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Abstract

This thesis is on the study of the mechanisms for the production of nonlinear photon-photon
interaction under the condition of Electromagnetically Induced Transparency (EIT), and on
the implementation of a Quantum Error Correction (QEC) scheme adopting a Cavity Quantum
Electrodynamics (CQED) set-up. The latter part of the thesis will be treated in the last chapter.

Large non linear effects are usually accompanied, by a large increase of the absorption. This

fact makes classical nonlinear devices not useful for the purposes of the rapid developing fields of
Quantum Computation and Information. Strong absorption process results in a complete loss of
the information represented by the state of the photons. EIT is a well known process of atomic
coherence, largely studied starting from the seventies together with the discovery of Coherent
Population Trapping (CPT), Lasing Without Inversion (LWT), slow light propagation.
After the recent experimental realization of slowed down light, EIT has experienced a revival
in recent years mainly due to the possible application to Quantum Computation and Quantum
Information (QC&QI). EIT is a process that makes transparent a previously opaque medium
thanks to the interaction with an electromagnetic field. It is a manifestation of the quantum
nature of atoms, that exploits a quantum interference process. In this thesis we will show how an
EIT medium permits to obtain giant non-linear Kerr interaction (up to eight order of magnitude
increase) even at low light level, by the study of several light-atoms scheme. The production
and control of giant cross phase modulation (XPM) is analysed and all sources of noise and loss
will be included in the treatment.

The main goal of this thesis is to study the photon-photon interaction at the level of single

photons in several multilevel schemes. In the full quantum limit we shall concentrate to a specific
light-atoms interaction scheme, the symmetric M scheme (SMS) under the condition of EIT. We
shall study how to implement a Quantum Phase Gate (QPG). Such a gate has been already
experimentally realized for a cavity, but here we want to find the optimal condition to implement
the QPG between flying qubits. To this end we adopt EIT in order increase the photon-photon
interaction: in a cavity such an increase is provided by the small volume of the cavity, while in
EIT it is based on the strong dispersion dn/dw at the center of the transparency window.
Photons represent the best candidates for the implementation of transmission lines for carrying
quantum information, and this is why strong nonlinear photon-photon interaction is particularly
interesting from the point of view of quantum information.
In this scenario the principal goal of this thesis is to analyze the potentiality of a EIT based
device in full quantum regime, for the implementation of the QPG. The quantities that define the
performance of the gate are calculated in detail including decoherence mechanisms and finding
a possible set-up for the experimental realization.

The thesis is organized as follows. In first chapter we review some notions of atom-light
interaction in multilevel atoms, and we introduce the most interesting features of the EIT pro-
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cess. In the second and in the third chapter, we study three different multilevel atomic schemes
in the semiclassical regime. The aim of this chapter is to show how multilevel schemes can be
tailored for the generation of Cross Phase Modulation (XPM). In chapter four we concentrate
on the SMS for the full quantum analisys of the cross Kerr interaction. Conditions for the
implementation of a cross Kerr interaction that gives a conditional phase shift of order 7 are
individuated and for the first time a rigorous evaluation of the fidelity of the gate is performed.

In chapter five we approached the problem of the implementation of a QEC protocol based on
an experimental set-up composed of Rydberg atoms and cavities. We will describe the various
step of the protocol, and we will evaluate the fidelity in the presence of the main decoherence
mechanisms.



Chapter 1

Interaction of Atoms with
Electromagnetic Fields

In this chapter we introduce the atom-field interaction in the semiclassical approach.
After a review of the interaction of a two level atom with an electromagnetic field, we
describe the main properties of Electromagnetically Induced Transparency (EIT) in a
multilevel atomic system, taking into account in a particular the three level A config-
uration. We will describe the linear, nonlinear, as well as the slow light propagation
properties of this three level system. We then introduce the Cross Kerr interaction
in four level system and review the main schemes for the production of Cross Phase
Modulation (XPM). We then give a short introduction to the potential applications of
EIT in this field.

