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INTRODUCTION 

 
Interactome is the whole set of molecular interactions in cells. When referred to in terms of 

proteomics, it concerns protein-protein interaction.  

These activities are very important to fully understand properties and operations of cellular 

systems. Recently, together with the application of experimental techniques for the determination 

of protein interaction networks and protein complexes, a number of computational methods 

based on sequence and genomic information have emerged. Among these, orthology-based 

methods assume that two proteins may interact if each one has at least an ancestor in its 

phylogenetic tree interacting with at least an ancestor of the other.  

The purpose of this work was the evaluation of the interaction between two potential binding 

partners, namely bovine MPC and GroES, and presented to main phases: a preliminary in silico 

study, aimed to the assessment of feasibility of the interaction, and an in vitro study, based on 

fluorimetric, chromatographic and SPR approaches, directed to the confirmation and 

characterization of the interaction. 
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 IN SILICO STUDY 

 

Orthology-Based Method For Proteins Interaction Prediction 

In order to build a model for the prediction of possible interaction between proteins, we designed 

a workflow, using the amino acidic sequences of a two proteins (namely A and B) as input. In 

the first step we searched for A and B orthologues separately, using the Cluster of Orthologous 

(COG) database (http://www.ncbi.nlm.nih.gov/COG/new), which contains a classification of 

proteins, from seven complete genomes and five major phylogenetic lineages, according to their 

orthologous relationships. Orthologous proteins are a class of proteins sharing a common 

ancestor, successively separated by a speciation event. Normally, but not necessarily, they share 

the same function. We obtained two sets of A and B orthologues (AO and BO, respectively). 

Then we searched for a subset I of the Cartesian product AOxBO set, containing all couples of 

proteins which are known to interact. In our approach, we used the Biomolecular Interaction 

Network Database (BIND)1  (http://bond.unleashedinformatics.com/), the Biomolecular 

Relations in Information Transmission and Expression (BRITE)2 

(http://www.genome.jp/kegg/brite.html ) and the Database of Interacting Proteins (DIP)3 

(http://dip.doembi.ucla.edu/ ) as interaction datasets. If I was not null, we could conclude that A 

and B proteins should interact. Figure 1 shows the workflow of all the activities for protein 

interaction prediction using orthology-based method. 

 

Cluster Orthologous Group (COG) DATABASE 

The availability of multiple, essentially complete genome sequences of prokaryotes and 

eukaryotes enhanced both the demand and the opportunity for the construction of an 

evolutionary classification of genes from these genomes. Such a classification system based on 

orthologous relationships between genes appears to be a natural framework for comparative 

genomics and should facilitate both functional annotation of genomes and large-scale 

evolutionary studies. The Clusters of Orthologous Groups of proteins (COGs)4 contains a 

classification of proteins, from seven complete genomes and five major phylogenetic lineages, 

according to their orthologous relationships. KOGs added in 20035 are the clusters of predicted 

orthologs for 7 eukaryotic genomes.  The COG collection currently consists of 138,458 proteins, 

which form 4873 COGs and comprise 75% of the 185,505 (predicted) proteins encoded in 66 

genomes of unicellular organisms. The eukaryotic orthologous groups (KOGs) include proteins 

from 7 eukaryotic genomes: three animals (the nematode Caenorhabditis elegans, the fruit fly 

Drosophila melanogaster and Homo sapiens), one plant, Arabidopsis thaliana, two fungi 
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(Saccharomyces cerevisiae and Schizosaccharomyces pombe), and the intracellular 

microsporidian parasite Encephalitozoon cuniculi. The current KOG set consists of 4852 clusters 

of orthologs, which include 59,838 proteins, or approximately 54% of the analyzed eukaryotic 

110,655 gene products. Compared to the coverage of the prokaryotic genomes with COGs, a 

considerably smaller fraction of eukaryotic genes could be included into the KOGs; addition of 

new eukaryotic genomes is expected to result in substantial increase in the coverage of 

eukaryotic genomes with KOGs. Examination of the phyletic patterns of KOGs reveals a 

conserved core represented in all analyzed species and consisting of approximately 20% of the 

KOG set. This conserved portion of the KOG set is much greater than the ubiquitous portion of 

the COG set (approximately 1% of the COGs). In part, this difference is probably due to the 

small number of included eukaryotic genomes, but it could also reflect the relative compactness 

of eukaryotes as a clade (a taxonomic group of organisms classified together on the basis of 

homologous features traced to a common ancestor) and the greater evolutionary stability of 

eukaryotic genomes.  

 

Protein Interaction DATABASES 

Protein interaction data are mainly derived from genome wide, high-throughput yeast two-hybrid 

experiments, in which interactions are measured between all genes pairs in a genome. More than 

4000 unique protein interactions were observed between yeast proteins in three large-scale 

experiments6-8. More recently, complexes of yeast proteins have been isolated, and the protein 

constituents have been identified by mass spectrometric approaches9-11, thereby identifying 

hundreds of additional interactions among yeast proteins. A test similar to the high-throughput 

yeast two-hybrid experiments, performed on bacterial proteins, identified more than 1200 

interactions between proteins of the human gastric pathogen H. pylori11. In addition to large-

scale experimental approaches, a number of groups have been attempting to cull the previously 

measured protein-protein interactions from biological literature12,13. This systematic collection of 

protein interaction data provides necessary checks on the quality of the large-scale interaction 

data. Large-scale protein interaction data have varied widely in accuracy14, but many interactions 

in the databases have been observed by multiple experimental methods, providing some measure 

of confidence in the correctness of these interactions. In our in silico experiment we have 

considered three protein-protein interactions databases: BIND, BRITE and DIP. 
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Fig.1. Workflow of an orthology-based method for proteins interaction prediction 
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BIND and DIP database combine the interactions from the large-scale screens with the 

interactions extracted from the literature. As of this writing, DIP (http://dip.doe-mbi.ucla.edu) 

currently contains 55894 interactions between 19206 proteins, from several organisms 

(Drosophila melanogaster, Saccharomyces cerevisiae, Escherichia coli, Caenorhabditis elegans, 

Homo sapiens, Helicobacter pylori, Mus musculus, Rattus norvegicus). BIND 

(http://bond.unleashedinformatics.com/) currently contained  approximately more than 100 000 

interactions. Approximately 71% of BIND records arise from high-throughput experiments. 

There are 58 266 protein–protein interactions and 4225 genetic interactions in BIND. There are 

also 874 protein–small-molecule interactions in BIND, but it should be noted that we have not 

yet undertaken any deliberate metabolic pathway annotation, and that small molecules from the 

Protein Data Bank (PDB) are not counted in this number. A total of 19 348 BIND biopolymer–

biopolymer interaction records are derived from the PDB structures with full annotation of 

atomic contacts, after discarding crystal symmetry artefacts and grouping redundant structure 

interfaces (fig. 2). Almost half of these data represents biological oligomer interactions. Another 

25 857 BIND records are protein–DNA interactions, with 23 865 of these originating from high-

throughput chromatin-immunoprecipitation-style transcription-factor binding experiments, 

representing a very fast growing experimental trend. In total, 31 972 protein sequences, as well 

as 4560 DNA sequences and 759 RNA sequences are represented in BIND, and all of these 

records reflect the content of 11 649 unique publications. Organisms represented in BIND 

include Saccharomyces cerevisiae (48 151 records), Drosophila melanogaster (21 309), Homo 

sapiens (13 902), Caenorhabditis elegans (5266), Mus musculus (3823), Helicobacter pylori 

(1470), Bos taurus (1064), human immunodeficiency virus 1 (442), Gallus gallus (318) and 

Arabidopsis thaliana (180) with over 10000. BIND records arising from other taxonomies. A 

total of 901 taxa are represented in BIND. The Database of Interacting Proteins (DIP: 

http://dip.doe-mbi.ucla.edu) is a database that documents experimentally determined protein–

protein interactions. It provides the scientific community with an integrated set of tools for 

browsing and extracting information about protein interaction networks. As of September 2001, 

the DIP catalogues 11 000 unique interactions among 5900 proteins from >80 organisms; the 

vast majority from yeast, Helicobacter pylori and human. Tools have been developed that allow 

users to analyze, visualize and integrate their own experimental data with the information about 

protein–protein interactions available in the DIP database. Biomolecular Relations in Information 

Transmission and Expression (BRITE; http://www.genome.ad.jp/brite/) is a database of binary 

relations for computation and comparison of graphs involving genes and proteins. It is not a fully 

developed database yet, but its purpose in KEGG is to expand the collection of the generalized 
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protein interactions that underlie the KEGG pathway diagrams, especially direct protein–protein 

interactions obtained by systematic experiments such as yeast two-hybrid systems, and gene 

expression relations of transcription factors and transcribed gene products. BRITE will integrate 

the generalized protein interactions with other diverse sets of binary relations, including sequence 

similarity relations stored in the SSDB database, expression similarity relations obtained by 

cluster analysis of the EXPRESSION data, positional correlations in the GENES genome maps 

and cross-reference links between database entries in the LinkDB database, towards automating 

logical reasoning steps to understand functions. 

 

 
Fig. 2: Schematic representation of proteins interaction prediction. 

 
 
 
Structure and function of the GroE chaperone 

Historically, GroE proteins from Escherichia coli were the first chaperone proteins to be studied 

on a molecular level15,16. Chaperonins are a diverse class of proteins, whose functions include 

roles in protein trafficking, protein assembly, and proteins folding17.  

The chaperonin system of Escherichia coli comprises two proteins, b-cpn60 (GroEL) and b-

cpn10 (GroES)18. These chaperonins can modulate the refolding of protein under 
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“nonpermissive” conditions - i.e., conditions that do not allow spontaneous folding. Examples of 

proteins that undergo chaperone-dependent refolding include ribulose-1,5-bisphosphate 

carboxylase (Rubisco), citrate synthase, and rhodanese. In these cases the refolding reaction 

requires both chaperonin proteins as well as MgATP and K+ 19. Homologous chaperonin systems 

have been detected in mammalian mitochondria20 and in chloroplast21. E.coli proteins are 

encoded by separate genes contained in the same groE operon, with GroES positioned first18. Of 

the two proteins, GroEL has been the most extensively studied. GroEL molecule is a complex 

assembly comprising 14 identical 57-kDa subunits. The transitions between the different 

functional states of the chaperone are triggered by a set of domain movements which in turn are 

controlled by the binding of ATP and the co-chaperone GroES. 

The first images of the GroE chaperone were obtained by electron microscopy 22,23. They showed 

cylindrical particles containing a central channel, which could be occupied by a polypeptide 

substrate24-26. A more detailed picture became available with the X-ray structure of GroEL27. It 

confirmed that the GroEL molecule resembles a barrel with dimensions of 137 Å (diameter) and 

146 Å (height). Its 14 subunits are arranged in two rings stacked back to back. The two rings 

enclose two separate cavities (45 Å wide) that serve as folding compartments for polypeptide 

substrates. Each GroEL subunit can be dissected into three distinct domains27. The equatorial 

domains (residues 6–133 and 409–523) constitute the central part of the cylinder and consist 

mainly of α-helices. They serve as the foundations of the GroEL oligomer, since they mediate all 

inter-ring contacts, and most of the intra-ring contacts. They also contain the binding pockets for 

ATP, which are facing toward the inside of the central cavity. 

In contrast to the equatorial domain, the apical domain (residues 191–376) is considerably less 

ordered. It is located at the opening of the GroEL cylinder (Fig. 3) and contains the binding site 

for both GroES and the polypeptide substrate. Polypeptide binding occurs in a hydrophobic 

groove, which is formed by two helices facing the central channel28,29. This is in agreement with 

results of an earlier analysis employing site-directed mutagenesis30. The bound substrate is 

stabilized mainly by hydrophobic interactions, but hydrogen bonds between its peptide backbone 

and the surrounding polar surface of the apical domain may contribute as well. Importantly, this 

hydrophobic groove is also responsible for the binding of GroES 31. 

The intermediate domain (residues 134–190 and 377– 408) serves as a molecular hinge 

connecting the apical domain with the equatorial domain. Accordingly, its main function is the 

transmission of allosteric signals between both domains, thus establishing a tight coupling 

between nucleotide binding and GroES/polypeptide binding. 
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The interaction between GroES and GroEL 

The co-chaperone, GroES (fig. 3 A), is a dome-shaped heptamer with diameter of 75 Å and a 

height of 30 Å32. It consists almost exclusively of β-sheets. Residues 16–33 form the so-called 

mobile loops, flexible extensions that dangle from the GroES molecule like the tentacles of a 

jellyfish33,34. Binding of GroES occurs at the apical domains of the GroEL tetradecamer (fig. 3 

B) and requires that the nucleotide binding sites of the respective GroEL ring are occupied by 

either ATP or ADP23,35,36. Upon association, the mobile loops of GroES bind to the hydrophobic 

peptide binding groove of GroEL and become immobilized31,33. Because of the common seven-

fold symmetry of both proteins, binding is thought to be highly cooperative. Upon binding of its 

co-chaperone, the GroEL molecule undergoes major structural rearrangements that are pivotal to 

its functional cycle (fig. 3 B, C)31,37. First, the apical domains of the cis ring, i.e. the ring target 

of binding with GroES, swing upward by ~60° and rotate outward by ~90°. As a result, the 

diameter of the central cavity almost doubles, and its volume increases from 85,000 Å3 to 

175,000 Å3. Second, the hydrophobic residues, which form the peptide binding site of GroEL, 

are moved away from the cavity surface and become buried within the wall (fig. 3 C). Thus, the 

surface of the cis cavity becomes largely hydrophilic. Third, GroES now blocks the exit of the 

cavity. As a result, the cis cavity is converted from an acceptor site for hydrophobic polypeptides 

into a closed microenvironment for protein folding. Depending on the experimental conditions, 

two types of complexes between GroES and GroEL have been detected by electron microscopy. 

