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Premise

Research interest in the cell response to stress was raised in the 

early '60 by the Italian geneticist Ferruccio Ritossa, who detected 

a  new puffing  pattern  in  the  polytene  chromosomes  of  heat-

shocked Drosophila buschii. Later observations correlated these 

changes  in  gene  activity  with  the  synthesis  of  a  new  set  of 

proteins: the heat-shock proteins.

The  induction  of  heat-shock  proteins,  a  powerful  tool  to 

counteract the negative effects of stresses, has readily become 

important to ecologists and evolutionary biologists as a model of 

environmentally  controlled  gene  expression  and  a  source  of 

phenotypic plasticity. 

Current  research  is  addressed  to  investigate  the  processes 

underlying  the  plasticity  of  the  heat-shock  response  from an 

integrate  point  of  view,  comprehensive  of  the  molecular, 

evolutionary and ecological aspects. 

To this regard, useful models for this analysis are represented by 

two Antarctic species of ciliates,  Euplotes focardii  and E. nobilii, 

which showed up marked differences in their capacity to mount 

an effective heat-shock response following thermal challenges. 

Ongoing  research  activities  in  the  laboratory  in  which  I  have 

started my PhD work, are mainly deputed to unveil the reasons 

of this eccentricity in the stress-induction capacity between the 

two species and more precisely regard: (1) the characterization 
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of their major heat-shock genes, and (2) the study of how the 

interplay between the cis-regulatory regions of these genes and 

the  respective  trans-acting  regulators  “tunes”  the  final  stress 

gene expression in response to different environmental cues.
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Introduction

Antarctica

Environment and its Characteristics

Its geographical position and its peculiar geologic, climatic and 

morphological  characteristics  together  with  political  and 

strategic  aspects make of Antarctica a fascinating and unique 

continent.

The  climatic  role  of  this  land  is  object  of  many  researches 

because it's known its influence in defining the world's climate 

through a series of processes that impact the atmosphere and 

the oceans (Juckes et al., 1994). It is important to underline that 

in Antarctica the strong inclination of sunlight together with the 

high albedo coefficient (given by the ratio between the reflected 

and the incident light and that it is more than 80%) cause very 

low temperatures during summer,  the maximum ranging from 

+5/+20°C on the coasts to -30°C in the continent, while, during 

winter, the sun is always under the horizon and temperatures 

range from -20°C on the coasts to -90°C in the continent (Petit et 

al., 1999).

The difference between the polar and equatorial temperatures 

causes  the  so  called  pressure  gradient  force  which,  in 

combination  with  the  Coriolis'  Force,  determines  the  general 

movement of air  masses on which depends the distribution of 

the heat all  over the world.  Moreover,  the transition from the 
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cold season to the warm season causes the melting of the ice 

along the coasts. The cold waters originated from melted ice are 

dense  and  sink  beneath  the  relatively  warmer  waters  of  the 

coasts. This process feeds the deep streams and the exchange 

among ocean waters and it is responsible for the formation of 

the Antarctic Convergence (also called Polar Front Fig.1) (Orsi et 

al.,  1995;  Juckes  et  al.,  1994).  This  is  a  kind  of  barrier,  that 

physically separates the southern oceanic waters of Antarctica to 

those of other oceans even if they are contiguous. The Antarctic 

Convergence has temperatures ranging between 2,8 and 5,5°C 

in average and it surrounds the South Pole as a ring wide from 

30 to 50 km that sometimes reaches the 46° parallel, in which 

temperature,  salinity,  nutrient  concentration  and  oxygen  are 

peculiar.  The  presence  of  the  Antarctic  Convergence  renders 

very difficult for many species to move among the oceans and 

leads to isolation of plankton and fishes populations which are 

clearly different from those present in near marine waters. The 

oceanic portion enclosed by the Polar Front establishes a marine 

system that is protected from the worst of the extremes, and the 

sea coastal water reaches a stable minimum of -1.8°C.  On the 

contrary,  the environment represented by the sea coastline is 

less stable during the year in regard of temperature: there are 

cold winds and the sunlight can warm up the surface up to 20°C. 

Going  from the  coast  to  the  inner  side  of  the  continent  the 

conditions  worsen.  The  land  is  always  covered  by  ice  and  is 
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subjected to temperatures even colder than those of coasts (-30

/-70°C  depending  on  seasons),  to  strong  winds  which  reach 

speeds over 300km/h, to intense UV irradiation that nowadays is 

even  increased  thanks  to  the  ozone  hole  and  the  scarcity  of 

precipitations  (may  sound  strange  but  that  is)  that  almost 

inhibits  life 

(http://www.antarctica.ac.uk/met/jds/weather/weather.htm).  The 

isolation  of  the  Antarctic  continent  began  when  the 

supercontinent Gondwana broke-up (167 million years ago) and 

then  it  continued  until  the  establishment  of  the  Antarctic 

Convergence  and  its  associated  oceanographic  regime  in  the 

Early Cenozoic. This isolation have meant that the evolution of 

both the marine and terrestrial  biotas has taken place almost 

without  any  exchange  with  species  living  in  the  surrounding 

environments  (Eastman,  1993;  Shaw et  al.,  2004;  Clarke  and 

Johnston, 1996).

On the basis of these consideration the Antarctic environment 

represents  an  exciting  place  for  studying  cold  adaptation, 

evolution in  Antarctic  species  and the threat  posed by  global 

climate change to species.

Even if its macrofauna, like penguins, blue whales and seals, is 

very popular and well  known thanks to mass media,  Antarctic 

ecosystem is dominated by microorganisms, that is a wide range 

of  small  and  microscopic  lifeforms  including  protozoa,  fungi, 

bacteria  and microalgae,  which  interact  to  form dynamic  and 
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sometimes  highly  structured  communities.  The  great  part  of 

these lifeforms concentrates along the waters and the coasts of 

Antarctica which have a more stable and favourable conditions, 

while in the continental part, the environment is too hostile to 

life1. They are an important node of Antarctic food web, as it has 

been discovered recently, and thanks to them, the sea below the 

ice  hosts  a  rich  and  colourful  variety  of  species  that  can  be 

compared to that of coral reefs, and which really contrasts with 

the  continental  surface  that  is  almost  deserted.  Antarctic 

microorganisms have evolved practically in complete geographic 

and  genetic  isolation,  adopting  specific  morphological  and 

physiological strategies to withstand these harsh environmental 

conditions.  Furthermore  cold  adaptation  includes  a  complex 

range of structural and functional adaptations at the level of all 

cellular  constituents,  such  as  membranes,  proteins,  metabolic 

activity  and  mechanisms  to  avoid  the  destructive  effect  of 

intracellular ice formation .

1 Little  is  known about the lakes  under the icecap,  like the Lake Vostok, 
which  have  been  sealed  500.000  years  ago  and  might  host  a  large 
unknown number of lifeforms.
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Fig.1: Location of Antarctic Convergence (from: “The Oceans: 
Their Physics, Chemistry and General Biology” H. U. Sverdrup et 
al., 1942.



Adaptive Strategies of Cold-Adapted Organisms

The first issue posed by Antarctic environment is intracellular ice 

formation. Sodium chloride is responsible for about 85% of the 

freezing point depression, and the remaining 15% is due to other 

small solutes. Synthesis of antifreeze glycoproteins and peptides 

can further depress the freezing point of body fluids or cellular 

water.  These  proteins  lower  the  freezing  point  by  a  non-

colligative  mechanism  without  altering  the  melting  point 

significantly,  and  are  therefore  also  referred  to  as  hysteresis 

proteins (Raymond et al., 1989; Jia et al., 1996). Other strategies 

to adapt to the Antarctic environment,  include modification in 

the membrane structure, in the plasticity of the enzymes and in 

gene regulation.

Membrane lipids

The membrane is both the interface and the barrier between the 

internal  and  external  environment  of  the  cell.  Cold-adapted 

bacteria respond and adapt to low temperature by modulating 

the fluidity of their membrane (Chintalapati et al., 2004). This is 

mainly achieved by altering the fatty acid composition. The most 

important strategy is to increase the proportion of unsaturated 

fatty  acids,  which  help  to  maintain  a  semi-fluid  state  of  the 

membrane at low temperatures (Aguilar et al., 1998; Suzuki et 

al., 2001).
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Enzymes

According  to  the  currently  accepted  hypothesis,  cold-active 

enzymes must increase the flexibility of some or all parts of the 

protein to compensate for the lower thermal energy provided by 

the low temperature habitat (Somero, 2004). Flexibility induces a 

decrease  in  the  activation  energy  and  thus  provides  high 

catalytic efficiency at low temperature; in return, this increased 

flexibility  is  responsible  for  the  generally  low  stability  of  the 

protein  structure  of  cold-active  enzymes,  due  to  an  inverse 

relationship between stability and activity (D'Amico et al., 2002; 

Marx et al., 2004).

All the available data regarding cold-adapted enzymes indicate 

that  a high specific activity is almost always associated with a 

low  thermostability.  The  thermostability  derived  from  the 

pronounced rigidity of the molecular edifice is thought to impair 

the  interaction  between  substrate  and  enzyme,  leading  to  a 

weak specific activity. By contrast, flexibility or plasticity of the 

molecular structure would enable greater complementarity at a 

low energy cost, thus explaining the high specific activity of cold-

adapted enzymes.

Psychrophily and Psychrotrophy

Even  among  extremophilic  organisms  there  are  differences 

regarding the preference to cold environments like Antarctica. In 

relation with temperatures  and growth rates,  most researches 

distinguish between psychrophilic (cold-loving) or psychrotrophic 

9



(cold-tolerant)  microorganisms.  According  to  the  most  widely 

accepted definition, psychrophilic are unable to grow above 20°C 

and grow fastest at 15°C or below. They persist in permanently 

cold habitats, such as in polar regions, at high altitudes, or in the 

deep  sea.  Environments  with  periodic,  diurnal,  or  seasonal 

temperature fluctuation (e.g.  area in continental  climates with 

high summer  and low winter  temperatures)  are favourable  to 

psychrotrophics,  which can grow at temperatures close to the 

freezing  point  of  water,  but  have  fastest  growth  rates  above 

20°C. Psychrophiles live at the lowest temperatures allowed for 

the development of living organisms. According to this definition, 

we can classify the two Euplotes objectives of our researches. E. 

nobilii is psychrotrophic, because it tolerates 0-4°C, but it grows 

better at 12-18°C, while  E. focardii is psychrophilic because on 

the  opposite  its  growth  rate  is  faster  at  4-5°C  and  sharply 

decreases at 8-10°C.

The Heat Shock Response and the Heat Shock 
Proteins

Research interest in the cellular response to stress was raised in 

the early 60 by the Italian geneticist Ferruccio. M. Ritossa, who 

observed a new puffing pattern in the polytene chromosomes of 

the salivary  glands of  accidentally  heat-shocked larvae of  the 

fruit fly Drosophila buschii (Ritossa, 1962). 

Since  then,  it  has  been  established  that  the  Heat  Shock 

Response  is  a  cellular  response  comprising  of  transient  but 
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complex  reprogramming  of  gene  expression  that  takes  place 

when  cells  or  organisms  are  subjected  to  a  wide  variety  of 

stresses  able  to  denature  proteins.  Thus,  it  can  be  properly 

considered a general stress response. The puffs in the polytene 

chromosomes  in  Drosophila observed  by  F.  Ritossa, are  DNA 

regions in  intense  transcriptional activity  and have been later 

correlated with the massive induction of a set of proteins, named 

thereafter:  Heat  Shock  Proteins  or  HSPs.  In  details,  the  Heat 

Shock Response consists in depression of ongoing chromosomal 

transcription, induction of transcription of the heat shock genes, 

inhibition of RNA processing, inhibition of translation of general 

mRNAs and a preferential translation of the heat shock proteins 

mRNAs (Lakhotia, 1998).

As pointed before, the HSR is mainly induced in response to a 

large  variety  of  stresses  able  to  denature  proteins.  From  a 

molecular  point  of  view,  during the  exposure to  a  stress,  the 

denatured  proteins  expose  regions  composed  by  hydrophobic 

aminoacid residues; these exposed regions can bind to those of 

other denatured proteins and so lead to formation of aggregates 

that  at  worst  are  cytotoxic  and  at  best  reduce  the  pool  of 

functional  proteins  in  the cell  (Feder,  1999). The HSPs act  as 

chaperones recognizing the exposed hydrophobic chains in non-

native  proteins  and then the HSPs  bind to  them allowing the 

bound  proteins  to  acquire  or  to  return  to  their  native 

conformation,  otherwise  to  be  targeted  for  degradation  and 
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removal from the cell (Feder, 1999).

