degree. In this one, previous results are confirmed in part and D0’ 

increased in the order MSN<DSN<TSN<CSN<ASN. This means that unexpectedly ASN 

and CSN undergo higher densification during this compression stage. Taking into account 

their lowest bulk densities (Table 6.2), it is possible that the higher densification is just due 

to the lower bulk density of the powders. It is also interesting to note that D0’ decreased by 
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decreasing hydration degree for TSN, DSN and MSN, results that once more are in 

accordance with the bulk density.  

DB’ takes into account the fragmentation tendency of the particles during the initial 

stage of compression. DB’ increased in the order CSN<DSN<MSN<ASN<TSN. 

In the previous study (Joiris et al., 2008), DB’ decreased as long as the hydration 

proceeded and, at the end of hydration, it was higher for the TSN. 

In this case it is difficult to find a relationship between the water amount and the 

fragmentation ability.  

Thus, notwithstanding ASN has pronounced fragmentation propensity, its new 

surfaces are unable to form strong and resistant particles bonds: in other words, 

fragmentation and formation of new surfaces are not enough to create strength bonds. Such 

a result is not a trivial one, as it is often found that smaller particles lead to harder tablets 

(Eriksson and Alderborn, 1995; Di Martino et al., 2000). 

The mean yield pressure, decreased in the order ASN>MSN>DSN>CSN>TSN. 

Thus, in general, it is possible to conclude that the plastic deformation increases with 

increasing the hydration. In addition, CSN shows higher plasticity than DSN that can 

explain its better tabletability.  

The very high plastic deformability of TSN added to the very low elastic recovery 

can explain the very good tabletability of TSN. The elastic recovery decreased in the order 

ASN>MSN>DSN≈CSN>TSN. 
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CONCLUSIONS 

 

Drug substance exposure to water during several pharmaceutical operations or  

storage, is of great relevance because it can cause changes in the crystal lattice. The 

structural changes related to the hydration/dehydration process can strongly affect the 

technological performance, the bioavailability and the drug stability.  

In light of this well-known evidence, structural changes associated with 

hydration/drying processes must be carefully evaluated during the preformulation and 

formulation studies.  

 

Sodium naproxen (sodium salt of (S)-(+)-6-methoxy-α-methyl-2-naphtalenacetic 

acid) is a drug belonging to the class of aryl propionic acid derivatives (APADs) of non-

steroidal anti-inflammatory drugs (NSAIDs).  

Despite being a well-known drug, it has only recently been revealed that it can exist 

in several hydrated forms, when exposed to humid air. Sodium naproxen exists in one 

anhydrous form (ASN) and four hydrated ones: one monohydrate (MSN), two dehydrate 

(DSN; CSN) and one tetrahydrate (TSN).  

 

ASN (the commercialised form) can be differently hydrated or dehydrated 

according to the vapour pressures during storage and pharmaceutical processing.  

During this study, the influence of the solid state properties on the technological 

performance of sodium naproxen in its different hydrate forms was examined. It was 

observed that changes in the experimental procedures of technological processes or storage 

conditions may affect the physico-chemical stability of SN hydrate forms.  

 

In conclusion: 

• It was demonstrated that technological processes such as wet-granulation/drying 

procedures can strongly influence the crystallographic form of SN. In fact, when 

subjected to wet granulation in a high-shear mixer-granulator, ASN undergoes 

hydration to the tetrahydrated form. Subsequently, performing two different drying 
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procedures lead to granules in which SN has varying degrees of hydration, with 

significant consequences for granule characteristics and tableting performance. 

 

• Differences in compression behaviour of SN forms were observed and have been 

ascribed to the hydration degree. The behaviour under compression revealed that 

one of the granules batches presented the best tabletability and compressibility. 

Therefore, the behaviour of the active raw material (granules) under compression 

has been examined at different hydration degrees. Compression behaviour increases 

with the degree of hydration, a phenomenon that could be attributed either to 

differences in the crystallographic structures of sodium naproxen, or to water 

content. This phenomenon was considered in depth by examining the behaviour 

under compression of different hydrated forms of sodium naproxen.   

 

• It was clearly shown that, the hydration degree considerably changes the 

compression behaviour of SN. The insertion of the water molecule into the crystal 

modifies the tabletability, compressibility and compactibility of SN. However, the 

effect is not always proportional to water content. The complex evolution of 

tabletability, which is the main property for the industrial production of tablets, has 

been explained by considering the evolution of both compressibility and 

compactibility. It has been supposed that water penetration into the crystal is 

localised in the periphery. The kinetic study, explaining how water enters into the 

crystal, offers a better understanding of why the hydrated forms of SN show better 

tabletability than the anhydrous one.  