In the presence of ADP or micromolar concentrations of ATP, GroES binds to only one end of 

the GroEL cylinder forming asymmetric ‘bullets’ (see fig. 3 B)23,26. At ATP concentrations in the 

millimolar range, symmetrical ‘footballs’ have been observed in which both ends of the GroEL 

particle are capped with GroES38-40. It is assumed that the ‘ADP bullet’, i.e. the 

GroES7·ADP7·GroEL7/GroEL7 complex, represents the ‘acceptor state’ of GroE41 , which 

captures an unfolded polypeptide. The footballs presumably reflect a transient species that is 

formed during the functional cycle . 
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Fig. 3: Structure of the GroE chaperone from E. coli31,32. (A) Side view of the GroES heptamer. The individual subunits (in shades of red) consist 
mainly of b sheets and form a dome with a diameter of 75 Å. The flexible extensions on the bottom are the so-called mobile loops that mediate 
binding to GroEL. (B) Cross-section of a GroE ‘bullet’. Each GroEL ring encloses a cavity that serves as a folding compartment for a polypeptide 
substrate. Some residues of the equatorial domains have not been resolved in the crystal structure, giving the wrong impression that the two 
cavities are contiguous. Binding of GroES (orange) to the top GroEL ring (blue) blocks the access to the upper cavity and concomitantly induces 
an en bloc movement of the apical domains. (C) Changes in the GroEL structure upon binding of GroES. In this top view, the seven subunits 
comprising one ring of GroEL are shown in shades of green and blue. The equatorial domains have been omitted for sake of clarity. The 
hydrophobic residues in the apical domains important for binding of polypeptide and GroES are shown in white. In the absence of GroES (top 
panel), these residues coat the inside of the central cavity and account for the high affinity for unfolded polypeptides of this state. Upon binding 
of GroES (lower panel) the apical domains rotate outwards by ~ 90°. The hydrophobic patches become buried in the subunit interfaces, rendering 
the inner surface of the cavity mainly hydrophilic and causing the release of a bound polypeptide. Concomitantly, the diameter of the cavity 
increases from 45 to 80 Å. 
 

 

 

Allosteric interactions within the GroE chaperone 

Although each GroEL ring consists of seven subunits, it represents a single operational unit42,43. 

This behaviour is the consequence of a framework of allosteric interactions that coordinates the 

binding properties of the single subunits. There are two levels of cooperativity within the GroEL 

molecule. First, subunits of the same ring are subject to positive cooperativity. As an example, 

binding of ATP to one GroEL subunit promotes the binding of ATP to the other six subunits of 

the same ring36,44,45. Second, there is a negative cooperativity between the rings, i.e. the binding 

of ATP to one ring reduces the affinity for ATP of the second ring44,46. These homotropic effects 

can be described by a model of nested cooperativity47 (fig. 4). 
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Fig. 4:  Model of nested cooperativity in GroEL48. Each rectangle (square or round) represents a single ring. Owing to the positive intraring 
cooperativity, all seven subunits within one ring adopt the same state. In the absence of ligands, GroEL is predominantly in the TT state (left). In 
the presence of low concentrations of ATP, the equilibrium is shifted towards the TR state (middle), because ATP preferentially binds to the R 
conformation. At higher concentrations of ATP, transition to the RR state occurs. 

 

 

Each GroEL subunit can adopt one of two states: the (relaxed) R state, and the (tense) T state, 

which differ in their affinity for nucleotide and protein ligands48. The R state is characterized by 

a high affinity for ATP and a low affinity for polypeptides, whereas the T state has a low affinity 

for ATP and a high affinity for polypeptides. Owing to the positive intra-ring cooperativity, each 

ring is either in the R form or in the T form. Thus, the GroEL tetradecamer can adopt the 

configurations TT, TR, and RR (fig. 4). In the absence of nucleotides, GroEL is preferentially in 

the TT state. Low concentrations of ATP shift the equilibrium to the RT state, in which the R 

ring is completely occupied with nucleotide, whereas the T ring is empty. Because of the 

negative interring cooperativity, the transition to the RR state only occurs at higher ATP 

concentrations (>100 μM). The cochaperone GroES, on the other hand, seems to reduce the 

negative interring cooperativity, since its binding to the RT state promotes the transition to the 

RR state48. This is consistent with the finding that in the ‘ATP bullet’ complex (GroES7·ATP7 

GroEL7/GroEL7) the trans ring shows a decreased affinity for polypeptides49. 

 

The functional cycle of the GroE chaperone 

GroE-mediated folding requires the polypeptide substrate to participate in a cycle which can be 

dissected into three steps: capture, sequestration/folding and release50. The cycle starts when a 

polypeptide is captured by GroE (fig. 5, step 1). As mentioned above, a potential substrate is 

recognized by virtue of its exposed hydrophobic surfaces. The acceptor state of GroE likely is 

the ‘ADP bullet’, in which the trans ring (i.e. the ring opposite of GroES) is in the high-affinity 

T form.  
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Fig. 5: Model of the functional cycle of the GroE chaperone. Although GroEL is composed of two rings, the functional cycle is best described on 
the level of single rings, which represent the operational units of the chaperone. While both rings are active at the same time, they are in different 
phases of the cycle. Processing of an individual substrate polypeptide requires two revolutions of the GroE cycle during which the polypeptide 
remains associated with the same GroEL ring. For graphical reasons, the orientation of the GroE complex is reversed after step 4. The cycle of 
GroE-assisted folding can be dissected into three steps: capture, encapsulation/folding and release. During capture (1), a hydrophobic polypeptide 
is prevented from aggregation by binding to GroEL. The acceptor ring (bottom ring) is nucleotide free and therefore has a high affinity for the 
polypeptide. Binding of ATP (2) and GroES (3) to this ring induces a set of structural changes in GroEL. Most important, the affinity for the 
bound polypeptide is decreased, and it is released into the closed cavity where folding begins. Subsequent hydrolysis of ATP (5) induces a second 
conformational change in GroEL (top ring), which allows the bottom ring to bind polypeptide and initiate a new cycle. Upon binding of ATP and 
GroES in the next round, GroES is displaced from the top ring, and the substrate polypeptide is released (4). The formation of the symmetric 
complex shown in brackets is controversial. 
 

 

Consequent binding of ATP and GroES to this ring (fig. 5, steps 2 and 3) triggers a series of 

conformational changes in the GroEL molecule. As a result, 

1)  The affinity for both ADP and GroES in the trans ring decreases, causing the dissociation of 

both ligands (fig. 5, step 4)51-53. 

2)  GroES covers the opening of the new cis cavity, thereby creating a closed compartment 

which sequesters the polypeptide substrate41,54. 

3)  The polypeptide binding site in the cis ring becomes buried within the cavity wall, causing 

the discharge of the polypeptide into the cis cavity. 

4)  The size of the cavity increases, giving the polypeptide sufficient room to undergo the 

structural rearrangements required for productive folding31. 
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The cycling ends when the polypeptide molecule has reached a conformation that is no longer 

recognized by GroEL. For some monomeric proteins like rhodanese, this exit point may be the 

native state41,54. In general, however, it will be a committed state in which the protein has not yet 

reached its native conformation, but no longer requires the assistance of GroE55,56. 

Hydrolysis of the bound ATP (fig. 5, step 5), which takes ~10 s at 25 °C44, represents the rate-

limiting step in the cycle and thus serves as a timer for encapsulation49. 

Once the ATP is hydrolyzed, the chaperone has completed its cycle and the next round starts, in 

which now the opposite ring will be charged with a polypeptide substrate. The release of the 

encapsulated protein occurs upon the subsequent binding of GroES/ATP (fig. 5, step 4). 

At this stage, the ejected polypeptide is thought to undergo kinetic partitioning53,57. Molecules 

unrecognized by GroEL (native, committed or dead-end, see above) do not participate any longer 

in cycling. The remaining molecules may rebind and undergo another round of the GroE cycle, 

or bind to other molecular chaperones, or fold/assemble in bulk solution. The relative fractions 

of these species likely depend on the nature of the polypeptide as well as on the cellular context. 

It is reasonable to assume that GroEL can process two substrates at a time, as shown in figure 5. 

According to this model, both rings (operational units) are active, although they are in different 

phases of the chaperone cycle49,58. As an example, the top ring after step 3 is loaded with a 

polypeptide that already has undergone folding in the cavity, and will become ejected in the next 

step. The polypeptide bound to the bottom ring, on the other hand, will be released into the 

cavity where folding is initiated. Thus, binding of GroES in step 3 has a dual function: it 

sequesters a ‘new’ polypeptide in the cis cavity, and it releases GroES and the processed 

polypeptide from the trans ring. In an alternative model, only one GroEL ring at a time is loaded 

with a polypeptide, whereas the second ring passes through the cycle in an empty state. Owing to 

the limited volume of the cavity, GroE-mediated folding as shown in figure 5 is restricted to 

polypeptides smaller than ~ 60 kDa59,60. Although larger proteins can bind to GroEL, they cannot 

become encapsulated underneath GroES. 
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The complex of the multicatalytic protease 

 

The control of the protease through protein autocompartimentation 

Protein degradation is fundamental in the regulation of several physiological process like the 

maintaining of homeostasis during continuous reconstruction of cellular structures, both during 

the development and as response to externals stimulations, the removal of misfolded proteins 

after mutations, oxidative stress or heat, the elimination of regulatory proteins in defined 

moments (cycline, transcriptional factors, components of signal transduction paths and the 

degradation of external antigens and the consequent production of immunocompetent peptides). 

Since the degradation represents a possible risk, it has to be carefully controlled to prevent the 

removal of proteins not destined to proteolysis. A potential mechanism of control of the protein 

degradation is represented by compartmentalization, defined as the ability to define the 

proteolytic action to sites that result accessible only to protein with degradation signals. The 

prokaryotic cells that do not posses membrane compartments or vescicular transport systems 

have developed a different compartmentalization, defined as autocompartimentalization, defined 

as the formation of a commune architecture where different proteolytic subunits are able to form 

cylindrical structures where the catalytic sites are confined in the internal cavities (several 

nanometres of diameter) 61. 

The access to the internal compartments is generally limited to unfolded polypeptides, able to 

pass through narrows pores or entering channels. The target proteins must be able to interact 

with a system able to bind to them and to be presented to the catalytic site in an unfolded way. 

Since protein unfolding and folding are related mechanism, it is supposed that the unfolding 

complexes are ATPasic ones, partially similar to chaperonine and defined as inverted 

chaperonine or unfoldase. Since their action request the hydrolysis of ATP, the protein 

degradation is an energy-demanding process. The proteasic autocompartimentalization is 

common for all life domains: archobacetria, eubacteria ad eukaryotes. This is a testimony of the 

importance of one of the evolution principles. Differing from organelles, the 

autocompartimentalization offers more flexibility: by having appropriate localization signals, 

such proteasic complexes can reach different cellular districts where is necessary their action. 

 

The proteolitic system ubiquitin-proteasome 

The turnover in normal and altered proteins is performed principally by a proteolitic system 

ATP-ubiquitin-dependent, present in nucleus and cytoplasm of eukaryotic cells but also in 
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eubacteria and in archobacetria 61-63. The protein substrates destined to degradation are marked 

through covalent binding with a number of molecules of a small protein, namely ubiquitin.  

This protein is constituted by 76 amino acids with a molecular weight of 8,5 kDa, and it is highly 

conserved through evolution. The poli-ubiquitinization happens through the sequential action of 

three enzymes (fig. 6): an ATP-dependent enzyme ubiquitin dependent (E1), an ubiquitin 

conjugating enzyme (E2) and ubiquitin ligase (E3). 

 

 
Fig. 6: Schematic representation of the polyubiquitinizzation of a proteic substrate and further recognize and degradation by a part of the 
multicatalitic protease complex 
 

 

The three enzymes are able to act simultaneously through a covalent attack with the C-terminal 

of ubiquitin to the amino group of a lysine residue of the target protein. Other ubiquitin 

molecules are able to link to the first by forming a long linear or ramified chain. The 

polyubiquitinated chains are first recognized and degraded by a subunit of an ATP-dependent 

proteolytic complex, the proteasome 26S. This latter is a 2000 kDa protease consisting of a 

catalytic core, the proteasome 20S, with a molecular weight of 700 kDa. The proteasome 20S 

shows a multiproteic structure with a cylindrical structure containing several peptidasic 

activities, namely MPC or Multicatalytic Protease Complex. 

 

The proteasome 20S - Structure 

The proteasome from the Archobacteria Thermoplasma Acidophilum is the prototype for the 

quaternary structure and the enzyme topology. Its 28 substructures represent two homologues 

genetic products (α e β), each present in 14 copies for each proteasolmal molecule 61,64,65. The 
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subunits are arranged to form four heptameric rings with the α subunits forming the two external 

rings and the subunits β forming the internal rings. Collectively, they form a cylindrically-shaped 

complex, about 15 nm long, and with a diameter of 11 nm, including the three internal cavities of 

5nm of diameter delimitated by four close constrictions. The central cavity is formed by two 

adjacent β rings, while the two external cavities are delimited by a β and α ring. In eukaryotes, 

the subunits represent 14 genetic products; seven of them are homologues of the subunit α of the 

Thermoplasma and the other seven homologues of the β subunits. 

The relative positions of α and β subunits of eukaryotes are analogous to those of the proteasome 

from the Thermoplasma, each ring containing a complete set of the seven genetic products. Thus 

the proteasome is a multimeric dimer with a symmetric axis passing through the two α and β 

rings, whose subunits point their active sites toward the inner surface of the central channel. The 

ternary structure of α non-catalytic and β catalytic subunits is very similar: each one is 

constituted by a sandwich of five antiparallel β sheets in contact with α helices. 