Besides  their  role  as  stress  inducible  proteins,  now it  is  also 

recognized that these proteins are expressed at basal levels in 

unstressed  cell  to  allow  folding,  assembly,  intracellular 

localization,  secretion,  regulation,  and  degradation  of  other 

proteins (Feder and Hofmann, 1999)2.  Owing to this important 

role  in  general  stress  response and in  basic  cellular  activities 

these genes have been maintained, at high levels of sequence 

conservation,  in  the  genomes  of  every  eukaryotic  organism 

examined to date (Buckley et al., 2004).

The Heat Shock Protein 70 family: importance 
and role

The HSPs are broadly classified, on the basis of their apparent 

molecular  weights,  amino  acid  sequences  and  functions  into 

distinct  families,  HSP110,  HSP100,  HSP90,  HSP70,  HSP60, 

HSP40, small HSPs (sHSP) and HSP10 (Arya et al., 2007; Feder 

and  Hofmann,  1999).  Gething  (1997)  recognizes  7  additional 

families and 12 genes/proteins for which families have not yet 

been described. In eukaryotes, many families comprise multiple 

members that differ in inducibility, intracellular localization, and 

function (Feder and Hofmann, 1999).

In this work I have focused on HSP70 because large bodies of 

evidences suggest that  this HSPs can be considered as a key 

regulator  of  the  Heat  Shock  Response  as  well  as,  with  few 

2 Maybe interesting to report that in higher organisms, the heat shock 
response can also induce a death signal that leads to apoptosis or rapid 
necrosis (Lila Pirkkala et al., 2001).
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exceptions, the main heat-inducible molecular chaperon in every 

eukaryotic  organism  examined  so  far  (Lerman  et  al.,  2003; 

Hofmann et al., 2000). Besides the inducible isoforms, the 70kDa 

heat  shock  proteins  family  owns  constitutively  expressed 

members which are generally known as Heat Shock Cognate 70 

proteins (HSC70) (Mayer and Bukau, 2005). In absence of stress 

conditions, these isoforms are called to assist a wide range of 

folding processes, including the folding and assembly of newly 

synthesized  proteins,  refolding  of  misfolded  and  aggregated 

proteins,  membrane  translocation  of  organellar  and  secretory 

proteins, and control of the regulatory activity and through one 

of its members, it has also housekeeping function in the cell, in 

fact its constitutive member called HSC70 is regularly expressed 

in the cell (Mayer and Bukau, 2005). 

The inducible HSP70, in cooperation with small HSPs, has been 

shown to enhance the survival of mammalian cells exposed to 

numerous  types  of  stimuli  that  induce  stress  and  apoptosis 

(Pirkkala  et  al.,  2001)3.  Other  researches  have  found  an 

important role of this chaperone in its inducible form in different 

processes like long term memory and immune response4. 

3 The antiapoptotic HSP27 and HSP70 are abundantly expressed in many 
malignant human tumors (Pirkkala et al., 2001).

4 The pattern of heat shock proteins in mammalian brain, either synthesized 
in a developmentally regulated manner or in response to stress, is non-
random. This has been related to specific functions of different parts of the 
brain, including role of HSPs, particularly the HSP70, in short- and long-
term  memory  and  making  different  parts  of  the  brain  more  or  less 
susceptible  to  stress-induced  injuries  .  [...]  A  number  of  HSPs  such  as 
HSP70, HSP90 and Gp96/Grp94 have been shown to chaperone a broad 
array of peptides, derived from different cellular proteins, from the cytosol 
to the Major Histocompatibility Complex I molecules which in turn display 
the peptides on the cell  surface. The HSPs therefore play a key role  in 
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HSP70 Gene regulation

The activation of heat shock gene transcription, including that of 

hsp70,  is  mediated mainly by heat shock transcription factors 

(HSFs),  which  binds  heath  shock  elements  (HSEs)  in  the 

promoter region and transactivates the heat shock genes (Baler 

et  al.,  1993; Morimoto, 1993; Sarge et  al.,  1993; Hung et  al., 

1998). HSEs consist of an array of inverted/alternate repeats of 

the pentameric sequence NGAAN. This sequence has been found 

in  many  promoters  of  stress  inducible  genes  and  now  is 

generally  considered  a  sort  of  “marker”  of  inducible  stress 

genes. The arrangement and number of these NGAAN units can 

vary (Abravaya et al., 1992) and affect  hsp70 gene expression 

(Lis and Wu, 1994).  It is generally assumed that at least three 

repetitions of this basic sequence are required to have a working 

HSE  (Morimoto,  1993).  Among  the  many  possible  functional 

arrangements  studied  so  far,  there  are  the  so-called  gapped 

HSEs, containing a variable number of bases inserted between 

the  pentameric  units.  For  example,  the  S.  cerevisiae  MDJ1 

promoter represents a functional gapped HSE, as it  carries an 

insertion of  11bp between the first  and the second repetition 

(nTTCn-(11bp)-nGAAn-(5bp)-nGAAn).  This  promoter  also 

contains  two  functional  contiguous  nGAAn  direct  repeats. 

Recently,  several  examples  of  functional  HSEs  with  direct 

repeats of nTTCn or nGAAn interrupted by 5bp insertions were 

characterized in the promoter regions of several  S. cerevisiae 

antigen presentation (Lakhotia, 1998).
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genes. (Tachibana et al., 2002).

Activation of the heat-shock transcription factor via trimerization, 

phosphorylation and nuclear localization is a key step in heat-

shock protein expression.  HSF is  negatively  regulated through 

interaction  with  HSP70  family  members  and  some  other  co-

chaperones  (Cotto  and  Morimoto,  1999;  Lerman  and  Feder, 

2001;  Zatsepina  et  al.,  2000).  When activated,  HSF  can  bind 

heat-shock response elements (HSEs) in the  hsp70 promoter to 

induce transcription. In very general model (Fig. 2), HSP70 forms 

complexes  with  HSF  in  the  citosol5,  during  non-stressing 

conditions.  Following stress,  denaturated  proteins  compete for 

the binding to the Hsp70 normally present in steady state level 

in the cell freeing the HSFs. The monomers of HSFs trimerize and 

migrate into the nucleus. In the trimeric state, HSF binds to the 

HSE, forming a complex that has the potential to activate the 

transcription of hsp genes (Zuo et al., 1994; Zou et al., 1998; Lee 

et al.,  2000; Pirkkala et al.,  2000; Rieger, 2005). As shown in 

Fig.2,  a  negative  feedback  provides  control  over  hsp70 

expression.  When  the  amount  of  HSP70s  exceeds  that  of 

denatured  proteins  in  the  citosol,  Hsp70  proteins  are  free  to 

move in  the nucleus  and bind the transcriptional  active  HSFs 

positioned on HSE element. This could happen either when the 

stress  is  finished  or  when  the  expression  is  too  intense. This 

5 Other Authors report that HSF's are bound to other chaperones too (like 
HSP90) or to chaperones in general: “metazoans sequester the majority of 
HSF  as  chaperone-bound  monomers  within  the  cytoplasm;  upon  heat-
shock,  HSF  monomers  undergo  an  intramolecular  rearrangement  that 
allows HSF subunits to trimerize”(Lee et al., 2000).
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binding  destabilizes  the  association  between  HSF  and  HSE, 

halting or greatly reducing the transcription of stress genes. This 

model is considered valid for higher eukaryotes from Drosophila 

where this mechanisms was firstly described, to humans6.

However,  exceptions  to  this  model  have  been  described in 

unicellular  eukaryotes  like  Saccharomyces  cerevisiae,  fungi 

(Xavier et al., 1999), Tetrahymena piriformis (do Carmo Avides et 

al.,  1990) and  Tetrahymena thermophila too  (Barchetta et  al., 

submitted manuscript). In these organisms, HSF is constitutively 

bound to HSE and its transcriptional activity is induced by heat 

shock  (Abravaya  et  al.,  1990;  Zou  et  al.,  1995)  through  a 

mechanism  of  phosphorylation  (or  hyper  phosphorylation)  by 

specific kinases7.

Besides  canonical  HSE,  other  stress  regulatory elements  have 

been identified in the promoter region of hsp genes. In yeast, the 

promoter  regions  of  several  stress  genes  yeast  bears  Stress 

Responsive  Elements  (StRE)  denoted  by  the  sequence  motifs 

CCCCT  and  AGGGG  (Kobayashi  and  McEntee,  1993). These 

motifs work well  even in a single copy, however when two or 

more StRE are present, the induction effect increases in a way 

that is not simply proportional to the number of StRE, but it is 

greater  (Kobayashi  and McEntee,  1993; Estruch,  2000).  Genes 

containing  StRE  elements  in  their  promoters  are  inducible  by 

6 This result suggests that factors are not bound to the HSE region prior to 
heat shock in HeLa cells (Abravaya et al., 1991).

7 Richard I. Morimoto calls these kinases: stress-dependent kinase (Rieger et 
al., 2005).
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various different environmental and metabolic stresses and the 

transcriptional activation mediated through this element results 

in  the  acquisition  of  a  tolerant  state  towards  other  stress 

conditions (Estruch, 2000)8.  These sequences are known to be 

targets of trans-acting transcriptional activators characterized in 

a  variety  of  organisms  (Boy-Marcotte,  1998).  In  yeast,  the 

MSN2/4P factors, with a characteristic zing-finger domain, have 

been identified for being able to bind the StRE elements (Schmitt 

and  McEntee,  1996;  Estruch,  2000).  In  yeast,  StRE  motifs 

represent an alternative way to HSE, to produce a stress-induced 

response, and thus to activate Hsp70 expression too (Feder and 

Hofmann,  1999; Estruch,  2000).  Interestingly in the protozoan 

ciliate  Tetrahymena  thermophila,  has  been  recently 

demonstrated that HSE elements  do not represent the minimal 

regulatory elements for heat shock induction. In this ciliate the 

heat shock activation of one of its  hsp70 isoforms,  hsp70-1, is 

achieved by means of a combination of two regulatory elements: 

the  conventional  HSE  and  GATA  elements  (Barchetta  et  al., 

submitted manuscript).

8 It is the so called cross-protection.
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Fig. 2: Mechanism of heat shock gene transcriptional induction in 
eukaryotic cells 



HSP70 protein structure 

Actually in most publications are reported two principal domains: 

a N-terminal ATPase domain of 45kDa and a C-terminal substrate 

binding domain of ca. 25kDa, which is further subdivided into a 

-sandwich  subdomain  of  15kDa  and  a  C-terminal  -helical 

subdomain  (Mayer  and  Bukau,  2005).  The  way  these  two 

domains are involved in the correct folding of non native proteins 

is  not  completely  clear  and  has  been  studied  only  in  few 

organisms, like  E. coli which owns a HSP70 like protein, called 

DnaK,  and in  some eukariotes  like  yeast  and  Drosophila.  The 

ATPase domain  binds ATP and has  a  very low activity.  In  this 

bound  state  the  HSP70  is  able  to  interact  with  a  non  native 

protein or a growing A.A. chain, emerging from ribosomes, which 

exposes  hydrophobic  aminoacids.  The  binding  domain 

recognizes  these  exposed  residues,  at  least  in  chains  7-8  AA 

long, and binds to them. At this point the ATPase activity raises, 

but not enough to hydrolyze the ATP. The presence of so called 

co-chaperones of the JDPs family is required to increase by 1000-

fold the ATPase activity in HSP70. Thus the ATP is hydrolyzed to 

ADP, there is a conformational change in the HSP70 that tightly 

binds the protein and prevents its aggregation to other nascent 

or denaturated proteins (Laufen et al., 1999; Liberek et al., 1991; 

Gamer et al.,  1996). Finally,  the release of ADP is possible. In 

some  organisms  it's  known  that  some  nucleotide  exchange 

factors like BAG-1 and HSPBP1/FES1P are needed and help the 
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HSP70 to release ADP and to begin a new cycle (Dragovic et al., 

2006; Kabani et al., 2002).