1.1 Interaction of an electromagnetic field with two level
Atoms

The study of the interaction of atoms with electromagnetic fields plays a crucial role in the
analysis of many topics in modern physics. In general the atomic structure is a complicated
multilevel one, but for many applications this multilevel structure can be well modelled by a
much simpler system, as for example the two level approximation. In this paragraph we study the
two level system because, despite its simplicity, it gives a deep insight both for the mathematical
technics adopted as well as for the physical behaviour of multilevel systems.

The two level approximation can be adopted when the applied fields are weak and nearly in
resonance with the atomic transition. A sketch of an atom approximated by a two level system is
represented in Fig.1.1(a). In this situation, only the ground state and the near-resonant excited
levels will enter the dynamics of the system, i.e., only these two levels will be populated under
the action of the electromagnetic field.

Let us consider the two atomic levels |1) and |2) showed in Fig.1.1 and driven by a classical
electromagnetic field. Considering the applied field

E=Ee W e, (1.1)
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Figure 1.1: Two level scheme in the bare (a) and dressed basis (b).

where & is the field’s amplitude and w the angular frequency. In the dipole approximation, the
strength of the atom-field interaction is proportional to the atomic dipole operato. Within the
two level approximation we truncate the infinite dimensional basis over which we evaluate the
dipole moment reducing the Hilbert space to the pair of levels included in the basis B = {|1),]2)}.
The dipole moment of the single two level atom is

d=3"1)a(2luy, (1.2)

where 11,2 = (1]er|2). The total Hamiltonian is the sum of the two terms

H = Hatom + Hint; (13)

where Hgiom represents the free Hamiltonian

Hatom = hon[1) (1] + Fs|2) 2], (1.4)

and H,;,; is the interaction Hamiltonian, i.e., the energy exchanged by the atoms with the field

Hipe = h(]1)(2]Qe™"" + [2)(1]Q"e"™") (1.5)

where Q = —p12€/h represents the Rabi frequency of the applied field, which will give the
time scale at which the atomic population of each atom will oscillate between level |1) and |2).
A standard way to proceed to simplify the mathematical description of multilevel system is to
pass to the Interaction Picture (IP) and Rotating Wave Approximation (RWA). Representing the
physical system in a suitable rotating frame permits to obtain the net effect of the interaction.
This is performed defining

Ho = hwi [1) (1] + i(ws — A)[2)(2, (1.6)
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where A = wy 4+ w1 — w is the detuning, and

U(t) = exp(—1Hot/h), (1.7)

the associated unitary operator.
Applying U(t) to the Hamiltonian (1.3), we get the effective Hamiltonian in the IP

Hepp = U HU(t) — mUT (0U(1), (1.8)
which is exactely given by

Hegp = hoys + (R0 + Q% ), (1.9)
where o_ =[1)(2|, and o = |2)(1], are the rising and lowering atomic operators.

1.1.1 Schrodinger Equation Treatment

In the two level approximation, we can write the most general state of the system as:

[¥(1)) = CL(®)1) + Ca(D)[2), (1.10)

The two coefficients C 5 give the probability amplitude to find the state in level |1) or |2)
respectively, and the time evolution will be obtained solving the Schrodinger equation

d
[ (B)) = Hegs (1)), (1.11)
Which explicitly gives:
dCy Q
o - e
dcC o
d—tQ = —1ACH(t) — 1 Ca (D). (1.12)

These equations can be solved exactly but let us consider two special cases that will give an idea
of the general behaviour of the two level system.