 

 

 
 

 

Fig. 7: Structural organization of the proteasome 20S (upper) and schematic representation of the subunit substitution in the immunoproteasome 

(below) 
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Fig. 8:  Ribbons representation of the α subunits (A); the α helix are indicated with H, the β sheets with S. The helix HO at the NH2-terminal 
extremity represents the internal side of the proteosomal complex. In the barrel structure in the upper left, orientated in the same way, is indicated 
with a yellow sphere; (B) represents the β subunit. 
 
 
The H1 and H2 helices modulate the interaction between α and β rings (β-trans-α); H3 and H4 

helices, on the other hand, are the main links between the two β rings (β-transβ). The major 

difference between α and β subunits is the presence of a N-terminal extension on the α subunit 

(α-helix-HO) that crosses the central sandwich. The N-terminal extension can be found in the 

upper part of the α-ring, close to the access of the pre-cavity, likely important for the 

translocation of the substrates and for the interaction between the proteasome and its regulatory 

complex. Instead of this N-terminal, the β-subunits have a pro-sequence, of different length, that 

is removed proteolitically during the assembling of the proteasome, making the internal cavity 

freely accessible. The analysis of data obtained from crystallographic studies of 20S proteasome 

in presence of its peptidic inhibitor, revealed that the active site of the complex was placed in the 

central cavity and each subunit had a fixed position whereas the interaction of the β subunits 

seemed to be essential for the expression of the proteolytic activity. The proteasome belongs to 

the family of the N-terminal nucleophil-hydrolase (Ntn-hydrolase): its catalytic center is 

constituted by a residue of N-terminal threonine present in β subunits that acts as nucleophile as 

well as proton acceptor, whilst other residues (Glu17, Lys33, Asp166) participate to the 

expression of the photolytic activities 63.  
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Fig. 9: Schematic representation of the catalytic mechanism of the proteasome 20S with the residue of threonine that acts as nucleophile and a 
molecule of water that acts as base. 
 
 

Proteasome 20S - Function 

Five different hydrolasic activities were attributed to the 20S complex of mammalians, that can 

be characterized by the amino acidic residue involved in the bond cleavage 63,66,67. 

According to this scheme, it is possible to identify:  

- the chymotrypsin-like activity (ChT-L), preferentially cleaving the carboxylic side of 

aromatic residues 

- the trypsin-like activity (T-L), preferentially cleaving the carboxylic side of basic amino 

acid residues 

- the peptidil-glutamil-peptide hydrolasic (PGPH), preferentially cleaving the carboxylic 

side of acidic amino acidic residues 

- the BrAAP (branched chain amino acid preferring) activity 

- the SNAAP (small neutral amino acid preferring) activity 

Each activity is associated to different β subunits, but the N-terminal threonine residues were 

reported only on 4 β subunits; thus, 3 of the 7 subunits were supposed not to possess any 

catalytic sites. Studies performed with irreversible inhibitors indicated that β subunits of 

mammalian proteasome (X,Y and Z), were associated respectively with the ChT-L, PGPH and 

T-L activities, whilst, it was not already clear whether the BrAAP and SNAAP activities were 

associated to one or more cooperating β subunits. The proteasome is not able to degrade in vitro 

denatured protein substrates, but it needs at to be activated by exposure to heat, by low 
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concentration of SDS or under particular ionic conditions. The molecular basis for these 

activating effects is far to be clear, but probably involves conformational changes in the 

proteasome (capable of opening and exposing the central cavity towards the outer side) and/or 

allosteric modifications of the catalytic site. This mechanism have a little physiological 

significance but it can mime the activity promoted by regulatory proteins, even if was not clear 

whether the direct activation of 20S by non protein factors happens in intact cells. 

Physiologically, the ubiquitin-proteasome complex is supposed to be involved in a number of 

cellular functions, like the cell growth and division, the degradation of regulatory cells like 

proto-oncogenes, the transcriptional factors and cyclines. In fact, it was showed that the 

proteasome-ubiquitin system regulates the activation of transcriptional factors NF-kB, involved 

in acute and chronic inflammatory responses, working as promoter and process amplifier. 

Moreover, in superior eukaryotes, the proteasome is involved in the presentation of antigens by 

the major complex of hystocompatibility of class I (MHC I), since it degrades proteins to small 

peptides of about 7-10 amino acids that, after being transferred to the endoplasmatic reticulum, 

are able to bind to MHC I molecules, creating a complex that is then transported on the plasmatic 

membrane and presented to cytotoxic lymphocytes T that precede cell disruption 68,69. On the 

other hand, it was observed that under particular pathological conditions, cytokines can induce 

structural alteration on the proteasome, which in turn gains a higher efficiency in the process of 

antigen presentation. In fact, the induction by interferon γ in the cell of superior eukaryotes, 

leads to the appearing of three additional catalytically active β subunits (LMP2, MECL-1 and 

LMP7), that replace respectively the subunit Y, Z and X of the proteasome, thus yielding a 

complex known as immunoproteasome 70,71. The immunoproteasome differs from the original 

one in the quaternary structure and consequently for its structural function, acquiring a capacity 

of cleaving more efficiently after hydrophobic and branched side chains residues, and less 

effectively after acidic residues. Among the functions of the ubiquitin-proteasome system, the 

degradation of oxidized cellular proteins is fundamental, since it provides to the proteasome 

itself a primary role in antioxidant defence mechanism and it seems to be able to act preferably at 

the level of hydrophobic residues, more exposed during the structural rearrangement of the 

oxidised protein. The selective degradation of proteins damaged by oxidation allows the cells to 

regenerate enzymes and proteins during normal aerobic life and to reduce the damage occurring 

during event of moderate oxidative stress. So, the proteasome constitutes an important defensive 

mechanism against aging process and the minimization of damages related to the rising of 

pathologies oxidation-induced. 
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MATERIALS AND METHODS 
 

Materials 

Bovine brain and thyme used for the purification of proteasome 20S, were obtained from local 

butcher. Substrates used to test ChT-L, PGPH and T-L activity (suc-LLVY-MCA and Z-GGL-

pNA, Z-LLE-MCA and Z-LLE-2NA, Z-GGR-MCA and Z-GGR-2NA) were purchased from 

Sigma-Aldrich. Synthetic substrates (Z-LLR-2NA, Z-GPALG-pAB and Z-GPALA-pAB) used 

for testing the proteolytic BrAAP and SAAP activities of proteasome were kindly offered from 

Prof. M. Orlowski (Mount Sinai MedicaI School, New York). The aminopeptidase-N (Ap-N) 

necessary for testing this particular activity was purified following the Pfleiderer protocol and 

the subsequent modifications from Almenoff 72. GroES (Chaperonine 10) was obtained from 

Sigma–Aldrich. All chemicals used were of the highest grade available. Superose 6 (HR 10/30) 

and Phenyl-Sepharose CL-4B (1.6 x 6.5 cm) chromatographic columns were obtained from 

Pharmacia. Carboxylate cuvettes and NHS Coupling Kit, containing N-hydroxysuccinimmide 

(NHS), 1-ethyl-3-(3-dimethylamino-propyl) carbodiimide (EDC), and ethanolamine were 

obtained from Affinity Sensors (UK). FPLC experiments were performed on an AKTA 

Chromatographic system obtained from Pharmacia-Amersham (Sweden). Kinetic and 

thermodynamic studies were performed on an IAsys plus device, Affinity Sensors (Cambridge, 

UK), obtained from ThermoFinnigan, Italy. Spectrophotometric assays were performed on a 

Varian Cary 1E spectrophotometric device (Palo Alto, California); fluorimetric assays were 

performed of a Shimadzu RF-5301PC spectrofluorophotometric device (Shimadzu Italia S.r.l.). 

 

 

Methods 

Purification of 20S proteasome from thymus and from bovine brain  

The isolation and the purification of 20S proteasomes (MW 700kDa)  from thymus and from 

bovine brain was performed according an experimental protocol developed by Eleuteri73, based 

on a fractionation from 40 to 60% in ammonium sulphate, a ion exchange chromatography and 

two molecular exclusion chromatography that favour the removal of contaminants with low 

molecular weight. Higher purification rate is reached by addition of hydrophobic interaction 

chromatography in order to separate the 20S proteasome from the co-eluting chaperonin Hsp90. 

For the purification of the MPC both from bovine brain and thymus, modifications were used in 

order to eliminate the phospholipidic constituents in tissues. 
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Determination of protein content by Lowry method  

During early stages of purification, total protein content of different samples was evaluated by 

Lowry method74, which assured a precise quantification also in fatty acid-containing samples. 

Samples were dissolved in water (250 μl) then added to 2.5 ml of a solution consisting of 

Na2CO3 2% in NaOH 0.1 M (20 ml), CuSO4 1% (0.2 ml) and NaOCO(CHOH)2COONa 2% (0.2 

ml). After 15 minutes, Folin reagent was added, and the resulting solution was incubated for 30 

min. Protein content was assessed by comparison of the absorbance at 660 nm of the unknown 

samples with a standard curve built using known amounts of bovine serum albumin (BSA). 

 

Determination of the protein concentration through Bradford method 

The determination of the protein concentration of the cellular lysate, was obtained following 

Bradford method75. This assay allows the determination through by spectrophotometric 

absorbance at 595 of the complex proteins-Biorad reagent (100 mg/ml of Comassie Brilliant 

Blue G-250, ethanol and phosphoric acid). Since such absorbance is proportional to protein 

concentration, in order to know the concentration of the samples, it was necessary to make a 

calibration curve with known amounts of bovine serum albumin. 

 

Determination of Proteasomal Enzymatic Activities  

Chymotrypsin-like (ChT-L), Trypsin-like (T-L), peptidylglutamyl-peptide-hydrolyzing (PGPH), 

BrAAP (branched-chain amino acid preferring) and SNAAP (small neutral amino acid 

preferring) activities were measured using as substrate:  

1) Cbz-Gly-Gly-Leu-PNA, concentration 0.4 mM in the assay, for the ChT-L activity; 

2) Cbz-Leu-Leu-Glu-2NA, concentration 0.64 mM in the assay, for the PGPH activity; 

3) Cbz-Leu-Leu-argon-2NA, concentration 0.4 mM in the assay, for the T-L activity; 

4) Cbz-Gly-Pro-Ala-Leu-Gly-pAB, concentration 1 mM in the assay, for the BrAAP activity; 

5) Cbz-Gly-Pro-Ala-Gly-Gly-pAB, concentration 1 mM in the assay, for the SNAAP activity.  

The mixture of reaction was constituted by 10 µg of enzymatic protein (except for the measure 

of the BrAAP activity where 2 µg were used), the appropriate substrate for the activity that has 

to be measured (dissolved in DMSO) and TRIS-HCl buffer 0.05 M until a final volume of 250 

μl. The samples were incubated at 37 °C for 60 minutes and the reaction was stopped by addition 

of an equal volume of 10 % trichloroacetic acid. The released chromophore group was then, 

measured by diazotization. For such purpose 500 µl of a sodium nitrite 0.1 % solution were 

added in order to promote the formation of the diazonium salt. The unreacted sodium nitrite was 

destroyed by addition of an excess of ammonium sulphammate. The final reaction of copulation 
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occurred between the salt of diazonium and N-1-naftiletilendiammine. Through a copulation 

reaction with N-1-naphthyl-ethylen-diamine, coloured compounds were then obtained having a 

maximum at 540 (pNA), 555 (pAB), and 580 nm (2NA). One unit of enzymatic activity was 

defined as the quantity of enzyme that catalyzed the release of 1 moles of chromophore group 

per hour. The specific activity is expressed in terms of unit for milligram of protein. In the case 

of the BrAAP and SNAAP activities, in order to get the aromatic amine free in solution, it has to 

be added to the mixture of reaction an excess of Aminopeptidase N (AP-N). In fact, since the 

proteasome promotes the hydrolysis of the binding between the amino acid in P2 and the one in 

P3 of this substrate, the AP-N is necessary in order to release the p-A group-at the last amino 

acid residue that is involved in the diazotization. 

 
 

SPR BIOSENSING 

The anomalous diffraction on gratings due to the excitation of surface plasma waves was first 

described in the beginning of the twentieth century by Wood 76. In the late sixties, optical 

excitation of surface plasmons by the method of attenuated total reflection was demonstrated by 

Kretschmann 77 and Otto 78. Since then, surface plasmons have been intensively studied and their 

major properties have been assessed 79. Surface plasmon resonance is a charge-density 

oscillation that may exist at the interface of two media with dielectric constants of opposite 

signs, for instance, a metal and a dielectric. The charge density wave is associated with an 

electromagnetic wave, the field vector of which reaches their maximum at the interface and 

decay evanescently into both media. This surface plasma wave (SPW) is a transverse-magnetic 

polarized wave. The propagation constant of the surface plasma wave propagating at the 

interface between a semi-infinite dielectric and metal is given by the following expression: 
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where k denotes the free space wave number, εm the dielectric constant of the metal (εm= εmr 

+iεmi), and ns the refractive index of the dielectric 79. The SPW may be supported by the structure 

providing that εmr < -Ns
2. At optical wavelengths, this condition is fulfilled by several metals of 

which gold and silver are the most commonly used.  Owing to high loss in the metal, the SPW 

propagates with high attenuation in the visible and near-infrared spectral regions. The 
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electromagnetic field of an SPW is distributed in a highly asymmetric fashion and the vast 

majority of the field is concentrated in the dielectric. An SPW propagating along the surface of 

silver is less attenuated and exhibits higher localization of electromagnetic field in the dielectric 

than an SPW supported by gold. 