Recently a new domain has been reported and confirmed in the 

HSP70 structure: the Histone deacetylases (or HDAC) interacting 

domain.  HDAC  is  an  enzyme  whose  activity  removes  acetyl 

groups from specific lysine residues in the histones, tightening 

the  DNA  to  the  histones  and  regulating  the  state  of  the 

chromatin. So it inhibits the access to DNA by RNA polymerase 

complexes and, as a consequence, the transcription. The HDAC 

interacting domain in HSP70 seems responsible for formation of 

complexes with many members of HDAC  family.  This  must  be 

further  investigated,  but  HSP70  seems  also  responsible  for 

enhancing the activity of the HDAC itself in vitro, suggesting that 

HSP70  may  play  a  role  in  the  reconfiguration  of  the  whole 

transcriptome during the early stage of a stress (Johnson, 2002 , 

Lee et al., 2006)9. 

mRNA stability and distinctive features

HSP70  expression  enhances  thermotolerance,  but  it  is  known 

that too high level of HSP70 in the cytoplasm can affect growth 

or  decrease  individual  fitness  (Feder  et  al.,  1992;  Krebs  and 

Feder,  1997).  Therefore  organisms  must  limit  expression  at 

periods when damage may result (Krebs and Bettencourt, 1999). 

That is why steady state level of HSP70 are quickly reached after 

9 The role of this HDAC interacting domain is not clear and some data seem 
in contrast with previous one (e.g.: in a very extensive a complete review 
by  M.E.  Feder  and  G.E.  Hofmann  about  heat  shock  response  it's  said: 
HSP70 [it is necessary] for recovery from translational and transcriptional 
inhibition following heat shock.
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heat  shock,  and  mRNA  is  fine  regulated  during  and  after 

transcription. In many organisms have been observed that in the 

initial  phase  of  an  heat  shock  there  is  an  increasing 

transcriptional activity, then this activation reaches a peak and 

slowly decreases, but the level of HSP70 proteins does not follow 

the  decreasing  level  of  mRNA.  It's  known  that  there  is  a 

mechanism of degradation of unstable messengers that operates 

through the 3' UTR of hsp70 mRNA that contains a class III AU-

rich element called also ARE (Malter, 2001)10. During heat shock, 

this mechanism is inactivated (probably by the heat shock itself) 

and the messengers cumulates as a consequence of not being 

degraded. After this initial stabilization of the messenger, HSP70 

transcription is induced. When thermal stress ends, the induction 

mechanism  involving  the  promoter  region  stops  and  the 

degradation mechanism of hsp70 messengers is activated again. 

Following  these  events  the  translation  of  new HSP70 reaches 

basal level. In a recent study, a number of indirect and in vitro 

evidences11 also  suggests  that  HSP70  is  involved  in  the 

degradation of its own mRNA (Balakrishnan and De Maio, 2006), 

and this adds a new negative feedback mechanism of regulation.

It's  interesting  to  report  what  Ullmann  et  al.,  (2004)  have 

discovered  about  HSP70  expression  in  a  ciliate:  Moneuplotes 

10The presence of an ARE can affect the stability of an mRNA by decapping, 
deadenylation and 3'-->5' decay. [...] These effects are mediated through 
trans-acting factors that associate with the ARE (Wilusz and Wilusz, 2004).

11  HSP70 coimmunoprecipitates with hsp70 mRNA in lysates from stressed 
cells and in vitro ATP competes for binding with mRNA to HSP70. HSP70 is 
also able to bind AU rich regions in mRNA and hsp70 mRNA may contain a 
similar region in the 3'UTR.
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crassus. The heat shock response could be dissected into two 

phases. An initial protein-dependent stabilization of the mRNA is 

followed by an increase of the steady state transcript level that 

is dependent on continued transcription. They conclude that the 

regulation of the heat shock response is a two-step process that 

occurs at the transcript level (Ullmann et al., 2004).

Other researches have found that  in some organisms (Human 

and  Drosophila  melanogaster)12 the  translation  of  the  HSP70 

messenger  is  possible  without  the  5'-cap  because  of  the 

presence of the so called internal ribosome entry site (or IRES) in 

5' UTR. This is an alternative mechanism of positioning the 40S 

ribosomal subunit nearby or directly onto the first AUG codon in 

the coding sequence. The characteristic  elements in a generic 

IRES were studied first in picornaviruses until their discoveries in 

eukaryotic genes (Hellen and Sarnow, 2001; Baird et al., 2006). 

At the beginning it was believed that IRES should have specific 

sequence like a polypyrimidine region 25 nucleotides upstream 

the AUG. Now that data have increased in number of genes and 

organisms  represented,  the  investigators  focus  on  the 

secondary/tertiary  structure  instead  of  the  sequence:  the 

general rule seems that to operate as an IRES, a 5'UTR should 

form  a  structural  scaffold  in  which  precisely  positioned  RNA 

tertiary structures contact the 40S ribosomal subunit through a 

number  of  specific  intermolecular  interactions  (Vagner  et  al., 

12A similar research performed in Zea mays L., has found IRES in the HSP101 
mRNA (Dinkova et al., 2005).
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2001).  This  mechanism  is  useful  when,  for  instance,  cap-

dependent translation is impaired during various forms of stress, 

including heat shock. The presence of IRES in the non coding 

region in hsp70 mRNA (in human and fruit fly, to date) seems to 

confirm again the key role of this gene during heat shock and to 

explain why translation of mRNAs encoding heat shock proteins 

(HSPs)  is  favoured  during  heat  shock,  while  general  cap-

dependent  translation appears  severely  inhibited (Rubtsova et 

al., 2003; Hernandez et al., 2004).

Ecological Role of Heat Shock Response

The  heat  shock  response  is  greatly  responsible  for  the 

acclimatization  of  an organism to the thermal  changes  in  the 

environment. In fact, it is the way a cell can survive momentary 

adverse conditions and thus it  is  a homeostatic  response,  not 

meant for long time changes13. Usually, as stated by Prasanta K. 

Ray et al., (1999) “the urge of an organism is to adjust itself to 

the prevalent  conditions to come back to a normal  or  steady 

state, conducive enough for perpetuation of life processes”.

The  thermal  threshold  for  heat  shock  protein  expression  is 

correlated  with  the  temperatures  that  organisms  normally 

13There is an interplay between adaptation and acclimatization. If evolution 
affects the sequences of the genes encoding the other proteins such that 
these  proteins  resist  stress-induced  deformation  or  denaturation  at 
species-appropriate temperatures (that leads to the so called adaptation), 
then  one  outcome  could  be  countergradient  variation  in  threshold 
temperature  [in  heat  shock  response](thus  affecting  acclimatization) 
(Feder).  
Acclimatization is  a  physiological  change that allows organisms to  cope 
with a changed condition. Adaptation is Evolution. Adaptation involves the 
evolutionary selection of gene alleles.
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encounter, and the magnitude of HSP expression is correlated 

with the variability of the thermal environment (Feder; Zatsepina 

et al., 2001). The heat shock response greatly contributes to the 

capacity of an organism to survive a specific environment and 

thus to withstand thermal variations.

As mentioned before, the heat shock response depends on the 

“normal”  conditions  to  which  an  organism  is  exposed.  The 

temperatures on earth range from -100°C to 100°C and more, 

and even if organisms can escape adverse conditions exploiting 

microhabitats, the microhabitats themselves are possible source 

of stress. Even equable environments can contain HSP-inducing 

microhabitats,  and even mild  stresses  can  induce  HSPs  when 

multiple stresses act in combination (Feder and Hofmann, 1999). 

It is widely accepted and the actual data support a correlation 

existing among HSP expression, stress tolerance, and gradients 

of  environmental  stress  (Feder  and  Hofmann,  1999).  From  a 

general point of view, organisms that grow, reproduce and have 

their optimal life conditions in a cold environment, have a lower 

activation threshold than those which prefer high temperatures. 

There are many example of this behavior. A northern species of 

mussel (Mytilus trossulus) that lives in cold waters has a lower 

threshold  for  HSP70  expression  than  its  congener,  M. 

galloprovincialis,  a  warm-water  species  with  a  more  southern 

distribution (Hofmann and Somero, 1996). Similar differences in 

the threshold temperature for hsp70 gene expression, have been 
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described  between  the  ant  Cataglyphis  bicolor inhabiting  the 

desert  of  Sahara  and  Formica  polyctena living  in  temperate 

climate.  In  Cataglyphis  bicolor the  threshold  temperature  is 

higher in respect to that of  Formica polyctena  (37°C instead of 

33°C).  In Cataglyphis has been discovered that even the range 

to which HSP70 is induced is different from that of the temperate 

climate  species,  and  HSP70  is  still  produced  in  response  to 

temperature until 45°C while in other species it stops at 39°C. 

This  seems due to  the  fact  that  the desert  ant  encounters  a 

quick shift on temperature when it passes from the underground 

anthill  (<30°C)  to  the  desert  surface(>50°C).  Moreover,  in 

Cataglyphis the basal level of HSP70 proteins it is higher than in 

other ants, so that  Cataglyphis  can be ready to  encounter high 

temperature  (Gehring  and  Wehner,  1995).  A  similar  pattern 

(although not as extreme) is evident for desert and non-desert 

Drosophila (Huey and Bennett, 1990).

In  extremely  hot  environment,  like  black  smokers,  there  are 

Archaea  which  are  capable  of  heat  shock  response,  but  only 

when the temperature raises over 88°C, as in  Sulfolobus,  and 

even more than 100°C as in a species called ES4, a heterotrophic 

sulfur  reducer  isolated  from  a  deep-sea  hydrothermal  vent 

(Feder and Hofmann, 1999).

A special case: Heat-Shock Response in Antarctic 
organisms

Antarctica is characterized by at least three mains habitats: the 
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marine  environment,  the  intertidal  environment  and  the 

terrestrial environment; everyone with its peculiarities.

The marine waters are a cold but a stable environment, in which 

temperature  and  many  other  parameters  are  constant.  The 

changes  in  temperature  never  exceed 3.5°C and they  almost 

range between -1.8 and 0°C for the great part of the year. Along 

with the deep sea, these are amongst the most thermally stable 

environments on Earth. Salinity is remarkably constant, even in 

nearshore waters because there is not any major river flowing 

into the Southern Ocean. On the other hand, the intertidal zone 

is  less  stable  during  the  year  in  regard  of  temperature  and 

salinity: there are cold winds and the sunlight can warm up the 

surface up to 20°C, while during winter the temperature reaches 

-20°C. Salinity may vary a lot in dependence of flows belonging 

alternatively from melted ice (freshwater) or from marine water. 

This  harsh  conditions  worsen  going  from  the  coasts  to  the 

continent,  that  constitutes  the  great  part  of  the  terrestrial 

environment. In this part of Antarctica, temperature ranges from 

-30° to -90°C (Peck et al.,  2005). These extreme but different 

environments have influenced the evolution of the heat shock 

response in many species. The first example is a midge, Belgica 

antarctica,  that according to its life cycle stages occupies two 

different  terrestrial  habitats.  In  the larval  stage,  this  midge is 

unable  to  move  freely  and  it  lives  under  rocks  where  the 

temperature  is  almost  stable  (from  -4°C  to  4°C),  but  other 
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parameters such as pH and osmotic pressure are less stable and 

there are frequent freezing/thawing periods. In these changing 

conditions, the larva has a high basal level of HSP70 expression 

and there is not any further increase in the expression upon heat 

shock.  When  it  turns  in  an  adult  midge,  it  becomes  able  to 

escape from these environmental changes while it can encounter 

rocks warmed up to 20°C by direct sunlight. In this stage of its 

life,  there  is  no  more  the  need  for  a  continuous  hsp70 

expression. In fact HSP70 reaches a low basal level and it also 

returns inducible (Rinehart et al., 2006).

An  interesting  example  of  convergent  evolution  of  the  Heat 

Shock  Response  at  sub-zero  temperatures  is  offered  by  two 

organisms inhabiting the cold coastal  sea water of  Antarctica, 

the fish  Trematomus bernacchii  (Hofmann et al., 2000; Buckley 

et  al.,  2004) and the ciliate  Euplotes  focardii (La Terza et al., 

2001).  Both  species  have  lost  the  capacity  to  induce  the 

expression  of  their  hsp70 genes  in  response  to  thermal 

variation14.  This  shared  behavior  can  be  due  to  the  large 

energetic cost associated with the HSP70 expression that could 

be saved in very stable environment. In fact,  current estimates 

regarding  both  Trematomus bernacchii  and E. focardii,  suggest 

that they have evolved in an extremely cold and stable thermal 

environment  for  approximately  14–25  million  years (Eastman, 

14 In Trematomus bernacchii, the Heat Shock Response is not detectable in 
response to increase of temperature and/or to exposure to chemicals while 
HSP70 it's constantly expressed at a basal level  (Hofmann et al.,  2000; 
Buckley et al., 2004).
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1993; Clarke and Johnston, 1996; Di Giuseppe et al., unpublished 

results). 