 

• Models for the hydration kinetics of ASN at 55% and 86% RH, corresponding to 

the formation of the dihydrated and tetrahydrated forms respectively, were 

evaluated assuming Eyring’s dependence on temperature. Kinetic data is consistent 

with a model where water molecules enter the crystal preferentially along 

hydrophilic tunnels existing in the crystal structure and corresponding to the 

propionate side chain. Water inclusion perturbs the crystallographic structure, 
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causing slight structural changes according to the amount and associated to an 

increase in entropy. The interposition of water molecules between SN molecules 

weakens intermolecular bonds, and these sites can behave like sliding planes under 

compression. Such structural changes may explain the improved compression 

behaviour and modified densification propensity mechanism. Kinetic data, 

describing the water hydration mechanism of ASN, explain in an original way the 

improved tableting and densification properties under hydration. 

 

• The isothermal dehydration of some of SN hydrates was observed by 

thermogravimetry at several temperatures and it was clarified the dehydration 

mechanism. Multi-step mechanisms for the dehydration process are proposed for 

all the hydrated forms analyzed. Different models are identified to describe the 

dehydration process, indicating either diffusion or boundary reaction mechanisms, 

according to the lattice structure and the translational freedom degrees of the water 

molecules. SN dehydration promotes changes in the crystallographic structures of 

the samples, as proven by XRPD, and transitions from the hydrated phases to the 

dehydrated ones, depending on the experimental temperatures. 

 

• The technological and mechanical properties of several solid forms of SN were 

investigated. Particular attention has been made in order to reduce differences, 

among the samples, in crystal habit, particle size and distribution, amount of 

absorbed water, so that only the hydration degree and the crystalline structure 

might affect the technological behaviour of powders. Thus, the compression 

behaviours were determined by using an instrumented single punch tablet machine 

and evaluated through the tabletability, compressibility and compactibility analysis. 

The results showed that the compression ability was influenced by the hydration 

degree and the crystalline form, and in general the tabletability was mainly due to 

the ability of particles to close up by establishing numerous bonds. Also, it was 

reported the effect of water inclusion in the crystal lattice and the effect of 

crystalline structure on the compression behaviour of sodium naproxen.  
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• MSN, DSN and TSN have been considered as tunnel hydrates. These tunnel 

hydrates are characterized by the presence of an increased water amount that fills 

the tunnel. In these structures, it is possible to assume the presence of some water 

molecules directly bound to the SN molecule through hydrogen bonds. These water 

molecules are rather strongly bound to the SN molecule, fact that limits their 

mobility. As far as the water content increases, further water molecules penetrate 

into the tunnel establishing new hydrogen bonds with neighboring water molecules. 

Since these latest water molecules are more distant from the SN molecule, they are 

more mobile and create quite movable layers. This behaviour has been proposed to 

explain the improvement in tabletability when the water content increases from the 

MSN up to TSN. The movable layers filled by the water molecules are more and 

more deformable as water molecules increase behaving as sliding planes. 

  

• Several considerations have emerged concerning the CSN. In particular, it is 

necessary to highlight the very good tabletability of CSN with respect to the DSN. 

As previously explained, while the DSN can be considered as a tunnel hydrate 

because it is formed during a progressive inclusion of water molecules inside the 

crystals, the CSN crystallizes from water and SN crystal grows up while it includes 

and bounds in the crystalline structure the water molecules. It is possible to assume 

that this mechanism gives rise to a structure completely different from that 

described for the tunnel hydrate.  

 

Finally, it should be kept in mind that water exposure during storage or 

pharmaceutical processing can cause changes in the crystal lattice of the SN starting 

material and the hydration state of SN may strongly influence its physico-chemical and 

technological properties and consequently its bioavailability and its stability. 

Therefore, a complete understanding and characterisation of SN solid state and 

phase transitions throughout storage or processing are important in predicting and defining 

its technological performance. In depth knowledge of hydrated forms and their stability 
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under different experimental conditions are essential to the development of successful drug 

products.    

From an industrial point of view, changes in process variables (equipment, 

excipient characteristics and their amount, and process parameters) must be carefully 

evaluated, in order to validate the processes in use and reduce risks of lot-to-lot variability. 

The results of this work are relevant to industrial practice as they can orient choice 

towards the most appropriate form of sodium naproxen as a raw material for industrial 

tablet production and support the preparation of tablets by direct compression at lower cost 

and with improvements in biopharmaceutical properties. 
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