 
Concept of SPR optical chemical sensors and biosensors 

Generally, an SPR optical sensor comprises an optical system, a transducing medium which 

correlates the optical and chemical (or biochemical) domains, and an electronic system 

supporting the optoelectronic components of the sensor and allowing data processing. The 

transducing medium converts modifications in the quantity of interest into modifications in the 

refractive index which may be determined by optically interrogating the SPR. The optical part of 

the SPR sensor contains a source of optical radiation and an optical structure in which SPW is 

excited and interrogated. In the process of interrogating the SPR, an electronic signal is 

generated and processed by the electronic system. Major properties of an SPR sensor are 

determined by properties of the sensor’s subsystems. The sensor sensitivity, stability, and 

resolution depend upon properties of both the optical system and the transducing medium. The 

selectivity and response time of the sensor are primarily determined by the properties of the 

transducing medium. 

 

Surface plasmon resonance-sensing configurations 

As the propagation length of SPW is very limited, the sensing action is performed directly in the 

area where the SPW is excited by an optical wave. The optical system used to excite the SPW is 

simultaneously used for the interrogation of SPR. Therefore, the sensitivity of SPR sensors 

cannot benefit from increasing the interaction length of the sensor as it is common in sensors 

employing guided modes of dielectric waveguides. As follows from Eq. (1), the propagation 

constant of SPW is always higher than that of optical wave propagation in the dielectric and thus 

the SPW cannot be excited directly by an incident optical wave at a planar metal–dielectric 

interface. Therefore the momentum of the incident optical wave has to be enhanced to match that 

of the SPW. This momentum change is commonly achieved using attenuated total reflection 

(ATR) in prism couplers and optical waveguides, and diffraction at the surface of diffraction 

gratings (fig. 10).  

As the excitation of SPW by optical wave results in resonant transfer of energy into the SPW, 

SPR manifests itself by resonant absorption of the energy of the optical wave.  

 



 25

 
 
 
Fig.10 : Most common configurations of SPR sensors: prism coupler-based SPR system (ATR method); grating coupler-based SPR system; 
optical waveguide-based SPR system. 
 

 

Owing to the strong concentration of the electromagnetic field in the dielectric (an order of 

magnitude higher than that in typical evanescent field sensors using dielectric waveguides) the 

propagation constant of the SPW, and consequently the SPR condition, is very sensitive to 

variations in the optical properties of the dielectric adjacent to the metal layer supporting SPW 

(transducing medium). Therefore, variations in the optical parameters of the transducing medium 

can be detected by monitoring the interaction between the SPW and the optical wave. 

The following main detection approaches have been commonly used in SPR sensors: 

1. measurement of the intensity of the optical wave near the resonance 80; 

2. measurement of the resonant momentum of the optical wave including angular 81 and 

wavelength interrogation of SPR 82. 

At present, approaches based on the measurement of the resonant momentum of the optical wave 

are prevalent primarily owing to the inherent simultaneous multiple data measurement which 

offers better signal to noise figures than simple intensity measurements. 

Sensitivity of SPR sensors is defined as the derivative of the monitored SPR parameter (e.g. 

resonant angle or wavelength) with respect to the parameter to be determined (refractive index, 

thickness of a thin overlayer, concentration, etc.). The sensitivity of SPR-sensing devices has 

been widely studied. The sensitivity of SPR angular interrogation-based sensors to changes in 

the refractive index has been found to increase with decreasing operation wavelength, 

conversely, the sensitivity of SPR refractive index sensors using wavelength interrogation and 
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intensity measurement increases with the wavelength. In addition, SPR sensors based on 

wavelength interrogation and intensity measurement may benefit from using silver as an SPR 

active metal instead of gold 83. The sensitivity of SPR sensors using ATR prism couplers is 

higher than that of SPR devices based on grating couplers. The sensitivity of SPR sensors to 

changes in the thickness of a thin overlayer, which is relevant to most SPR biosensors has been 

shown to follow essentially the same trends 84. Sensor resolution is the minimum change in the 

parameter to be determined which can be resolved by a sensing device. The sensor resolution 

depends upon the accuracy with which the monitored SPR parameter can be determined by the 

specific sensing device and as such is limited by sensor system noise. 

To illustrate the relationship between the sensor resolution and the accuracy with which the 

measured SPR parameter has to be determined, the sensor resolution has been calculated by 

dividing the assumed accuracy of the SPR parameter by the sensitivity of a particular detection 

approach. It should be noted that the accuracy with which the measured SPR parameter can be 

determined is very dependent upon the experimental circumstances and the degree of 

optimization of the particular sensor and therefore the ultimate resolution of the particular SPR 

sensor may differ from that of the considered model systems.  

Another important parameter of an SPR sensor is its operating range, which is the range of 

values of the parameter to be determined, which can be measured by the sensor. While the 

operating range of intensity measurement-based SPR sensors is naturally limited due to the 

limited width of the SPR dip the operating range of angular and wavelength interrogation-based 

SPR sensors may be made much wider. In principle, the operating range of these sensors is 

determined by the detection system, more specifically by the angular or spectral range covered 

by the optical system-angular position detector array or spectrum analyzer, respectively. 

However, there is a trade-off between the dynamic range and resolution of these sensors. 

Inherently, the SPR method detects ‘integral’ changes in the refractive index in the vicinity of 

the surface supporting SPW and generally does not allow quantifying spatial distribution of the 

refractive index. While the effects of background refractive index variations can be effectively 

suppressed in multichannel SPR detection schemes, for the determination of the transducing 

medium refractive index spatial profile, the SPR method needs to be combined with another 

sensing technique which provides complementary information necessary for reconstructing the 

refractive index profile such as spectroscopy of guided modes in optical waveguides 85. This 

method has been used for studying the process of diffusion of vapor molecules in a thin polymer 

layer 86. The special problem of determining optical properties of homogeneous thin transparent 

films has been widely studied. Theoretically, the desired parameters of thin films may be 
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determined by fitting a single measurement of the angular reflectivity at a fixed wavelength. 

However, such a measurement requires very accurate data obtained on a well-characterized 

system to produce accurate results. The uncertainty in the determined parameters may be 

reduced by combining two sets of measurements which were obtained for different refractive 

indices of the superstrate or at different wavelengths 87. 

 

Fundamentals of surface plasmon resonance biosensors 

A surface plasma wave (SPW) or a surface plasmon-polariton is an electromagnetic wave which 

propagates along the boundary between a dielectric and a metal, which behaves like quasi-free 

electron plasma 88. An SPW is a transverse-magnetic (TM) wave (magnetic vector is parallel to 

the plane of interface) and is characterized by the propagation constant and electromagnetic field 

distribution. The propagation constant of an SPW, β, can be expressed as: 
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where ω is the angular frequency, c is the speed of light in vacuum, and εD and εM are dielectric 

functions of the dielectric and metal, respectively. This equation describes an SPW if the real 

part of εM is negative and its absolute value is smaller than εD. At optical wavelengths this 

condition is fulfilled for several metals of which gold is most commonly employed in SPR 

biosensors. The real and imaginary parts of the propagation constant describe spatial periodicity 

and attenuation of an SPW in the direction of propagation, respectively.  

The electromagnetic field of an SPW is confined at the metal–dielectric boundary and decreases 

exponentially into both media. For an SPW at the boundary between gold and a dielectric with a 

refractive index of 1.32 the penetration depth (the distance from the interface at which the 

amplitude of the field falls to 1/e of its value at the metal surface) into the dielectric is typically 

100–500 nm in the visible and near infrared regions89. 

 

Concept of surface plasmon resonance biosensing  

Owing to the fact that the vast majority of the field of an SPW is concentrated in the dielectric, 

the propagation constant of the SPW is extremely sensitive to changes in the refractive index of 

the dielectric. This property of SPW is the underlying physical principle of affinity SPR 

biosensors – biomolecular recognition elements on the surface of metal recognize and capture 

analyte present in a liquid sample producing a local increase in the refractive index at the metal 
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surface. The refractive index increase gives rise to an increase in the propagation constant of 

SPW propagating along the metal surface (fig. 11) which can be accurately measured by optical 

means.  

The magnitude of the change in the propagation constant of an SPW depends on the refractive 

index change and its distribution with respect to the profile of the SPW field.  

 

There are two limiting cases: 

1. Analyte capture occurs only within a short distance from the metal surface (fig. 11a). 

2. Analyte capture occurs within the whole extent of the SPW field (fig. 11b). 

 

 
 

 

Fig.11 : Principle of SPR biosensing 

 

 

Perturbation theory 90 suggests that if the binding occurs within the whole depth of the SPW field 

(fig. 5b), the binding-induced refractive index change, Δn, produces a change in the real part of 

the propagation constant, Δβ, which is directly proportional to the refractive index change: 

 

nkΔ≅Δ }Re{ β   (Eq.3) 

 

where k denotes the free-space wave number. If the refractive index change is caused by a 

binding event occurring within a distance from the surface d, much smaller than the penetration 

depth of the SPW, the corresponding change in the real part of the propagation constant can be 

expressed as follows: 
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where nf and ns denote the refractive index of the biolayer and the refractive index of the 

background dielectric medium (sample), respectively. The binding-induced change in the 

propagation constant of the SPW is proportional to the refractive index change and the depth of 

the area within which the change occurs. The factor F (F<1) accounts for the fact that the 

interaction occurring within a thin layer is probed by only a fraction of the field of the SPW. 

In SPR sensors, an SPW is excited by a light wave and the effect of this interaction on the 

characteristics of the light wave is measured. From these measurements, changes in the 

propagation constant of the SPW can be determined. Excitation of an SPW by light can occur 

only if the component of the light’s wave vector that is parallel to the metal surface matches that 

of the SPW. This can be achieved by means of prism coupling, waveguide coupling, and grating 

coupling. In configurations based on prism coupling a light wave passes through a high 

refractive index prism and is totally reflected at the prism–metal layer interface generating an 

evanescent wave penetrating the metal layer (fig. 12a). This evanescent wave propagates along 

the interface with a propagation constant which can be adjusted to match that of the SPW by 

controlling the angle of incidence. This method is referred to as the attenuated total reflection 

(ATR) method 91. The process of exciting an SPW in an optical waveguide-based SPR structure 

(fig. 12b) is similar to that in the ATR coupler. The light wave is guided by an optical waveguide 

and, when entering the region with a thin metal layer, it evanescently penetrates through the 

metal layer exciting an SPW at its outer boundary. Alternatively, an SPW can be excited by 

diffraction on a grating (fig. 12c). The component of the wave vector of the diffracted waves 

parallel to the interface is diffraction-increased by an amount which is inversely proportional to 

the period of the grating and can be matched to that of an SPW 92. The interaction of a light wave 

with an SPW can alter light’s characteristics such as amplitude, phase, polarization and spectral 

distribution. Changes in these characteristics can be correlated with changes in the propagation 

constant of the SPW. Therefore, binding-induced changes in the refractive index at the sensor 

surface and, consequently, the propagation constant of the SPW can be determined by measuring 

changes in one of these characteristics. Based on which characteristic is measured, SPR 

biosensors can be classified as angle, wavelength, intensity, phase, or polarization modulation-

based sensors.  

In SPR sensors with angular modulation the component of the light wave’s wavevector parallel 

to the metal surface matching that of the SPW is determined by measuring the coupling strength 
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at a fixed wavelength and multiple angles of incidence of the light wave and determining the 

angle of incidence yielding the strongest coupling (fig. 13a). In SPR sensors with wavelength 

modulation the component of the light wave’s wavevector parallel to the metal surface matching 

that of the SPW is determined by measuring the coupling strength at a fixed angle of incidence 

and multiple wavelengths and determining the wavelength yielding the strongest coupling (fig. 

13b). 

 

 
 
 
Fig. 12: Excitation of surface plasmon-polaritons: (a) by a light beam via prism coupling, (b) by a guided mode of optical waveguide, and (c) by 
light diffraction on a diffraction grating. 
 
 

In SPR sensors with intensity modulation, the change in the intensity of the light wave 

interacting with the SPW is measured at a fixed wavelength and angle of incidence. In SPR 

sensors with phase modulation, shift in phase of the light wave interacting with the SPW is 

measured at a fixed wavelength and angle of incidence. In SPR sensors with polarization 

modulation, changes in the polarization are measured at a fixed wavelength and angle of 

incidence. 
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Fig. 13: Reflectivity and phase for light wave exciting an SPW in the Kretschmann geometry (glass prism – 50 nm thick gold layer – dielectric) 
versus (a) the angle of incidence for two different refractive indices of the dielectric (wavelength 682 nm), and (b) wavelength for two different 
refractive indices of the dielectric (angle of incidence 54°) 
 

Performance characteristics 

The main performance characteristics relevant for SPR biosensors include sensitivity, accuracy, 

precision, repeatability, and the lowest detection limit. Sensor sensitivity S is the ratio of the 

change in sensor output, P to the change in measurand.  

SPR biosensor sensitivity can be decomposed into two components – sensitivity to refractive 

index changes produced by the binding of analyte to biomolecular recognition elements on the 

sensor surface SRI, and the efficiency E, with which the presence of analyte at a concentration c 

is converted into the change in the refractive index n: 
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The efficiency E depends on the properties of the biomolecular recognition elements and the 

target analyte. The refractive index sensitivity SRI can be decomposed into two terms: 
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The first term S1 depends on the modulation method and the method of excitation of an SPW. 

The S2 term is independent of the modulation method and the method of excitation of the SPW 

and describes the sensitivity of SPW’s propagation constant to the refractive index change, Eq.3 

and Eq.4. Accuracy describes the degree to which a sensor output represents the true value of the 
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measurand (analyte concentration). Accuracy is often confused with precision which refers to the 

way in which repeated measurements conform to them without a reference to any true value. 

Repeatability refers to the capacity of a sensor to reproduce output reading under the same 

measurement conditions over a short interval of time. The lowest detection limit describes the 

lowest concentration of analyte that can be measured by the sensor. 