Heat Shock Response and Evolution

As  shown  in  the  several  examples  illustrated  in  the  previous 

chapters, although the heat-shock response might be considered 

among one of the most ancient and highly-conserved features of 

living  things,  it  greatly  varies  within  and  among  populations, 

species,  and  higher  taxa.  Feder  and  Hofmann  (Feder,  1999; 

Feder and Hofmann, 1999) have characterized the major axes of 

variation. Typically the variation is "countergradient". In terms of 

microenvironmental  temperature,  for  example,  the  thermal 

threshold for heat-shock protein (HSP) expression is correlated 

with the temperatures that organisms normally encounter, and 

the  magnitude  of  HSP  expression  is  correlated  with  the 

variability of the thermal environment.

The genetic  encoding of this variation might reside at several 

locations in the genome:

1. Variation  in  the  hsp  coding  sequence:  Non-synonymous 

change in the coding sequence of  hsp genes could affect 

the structure and function of Hsps, and thereby the cell's 

requirement for HSPs.

2. Variation in  hsp gene copy number: Gene duplication is a 

major  feature  of  molecular  evolution  in  general  and  of 

many hsp genes. In opposition, duplicated hsp genes can 

become pseudogenes.
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3. Variation  in  cis-regulatory  elements:  The  nucleotide 

sequence  of  the  proximal  promoter  and  untranslated 

regions can affect the magnitude of hsp gene expression. 

Variation in any such sequence could result in evolutionary 

change in HSP levels.

4. Variation  in trans-regulatory  factors:  The  various 

transcription  factors  and  the  kinase-based  signaling 

pathways whose activity is needed and influence the heat-

shock  response  could  themselves  evolve  in  their  trans-

activation  domains  or  in  their  own  regulatory  domains, 

both cis and trans.

5. Variation in co-chaperons and co-factors: Many heat-shock 

proteins  do  not  function  as  monomers  or  as  homo-

oligomers,  but  as  components  of  a  chaperon machinery 

comprising many proteins and any of them could evolve in 

an independent way.

6. Variation in chaperon targets: The number and sequence 

of the sites at which HSPs recognize and interact with their 

client proteins could themselves be targets of evolutionary 

change.

Genomic Organization in ciliates

The organisms that  are objects of our research on HSP70 are 

hypotrichs  and  belongs  to  the  Ciliates  phylum,  part  of  the 

Protists  reign.  The  whole  phylum  is  characterized  by  an 
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interesting example of genomic organization.

They  have  all  two  different  nuclei  called  macronucleus  and 

micronucleus named after their difference in size. They share the 

same origin  because they  both  derive  from the  same zygotic 

nucleus but they are different in function and structure.

The macronucleus, also called somatic nucleus, is polyploid and 

it is active in transcription. From its activity depends the cell life 

and it is not able to divide mitotically, but only through a process 

called amitosis.

The micronucleus,  or germ nucleus,  is  diploid and it  is almost 

inactive during cell life, it becomes operative only during sexual 

processes. The micronucleus divides itself mitotically and then it 

performs a meiotic division during sexual process producing four 

gametic pronuclei among which one is exchanged with another 

conjugating  cell,  one  is  retained  to  form  the  zygotic  nucleus 

while the others are degraded. Next, the zygotic nucleus splits 

usually two times producing four nuclei, then some of them will 

be degraded while one will become the macronucleus and one 

will  become the micronucleus depending on the position they 

occupy in the cell. The macronucleus development starts from 

the formation of polytenic chromosomes, after it is followed by 

process called fragmentation that breaks the chromosomes, then 

specific DNA sequences are eliminated or transposed, followed 

by a  selective  amplification  of  them and the  final  addition  of 
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telomeric ends. The result is a completely different macronuclear 

genome from that is in the micronucleus by quantity and quality 

of its DNA.

At the beginning of the studies in the macronuclear organization, 

the ciliates  were divided in  two groups in  the conviction that 

there were two different types of macronuclear reorganization. 

Now its known that the differences only regard the extent of the 

reorganization, not is quality.

The  various  Euplotes  we  are  going  to  present  in  the  next 

chapters are ciliates belonging to the hypotrichs group one of 

the most evolved group in the ciliates phylum and for this reason 

they  have  the  finest  reorganization  of  the  macronucleus  in 

comparison  with  the  micronucleus.  In  fact,  the  macronuclear 

genome  is  constituted  by  many  minichromosomes  that  are 

called  “genesize”  bearing  only  one  coding  sequence  that  are 

2000bp long on the average. The coding sequence is flanked by 

two non coding regions in 5' and 3', called “leader” and “trailer”, 

and  closed  by  two  telomeric  ends  composed  by  several 

repetition of the C4A4 motif.

Our Models: Euplotes focardii and Euplotes 
nobilii

Antarctic waters host an unexpectedly rich variety of eukaryotic 

microbes (Vincent, 1988). A common component is represented 

by species of ciliates, in particular of Euplotes (Petz et al., 1995), 

which is one of the most successful bottom-dwelling hypotrich 
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ciliates  distributed  world-wide  in  both  freshwater  and  marine 

habitats  (Curds,  1975;  Borror  and  Hill,  1995).  Two  of  these 

Euplotes species, E. focardii (Fig.3), and E. nobilii  (Fig. 4), which 

have been described as new species endemic in Antarctica, all 

derive from benthonic communities  inhabiting freezing (–1.8  ° 

C), interstitial waters along the coasts of Terra Nova Bay (Ross 

Sea)  (Valbonesi  and  Luporini,  1990a,b).  In  assessing  the 

environmental parameters favouring higher rates of survival and 

multiplication  of  these  Euplotes species  in  captivity,  clearcut 

variations  emerge  in  their  responses  to  the  warming  of  their 

environmental  (cold  room)  temperature.  While  E.  nobilii 

manifests  a  behaviour  which  is  typical  of  psychrotroph micro-

organisms, as they start multiplying faster at 12–18  ° C rather 

than at 4°C, a marked  psychrophile behaviour distinguishes  E. 

focardii (Valbonesi  and Luporini,  1990a, 1993; unpublished).  It 

was later demonstrated (La Terza et al., 2001) that these species 

deeply diverges in their capacities to respond to thermal stress 

with an activation of the transcription of their  hsp70 genes, a 

universally conserved HSPs whose function is to assist cells in 

defence  against  environmental  stresses  (Frydman  and  Hartl, 

1994).  Following  a  thermal  stress,  only  E.  nobilii  is  able  to 

strongly activate  the transcription of its hsp70 genes, while  E. 

focardii does not  show any appreciable  induction of its  hsp70 

genes, thus suggesting that  the  hsp70 genes of this Antarctic 

ciliate  have  greatly  reduced  a  function  which  is  apparently 
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useless in the thermally immutable environment where it lives. 

This  and  other  major  features  such  as  the  structural 

modifications  of  tubulin  genes  to  ensure  microtubule 

polymerization in the cold (Pucciarelli et al., 2002; Pucciarelli and 

Miceli,  2002)  strongly  support  the  idea  that  E.  focardii is  an 

ancient colonizer of Antarctica and among the several species of 

Euplotes collected from different site in Terra Nova Bay, one of 

the most cold-adapted. This hypothesis is further sustained by 

data  from  SSrRNA  analysis  that  date  the  separation  of  this 

species from an ancestral Gondwanan species much earlier than 

the biogeographical isolation of Antarctica caused by the circum-

Antarctic Current about 25 million year ago (Di Giuseppe et al., 

unpublished  results).  Differently,  the  SSrRNA  data  and  the 

typical  psychrotroph  behaviour  suggest  that E.  nobilii can  be 

regarded as a secondary colonizer of Antarctica. This species has 

retained the capacity to switch on the transcription of its hsp70 

genes when it is transferred from an environmental temperature 

of 4°C to 20°C. Thus, it may be regarded as one of the many 

organisms that face thermal stress with new synthesis of heat 

shock proteins.

All  these  peculiarities,  makes  ciliates  a  fascinating  biological 

material to investigate at reduced level of complexity, relevant 

aspects of the genetic bases of adaptation of the eukaryotic life 

to Antarctica and of more interest for my PhD work, to analyse 
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potential mechanisms of transcriptional adaptation to chronically 

cold environments.
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Fig.  3: Pictures of giant individuals of E. focardii, taken with a  
Scanning  Electron  Microscope.  In  A it  is  shown  the  dorsal  
surface (x770); in B it is shown the ventral surface (x750).
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Fig.4:  Pictures  of  two  individuals  of  E.  nobilii,  taken  with  a 
Scanning Electron Microscope. In A it is shown the dorsal surface 
(x2250); in B it is shown the ventral surface (x2250).



Objectives

During  my  PhD,  the  general  objective  of  my  work  was  to 

contribute to a better knowledge of the molecular basis of Heat 

Shock  Response  in  eukaryotic  microorganisms.  In  particular,  I 

was  interested  in  analyzing  the  plasticity  of  hsp70 gene 

expression in marine species of ciliates inhabiting  the cold and 

thermally stable coastal sea water of Antarctica. Useful organism 

models  for  analysis  of  adaptation  of  gene  expression  were 

represented by two Antarctic species of Euplotes, E. focardii and 

E. nobilii, which showed up marked differences in their capacity 

to activate hsp70 gene expression in response to thermal insults. 

The specific aims of my PhD projects were:

1. To  perform  a  comparative  analysis  of  hsp70  gene 

structures (at level  of  coding and non-coding, regulatory 

regions) between the two Antarctic species of Euplotes, E. 

focardii and E. nobilii, with the ultimate goal to identify the 

causes  of  the  unresponsiveness  to  thermal  stress  in E. 

focardi. (Chapter 1) 

2. To  perform  a  comparative  analysis  of  hsp70  gene 

structures (at level of coding and non coding, regulatory 

regions) and a preliminary examination of the DNA-binding 

activity of Heat Shock Factors by means of Electrophoretic 

Mobility Shift Assay approaches in E. nobili and E. raikovi a 

species inhabiting temperate waters and thus, adapted to 

a  fluctuating  thermal  environment.  The  possibility  to 
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compare the transcriptional  machinery  of closely related 

species  adapted  to  different  thermal  regimes,  might 

provide  valuable  clues  for  unraveling  the  molecular 

mechanisms of transcription in the cold. (Chapter 2)
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Abstract

The  Antarctic  psychrophilic  ciliate  Euplotes  focardii 
manifests  a  dramatic  reduction in  the activation of  its 
hsp70 gene in response to a heat-shock, while oxidative 
and chemical stresses activate the transcription of this 
gene to appreciable extents. To obtain initial information 
on  the  genetic  causes  of  this  eccentric  behavior  of  E. 
focardii in  the  hsp70 gene transcription activation,  we 
carried out a comparative structural analysis of this gene 
between  E.  focardii and another  Antarctic  Euplotes,  E. 
nobilii, which manifests a psychrotrophic behavior and an 
inducible  thermal  response.  No  substantial  difference 
was  detected  in  the  organization  of  the hsp70  5’ 
promoter  region,  both  species  bearing  canonical 
regulatory  cis-acting  elements  deputed  to  bind 
transcriptional  trans-activating  factors.  Adenine-rich 
elements  favoring  mRNA  degradation  were  instead 
detected in the  hsp70 3’ regulatory region of  E. nobilii, 
but not in that of  E. focardii. Overall these observations 
were reputed to lend further support to the hypothesis 
that the causes of the Euplotes focardii unresponsiveness 
to thermal stress reside in some structural, or functional 
modifications of transcriptional trans-activating factors.