When A = 0 the field is in resonance with the atomic transition. In this case the solutions
corresponding to [¢(0)) = |1) are

Qlt
Ci(t) = cos% (1.13)
B Q* Qi
Cy(t) = fzmlzsm 5 - (1.14)

These equations show that the atomic population oscillates between level |1) and |2), with a
period length determined by the Rabi frequency,

Q Q
[th(t)) = cos 7t|1> — e e gip §|2> (1.15)
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The opposite situation is when the field is far-detuned from the atomic transition A > €. In this
case, although the field hardly excites the atomic system to the excited level, it will have some
effects on the energy of the ground state. If the detuning is much larger then the characteristic
Rabi frequency, we can adopt the adiabatic elimination Cs ~ 0 in the second of Eqgs.(1.13) so to
get

Q*

Co(t) = = Cr(1). (1.16)

Putting this condition into the first of eq.(1.12) we have the expression for the evolution of the

population in level |1),
2
C1(t) ~ C1(0)eH12 /A, (1.17)

As a consequence, the final population won’t be to far from the initial condition. If for exam-
ple the system starts in the ground state |1) it will remain there, with a phase accumulation
depending on the ratio 2/A. The process that induces the phase accumulation can be seen as
a modification of the ground state energy of the atomic system. The energy is shifted by the
amount |Q|?/A, a process known as the ac-Stark shift that will be of great importance in the
next chapters.

An elegant way to describe multilevel systems is based on the dressed atomic states. This
kind of picture of multilevel systems is particularly useful in the cases where the atomic structure
coupled to the fields is particularly complicated. Diagonalizing the time independent Hamilto-
nian (1.9) we can easily find a basis Bgressea Wwhose elements are the eigenvectors |+). Expressed
in terms of the bare atomic states |1) and |2) the eigenvectors are

Q) €+

) = 0+
Jor+ea T ior+a

where ep = £ 4/ ATZ + [€2|2. When A = 0 the system is in resonance with the atomic transition,

the two dressed states will be |+) = (]1) & ]2))/+/2 and the separation in energy of these two
states will be twice the applied Rabi frequency 2(2 as showed by Fig.1.1.b.

12), (1.18)
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1.1.2 Master Equation for a two level system

A powerful approach for the description of the time evolution of a quantum system is the Master
Equation (ME). The ME describes open quantum systems, including in the treatment the effect
of the interaction of the system with the environment. The steps to obtain the ME are given in
Appendix A.1.Here we give the general expression of the ME for a two level system.

Taking into account the Hamiltonian in IP given by eq.(1.9), the ME for a two level atomic
system interacting with an electromagnetic field is given by the following expression

@ 1 Q ol Ydeph

I = 7’L§A[O'22,O'] — 15 [J+ + O',,O'} + 5(20700+ —040_0 — UUJFJ,) + 5

(20,00, — o),

(1.19)

where with o;; = |i)(j| we have indicated the projection operators.
The first two terms describe the deterministic evolution given by H,y ¢, the other terms describe
the various effects of decays and losses due to the interaction with the environment. The first
one is determined by the spontaneous decay from level |2) — |1), the last last term describe
the phase destroying process, that do not affect in general the population of the atomic level
but modify the phase of the quantum states describing the atomic levels. This terms are not
important in the dynamics of the two level system as they affect only the coherence whose time
scale is dominated by the spontaneous emission rate, since vgepn < . Anyway we include the
dephasing rate ygepn from now on, as it will be useful in the following.
From the Master Equation (see AppendixA.1), it is possible to obtain the evolution of the
elements of the density matrix. This can be done starting from the ME and evaluating the
matrix element of p on the basis B = {|i), |7)},

b = (1%L15).

We obtain a set of equations that describes the time evolution of populations and atomic coher-
ences. These equations take the name of Optical Bloch Equations (OBE), and for the two level

system are
. 9]
o= g (P12 - P21) + I'pas (1.20)
. Q
pz = 13 (p12 — p21) — Tpa2 (1.21)
. Q '+ vge
P12 = —1lApia+ g (P22 — /)11) + #pu- (1.22)

The first two describe the evolution in time of the atomic populations, while the third gives
the evolution of the atomic coherence. Atomic coherence is a peculiar feature of the quantum
nature of the atoms. With atomic coherence we mean the property of an atomic state to exist
in a coherent superposition of two or more atomic configuration.