 

SPR biosensing formats 

An interaction between a biomolecular recognition element on an SPR sensor surface and 

analyte in a liquid sample is governed by kinetic equations. In order to illustrate fundamental 

properties of the interaction, we shall discuss the pseudo-first-order kinetic equation: 

 

( ) RkRck
dt
dR

da −−= 1   (Eq.7) 

 

where R is the relative amount of bound analyte, c is analyte concentration, t is time, and ka and 

kd are the association and dissociation kinetic rate constants, respectively 93. This interaction 

model assumes 1:1 binding, rapid mixing of the analyte from the bulk phase to the sensor surface 

layer, and single-step binding. Observed binding, however, may deviate from this simple model 

due to more complex mechanisms of interaction and mass transport limitations. Eq. 7 yields for 

R: 
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where R0 denotes the initial amount of analyte bound at the time t=0 93. Although SPR biosensors 

do not require the labelling of reactants, one of the binding partners has to be immobilized on the 

sensor surface. For the analysis of binding affinities and kinetics it is crucial that the measured 

binding reflects exclusively the native interaction of both reactants, i.e. that nonspecific surface-

binding is negligible and that the immobilization does not affect the conformation of the binding 

site. Preferably, the macromolecule should be attached with uniform orientation and unrestrained 

accessibility for the mobile reactant. The sensor surface and the immobilization technique 

employed are therefore very important, and a number of different techniques have been 

described. Obviously, the best choice of which binding partner to immobilize and which 

immobilization technique to employ depends on the particular set of interacting macromolecules; 
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if possible, the comparative use of different techniques seems to be advantageous. The gold 

surface on the SPR sensor chip is usually covered with a self assembled monolayer of alkyl 

thiols. This suppresses non-specific binding and creates a hydrophilic surface. In most of the 

biosensor applications, sensor chips are used in which a matrix of carboxymethylated dextran is 

covalently attached (1-3 ng/mm2) to form a flexible hydrogel of estimated thickness 100-200 nm 

or 220-400 nm. As is in the case with chromatographic matrices, this dextran matrix can be 

derivatized to give a number of different functional groups and to allow for a variety of 

immobilization chemistries. A regeneration procedure for this sensor chip has been described. 

The particular advantage of using this flexible, hydrophilic dextran matrix is that it provides 

better accessibility of the immobilized macromolecules to their binding and a potentially 

increased signal from the SPR sensor, by virtue of a relatively large number of immobilized 

biding sites and more efficient use of the evanescent field. A widely applied immobilization 

procedure utilizes activation of the carboxy groups of the dextran gel with a mixture of N-

hydroxysuccinimide (NHS) and N-ethyl-N (dimethylaminopropill) carbodiimide to form NHS 

esters, which enables coupling to the amino groups on proteins. The effectiveness of the 

coupling relies on a pre-concentration of the protein by electrostatic attraction to the negatively 

charged matrix at pH values below the pI of the protein. However, it has been noted that this 

may lead to protein denaturation. Another disadvantage of the NHS-ester immobilization 

procedure is the potential occurrence of random coupling to different lysines on the protein, 

which may introduce subpopulations of binding sites with different accessibilities and 

reactivities. For these reasons, a variety of more specific immobilization methods have been 

described, such as coupling by thiol/disulfide exchange, aldehyde coupling, hydrazide group 

coupling, sulfhydryl group coupling, and chelate linkage of oligo-histidine tags. In several 

studies, for example, a specific orientation of the immobilized receptor domain was achieved by 

creating a thiol coupling/disulfide bond to cysteine residues that were introduced into one 

reactant via site-directed mutagenesis. For the immobilization of proteins with hydrophobic 

anchors, modification of the dextran matrix by heptyl residues has been described. Covalent 

linkage could be achieved though a perfluorophenylazide-derived hydrophobic crosslinker. 

Indirect coupling, exploiting the high affinity of the avidin-biotin interaction, can be achieved by 

immobilizing avidin/streptavidin to the dextran matrix and binding biotinylated macromolecules. 

This method has the additional advantage of not requiring pre-concentration in the matrix. It has 

been preferred for the immobilization of DNA and RNA but has also been generally used, for 

example, to immobilize lipid vesicles. The immobilization on aminosilane-derivatized surfaces 

(employing a resonant mirror biosensor) has been described. Alternatively, the use of mixed self-
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assembled monolayers of functionalized alkyl thiols on the gold surface of the SPR biosensor 

has been demonstrated.  

After successful immobilization of one of the reactants to the sensor surface, the real-time 

detection of local change in the refractive index at the sensor surface upon introduction of 

reactants into the mobile phase is a versatile tool for the study of reversible interactions.  

 

DATA ANALYSIS - A Model for a biomolecular interaction 

In a common model describing the interaction of an immobilized species E and a mobile 

macromolecule L, both reactants reversibly form a 1:1 complex EL, at a chemical on-rate 

constant for complex formation kass, and a chemical off-rate constant for complex dissociation 

kdiss. The thermodynamic equilibrium dissociation constant is then equal to 

 

ass

diss
D k

k
K =   (Eq.9) 

 

Under ideal conditions, neglecting all potential complications due to the finite volume in which 

the reaction take place, and assuming that the concentration of the mobile reactant is held 

constant by an infinitely fast exchange with the bulk solution, the pseudo-first-order rate 

equation 

 

[ ] [ ] [ ] [ ]( ) [ ]ELkELELk
dt
ELd

disstotass −−=   (Eq.10) 

 

is valid, where [L] is constant and [E]tot, denotes the total binding capacity of the surface on a 

molar basis. Usually, in a SPR biosensor experiment, relatively high concentrations of 

immobilized binding sites are required to produce a significant refractive index change upon 

binding. Therefore, the signal contribution of the free mobile reactant can usually be neglected. 

With the biosensor response R proportional to [EL], Eq. 10 gives: 

 

( )RkfkRfk
dt
dR

asssatass −+−= 00   (Eq.11) 

 

where f0 ≡ [L], and Rsat denotes the response at complete saturation of the immobilized binding 

sites. If no mobile reactant has been initially bound, the time-course of binding is described by 

an exponential 
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with the observed rate constant 
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approaching the equilibrium plateau signal 
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Equation 14 is equivalent to a Langmuir isotherm. If the free mobile reactant is removed from 

the buffer (f0 = 0 for t > t0), the complex dissociates exponentially with time: 

 

( ) ( ) ( )[ ]0
0

ttkdissetRtR −−=   (Eq.15) 

 

It should be noted that in this model the observed binding rate constant kon in the association 

phase is always higher than the chemical off-rate constant kdiss. 

 

Determination of Equilibrium Constants 

The thermodynamic equilibrium constant can be determined by the analysis of the dependence of 

the equilibrium plateau signals on the concentration of free mobile reactant using Eq. 14, or via 

measurement of the kinetic rate constants and using Eq.9. A very important advantage of the 

thermodynamic approach is that it does not require modelling of the biding progress and 

therefore is independent of mass transport influences. In the cuvette-based biosensor systems, 

equilibrium experiments may be performed employing a stepwise equilibrium titration 

procedure. The thermodynamic approach can also be applied for reactions that are too fast for a 

kinetic analysis. On the other hand, especially for slow reactions and small concentrations of 

mobile reactant, it may not be possible to reach equilibrium within the frequently limited time 

frame of an association experiment. In this case, the equilibrium analysis cannot be applied; 

however, the equilibrium response may be extrapolated on the basis of assumptions about the 

binding kinetics. Also, accurate determination of the equilibrium response can suffer from a 

signal offset due to a refractive index mismatch as a result of the buffer change and a 



 36

corresponding baseline offset ("bulk effect") or a baseline drift that might be caused by, for 

example, by temperature variations or nonspecific binding. However, this problem can be 

addressed using multiple cells and comparing the signal to that obtained in the absence of 

immobilized reactant. This can be particularly useful in the study of weak interactions, such as 

the binding of cell-adhesion molecules. Although the SPR measures surface binding, these 

competition experiments indirectly allow the determination of the affinity of E and L in solution. 

This enables diagnosis of the effects of immobilization. Also, such competitive experiments 

facilitate the detection of interactions with small reactants that would give an inadequate 

response in a direct SPR experiment. The kinetic variant of the competition analysis similarly 

can avoid problems resulting from mass transport and other factors confounding the 

interpretation of binding kinetics, if the biding rate constants kon are purely operationally defined. 

This approach can rely solely on their linear dependency on the concentration of free reactant L, 

or alternatively, a plot of the empirical dependence of kon[L] may serve as a calibration for the 

determination of the concentration of free reactant L. This variant of the competition experiment 

does not require the attainment of binding equilibrium. 

 

Analysis of Binding Kinetics 

The analysis of the kinetics of the interaction requires mathematical modelling of the binding-

progress curves. For the simple 1:1 interaction, the pseudo-first-order kinetic exhibits a single 

exponential approach to the equilibrium signal (Eq. 12,15). Two different data analysis strategies 

have been proposed to extract the rate constants kass and kdiss: linear regression of plots of dR/dt 

vs R for the association phase and ln[R(t0)/R(t)] versus time for the dissociation phase; 

alternatively, a nonlinear fit with the integrated rate equations (Eq. 12,15) may be used. 

Although equivalent in principle, except for the more advantageous error distributions in the 

nonlinear regression, these strategies differ in their potential for ease of extension to account for 

the influence of mass transport, or for the presence of different subpopulations of binding sites 

respectively. A fit of Equation 13 to kon(f0) obtained in a series of experiments at different 

concentrations of mobile reactant reveals both chemical rate constants kass and kdiss. In practice, 

however, kdiss may be poorly defined by this method, and therefore the analysis of the 

dissociation phase is advantageous. To account for artefacts of refractive index mismatch during 

the buffer change, the initial parts of the association and dissociation phases are usually excluded 

from the analysis. In combination with this adjustment, when nonlinear regression is used, a 

parameter for an unknown baseline, which in some studies may include baseline drift, is added to 

Equations 12 and 15. Since the experimental binding-progress curves often do not follow a 
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single exponential and can be best fit with double exponential expressions, the use of a model 

with two independent classes of immobilized binding sites has been proposed. This model allows 

for fitting the data with equations similar to Equations 12 and 15 but extended to a superposition 

of independent terms for each binding site. Similarly, a model for the interaction of two different 

mobile reactants competing for one class of immobilized binding sites leads to double 

exponential expressions, and has been proposed for use in kinetic competition experiments. 

Many bimolecular interactions might not follow simple pseudo-first-order binding kinetics. 

These analyses could, in principle, be performed by global analysis of data from a series of 

experiments obtained under a variety of different concentrations of mobile and immobile 

reactants. However, the practical limitations of the biosensor experiments appear to severely 

constrain this approach. It has been pointed out that mass transport limitation and related 

inhomogeneities within the sensor can appear as artefacts in the measured binding-progress 

curves, and that these can be similar to the results expected from more complicated binding 

schemes, such as apparently cooperative binding and multi-exponential binding. Nevertheless, at 

least some qualitative information about more complex binding schemes may be obtained. For 

example, experiments by Hausdorf 94 suggested the presence of a slow conformational change of 

one reactant. 

 

Possible Effects of the Immobilization 

The immobilization of reactants to the sensor surface can in some cases interfere with their 

binding properties by, for example, inducing conformational changes in the binding sites or 

sterically restricting the access of the binding partner. If nonspecific immobilization chemistry 

such as amine coupling is employed, multiple subpopulations of different orientations and 

different affinities could be produced. This should result in a broadening of the binding isotherm 

in the equilibrium data, while the binding kinetics could be characterized by multi-exponential 

binding-progress curves, each exponential term reflecting binding to a subpopulation of 

independent binding sites.  Based on the empirical observation that single-exponential binding 

progress is often preserved at low concentrations of the mobile reactant, O'Shannessy and 

Winzor proposed restriction of the data analysis to those data that are in conformity with the 

description of simple 1:1 pseudo-first-order kinetics. These data contain the most information on 

the best accessible binding sites, which can be assumed to best mimic the affinity in solution. 

Significant binding to more restricted orientations of binding sites with correspondingly lower 

affinities takes place only at higher concentrations of mobile reactant. On the other hand, 

apparently multi-exponential binding can also be a result of mass transport limitations and non-
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uniform distribution of the binding sites within the immobilization matrix. In this case, the 

experiments with low concentrations of mobile reactant would give kinetic curves that appear to 

be single-exponential, apparently in conformity with pure pseudo-first-order binding. However, 

the rate constants derived from these data could be orders of magnitude below the true intrinsic 

chemical rate constants. Therefore, this ambiguity of the interpretation should be resolved 

experimentally, by means of control experiments for mass transport limitations and for artefacts 

of immobilization. A different choice in the employed coupling chemistry, solution competition 

experiments, and the complete characterization of the binding isotherm by equilibrium 

experiments could be potentially useful tools. Another possible effect of the immobilization that 

is related to the high surface density of binding sites in biosensor experiments is that some 

immobilized macromolecules may have the potential for oligomerization. Whether binding 

properties change with the oligomeric state, or if the mobile reactant is multivalent, the results of 

a biosensor experiment may depend on the surface density of the immobilized species. 