Key words: Ciliates, extremophiles, cold-adaptation, cis- and 

trans-regulatory elements, stress-inducible genes, HSP70.
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Introduction

Antarctic waters host a rich variety of micro-eukaryotes, of which 

ciliated  Protozoa  represent  a  major  component  in  terms  of 

biomass  and  species  number  (Petz  et  al., 1995;  Wilbert  and 

Song, 2005; Petz, 2005). Particularly common are species of the 

most cosmopolitan and ubiquitous ciliate,  Euplotes (Borror and 

Hill,  1995). Easy to collect, in the laboratory they expand into 

massive cultures that reproduce true to type indefinitely under 

controlled conditions, and thus represent optimal organisms to 

investigate, at reduced levels of complexity, relevant aspects of 

the  genetic  basis  of  adaptation  of  the  eukaryotic  life  to 

Antarctica. Of a set of Euplotes species isolated from the coast of 

Terra Nova Bay in Ross Sea (Valbonesi and Luporini, 1990, 1993; 

unpublished results),  E. focardii showed a closer adaptation to 

cold than did the other species; this presumably depended on a 

remote  colonization  of  Antarctica  that  comparative  rDNA 

sequence  analysis  with  sub-Antarctic  Euplotes species  would 

date  far  antecedent  to  the  definitive  ecological  separation  of 

Antarctica from Gondwana (F. Dini and G. Di Giuseppe, personal 

communication).  Indeed,  E.  focardii thrives  optimally  at  a 

temperature of 4-5°C as any psychrophilic organism (Valbonesi 

and Luporini, 1993), utilizes unique genetic solutions to ensure 

microtubule  stability (Pucciarelli  et  al., 1997;  Pucciarelli  and 

Miceli, 2002) and, of more interest in this context, is no longer 

50



able to appreciably enhance the transcription of its hsp70 gene, 

i. e., the gene encoding the heat shock protein 70, in response to 

a thermal stress (La Terza et al., 2000, 2001). Nevertheless, this 

gene is represented by thousands of sub-chromosomic copies in 

the  somatic  (expressed)  genome of  the macronucleus  and its 

transcription is elicited at appreciable levels in cells subjected to 

an oxidative  stress,  or  exposed to  noxious  chemicals  such as 

tributyltin and sodium arsenite (La Terza et al., 2004). 

To seek into the molecular basis of this eccentricity in the stress-

induction of E. focardii hsp70 gene expression, we carried out a 

comparative analysis of the full-length structures between this 

gene and its homolog cloned from another Antarctic Euplotes, E. 

nobilii,  that  behaves  like  a  psychrotrophic  rather  than  a 

psychrophilic  organism,  and  readily  enhances  its  hsp70 gene 

transcription in response to heat shock, as well as oxidative and 

chemical  stresses  (our  unpublished  observations).  The  5’ 

promoter region showed canonical  (cis-acting)  binding sites of 

transcriptional  (trans-acting)  activators  in  the  hsp70 gene  of 

both species. Instead, only in the hsp70 3’ region of E. nobilii did 

we detect adenine-rich elements,  known to be responsible for 

enhanced mRNA decay rates in a variety of genes regulating cell 

response to environmental stimuli (Chen and Shyu, 1995; Wilusz 

and Wilusz, 2004). The absence in E. focardii of these elements 

thus weakens the hypothesis of a causal association between the 

E. focardii  unresponsiveness to heat shock and an hsp70 mRNA 
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instability,  while it  reinforces the hypothesis  that  the cause(s) 

reside  at  the  transcriptional  level,  probably  in  a  mutated 

structure  and/or  activity  of  trans-acting  transcriptional 

activators.

Material and Methods

Cells

Cultures of the wild-type strains TN-1 of E. focardii and AC-6 of E. 

nobilii were used. They were grown in a cold room, at 4°C, on the 

green alga Dunaliella tertiolecta.

Chemicals

Routine  reagents  were  from Sigma-Aldrich  (Milan,  Italy);  DNA-

modifying  and  restriction  enzymes,  Proteinase  K,  Rnase  A, 

protease inhibitors, [a32 P] dATP and [g32 P] ATP from Amersham 

Pharmacia  Biotech  (Cologno Monzese,  Milan).  Oligonucleotides 

were  synthesized  by  Labtek  Eurobio  (Milan).  Sources  of  other 

materials are indicated below, where appropriate.

DNA purification

Total DNA was purified from cells lysed by overnight incubation 

at 55°C in one volume of NDS (0.5M EDTA, 1% SDS, 10mM Tris-

HCl, pH 9.5) containing 200 g/ml of proteinase K. The lysate wasμ  

extracted twice with a 1:1(v/v) mixture of phenol and chloroform, 

and once with chloroform, and then incubated for 30 min with 

Rnase A at a concentration of 50 g/ml at 37°C. Purified DNA wasμ  

extensively dialysed against 1 mM EDTA and 10 mM Tris- HCl, pH 
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8,  on  Type-VS  membranes  of  0.025- m  pore  size  (Millipore,μ  

Bedford, MA), before being used.

Polymerase chain reaction for rapid amplification of telomeric 
ends (RATE-PCR)

This  RATE-PCR strategy  is  specific  to  clone  the  Euplotes sub-

chromosomic  macronuclear  genes,  characterized  by  small 

dimension (in the range from 500 to 20,000bp) and the presence 

of conserved tandem repeats C4A4 at their telomeric extremities 

(Hoffman et al., 1995). The hsp70 gene sequence at the 5’ end 

was  obtained  by  subjecting  macronuclear  DNA samples  of  E. 

focardii and  E.  nobilii to  a  first  set  of  30-35  cycles  of 

amplification  involving,  as  reverse  primer,  the  oligonucleotide 

5’-GCATCIATATCIAAIGTIACITCIAT-3’  (where  I  stands  for  Inosine 

used in relation with degenerated triplets) specific for the HSP70 

motif  Q481IEVTFDID489 and,  as  forward  primer,  the  telomeric 

oligonucleotide 5’-(C4A4)4-3’.

The sequence at the 3’end was then obtained by a second set of 

30-35  amplification  cycles  involving,  as  forward  primer,  the 

oligonucleotide 5’-AAIGATCAAGGIAAIAGAACICC-3’ specific for the 

HSP70 motif N31DQGNRTTP39 and again, as reverse primer, the 

telomeric  oligonucleotide  5’-(C4A4)4-3’.  The  two  full-length 

sequences  were  eventually  reconstructed  by  overlapping  the 

sequences of the cloned PCR products, and their uniqueness was 

confirmed by direct sequence analysis of PCR products obtained 

using  two  additional  oligonucleotides  spanning  the  sequence 
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segment immediately adjacent to the 5’ and 3’ telomeric repeats 

of the cloned molecules. 

Gene cloning, DNA labelling, screening, and sequencing

Amplified products were cloned into the pCR 2.1-TOPO vector of 

the  TOPO TA cloning  Kit  (Invitrogen)  following  the  procedures 

suggested  by  the  supplier.  Colony  blotting  and  double  strand 

DNA labeling by the random priming method were performed 

according to Sambrook and Russell (2001). Hybridization signals 

were detected by means of a personal Molecular Imager FX (Bio-

Rad).  Sequence reactions were carried out with the ABI Prism 

sequence analyzer, Model 373A, by using the Big Dye Terminator 

Methodology (PE Applied Biosystems). Sequence alignments and 

structure modeling were performed using Clustal W (Thompson 

et al., 1994) and the Swiss-PdBViewer (Guex and Peitsch, 1997).

GeneBank database

The complete sequences of the  E. focardii and  E. nobilii hsp70 

genes  are  available  at  the  National  Centre  for  Biotechnology 

Information (NCBI)  with the accession numbers AY295877 and 

DQ866998, respectively. The HSP70 sequences used to generate 

the HSP70 consensus sequence and their accession numbers at 

the  NCBI  are  from:  Euplotes  crassus AJ344550,  Euplotes 

eurystomus L15292 and L15291, Stylonychia lemnae AF227962, 

Oxytricha nova U37280,  Saccharomyces cerevisiae AAC04952, 

Rattus norvegicus AAA17441,  Sus scrofa CAA48295,  Bos taurus 

AAA73914, Escherichia coli DnaK BAA01595.
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Results and Discussion

Basic features of the coding regions of the E. focardii and E. 
nobilii of HSP70 genes

The full-length sequences of the E. focardii  and E. nobilii hsp70 

genes,  of  2506  and  2279bp  respectively,  were  in  each  case 

reconstructed by overlapping the sequences (one containing the 

gene  5’  end  and,  the  other,  the  3’  end)  of  two  amplification 

products of macronuclear DNA preparations utilized in a RATE-

PCR  strategy  based  on  two  independent  PCR  reactions 

(Seegmiller  et  al., 1996);  in  these  reactions,  the  same 

oligonucleotide  specific  for  the  telomeric  ends  of  the  sub-

chromosomic macronuclear genes of  Euplotes was alternatively 

used, as forward and reverse primer, in combination with either 

one  of  two  oligonucleotides  specific  for  the  two  universally 

conserved  HSP70  sequence  stretches  N31DQGNRTTP39,  and 

Q481IEVTFDID489 (numerations  according  to  the  Drosophila 

melanogaster  HSP70 sequence). The determined sequences did 

not contain introns and bear open reading frames: in E. focardii, 

of 1983bp specific for a protein of 660 amino acids; in E. nobilii, 

of  1980bp specific for a protein of 659 amino acids. The HSP70 

protein of  E. focardii has a calculated molecular mass of 71.8 

KDa and a theoretical pI of 4.8; in  E. nobilii, it has a calculated 

molecular mass of 71.6 KDa and a theoretical pI of 4.9. 

The degree of HSP70 sequence identity between E. focardii and 

E. nobilii is 84.5% and, as shown in Fig. 5, it is only the E. focardii 

HSP70 sequence  that  bears  potentially  significant  amino  acid 
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substitutions at the level of its two major functional domains, i. 

e.,  the  ATP-binding  and  substrate-binding  domains.   Four 

substitutions in particular,  i.  e.,  M for K/R449, A for P463 and 

P446, and I  for V469 (numeration according to the rat HSP70 

sequence),  appear  of  more immediate  interest  as they lie,  as 

shown  in  Fig.  6,  in  the  two  loops  that  delimit  the  substrate-

binding pocket. These loops are in fact directly involved in the 

conformational changes induced by ATP hydrolysis and needed 

for  the  HSP70  chaperonic  activity  (Sriram  et  al., 1997; 

Morshauser et al., 1999). Less clear is the functional relevance of 

the other substitutions, mostly falling in the ATP-binding domain 

that reveals a strict conservation of all its functional key residues 

for  ATP  hydrolysis  and  ATP/ADP  conversion  (Zhang  and 

Zuiderweg, 2004).
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Fig.  5: Amino acid substitutions that occur in E. focardii at the 
level of its HSP70 ATP- and substrate-binding domains, and are 
unique with respect to E. nobilii and other organisms. Numbers 
of the amino acid positions are reported essentially according to 
Sriram et  al.,  (1997) and Morshauser  et  al.,  (1999).  Asterisks 
indicate identities. The consensus sequence was produced from 
an  alignment  of  HSP70  sequences  available  at  the  NCBI 
GeneBank database.
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Fig.  6:  Molecular  architecture  of  the  HSP70  substrate-binding 
domain showing the positions of  the amino acid  substitutions 
that  distinguish  this  domain  in  E.  focardii  with  respect  to  E. 
nobilii and other organisms. Amino acid positions and loops are 
numbered according to the rat HSP70 structure represented by 
Morshauser et al., (1999). Of each triplet of amino acids, the first  
one (bold) is present in the HSP70 sequence of  E. focardii, the 
second one (italics) in E. nobilii, and the third one (normal style) 
in other organisms. The two amino acid residues delimiting the 
substrate binding domain are enclosed in boxes.



Structure of the non-coding regions

The coding regions of the hsp70 E. focardii and E. nobilii genes 

are flanked by short 5’-leader and 3’-trailer non-coding regions, 

ending  with  blocks  of  inverted  5’C4A43’/3’G4T45’  telomeric 

repeats typical  of the subchromosomic macronuclear genes of 

Euplotes (Hofmann et al., 1995; Jahn and Klobutcher, 2002).

As shown in Fig. 8, the 5’ region differs between the two species 

in length (379 nucleotides in E. focardii versus 152 in E. nobilii) 

and  the  sequence  motif  that  identifies  the  site  of  the 

transcription  initiation  (GAAAA in  E.  focardii and  GTAAA in  E. 

nobilii).  Nevertheless,  in  both  the  species  it  harbors  the  cis-

acting elements denominated HSE (from  Heat-Shock  Elements) 

and StRE (from Stress-Response Elements), that are known to be 

targets of trans-acting transcriptional activators characterized in 

a variety of organisms in association with their stress-inducible 

genes (Kobayashi  and McEntee,  1993; Fernandes  et  al., 1994; 

Ruis  and  Schuller,  1995).  One  class  of  these  activators, 

designated as HSF (from Heat-Shock Factor) and first described 

in yeast and humans, is specific for the HSE elements (Pirkkala 

et  al., 2001);  a  second  class,  represented  by  the  Msn2p and 

Msn4p  factors  containing  Zn-finger  domains,  is  StRE-specific 

(Schmitt and McEntee, 1996; Estruch, 2000). 

In  the  hsp70 5’  region  of  E.  focardii,  the  HSE  elements  are 

identified by four contiguous sequence motifs inserted between 

positions  138  and  158  and  characterized  by  repeats  of  the 
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pentameric  consensus  sequence  nGAAn  and  the  relative 

complement  nTTCn  (in  which,  n  stands  for  any  nucleotide); 

instead, the StRE elements are identified by four not contiguous 

motifs, i.  e.,  T202CCCT, A253GAGG, C286CGCT, and C322TCCT, that 

overall  bear  4/5  agreement  with  the  consensus  sequences 

AGGGG and CCCCT.

In  E. nobilii, the HSE and StRE elements are practically half in 

number compared to E. focardii, most likely as a consequence of 

the  shorter  length  of  the  hsp70 5’  region.  Three  nGAAn 

pentameric  units  identify  HSE  elements  that  have  a  non-

canonical, discontinuous arrangement between positions 38 and 

55, the first and second units being separated from one another 

by  a  gap  according  to  the  known  model 

nGAAn(3bp)nGAAnnTTCn  (Yamamoto  et  al., 2005).  Two  StRE 

elements  are,  instead,  identified  by  the  motifs  T77CCCT  and 

T116GGGG,  that  bear  4/5  agreement  with  the  consensus 

sequences CCCCT and AGGGG.

Unlike  the  5’  promoter  region,  as  shown in 63,  the  hsp70 3’ 

region varies between the two species with regard to at least two 

aspects.  One is  relative to  the putative  polyadenilation signal 

(represented by TATAAA and TAATAA motifs in E. focardii and E. 

nobilii, respectively), and the second one, more important in this 

context, is relative to the  adenine-rich elements, designated as 

ARE and identified  by ATTTA sequence  motifs, that  affect  the 

stability of many post-transcriptionally regulated mRNA in genes 
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encoding  stress  proteins,  as  well  as  cytokines  and  other 

regulatory  proteins  (Barreau  et  al., 2006).  One  of  these  ARE 

elements is present in the hsp70 3’ region of E. nobilii between 

positions 2176 and 2180; none in E. focardii.
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Fig.  7: Nucleotide sequences of the 5’regulatory regions of the 
E.  focardii and  E.  nobilii HSP70  genes.  The  telomeric  C4A4 

repeats are shaded; the transcription initiation ATG codons are 
in bold; putative sites for the transcription initiation are boxed; 
sequence  motifs  bearing  agreement  with  HSE  and  StRE 
elements are over-lined and underlined, respectively.
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Fig.  8: Nucleotide sequences of the 3’regulatory regions of the 
E. HSP70 genes.  Telomeric G4T4 repeats are shaded; the stop 
TAA  codons  are  in  bold;  putative  polyadenilation  motifs  are 
boxed; the ATTTA motif, indicative of an mRNA destabilization 
ARE element, is underlined in the E. nobilii sequence.



Conclusions

Rare are the cases  of  organisms that  no longer respond to a 

heat-shock by promptly activating the expression of their hsp70 

genes. They appear limited to species such as  Hydra oligactis 

(Bosch  et  al., 1988;  Geller et  al., 1992)  and  Trematomus 

bernacchii (Hofmann  et al., 2000) that, like  E. focardii, show a 

close and long adaptation to living in thermally stable waters. In 

H.  oligactis the  loss  of  an  effective  heat-shock  response  has 

been  shown  to  essentially  reside  in  an  unusually  rapid 

degradation of the hsp70 mRNA (Brennecke et al., 1998), while 

in T. bernacchii the causes have been tentatively associated with 

alterations in the  hsp70 transcriptional mechanism (Buckley  et 

al., 2004; Place et al., 2004; Hofmann et al., 2005). 

In the case of  E. focardii, the absence of ARE elements in the 

hsp70 3’ region would exclude a rapid mRNA degradation, that 

occurs in  H. oligactis  (Brennecke  et al., 1998). It thus appears 

more  reasonable  to  accept  a  hypothesis  based  on  the 

coexistence of  regulatory  cis-acting elements of both the HSE 

and StRE types in the  hsp70 5’  region, and implying that the 

hsp70 gene  transcription  is,  at  least  in  principle,  under  the 

control  of  two  distinct,  independent  mechanisms:  one,  HSE-

modulated, more specific for a response to a stress of thermal 

nature; the other, StRE-modulated, more specific for a response 

to a broader range of non-thermal stresses. Should this be the 

case, the adaptation of E. focardii to the stably cold waters of the 

64



Antarctic coasts would have determined a selective silencing of 

only  the  former  mechanism,  it  being  no  longer  useful  in  an 

organism exposed to  no  environmental  thermal  stimulus.  The 

latter mechanism, still having a protective function against other 

environmental  stimuli,  would  instead  have  maintained  its 

activity.  How  might  evolutionary  adaptation  have  operated  in 

silencing the HSE-modulated mechanism? The fact that the HSE 

consensus  sequence  presents  an  orthodox  organization  would 

exclude that this silencing directly depends on a defective HSE 

structure; rather, it suggests that the causes are likely to reside 

primarily in a mutated capacity of the HSF trans-acting factors to 

bind and activate HSE.  Credit  for  this  hypothesis  derives also 

from the knowledge that the yeast HSF, as well as the human 

HSF1 may lose their heat-activation functions, yet still preserve 

the  capacity  to  induce  the  basal  hsp70 gene  transcription 

necessary  for  the  organism  viability  (Smith  and  Yaffe,  1991; 

Trinklein  et  al., 2004;  Yamamoto  et  al., 2005;  Yamamoto  and 

Sakurai, 2006).
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Chapter 2

Plasticity of the HSR in two phylogenetically 
related marine species of Euplotes: E. nobilii and 

E. raikovi
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Introduction

Temperature, a key factor in establishing growth, reproduction, 

and  distribution  of  organisms,  lacks  spatial  and  temporal 

constancy  in  the  majority  of  the  environments  with  very  few 

exceptions  such  as  the  cold  coastal  sea  water  of  Antarctica 

where the temperature rarely varies from the freezing point of 

seawater:  -1.86°C.  For  this  reason,  living  organisms  employ 

diverse adjustments at multiple levels of biological organization 

(from physiological to molecular mechanisms) to deal with the 

fluctuating  nature  of  the  thermal  environment  (Precht,  1973; 

Cossins and Bowler, 1987; Hochachka and Somero, 2002). One 

of such response, the Heat shock response (HSR), consists in the 

rapid induction of a specific set of proteins known as Heat shock 

protein  (HSPs)  following  an  acute  increase  in  temperature 

(Lindquist,  1980).  HSPs  are  molecular  chaperones  that  play 

important  roles  in  protein  biosynthesis  and  protection  from 

thermally induced protein denaturation and aggregation across 

virtually every taxa (Parsell et al.,, 1993; Hartl and Hayer-Hartl, 

2002). In general, HSPs expression is considered a good marker 

for  estimating  the  physiological  effects  of  thermal  variation 

because their expression is extremely sensitive to temperature 

and reflects the thermal as well as the evolutionary history of 

organisms (Feder and Hofmann, 1999). In the last few years, the 

induction of HSPs has readily become important to ecologist and 
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evolutionary biologists as a model of environmental  controlled 

gene  expression  and  source  of  phenotipyc  plasticity.  Current 

research (see Feder and Hofmann, 1999 as review), is addressed 

to investigate the processes underlying the plasticity of the HSR 

response from an integrate point of view, comprehensive of the 

molecular,  evolutionary and ecological  aspects.  To this regard, 

useful  models to analyse these issues are represented by two 

species  of  ciliates,  which  are  endemic  in  Antarctic  coastal 

seawater, Euplotes focardii and E. nobilii (Valbonesi and Luporini, 

1990, 1993; unpublished results). In a previous study (La Terza 

et  al.,  2001)  we showed that  Euplotes  focardii and  E.  nobilii, 

which behave as psychrophile and psychrotroph microorganisms, 

respectively,  deeply  diverge  in  their  capacities  to  respond  to 

thermal  stress  with  an  activation  of  the  transcription  of  their 

hsp70 genes, a universally conserved HSPs, whose function is to 

assist cells in defence against environmental stresses (Frydman 

and Hartl, 1994). Following a thermal stress, only E. nobilii is able 

to strongly activate the transcription of its hsp70 genes while, E. 

focardii does not  show any appreciable induction of  its  hsp70 

genes,  thus suggesting that the  hsp70 genes of this Antarctic 

ciliate  have  greatly  reduced  a  function  which  is  apparently 

useless in the thermally immutable environment where it lives. 

Thus, E. focardii offers one of the most extreme case of plasticity 

of the HSR: it has been lost altogether.

This  and  other  major  features  such  as  the  structural 
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modifications  of  tubulin  genes  to  ensure  microtubule 

polymerization in the cold (Pucciarelli et al., 2002; Pucciarelli and 

Miceli,  2002)  strongly  support  the  idea  that  E.  focardii is  an 

ancient colonizer of Antarctica and among the several species of 

Euplotes collected from different site in Terra Nova Bay, one of 

the most cold-adapted. This hypothesis is further sustained by 

data  from  SSrRNA  analysis  that  date  the  separation  of  this 

species from an ancestral Gondwana species much earlier than 

the biogeographical isolation of Antarctica caused by the circum-

Antarctic Current about 25 million year ago (Di Giuseppe et al., 

unpublished results). 

Differently,  the  SSrRNA  data  and  the  typical  psychrotroph 

behaviour suggest that E. nobilii can be regarded as a secondary 

colonizer of Antarctica. This species has retained the capacity to 

switches  on  the  transcription  of  its  hsp70 genes  when  it  is 

transferred from an environmental temperature of 4°C to 20°C. 

Thus, it  may be regarded as one of the many organisms that 

faces thermal stress with new synthesis of heat-shock proteins. 

Only the threshold temperature of 20°C at which this synthesis is 

switched on is somewhat unusual. Indeed, it is markedly lower 

than  the  35°C  required  for  the  induction  of  hsp70  gene 

transcription  in  other  ciliates  of  temperate  waters,  such  as 

Oxytricha nova (Anderson et al., 1996) and Moneuplotes crassus 

(Ullmann et al., 2004). 

In order to gain insights in the molecular mechanisms regulating 
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thermal  threshold for hsp70 genes in E. nobilii we carried out a 

comparative analysis of the full-length structures between this 

gene and its homolog cloned from E. raikovi a  phylogenetically 

related species, inhabiting temperate waters and thus, adapted 

to  a  fluctuating  thermal  environment  in  a  range  of  8-32°C 

(during the year in the Adriatic Sea). Moreover, we identified the 

minimum heat shock temperature (Ton) required to induce hsp70 

gene  transcription  in  E.  raikovi and  we  performed  an 

examination of the DNA-binding activity of Heat Shock Factors by 

means of EMSA approaches in both species. Preliminary results 

from this study support the idea that the modification of the Ton 

of  E.  nobilii (20°C  vs  35°C  of  E.  raikovi)  might  reside  in  a 

mutated  capacity  of  the  transcriptional  (trans-acting)  factor 

(HSF) to bind and activate HSE.

Materials and Methods

Cell cultures

The  results  described  in  this  article  were  obtained  from 

experiments carried out on cultures of strains TN1 (E. nobilii) and 

ER1  (E.  raikovi).  TN1  strain  was  isolated  from  sediment  and 

seawater samples repeatedly collected from the coastal waters 

of Terra Nova Bay (temperature, –1.8°C; salinity, 35‰; pH, 8.1– 

8.2) (Valbonesi and Luporini, 1990a,b, unpublished). This culture 

was grown in a cold room at 2– 4°C, under a rhythm of 16 h of 

darkness  and  8  h  of  very  weak  light.  E.  raikovi was  instead 
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collected  from sea  water  of  Porto  Recanati  (Italy)  and  it  was 

grown  at  room  temperature  (23°C),  in  marine  water 

characterized  by  salinity  29-30%  and  pH  8.1-8.2.  The  daily 

light/darkness cycle was divided equally (12h/12h). For both the 

cultures Dunaliella tertiolecta green algae was used as food. The 

cells  were  subject  to  stressing  treatment  during  logarithmic 

phase.

Stress Conditions

Cells  were  stressed accordingly  to  the following protocol.  The 

right amount of cells per sample (read further) was gathered by 

mild  centrifugation  (about  3000rcf)  in  large  volume  tube 

(150ml/175ml) from cultures raised at best conditions. Then the 

cells  were  abruptly  shocked  in  pre-heated  marine  water  for 

appropriate time and temperature:  for total  RNA extraction  E. 

raikovi was treated 30 minutes at 30°C, 35°C and 40°C, while E. 

nobilii was  treated  30  minutes  at  15°C,  20°C  and  25°C;  for 

nuclear extraction E. raikovi was shocked at 40°C, while E. nobilii 

at 25°C, both for 30 minutes. In every experiment a control was 

sampled considering as a control the best growing temperature. 