 

Steric hindrance 

It has been noted that high local concentrations of immobilized reactant at sensor surface can 

lead to steric hindrance in binding to neighbouring sites. In several studies, high macromolecules 

concentrations of up to 100 mg/ml and more within the immobilization matrix would make steric 

hindrance and excluded-volume effects more than likely. In some respects, this would affect the 

binding process in a way similar to that of subclasses of differently accessible binding sites. Both 

lead to a broadening of the binding isotherm and have the smallest impact on the binding kinetics 

at low saturation of the binding sites. However, the measured dissociation rate can be expected to 

be less affected for the exc1uded-volume effect. Edwards et a1. 93 compared the binding kinetics 

of human serum albumin to an antibody immobilized either in a dextran matrix or on an 

aminosilane surface In the presence of the immobilization matrix, the data were well described 

by a double exponential, while the binding to the aminosilane-bound binding sites was described 

by a single exponential. Concluding that steric hindrance affected binding within the dextran 

matrix, the investigators interpreted the fast component of the binding progress as representative 

of binding events similar to those in solution; they interpreted the slow component as produced 

by artefacts of steric hindrance or restricted access to the binding sites. With the fast component 

identified as kon in Equation 13, a conventional analysis could be performed. However, high 

macromolecule concentrations also reduce the transport of the mobile reactant, and under 

transport limited conditions, it is the earlier part, and consequently the fast component, of the 

binding progress that is most influenced by a number of parameters not related to chemical 
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reaction rates. Therefore, again, experimental approaches seem to be superior to the analytical 

approach. A change in the density of immobilized binding sites can diagnose and eliminate the 

effects of steric hindrance. It should be noted that the direct attachment to a planar surface in the 

absence of an immobilization matrix done does not necessarily eliminate these problems, since 

the effects of excluded area might persist at high surface densities. 

 

Fluorescence  

The luminescence phenomenon is defined as the spontaneous emission of radiation of 

electrically or vibrationally excited species not in thermal equilibrium with its environment. 

The most well known form of luminescence is certainly those consequent to the absorption of 

light (photoluminescence), of which the most known is fluorescence. Less known is the 

chemiluminescence (CL), defined as the luminescence derived from an exothermal chemical 

process that brings to the formation of a product in an electronically excited state, that decades to 

the fundamental state by emitting photons. Inside the chemioluminscence, the bioluminescence 

(BL) it’s always caused by a chemical process but happens in living organism and involves 

enzymes of photoproteins. The bioluminescence phenomenon is widely diffused in nature, both 

in acquatic organism like bacteria, algae, and fish and in land organism like fireflies and some 

species of worms and mushrooms. 

On an chemical-analytical basis the luminescence represents a fundamental and versatile method 

for the developing of specific and sensible  methodologies, with wide applications in 

biomedicine, biotechnology, molecular biology, pharmacology and in agro and food chemical. 

For instance, systems based on chemioluminescence methods almost fully replaced 

radioisotopes, like 3H and 125I, widely used for more than 30 years in clinical chemistry for the 

labelling and the preparation of tracing molecules. Historically, the photoluminescence, and 

fluorescence in particular, have represented the first analytical methodology with high 

revealability. Several fluorophores have been developed and applied in several chemistry 

sectors: for instance, fluoresceine is widely used in immunochemistry field. 

 

General principles of fluorescence 

As all other spectroscopic techniques, fluorescence studies the interaction between the 

electromagnetic radiation and matter [87-88]. The electromagnetic radiation is characterized by 

its frequency (or wavelength), by the intensity and polarization. The frequency (cycles per 

second) determines the energy of the photons associated to the radiation; the intensity express 

the numbers of photons emitted per time unit by the source of the radiation multiplied for the 
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energy of each photon, and then the flow of energy per time unit; the polarization is defined as 

the direction of the vibration of electrical and magnetic field vectors associated to the radiation. 

A key feature of the electromagnetic radiation is the wave-particle dualism. In fact, it can act as 

discrete packets of energy (namely photons), whose energy is determined by the frequency of the 

radiation: 

 

E = hν = hc / λ                            (Eq.16) 

 

Where h is the Plank constant and c is the speed of light. 

The interaction between the electromagnetic radiation and matter causes an energetic transition 

between ground and excited states of the target molecule. This energy transfer can be revealed 

through the decrease in the radiation intensity. Emission is related to an energy loss of the 

system, after the electronic transition from the excited state to a ground one, producing an 

electromagnetic radiation. While the absorption phenomena are always associated to an increase 

of molecular energy, the decrease of the molecule energy not necessarily involves emission, 

since energy can be dissipated in different pathways. Generally, the most common process of 

energy dissipation is thermal relaxation due to the molecular movements. The entity of such 

energy loss depends upon a number of factors, related to the molecular characteristics of the 

system (magnitude, rigidity and shape), and to external factors, as the presence of solvents or 

other solutes. 

After an energetic transition between the ground state and an excited state of a molecular system, 

there is a competition between the processes of thermal relaxation e ri-emission of magnetic 

radiation that determines the fluorescence effect. 

The efficiency of non-radiatives processes depends strongly on the surrounding environment, 

like the intensity of ri-emitted radiation (fluorescence). Because of these features, the 

fluorescence can be considered as a technique highly sensible to changes in the fluorophore 

surrounding environment and consequently to the conformational changes in a macromolecular 

system. 

Absorption and emission phenomena are well represented in the diagram of energetic levels 

proposed by Jablonski (fig.14). 

The ground state is indicated with S0, whereas those with higher energy are referred to as S1, S2, 

S3, … Sn, respectively. The transition between states is represented by vertical lines, 

corresponding to absorbance or emission of light. In a fluorophore, the absorbance of light 

energy induces the promotion of an electron to one of the vibrational excited levels (S1 or S2). 
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The molecules at this point may relax rapidly to reach the lowest vibrational level of the S state. 

This process, that take place in a relative short period of time (10-12 s), is called internal 

conversion (IC) and it completes before the emission of fluorescence that has time order of 10-8 

s. The return is reached by returning to an excited vibrational state of the ground electronic state, 

evolving rapidly through equilibrium. 

 

 

 
 
 

Fig. 14: Jabłonski diagram 
 

The molecules in state S1 can finally shift to a triplet state (T1) through a spin inversion. The 

emission from the T state is called phosphorescence and is generally shifted towards higher wave 

lengths (lower energy) respect to fluorescence. The conversion from S1 to T1 state is defined 

intersystem crossing (ISC). The transition from the T1 to the ground singlet state is forbidden, 

and as a consequence, the resulting velocity for the triplet is of several folds lower in comparison 

with the singlet. 

The analysis of  Jabonski diagram reveals that the emitted energy is lower than absorbed energy, 

so the fluorescence phenomena take place at lower energies (bathochromic shift), corresponding 

to higher wave lengths95,96. 

This phenomenon was observed for the first time by sir G.G.Stokes in 1852 at Cambridge 

University97.
 
  

The cause of this phenomenon (namely Stoke’s shift) (Fig.15), is a rapid decrease to lowest 

vibrational of the S1 state. In addiction further Stoke’s shift can be caused by solvent, collision 

between molecules and temperature. 
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Fig. 15: Excitation and emission spectra for a fluorophore. Relative Stoke’s shitf is reported. 

 

 

 

Luminescent Biosensors 

In biochemistry, fluorophores can be divided into two separate classes: 

- intrinsic, present in some proteins and for this reason they act as natural emission 

substances 

- extrinsic, to be added to the sample in order to obtain fluorescence. 

Among the intrinsic fluorophores, we can find the aromatic aminoacids, like tyrosine, 

phenylalanine and tryptophan, the reduced form of the cofactor NADH, the oxidised form of the 

cofactor FAD, chlorophyll, etc. 

Among proteins, the fluorophore dominating group is the indole of the tryptophan, absorbing 

near to 280 nm and emits near to 340 nm. In DNA and lipids, the intrinsic fluorescence is not 

intense enough to be able to conduct particular experiences. Some proteins may need to be traced 

with chromophores that can have an excitation or emission wavelength higher than those of 

amino acids. 

Fluorophores able to form covalent or non-covalent bonds with proteins are numerous and may 

possess reactive groups able to link to N-groups and to S-groups of proteins. 
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The most frequently used probes are tetramethylrodamine, 5-isotiocyanate (TRITC), fluoresceine 

5-isotiocyanate (FITC), 5-(iodoacetamide) fluoresceine (5-IAF), dansyl chloride (DNS-Cl), 5-

dimethylamino-1-naphtalensulfonylchloride, 6-acryloil-2-dimethylaminonapthalene (Acrylodan) 

and some domanine derivatives like Texas Red Sulfonyl Chloride and Lisamine Rhodamine B 

Sulfonyl Chloride. Among those, Dansyl-Chloride was widely used for biochemical analysis. 

Dansyl-Chloride can be excited at 350 nm (where proteins do not absorb) and emit at 520 nm. It 

also has a convenient time life (10 ns) and it is highly sensible to the polarity of the solvent. 

The fluoresceine and the rodamine are also widely used as extrinsic probes: they absorb at 

favourable wavelengths (480 nm and 560 nm, respectively and are characterized by molar 

extinction coefficients of 80.000 M-1 cm-1). In order to be used as biological markers, fluorescent 

probes are functionalized with reactive groups like iodoacetamides, isothiocianates and 

maleimides that are able to react selectively with other functional groups of the biomolecules. 

Iodoacetamides and malimides groups are able to react with sulphur groups, while the 

isothiocyanate, N-hydroxysuccinimide and sulfonylchloride are able to link to amino groups98.  

As an example, the dansyl chloride and the fluoresceine isothiocyanate react with the amino 

groups of proteins, and so the fluorescent part provokes the marked molecule to emit in the blue 

and green spectrum zone, respectively. One of the problems of organic fluorophores is their 

tendency to of self-quenching: this phenomenon can happen if several fluoresceine molecules 

linked to the protein are close enough (40Å) to make an energy transfer from one molecule to 

another. This process is possible since the fluoresceine is subject to a minor Stoke’s shift. For 

this reason the study of biological markers is redirected towards molecules that may present 

significative Stoke’s shift.  

 

Fluorescence lifetimes and Quantum Yields 

Fluorescence lifetimes and quantum yields of fluorescent substances are frequently measured. 

The meanings of these parameters are best illustrated by reference to a modified Jablonski 

diagram (Fig. 16). In this diagram we did not explicitly illustrate the individual relaxation 

processes leading to the relaxed S1 state. Instead, we direct increased attention to those processes 

responsible for return to the ground state. In particular, we are interested in the emissive rate of 

the fluorophore (r) and its rate of radiationless decay to S0(k). 

 

 



 44

 
 

Fig. 16: Modified  Jablonski diagram 

 

 

The fluorescence quantum yield is the ratio of the number of photons emitted to the number 

absorbed. The rate constants Γ and k both depopulate the excited state. The fraction of 

fluorophores which decay through emission, and hence the quantum yield, is given by  

 

k
Q

+Γ
Γ

=   (Eq.17) 

 

The quantum yield can be close to unity if the radiationless rate of deactivation is much smaller 

than the rate of radiative decay, that is k << Γ. We note that the energy yield of fluorescence is 

always less than unity because of Stokes' losses. For convenience we have grouped all possible 

nonradiative decay processes with the single rate constant k. The lifetime of the excited state is 

defined by the average time the molecule spends in the excited state prior to return to the ground 

state. Generally, fluorescence lifetimes are near 10 nsec. For the fluorophore illustrated by 

Figure 16 the lifetime is  

 

k+Γ
=

1τ   (Eq.18) 

 

One should remember that fluorescence emission is a random process, and few molecules emit 

their photons at t = τ. The lifetime is an average value f the time spent in the excited state. For a 

single exponential decay (Chapter 3) 63% of the molecules have decayed prior to t = τ and 37% 
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decay at t > τ. The lifetime of the fluorophore in the absence of nonradiative processes is called 

the intrinsic lifetime, and is given by 

 

Γ= 1
0τ   (Eq.19) 

 

This leads to the familiar relationship between the quantum yield and the lifetime 

 

0τ
τ=Q   (Eq.20) 

 

The quantum yield and lifetime can be modified by any factors which affect either of the rate 

constants. For example, a molecule may be nonfluorescent as a result of a large rate of internal 

conversion or a slow rate of emission. Scintillators are generally chosen for their high quantum 

yields. These high yields are a result of large Γ values. Hence, the lifetimes are generally short, 

near 1 nsec. The fluorescence emissions of aromatic substances containing -NO2 groups are 

generally weak, primarily as a result of large values for k. The quantum yields of 

phosphorescence are extremely small in fluid solutions at room temperature. The triplet-to-

singlet transition is forbidden by symmetry, and the rates of spontaneous emission are about l03 

sec-1 or smaller. Since k values are near l09 sec-l, quantum yields of phosphorescence are small at 

room temperature. From equation (17) one can predict phosphorescence yields of 10-6. 

 

 

 

 

Fluorescence Anisotropy 

 

Fluorophores preferentially absorb photons whose electric vectors are aligned parallel to the 

transition moment of the fluorophore. The transition moment has a defined orientation to the 

fluorophore. In an isotropic solution, fluorophores are molecules orientated randomly. Upon 

excitation with polarized light, only fluorogenic molecules whose absorption transition dipole is 

parallel to the electric vector of the excitation are selectively excited. The selective excitation of 

a partially oriented population of fluorophors results in a partially polarized fluorescence 

emission. The transition moments for absorption and emission have fixed orientations within 



 46

each fluorophore, and the relative angle between these moments determines the maximum 

measured anisotropy. 