Samples were then collected by centrifugation, separated from 

the  culture  medium,  and  treated  for  nuclear  protein  or  RNA 

extraction.

Nuclear extracts

For  every  nuclear  extraction  about  three  million  cells  for  E. 

nobilii and about four million cells for E. raikovi  were used. The 
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integrity of the nuclei was controlled during every step using a 

fluorescence  microscope  and  DAPI  2g/ml  for  staining  nuclei. 

Cells were first collected by centrifugation and then transferred 

in  a  1.5ml  tube,  after  they  were  resuspended in  Lysis  Buffer 

(320mM  sucrose,  10mM  Tris-HCl  pH  8.0,  3mM  CaCl2,  2mM 

MgOAc,  0.1mM EDTA,  0.2% v/v  NP-40,  1mM DTT,  and 0.5mM 

PMSF)  and  kept  for  3  minutes  on  ice.  Membranes  and  nuclei 

were then precipitated at 500rcf at 4°C for 5 minutes and the 

supernatant was discarded. The pellet was gently washed with 

Sucrose  Buffer  (320mM sucrose,  10mM Tris-HCl  pH  8.0,  3mM 

CaCl2, 2mM MgOAc, 0.1mM EDTA, 1mM DTT, and 0.5mM PMSF) 

and centrifuged again at 500rcf at 4°C for 5 minutes. Low Salt 

Buffer  (20mM HEPES,  1.5mM MgCl2,  20mM KCl,  0.2mM EDTA, 

25%  v/v  glycerol,  0.5mM  DTT,  0.5mM  PMSF,  1X  Cocktail 

Proteases Inhibitors) was added to resuspend gently the intact 

nuclei and then High Salt Buffer (20mM HEPES, 1,5mM MgCl2, 

800mM Kcl, 0,2mM EDTA, 25% v/v glycerol, 0.5mM DTT, 0.5mM 

PMSF, 1X Cocktail Proteases Inhibitors) was added carefully and 

mixed slowly. The nuclei were left to shake mildly at 4°C for 45 

minutes and after that period the tube was centrifuged no more 

than 14000rcf for 15 minutes at 4°C. Finally the supernatant was 

recovered  and  stored  in  liquid  nitrogen.  Protein  concentration 

was estimated using the Bradford method.

DNA extraction

DNA necessary for amplification in RATE-PCR was extracted from 
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E. raikovi cells using urea method. The about 5 million cells were 

pelleted  at  3000rpm  for  5  minutes  in  a  1,5ml  tube.  The 

supernatant was wasted and cells were resuspend in 0,7ml of 

urea buffer (350mM NaCl, 5mM Tris-HCl ph7.4, 0,1%SDS 10mM 

EDTA,  7M  Urea).  The  mixture  in  the  tube  was  mixed  for  5 

minutes  and  then  followed  twice  by  extraction  with  500µl  of 

Phenol/Chloroform/Isoamilic Alcohol (1:1:1 volume ratio) to get 

rid of  cellular  debris.  The aqueous phase containing DNA was 

collected after centrifugation at ≈16000rcf for 2 minutes. 500µl 

were recovered from the tube, transferred in a clean one and 

then mixed with 150µl of NaCl 5M. Isopropilic Alcohol was added 

to the solution, well mixed and then centrifuged at ≈16000rcf for 

10  minutes  at  room temperature.  Supernatant  was  discarded 

and pellet containing DNA was washed twice with Ethanol 70% 

and then allowed drying. The pellet was resuspended in 50µl of 

sterile  water  together  with  2µl  of  RNAse  A  (3mg/ml)  and 

incubated  at  55°C  for  2  hours.  Incubation  was  followed  by 

another  extraction  with  Phenol/Chloroform  (1:1)  to  remove 

RNAse  A  and  digested  nucleotides.  The  aqueous  phase  was 

recovered  and  then  it  was  mixed  with  LiCl  0,5M  and  cold 

absolute Ethanol (1:1 volume ratio),  stored at -20°C for 1hour 

and centrifuged at max speed for 15 minutes. The purified DNA 

was resuspended in sterile water, quantified and stored at -20°C 

for further use.
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RNA extraction

RNA  was  extracted  from  a  varying  amount  of  Euplotes cells 

(ranging between 3.5 and 6 millions) using Trizol and following 

the protocol provided by GibcoBRL. The RNA was quantified and 

its  purity  estimated  using  U.V  light  spectrophotometry 

(Sambrook et al., 2003).

Northern Blot Analysis

Northern  blots  analysis  was  performed  according  to  standard 

procedures  (Sambrook  et  al.,  2003),  after  electrophoresis  on 

1.2% formaldehyde agarose gels. All hybridizations were carried 

out  on  Hybond-N membranes  overnight  at  65°C in  a  solution 

containing 6xSSC, Denhardt solution, 0.1% SDS, and 100µg/ml 

denatured tRNA.  Blotted membranes were washed under high 

stringency  conditions  (0.5xSSC  containing  0.1%  SDS)  at  the 

hybridization  temperature,  dried,  and  exposed  for 

autoradiography.  Probes from the ATPase domain of  E.  raikovi 

hsp70 gene and from 16S ribosomal subunit gene, were labelled 

with 32P by the random hexamer priming method (Feinberg and 

Vogelstein, 1984).

RATE-PCR strategy

To amplify  the whole  hsp70 gene,  we exploited the gene-size 

structure  of  macronuclear  DNA  using  degenerated  primers  in 

combination with unspecific primer matching telomeres (C4A4) in 

a technique that is called Rapid Amplification Telomeric Ends or 

RATE-PCR (Hoffman et al., 1995). The HSP70 gene sequence at 
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the  5’  end  was  obtained  by  subjecting  macronuclear  DNA 

samples  of  E.  raikovi to  a  first  set  of  30–35  cycles  of 

amplification. This used, as reverse primer, the oligonucleotide 

5’-GCATCIATATCIAAIGTIACITCIAT-3’  (where  I  stands  for  Inosine) 

specific  for  the  HSP70  motif  Q481IEVTFDID489 and,  as  forward 

primer, the telomeric oligonucleotide 5’-(C4A4)4-3’. The sequence 

at the 3’end was obtained in a similar way by a second set of 

30–35  amplification  cycles  using,  as  forward  primer,  the 

oligonucleotide 5’-AAIGATCAAGGIAAIAGAACICC-3’ specific for the 

HSP70 motif N31DQGNRTTP39 and again, as reverse primer, the 

telomeric  oligonucleotide  5’-(C4A4)4-3’.  The  two  full-length 

sequences  were  eventually  reconstructed  by  overlapping  the 

sequences of the cloned PCR products, and their uniqueness was 

confirmed by direct sequence analysis of PCR products obtained 

using specific primers.

Gene cloning and sequencing

Amplified products were cloned into the pCR 2.1-TOPO vector of 

the  TOPO TA cloning  Kit  (Invitrogen)  following  the  procedures 

suggested by the supplier. Sequence reactions were carried out 

with the ABI Prism sequence analyzer, Model 373A, by using the 

Big Dye Terminator Methodology (PE Applied Biosystems).  The 

sequences were performed by an external service, CRIBI, settled 

in Padova (PD) Italy. Sequence alignments was performed using 

Clustal W (Thompson et al., 1994).
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Database

The domains in the translated coding sequence were found using 

SMART  services  and  their  databases:  http://smart.embl-

heidelberg.de/

PCR of promoter region

Specific  primers  designed  to  exclude  putative  StRE  elements 

where used to obtain  only HSE sequences from the promoter 

regions.  Clones containing the leading telomere,  the whole 5' 

leader sequence and part of hsp70 gene of both E. nobilii and E. 

raikovi were selected as template.

To  amplify  E.  raikovi HSE  were  used  5'-TGAGAGAATTC-

CCCTAGAAGGTTCTAGACGG-3'  (EcoRI  restriction  site  at  the 

beginning)  as  forward  primer  5'-TGAGAGAATTC-

GCATGAGCTCGTCGATTTATTGT-3' (EcoRI restriction site at the end 

and modification on putative StRE) as reverse primer giving a 

product 95bp long (76bp of amplified HSE promoter plus 19bp of 

restriction sites).

To  amplify  E.  nobilii HSE  were  used  5'-TGAGAGAATTC-

CCCGGTAATAGGTGAATTGT-3'  (EcoRI  restriction  site  at  the 

beginning)  as  forward  primer  and  5'-TGAGAGAATTC-

TCGAACTTTAGAGAAACTTCGA-3'  (EcoRI  restriction  site  at  the 

end) as reverse primer,  giving a products 89bp long (67bp of 

amplified  HSE  promoter  plus  22bp  of  restriction  sites). 

Amplification products were then digested (or accordingly double 

digested) with needed restriction ezyme (EcoRI or EcorRI/NotI) 
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using standard conditions for reaction.

Filling-in amplified HSE

Filling-in  of  digested  fragments  was  the  chosen  method for 

radiolabeling  the  HSE  promoters.  DNA was  mixed  with  buffer 

(provided together with Klenow's fragment by Fermentas), BSA 

0.2µg/µl, dNTP (excluded ATP) 20µM, 2-3µl [ -32P]ATP, water to  

final volume 50µl and 5U Klenow's Fragment added at the very 

end to start reaction in the tube. The solution was incubated for 

1,5  hours  at  37°C.  Finally  the  probe  was  precipitated  with 

ammonium  acetate  and  cold  absolute  ethanol,  washed  twice 

with  ethanol  80%  and  then  resuspended in  sterile  water  for 

further use. 

Gel retardation electrophoresis

About 30µg of nuclear extraction were incubated with 15ng of 

radio labelled probe (obtained with the filling-in method) in EMSA 

buffer (10mM Tris-HCl pH 7.5, 50mM NaCl, 2.5mM MgCl2, 4% v/v 

Glycerol, 0,5mM DTT, Cocktail proteases inhibitors 1X, PolydI-dC) 

for 45 minutes at 25°C. After that, samples were transferred on 

ice until they had been loaded in the gel.

Gel  retardation was performed in 5% polyacrylamide gel  (TBE 

1X, 2,5% v/v Glycerol), with TBE 0,5X as running buffer. Samples 

were run for 1 hour and half at constant 120V.

Screening of the sample

After run, gel was washed in destainig solution (40% methanol, 

10% acetic acid) for 15 minutes waiting for bromophenol blue to 
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turn green. Then the gel was dried on a gel drier and exposed to 

a phosphor screen. Shift of the bands signals were detected by 

means of a personal Molecular Imager FX (Bio-Rad).

Results and Discussion

hsp70 gene activation in response to thermal stress in E. nobilii 
and E. raikovi

By means of Northern-blot  analysis,  in a preliminary phase of 

this  study  we  characterized  the  minimum  Heat  shock 

temperature (Ton) required to activate hsp70 gene expression in 

the sister species of  E. nobilii inhabiting temperate waters,  E. 

raikovi (La Terza et al.,  unpublished).  Total  RNA samples were 

obtained from cells grown at their standard temperature of 23-

24°C (i.e. non heat shocked) and cells that were either exposed 

to a set of increased temperatures, i.e.  28, 35 and 40°C for 30 

minutes, following an abrupt heat-shock protocol as described in 

Materials and Methods. RNA samples were also obtained by  E. 

nobilii cells  at  their  growing  temperatures  of  4°C  and  heat 

shocked  at  the  temperature  of  18,  20  and  25°C.  All  RNA 

preparations  were  fractionated  by  electrophoresis  and  blotted 

with homologous hsp70 probes. As shown in Fig.9A, E. raikovi 

cells produced an intense 2.1 Kb band, i.e., the molecular size 

expected  for  hsp70  mRNA,  starting  from  the  temperature  of 

35°C. A more intense hybridization signal showed up in the RNA 

preparation  extracted  at  40°C.  At  this  temperature,  as 

determined by densitometric analysis of the blot, the intensity of 
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signal is 3/4-fold greater than that at 35°C and thus suggesting 

that this species is able to modulate the expression of its hsp70 

genes according to the intensity of the thermal stress stimuli. 

This behaviour is somewhat expected in a species living in highly 

fluctuating thermal environment (Tomanek and Somero, 2002). 

On the contrary and as shown in Fig.9B,  E. nobilii is capable to 

activate  the  expression  of  its  hsp70  genes  at  the  unusual 

temperature of 20°C. Moreover,  E. nobilii heat-shocked at 25°C 

increased only 1-fold the amount of its hsp70 mRNA with respect 

to that at 20°C. Altogether, these observations strongly suggest 

that E. nobilii might have lost the capacity to properly modulate 

the expression of its  hsp70 probably,  as a consequence of its 

evolution at sub zero temperature.

Characterization of E. raikovi hsp70 gene sequence

The full-length sequences of the  E. raikovi hsp70 macronuclear 

gene of 2272 base pairs (bp), was reconstructed by overlapping 

the  sequences  of  the  two  cloned  RATE-PCR  products,  one  of 

1577bp containing the 5’end and the other of 2053bp containing 

the  3’  end.  Its  uniqueness  was  confirmed by direct  sequence 

analysis  of the product of a PCR amplification, in which an  E. 

raikovi DNA  preparation  was  used  as  template  for  primers 

represented  by  two  oligonucleotides  spanning  the  sequence 

segments  of  25 bases  immediately  adjacent  to  the 5’  and 3’ 

telomeric repeats  of  the  cloned  hsp70 gene  sequences.  The 

determined  hsp70 gene sequence is intronless and shows and 
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open  reading  frame  of  2034bp,  spanning  from  the  initiation 

codon ATG at nucleotide 133 to the termination codon TAA at 

nucleotide 2166. The coding region is flanked by a 5’-leader and 

a  3’-trailer  untranslated  region  of  104  and  78  nucleotides, 

respectively each one ending with a block of inverted 5’-C4A4-

3’/3’-G4T4-5’ telomeric repeats.

Structural and functional features 

The ORF of E. raikovi hsp70 gene encodes a protein 677 amino 

acids protein with a calculated molecular mass of 72.9kDa and 

an  isoelectric  point  (pI)  of  5.  The  Hsp70  protein  of  E.  nobilii 

presents slight differences with respect to that of E. raikovi, since 

that  has  a  calculated  molecular  mass  of  71.6  kDa  and  a 

theoretical pI of 4.9 (La Terza et al., 2004). The degree of Hsp70 

sequence identity between  E. raikovi and  E. nobilii is 90.4% In 

Fig.10 is shown a comparison of the  E. nobilii Hsp70 sequence 

with that of E. raikovi. In this sequences, the three characteristic 

functional domains of all Hsp70 proteins, may be recognized: the 

ATPase domain, the HDAC interacting domain and the substrate 

binding  domain.  Moreover,  both  Hsp70  proteins  present  the 

classical  signature patterns for the Hsp70 family of protein as 

defined in Prosite database. The first signature is centred on a 

conserved  peptide  found  in  the  N-terminal  section  of  these 

proteins ([IV]-D-L-G-T-[ST]-x-[SC], prosite ID HSP70_1 PS00297), 

the two others are centered on conserved regions located in the 

central part of the sequence ([LIVMF]- [LIVMFY]-[DN]-[LIVMFS]-G-
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[GSH]-[GS]-[AST]-x(3)-[ST]- [LIVM]-[LIVMFC], prosite ID HSP70_2 

PS00329  and  [LIVMY]-x-[LIVMF]-x-G-G-x-[ST]-{LS}-[LIVM]-P-x-

[LIVM]-x-[DEQKRSTA],  prosite  ID  HSP70_3  PS01036).  The  only 

difference detectable in the primary structure of these proteins is 

localised in the C-terminal region where the Hsp70 of E. raikovi 

owns a longer stretch of glycine rich motifs.
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Fig. 9: Northern blot analysis of total RNA preparations from E. 
raikovi and E. nobilii exposed to different temperatures. Equal 
RNA amounts (40µg) were fractionated by electrophoresis, 
blotted, and hybridized with a probe represented by the hsp70 
gene sequence specific for the protein catalytic domain. Probe 
was used at equal numbers of counts per minute in both 
Northern Blots.
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Fig. 10: Alignment of the inferred aminoacid sequences of E. 
nobilii (upper) and E. raikovi (lower) HSP70. The various HSP70 
signature motifs are boxed and labeled. The various domains 
are shaded in different kinds of grey in the following order: 
ATPase domain, HDAC interacting domain, Substrate Binding 
domain. Colon and dot marks indicate similar aminoacids. The 
glycine rich region is boxed and labeled. 



Structural features of the hsp70 gene regulatory regions

As shown in Fig.11, the 5’ leader regions slightly differs between 

the two species in length (104 nucleotides in  E. raikovi versus 

152 in  E. nobilii).  Nevertheless, in both the species this region 

harbours two types of stress inducible motifs: HSE (from Heat-

Shock  Elements)  and  StRE  (from  Stress-Response  Elements). 

HSE consist of at least three inverted repeats of the sequence 

motif 5’nGAAn3’ alternate with the complement sequence nTTCn 

(in which, n stands for any nucleotide). In general, a functional 

HSE can tolerate a maximum insertion of 5-7bp between each 

motif  (Fernandes  et  al.,  1994;  Sorger,  1991).  The  StRE  are 

characterised by the consensus sequences AGGGG and CCCCT 

(Kobayashi  and  McEntee,  1993;  Schmitt  and  McEntee,  1996). 

Both  elements  are  known  to  be  targets  of  trans-acting 

transcriptional activators characterized in a variety of organisms 

in association with their stress-inducible genes (Kobayashi and 

McEntee, 1993; Fernandes et al., 1994; Ruis and Schuller, 1995). 

One class  of  these activators,  designated as  HSF (from Heat-

Shock Factor) and first described in yeast and humans, is specific 

for  the  HSE  elements  (Pirkkala  et  al.,  2001);  a  second  class, 

represented  by  the  MSN2P and  MSN4P factors  containing Zn-

finger  domains,  is  StRE  specific  (Schmitt  and  McEntee,  1996; 

Estruch, 2000).

In the hsp70 5’ region of E. raikovi, we identified a canonical HSE 

motif lying between the nucleotides 30 and 62. This HSE element 
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is  characterized  by  two contiguous repeats  of  the pentameric 

consensus sequence nGAAn and its complement nTTCn between 

nucleotides 30 and 39, followed by a third repeat separated from 

the second repeats by a gap of seven nucleotide. Moreover, a 

fourth units is placed six nucleotides downstream the third one. 

We  can  summarize  the  formula  of  this  HSE  as 

nGAAnnTTCn(7bp)nGAAn. A single StRE identified by the motif 

A86GGCG  that  bears  a  4/5  agreement  to  the  consensus 

sequences  AGGGG  and  CCCCT  is  positioned  24  nucleotides 

downstream the fourth HSE motif.

On the contrary the  hsp70 5’ region of  E. nobilii,  bears a HSE 

motif  with  non-canonical,  discontinuous  arrangement  between 

positions 38 and 55, and two StRe elements identified by the 

motifs T77CCCT and T116GGGG, that bear 4/5 agreement with the 

consensus sequences CCCCT and AGGGG. This HSE is composed 

by  a  single  nGAAn  repeats  followed  by  two  more  repeats 

(nnGAAnnTTCn)  after  a  gap  of  three  bases.  According  to 

Yamamoto et al., (2005) this HSE can be classified as gap type. 

nGAAn(3bp)nGAAnnTTCn.  Several  authors  confirmed  that  this 

variations in the architecture are fully functional (Fernandes et 

al., 1994a,b; Santoro et al., 1998;  Tachibana et al., 2002).

Unlike the 5’ promoter region, as shown in Fig.12, the hsp70 3’ 

region  presents  a  common/uniform  structure  in  both  length 

(78bp in E. raikovi and 90bp in E. nobilii) and type of regulatory 

motifs.  Both  regions  present  the  adenine-rich  elements, 
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designated as ARE and identified by ATTTA sequence motifs, that 

affect  the  stability  of  many  post-transcriptionally  regulated 

mRNA in genes encoding stress proteins, as well  as cytokines 

and other regulatory proteins (Barreau et al., 2006)

HSF activation

Since that  hsp70 transcription of the depends on HSE elements 

in response to heat shock, we assayed the functionality of the 

promoters  and  if  there  were  factors  able  to  bind  to  the  HSE 

elements that are present in the 5' leader sequences. To exclude 

any other possible  binding motif  than HSE we have amplified 

only the region containing the HSE elements both in  E. nobilii 

and  E.  raikovi taking care of isolating them from the putative 

StRE elements. For this reason, we designed primers matching 

the region flanking the HSE and mutating some of  the bases 

constituting part of the putative StRE elements. Nuclear proteins, 

extracted  from  unshocked  and  heat-shocked  cells  were  then 

tested  with  radiolabeled  probes  made  as  stated  before.  The 

autoradiography Fig.13 in the two Euplotes that both the control 

sample and the shocked sample have a factors able to bind the 

probe, which suggest that the putative HSE transcription factor is 

constitutively positioned on the HSE. The free probe cumulating 

at the gel bottom in the first lane means that the bands are not 

an artefact due to the probe itself, while the competitive binding 

with a molar excess of 25X and 50X of unlabelled probe in the 

last two lanes demonstrates the specificity of binding because 
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the strength of the signals degrades proportionally.
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Fig. 11: Nucleotide sequences of the 5’regulatory regions of the 
E. nobilii and E. raikovi HSP70 genes. The telomeric C4A4 repeats 
are shaded; the transcription initiation ATG codons are in bold; 
sequence motifs bearing agreement with HSE and StRE 
elements are over-lined and underlined, respectively.
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Fig. 12: Nucleotide sequences of the 3’regulatory regions of the 
E. HSP70 genes. Telomeric G4T4 repeats are shaded; the stop 
TAA codons are in bold; secondary in frame TAA codons are 
underlined, putative polyadenilation motifs are bold and 
underlined; the ATTTA motif, indicative of an mRNA 
destabilization ARE element, is boxed in both sequences.
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Fig. 13: Electrophoresis Mobility Shift Assay of HSE probe of 
hsp70 gene promoter. A) E. raikovi B) E. nobilii. In both panels 
there is the same loading scheme. In the first lane, free probe 
without nuclear extract as a negative control. In the second lane 
probe hybridization with extract from non shocked cells. In the 
third lane probe hybridization with extract from shocked cells. In 
the fourth and fifth lanes, 25 or 50- fold molar excesses 
respectively of unlabelled probe as cold competitor were added 
to hybridization reaction with nuclear extracts from shocked 
cells.



Conclusions

This  study  reports  the  complete  hsp70 gene  sequence  of  E. 

raikovi a ciliate inhabiting temperate waters and its comparison 

(at level of coding and non coding, regulatory regions) with that 

of  the  sister  species E.  nobilii, inhabiting  the  constantly  cold 

Antarctic waters (Eastman, 1993; Clarke and Johnston, 1996; Di 

Giuseppe et al., unpublished results). The latter species is able to 

activate the expression of its  hsp70 genes at 20°C, whereas  E. 

raikovi switch on the transcription of its  hsp70 gene at 35°C, a 

thermal threshold shared also by other species of Euplotes from 

temperate waters (Ullmann et al.,  2004).  Considering that the 

genetic  encoding  of  this  plasticity  might  reside  at  several 

locations in the genome (i.e. hsp coding sequence, cis-regulatory 

and  trans-regulatory elements, in co-chaperones and co-factors 

interactions), the simplest approach to get hints in the molecular 

mechanisms regulating the thermal activation of  hsp70 gene in 

E.  nobilii is  offered  by  the  possibility  to  compare  the 

transcriptional machinery of closely related species adapted to 

different  thermal  regimes.  HSP70  sequences  from  the  two 

species  appeared to be very  similar  at  level  of  their  putative 

amino  acid  sequences  and  in  their  3’  regulatory  regions. 

Differences  are  present  in  5’  promoter  region:  this  region 

contains  conventional  HSE  motifs  in  E.  raikovi and  non 

conventional gapped HSE (Fernandes et al., 1994; Sorger, 1991; 

Tachibana et al., 2002) in E. nobilii.  Moreover, investigations by 

96



means of electrophoretic mobility shift  assays (EMSA), showed 

that putative HSF factors able to bind HSE elements are present 

in nuclear extracts from both heat shocked and not shocked E. 

nobilii and E. raikovi cells. Altogether these observations suggest 

that the causes of this inter-specific hsp70 thermal plasticity, are 

likely to reside primarily in a mutated capacity of the HSF factors 

to activate HSE. This might resides in defective post-translational 

mechanisms  of  HSF,  such  as  phosphorylation  or  sumoylation 

(Hietakangas  et  al.,  2006;  Anckar  et  al.,  2006),  or  in  the 

interactions with specific  cofactors  such as Heat Shock Factor 

Binding Proteins.
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