Fluorescence anisotropy measurements have been widely used to detect change in the rotational 

diffusion properties of many proteins. This method has been applied to quantify protein-protein 

association reaction. The investigated protein is initially labelled with a fluorophore with 

appropriate fluorescence lifetime. The sample is then excited with vertically polarized light. The 

value of anisotropy (r) is calculated by determining intensity of the horizontally and vertically 

polarized emission light by using Eq. (21): 
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  (Eq.21) 

 

where IV ,Ih , and Bh are the intensities of the vertically and horizontally polarized emissions of 

sample (I) and blank (B) with vertically and horizontally polarized excitation light. G is a 

correction factor equal to IV/Ih, where the excitation light is horizontally and vertically 

polarized99,100. The relationship between anisotropy and rotation diffusion of the particle carrying 

the fluorophore is described by the Perrin-Weber equation: 

 

τ
ηV

TR
r
r g+= 10   (Eq.22) 

 

where r is the measured anisotropy, Rg is the gas constant,τ  is the lifetime of the excited state, η  

is the viscosity of the solution, and V is the effective volume of the particle carrying the 

fluorescent probe. This law predicts a linear relationship between 1/r and the ration T /η . The 

intercept of 1/r vs T /η  on the ordinate determines r0, the anisotropy should, in principle, only be 

a function of the fluorophore. Assuming that fluorophore-labelled ligand can exist in either the 

free (f) or the bound (b) form, the final value of the observed anisotropy can be described as 

 

r = ff rf + fb rb  (Eq.23) 

 

where rf and rb refer to the anisotropies of the free and bound fluorophore-labelled compound, 

respectively; r is observed anisotropy value; and ff  and  fb refer to the fraction of the total 

fluorescence that is generated by free and bound fluorophore-labeled compound, respectively         

(ff  + fb= 1). Equation 23 is correct when the quantum yield of the fluorophore is not affected 
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owing to the protein-protein interaction. The rf and rb values can be easily measured by 

examining the fluorophore-labelled ligand in the absence of the protein and under conditions of 

complete binding (high protein concentration), respectively. Equation 23 can be rearranged to 

yield  

 

fb

f
b rr

rr
f

−

−
=   (Eq.24) 

 

allowing one to analyze quantitatively the ligand-protein interaction. 
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EXPERIMENTAL 

 
Isolation and purification of the bovine brain multicatalytic protease  

In order to isolate and purify the bovine brain multicatalytic protease complex, bovine brain was 

previously washed in physiological solution and the external membrane was removed; then the 

grey substance was separated from the white and contemporarily fat and fibrous parts were 

removed. The isolated grey substance, 235 g, was initially homogenised with Waring-Blendor in 

Tris-HCl 50 mM, KCl 150 mM, EDTA 2 mM, pH 7.5 buffer (ratio 1:2.5 tissue/buffer). The 

collected suspension was again homogenised with a Potter-Elvejham system. Mentioned 

operations were carried out at 4°C. In order to help the extraction, the homogenate was kept 

overnight in ice under mild stirring. After a 13500 x g centrifugation x 1h, the surnatant was 

added with solid ammonium sulphate up to a 40% - 60% salt saturation. The precipitate was 

suspended in Tris-EDTA 50 mM + KCl 150 mM, pH 8.3 buffer, and dialysed with the same 

buffer overnight.  Then, a first separation was carried out by gel-filtration on a Sephacryl S200 

column, equilibrated with Tris-EDTA 50 mM, KCl 150 mM a pH 8.3 buffer. This step removes 

a major part of phospholipids. Proteasome fractions were identified on the basis of their 

chymotropism-like activity, than collected and concentrated by ultra filtration (YM10 

membrane) under nitrogen atmosphere.  

The concentrated sample was loaded on a DEAE-Sephacel column, equilibrated with Tris-EDTA 

50 mM, pH 7.5 buffer and eluted in KCl (0-0.8 M) linear gradient. The active fractions were 

collected and dialysed in Tris-EDTA 50 mM, KCl 150 mM, pH 7.5 buffer, concentrated and 

loaded on a Superose 6 FPCL column. The gel-filtration eluted peak was again loaded on a 

Phenyl Sepharose CL/4B FPLC column, equilibrated in Tris-EDTA 20 mM, (NH4)2SO4 al 30%, 

pH 7.5 buffer and eluted in an ammonium sulphate (30%-0%) linear gradient.  

The results of SDS-PAGE (12% polyacrylamide) are shown in figure 17. The MPC 

characteristic electrophoregram presents 10 protein bands with molecular weights ranging 

between 21 and 32 kDa. 
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Fig. 17 : Poliacrilammide (12%) gel electrophoresis carried out in denaturing conditions, after Superose 6 elution (lane 1) and after Phenyl 
Sepharose CL/4B elution (lane 2) 
 

 

All quantitative data related to the bovine brain 20S proteasome purification steps are reported in 

table 1. 

 

Purification 
step 

volume 
(ml) 

Protein 
(mg/ml) 

Total 
activity 

Spec. act. 
(U/mg) 

recovery 
% 

Purific. 
index 

homogenate 780 80.7 969.6 0.015 100 1 

surnatant 612 4.8 146.9 0.05 15.15 3.33 

(NH4)2SO4 
precipitation 28 14.4 30.94 0.077 3.19 5.13 

Sephacryl S200 38 1.4 13.9 0.26 1.4 17.3 

DEAE-Sephacel 126 0.39 10.71 0.21 1.1 14 

Superose 6 5,5 0.91 1.22 0.24 0.126 16 

Phenyl 

Sepharose 
7 0.17 1.64 1.35 0.17 90 

 

 
Tab 1: Bovine brain 20S proteasome purification scheme 

 
 
All the purification steps were carried out at ≤ 4° C. The protein concentration was measured 

with the Lowry method 74 for the first four steps,  and with the Bradford method for the 

following steps. The chymotrypsin-like activity was measured as described in Materials and 
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Methods. Table 2 shows the specific activity of the proteolytic components of the bovine brain 

purified MPC. 

 

Component Substrate Conc. 

(mM) 

Specific activity 

(μmol/mg/h) 

BrAAP Z-GPALG-pAB (1.0) 1.24 

PGPH Z-LLE-2Na (0.64) 1.53 

ChT-L Z-GGL-pNA (0.4) 3.60 

T-L Z-LLR-2Na (0.4) 0.42 

SNAAP Z-GPAGG-pAB (1.0) 0.55 
 

Tab 2 : Bovine brain MPC proteolytic activity 
 

 

 

Isolation and purification of the bovine thymus multicatalytic protease 

The bovine thymus protease purification procedure has been similar to that one previously 

described bovine brain isolation. In details, 270 gr. of tissue, after the accurate fat removal, were 

firstly homogenised with a Waring-Blendor in Tris-HCl 10 mM, pH 7,5 buffer, than centrifuged 

at 13500 x g per one hour. The collected surnatant was added with 1% final streptomycin 

solution, in order to precipitate nucleic acids and nucleo-proteins. Then, the precipitate was 

added with solid ammonium sulphate up to a 40% - 60% salt saturation; it was suspended in 

Tris-EDTA 10 mM, pH 7.5 and dialysed in the same buffer.  

Then, the sample was loaded on a DEAE-Sephacel column, equilibrated in Tris-EDTA 10 mM, 

pH 7.5 buffer and eluted with a 0.01- 0.5 M  Tris-EDTA linear buffer. The following steps were 

two gel filtrations: the first on a Sephacryl S 300 column equilibrated and eluted with Tris-

EDTA 250 mM, pH 8.3 buffer, the second on a Superose 6 equilibrated and eluted with Tris-

EDTA 150 mM, pH 7.5 buffer. Figure 18 reports the SDS electrophoresis results of the Superose 

6 eluted fraction, exhibiting the higher chymotrypsin-like activity. 
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1      2  
 

 
Fig.18: 12% (PAGE) polyacrilamide gel electrophoresis, in denaturing conditions, before (lane1) and after (lane 2) the Superose 6 
chromatography. The electrophoresis was carried out according to the Laemmly101 procedure. 
 

 

Table 3 shows the results of the immunoproteasome purification steps, while Table 4 shows the 

specific activities of the five proteolytic components of the enzyme. 

 

 

Purification 

steps 

Volume 

(ml) 

Protein 

(mg/ml) 

Total 

activity 

Spec. Act. 

(U/mg) 

Recovery 

% 

Purific. 

index 

homogenate 1040 7 655 0.09 100 1 

surnatant 740 1.3 510 0.53 77.9 5.9 

(NH4)2SO4 
precipitation 69 2.62 257 1.42 39.2 15.8 

Sephacryl S200 222 0.50 231 2.08 35.3 23.1 

DEAE-Sephacel 61 0.90 132 2.4 20.1 26.6 

Superose 6 46 0.90 95.2 2.3 14.5 25.5 
 

Tab. 3 : Bovine thymus MPC purification scheme 
 

 

The protein concentration was measured with the Lowry method 74 for the first 3 steps,  and with 

the Bradford method for the remaining steps. Proteolytic activities have been measured 

according to Materials and Methods. 
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Component Substrate conc. 

(mM) 

Specific activity 

(μmol/mg/h) 

BrAAP Z-GPALG-pAB (1.0) 40.23 

PGPH Z-LLE-2NA (0.64) 0.80 

ChT-L Z-GGL-pNA (0.4) 1.04 

T-L Z-(D)ALR-2NA (0.4) 1.07 

SNAAP Z-GPAGG-pAB (1.0) 0.75 
 

 
Tab. 4 : Thymus MPC proteolytic activities 

 

 

Fluorimetric assays 

 
GroES labelling with Dansyl Chloride 

GroES (1mg/ml) was dialyzed overnight against 0.1 M carbonate buffer, pH 9.5, to remove any 

trace of Tris-HCl and ammonium sulphate. A slight molar excess of dansyl chloride was added 

to the protein solution, and the mixture is incubated at room temperature for 2 h in a dark tube. 

The solution is then dialyzed against 50 mM Tris-HCl, pH 7.8, a 4°C to remove any unbound 

dansyl chloride102. To quantify the amount of label bound to GroES, the concentration of dansyl 

chloride was measured by determining the absorbance of the sample at 339 nm, assuming 3378 

M-1 cm-1 as the molar extinction coefficient. The protein concentration is measured as stated 

above. The final value is determined by the ratio of the molar concentration of dansyl chloride 

label to the molar concentration of GroES oligomer. 

 

GroES Binding to 20S proteasome from thymus and from bovine brain 

The GroES (120 nM) labelled with dansyl chloride has been incubated with increasing quantity 

of proteasome from thymus and from bovine brain (30 nM- 150 nM) in 50 mM Tris-HCl pH 7.8. 

After 10 min. of pre-incubation, for anisotropy measurements, the samples were excited at 374 

nm and the emission was measured at 480 nm. Each measurement was the average of 6 readings. 

 

 

Biosensor studies 

The chemistry of immobilization most commonly used in protein application is coupling 

between carboxyl groups of carboxymethyl-dextrane and the amino primary groups of proteins 
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(N-terminal groups and lysine), through the EDC chemistry (1-ethyl-3-(3-

dimetinaminopropil)carbodimmide) and NHS (N-hydroxysuccinimmide). This approach is also 

applicable to non-proteic biomolecules containing primary amino groups. 

The electrostatic absorbance of the biomolecule on the carboxylate matrix depends on its 

concentration in solution; the level of this dependence and the interval of pH where it happens 

depend on the isoelectric point of the molecule that has to be immobilized. 

 

 
Fig. 19: Chemistry of immobilization of a macromolecule over carboxylate through EDC-HNS 

 

 
Immobilization of GroES on Carboxylate Cuvette 

A carboxylate cuvette was inserted into the IAsys Biosensor and equilibrated at 25°C. The 

reaction chamber was always vibrostirred using a stirrer installed into the sensing chamber. Any 

impurity in the cuvette cells was removed by washing three times with 75 μl of PBS-T (10 mM 

sodium phosphate, 2.7 mM potassium chloride, 138 mM sodium chloride, containing 0.05%(v/v) 

Tween 20). Binding was measured at 5 sec intervals, and the readout from the biosensor was in 

arc-seconds units, which correspond to the accumulation of mass within the optical window at 

the binding surface. Each binding reaction was routinely followed for 4 min. Before the surface 

activation, the cell was washed with PBS (10 mM sodium phosphate, 2.7 mM potassium 

chloride, 138 mM sodium chloride) to wash out the detergent, which can cause a “mask” effect 

of the reactive groups. The cell was washed again with PBS, and a buffer baseline was recorded 

for 5 min (fig. 20, a-b). Immediately before use, equal volumes of NHS and EDC solutions were 

mixed to make up the activation mixture103.  

The PBS buffer was replaced with EDC/NHS activation mixture and incubated for 7 min to 

activate the carboxylic groups on the surface (fig. 20, c). The activation mixture was removed by 
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washing with PBS buffer (fig. 20, d), and after 5 min, PBS was replaced with the immobilization 

buffer (10 mM sodium acetate buffer, pH 4.8) for 2 min. (fig. 20, e). Then, GroES (1 mg/mL in 

the immobilization buffer) was added and left for 10 min. (fig. 20, f). Non-coupled ligand was 

removed by washing with PBS buffer for 2 min (fig. 20, g). Unreacted carboxylic groups, which 

could possibly interfere with the analysis were deactivated by a treatment with ethanolamine 1 

M, pH 8.5 for 3 min (fig. 20, h), which also ensures the removal of any electrostatically bound 

material. 

This step was followed by a wash with PBS, a wash with HCl 10 mM (regeneration buffer), and 

one last wash with PBS (fig. 20, i). 

 

 

 
Fig. 20: Immobilization of GroEs of the carboxylate surface through NHS-EDC 

 
 

The amount of immobilized ligand was calculated. Readout of about 900 arcseconds was 

obtained. These conditions resulted in the coupling of a “Langmuir” partial monolayer of a 

protein of 70 kDa. Then, both thymus and brain 20S proteasomes were added at increasing 

concentrations.  

Regeneration steps were performed with PBS-T at pH 7.4 instead of more aggressive chemicals 

(HCl) because these latter could affect the stability of immobilized GroES and its functional 

ability to interact with soluble 20S proteasome. Binding data were analyzed with “Fast Fit 

software” (Fison Applied Sensor Technology), supplied with the instrument; this program uses 
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an iterative curve fitting to derive the observed rate constant and the maximum response at 

equilibrium due to ligand binding at a certain ligand concentration.  

 

Determination of the effects of GroES on the proteolytic activities of 20S proteasomes 

The effect of GroES on the proteolytic activities of the two proteasomes was evaluated through 

fluorescence assays. ChT-L, T-L, PGPH and BrAAP activity were determined using the peptides 

z-GGL-pNA, z-GGR-2NA, z-LLE-2NA, z-GPALG-pAB as substrates. The aminopeptidase N 

was used for the coupled assays in the determinations of the BrAAP activity. 

Substrates for ChT-L, T-L and PGPH activities were dissolved in DMSO at a concentration of 

10mM and then diluted till 0.5 mM with a Tris-HCl 50 mM pH 7.5 buffer. The substrate for the 

BrAAP activity was dissolved only in DMSO to a final concentration of 50mM. The mixture 

reaction was prepared for a final volume of 500 µl by adding in the following order: 

- Tris-HCl buffer 50 mM pH 8 

- 5 µg MPC 

- Increasing amounts of GroES (1 mg/ml) 

- Substrate 

The reaction mixture was incubated at 37°C for 1 hour, and the fluorescence data were obtained 

on a Shimadzu RF-5301 PC fluorimeter by using appropriate wavelengths of emission and 

excitation, chosen in function of the fluorescent group bound to peptidic substrate. 

Assays were conducted also in absence of GroES. 

 

Proteolytic Activity  

In order to assess the proteolytic activity of the 20S proteasome, β-casein was used: in fact, 

because of its partially unfolded structure, its hydrolysis by 20S proteasome mimes the in vivo 

degradation of proteins. The caseinolytic activity has been determined by incubating at 37°C 

20µg of β-casein with 23 µg of 20S proteasome both in presence and absence of GroES in 

Tris(HCl) buffer 50mM, MgCl2 pH 7.5 in a final volume of 20 µl. From the incubation mixture it 

has been pooled aliquots at sequential timing (2’, 15’, 30’ and 60’) and the reaction stopped by 

addition of 2µl of TCA 10%. The samples were then analyzed by HPLC with an RP column 

(Hamilton PRP3 equipped with pre-column). The elution has been made with a linear gradient 

till 90% with 0.1 % of TFA in 60 min at a flux of 1 ml/min. The degradation velocity has been 

evaluated by measuring the height of the chromatographic peak relative to the molecular 

substrate (λ= 210 nm) in function of time of incubation with the proteasome104. 
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RESULTS  
 
 
Thermodynamics 

To understand the nature and the strength of the interaction between GroES from E.Coli and 

bovine proteasomes, binding studies using a resonant mirror biosensor were performed. The 

binding of soluble MPC to immobilized GroES was studied by adding a chosen concentration of 

bovine MPC in PBS and following the association kinetics up to equilibrium. The dissociation 

was obtained by addition of fresh PBS. 

 

 
 

Fig. 21: Representative time course of  20S Proteasome binding to immobilized GroES: monophasic association (a) and dissociation (b) curve, 
and regeneration (c). 

 

 
Then, MPCs were added at increasing concentration. At any titration step, baseline achievement 

was assessed before adding MPC, and then the regeneration steps were achieved as described in 

Experimental Procedures. In fig.22, monophasic association and dissociation time-courses of 

MPC both from thymus and brain binding to immobilized GroES are reported. These results 

were confirmed by F-Test performed on mono-exponential and bi-exponential models used to fit 
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experimental data: the probability of second phase being significant was not relevant for all the 

different time courses analysed (95% confidence). 

 

 
Fig. 22: MPC from brain (Box A) and thymus (Box B) binding to immobilized GroES: overlay of association and dissociation phases measured 
at increasing concentrations of MPC, pH=7.4. 

 

 

The measured thermodynamic equilibrium constant for the MPCbrain binding to GroES was ten 

folds higher with respect to MPCthymus-GroES interaction (KD,Brain = [2.87±0.72] nM, KD,Thymus = 

[0.361±0.236] nM). The extent of binding (binding response at equilibrium) can be calculated 

for each time-course (at a given concentration of added GroES). The hyperbolic nature of the 

saturation plot in indicates non-cooperative binding of MPCs to GroES at pH 7.4.  

 
Kinetics 

Calculation of the association (kass) and dissociation (kdiss) rate constants for MPCs binding to 

GroES further defines the mechanistic properties of the macromolecular recognition process. 

The association phase allowed the measurement of the kinetic association constant, while the fast 

dissociation phase contributed to the high standard deviation associated to the dissociation 

constant (fig. 20, panel D). The standard deviations related to each kinetic association constant 

value kass (each value was calculated from at least 5 association/dissociation kinetic experiments) 

are negligible because of the high precision experimental raw data (the instrument short-term 

noise is less than 1 arcsecond). Kinetic analysis of the binding of MPCs to GroES cleared the 

pathway of the two different recognition processes.  

In fact, the analysis of kinetic constants revealed that the differences in equilibrium constants can 

be attributable exclusively to the slower dissociation step of GroES-MPCBrain complexes (kinetic 
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dissociation rate for MPCBrain was ten folds lower than MPCThymus), being the differences in the 

association process almost negligible within experimental error. 

 
 
 kass (M-1s-1) kdiss (ms-1) KD (nM) 

MPCBrain-GroES 748946±135521 0.27±0.17 0.361±0.236 

MPCThymus-GroES 837613±113426 2.40±0.53 2.87±0.72 

 
 

Tab.5: Equilibrium and kinetic constants for MPCs binding to immobilized GroES, pH 7.4 

 
 

Fluorescence anisotropy  

Fluorescence polarization determinations were performed to obtain information on the possible 

interaction between quenched GroES and proteasomes from brain and thymus. This method is 

based on the photoselective excitation of fluorophore by polarized light. As a result of this 

selective excitation, a representative population of excited and oriented fluorophores randomly 

emits polarized light. The level of polarization, expressed as percentage anisotropy, is related to 

the fluorophore mobility: in fact, fluorophore mobility decreases at increasing anisotropy values. 

Dependences of percentage anisotropy for both proteasomes from molar ratio [MPC] / [GroES] 

are reported in fig.23. Percentage anisotropy gradually increases upon addition of soluble GroES 

to both MPCs: in particular, both proteasomes reached a plateau value approximately 

corresponding to a molar ratio [MPC]/[GroES] = 1, indicating a 1:1 stoichiometry. 

 

 
 

Fig. 23: Fluorescence polarization of Dansyl Chloride labeled GroES for MPCt (left box) and MPCb (right box); each value is the mean of six 
measurements (a mean 3% percentage standard error is associated to all experimental data; errorbars are omitted). 
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Role of GroES on the modulation of proteolytic activities of 20S proteasomes 

The effect exerted by GroES on proteolytic component of proteasomes purified both from bovine 

brain and thymus were tested in presence of increasing amount of GroES (from 0:1 to 1:1 

GroES:Proteasome molar ratio). The dependence of percentage activity for ChT-L, BrAAP, T-L 

and PGPH from GroES:Proteasome molar ratio are reported, taking into account feasible 

interferences of sub-products (fig. 24). 

 

 
 

 
Fig. 24: Dependence of ChT-L, PGPH, T-L e BrAAP percentage residual activities from GroES:MPC molar ratio. Modualtion assays were 
performed as described in the experimental section. A mean 3% percentage standard error is associated to all experimental data; errorbars are 
omitted. 
 

Obtained data revealed different effects induced by GroES on the two proteasomes.  

In fact, ChT-L components from immuno and costitutive proteasomes were moderately activated 

and inhibited respectively, upon incubation with GroES (fig.24). An opposite behavior was 

reported for PGPH activity, weakly activated by GroES for constitutive proteasome, and 

inhibited for immuno proteasome. Differently, T-L activities were increased for both 

proteasomes, whereas BrAAP resulted mostly unaffected by GroES. 
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Effect of GroES on the degradation of β-casein 

Proteolytic activities of proteasomes were tested against β-casein, normally considered as pattern 

of partially unfolded proteins destined to degradation. Both proteasomes degraded β-casein, 

although immuno-proteasome showed higher rate of proteolysis.  

The addition of GroES reduced caseinolytic activity of proteasome from brain, whilst no relevant 

effect was reported for proteasome from thymus (fig. 25). 

 

 
 

Fig. 25: Degradation of β-casein induced by Proteasomes in absence and in presence of GroES. 
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CONCLUSION 
 
 
The fast, simultaneous development of biopolymer databanks and proper analyzing software 

tools opened new scenarios in proteomics, representing a valuable in silico method for the 

prediction and the evaluation of possible interactions between two macromolecules. The 

bioinformatic approach discussed in Materials and Methods was here used to assess the 

interaction between the co-chaperonin GroES and MPC, this latter structurally resembling 

GroEL, GroES physiological partner. The identification of an established interaction between 

YML092c and YOR20c (two macromolecule belonging to MPC and GroES COGs, respectively) 

was the basis for the in vitro investigation of this interaction. 

Anisotropy measurements reported two similar behaviors for MPC from brain and thymus upon 

titration with labeled GroES; in fact, according to this approach, both MPCs revealed the 

formation of a complex, characterized by a 1:1 stoichiometry (fig.23), consistently with earlier 

reported data for the GroES-GroEL complex105. In fact, since the affinity of the 1:1 GroEL-

GroES complex for the second GroES oligomer was highly reduced due to the strong negative 

cooperativity between two binding sites, the 1:2 complex was highly unstable. 

These considerations only refer to stable and high affinity complexes, not definitively precluding 

the possibility of transient 1:2 complexes formed upon the unfavorable addition of a second 

molecule of GroES. In this case, the 1:1 complex can be considered as an “acceptor state” for 

unfolded/damaged polypeptide destined to degradation. 

SPR analysis allowed the determination of kinetics and thermodynamic parameters 

characterizing this interaction. Both proteasomes appeared to be able to bind GroES. In 

particular, equilibrium dissociation constants in nano- and subnano-molar range were reported 

for GroES binding to MPC from thymus and brain respectively. Collectively, kinetic and 

thermodynamic results (kass in particular), suggested the presence of a high affinity binding-site 

for GroES on MPCs.  

This characterization was highly interesting, since GroES showed an affinity fully comparable 

(even higher) in comparison with MPC physiological partner, Hsp90 106. 

Once confirmed the feasibility of this interaction, our interest was turned on the evaluation of a 

potential modulating effect on hydrolasic and proteolytic activities of MPCs by GroES. 

Mammalian 20S proteasome presents five hydrolasic activities, each differing in the residue 

involved in bond cleavage. These activities are associated to different β subunits, termed X, Y 

and Z, corresponding to ChT-L, PGPH, and T-L, whereas BrAAP and SNAAP are supposed to 
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depend upon a number of cooperating β subunits. Proteolytic activity is mainly related to ChT-L 

and BrAAP activities. The interaction between MPCs and GroES induced a moderate 

modulation on both activities. An increase in the T-L activity (for both MPCs) accompanied by a 

decrease in PGPH and ChT-L activities of MPC from brain was reported, while GroES enhanced 

PGPH and ChT-L activities of MPC from thymus. BrAAP activity of both MPCs was 

unaffected. Moreover, since the proteasome system is responsible for the degradation of various 

damaged proteins, we tested this the effect of GroES on the activity of 20S Proteasome toward β-

casein, a macromolecule commonly considered as a pattern of partially unfolded proteins 

destined to degradation. Our experimental evidences revealed that the proteolytic activity of 

MPC from bovine brain was reduced upon incubation with GroES in a concentration dependent 

manner, whereas the activity of MPC from thymus was only weakly increased, being both 

behaviors in agreement with the above mentioned ChT-L modulation.  

Additionally, GroES could affect the established proteasome ability to produce new oligo-

peptides 107 by cleavage of precursor poly-peptide and catalysis of the formation of a new 

peptide bond between two distant fragments. This latter phenomenon is supposed to occur by 

transpeptidation as follows: cleavage by the proteasome is known to occur by nucleophilic attack 

of the peptide bond by the catalytic threonine, resulting in the formation of an acyl-enzyme 

intermediate in which a peptide fragment is attached by an ester bond to the catalytic 

threonine108, producing an intermediate that comprises a target fragment attached to the catalytic 

threonine. Under normal condition, this intermediate would be readily hydrolyzed. Oppositely, 

within the confined catalytic chamber of the proteasome, the intermediate is surrounded by other 

peptide fragments, resulting from cleavage at other residues. The N-terminus of this fragment 

could compete with water molecules and occasionally make a nucleophilic attack of the ester 

bond of the intermediate, thereby forming a new peptide bond (fig.26).  

 

 
Fig.26 Schematic representation of peptide splicing 
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The analysis of data obtained from proteolytic experiments and the template modeling of the 

GroES-MPC interface of binding based on GroES-GroEL crystal structure, suggested that the 

occlusion of the proteasomal cavity by GroES could enhance the protein splicing phenomenon, 

by reducing the number of water molecules (competing with N-fragment) available in the cavity.  

 

 
 

Fig.27 MPC-GroES complex obtained from template modeling of GroEL-GroES crystal structure 

 

Protein splicing has been described in unicellular organisms as the autocatalytic excision of 

segments termed inteins, which are up to several hundred amino acids in length109. It is catalyzed 

by the proteasome and therefore takes place during protein degradation. The ability of GroES to 

modulate proteasomal splicing of peptide fragments from a protein in either the initial or reverse 

order could have profound implications for the diversity of peptides that can be presented on the 

cell surface for recognition by systems directed to the detection and the elimination cells 

containing foreign or abnormal proteins. 

Caseinolytic experiments revealed that GroES affects proteolysis rate but not the population 

peptide product (as judged from chromatographic profiles). However, the potential action of 

GroES as modulator of  peptide splicing was not detected, possibly because of the low 

concentrated substrates (β-casein) used in these experiments: in fact, in the range of 
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concentration used, transpeptidation phenomena poorly compete with hydrolysis, since substrate 

products weakly displace water molecule.  

In conclusion, the interaction between GroES and 20S proteasomes uncovers new scenarios on 

possible physio-pathological, related to the ability of proteasomes to interact both with 

unfolding- (Hsp90) and folding-assisting (GroES) proteins.  
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