1.2 Absorption and Dispersion Properties.

Absorption and dispersion properties of the medium, that interact with the field, are determined
by the off-diagonal elements of the density matrix pi». In fact these terms describe the induced
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dipole moment on the atom by the field. The dipole moment of the atom will oscillates with a
frequency proportional to the Rabi frequency of the applied field, and the rapidity in the change
of the orientation of the atomic dipole will determines the dispersion and absorption properties
of the atom. When the dipole is parallel to the electromagnetic field there is no absorption,
on the other hand when the dipole is orthogonal to the electromagnetic field the atom absorb
energy from it to orient with the field.

The quantity that describes the absorption and dispersion properties is the polarization P
of the medium which is equal to the atomic dipole moment per unit volume and therefore it is
given by,

P = <), (1.23)

where (p(t)) = Tr{pp} is the mean dipole moment over the atomic state, N, is the number of
atoms in the medium, and V' is its volume. The Fourier component of the polarization at the
frequency w is given by the following expression

P(r,w) = eox(r,w)E(r,w) + 60X(I‘,W>(2)|E(I‘,w>|2 + EOX(I‘,W>(3)|E(I‘,W>|3 +.. ’ (124)

here P(w) = [dte"*P(t). The term proportional to the square of the applied field describes
the second order nonlinear effects, while that proportional to |E(r,w)[3
order nonlinear Kerr effect!.

is associated with third

Expressing the dipole moment as a function of the density matrix we have that it is proportional
to the off diagonal term pi2, then the susceptibility x(*) can be expressed in terms of the off
this diagonal

Na
P = 7M12p12 = EoXEl, (125)

then from eq(1.20,1.25) we have the single atom polarization

Na H12pP12

2ta 1.26
V By (1.26)

The susceptibility is in general a complex number,
x=x+u", (1.27)

where X’ is the real part of the susceptibility, and x” describe the imaginary part of the suscep-
tibility. The real part of the susceptibility gives information on the dispersion properties of the
atom while the imaginary part will describe the absorption properties of the medium. Solving
eqns.(1.20) at the steady state, we can obtain a simple analytical expression that describe the
absorption dispersion profile,

No Q

~VE =) (1.28)

X:

1In what follow, we shall consider a homogeneous medium and the dependence of the fields and susceptibility
upon the position 7 will not be explicitly written.
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Figure 1.2: This plot shows the profiles of the absorption (continuous line) from the imaginary
part of eq.(1.26), and dispersion (dashed) determined by the real part, for a two level system
interacting with an electromagnetic field. At resonance (A = 0) the field experiences a rapid
increase of the absorption.

In Fig.1.2 we see the behavior of the two level medium as described of eq.(1.28). When the
electromagnetic field is in resonance with the atomic transition the absorption increases, and at
the perfect resonance it reaches its maximum value.

From this picture we see how an interacting light field can modulate the optical properties
of the atomic medium. The profile of the imaginary part of the linear susceptibility depicted
in Fig.1.2 by the continuous line, suggests that when the field is in resonance with the atomic
transition (A = 0), its energy is absorbed to promote the atomic system to the excited level |2).
At resonance the atom evolves in an anomalous dispersion regime, where the optical properties
are radically changed, and group velocity of the light pulses can be radically modified.

In recent years the advent of Quantum Information has induced much more attention to the
mechanisms of atom-light interaction. Because of their nature, photons have been individuated
as a promising vector of quantum information. The weakness of the decoherence process even for
reasonably long distances, the relatively simple transmission and generation have made photons
ideal particle to store and process quantum information. Unfortunately this weak decoherence
is accompanied by a weak photon-photon interaction, meanly due to the fact that photons are
fast, and the interaction time in an typical photon-photon interaction device, is too short to
have an efficient processing of photon properties. Moreover, in the quantum limit, light pulses
are extremely weak, and even a moderate absorption is an obstacle in their use as carriers
of quantum information. Therefore one has to look for particular configurations able to give
significant photon-photon interaction not accompanied by a large absorption.
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Figure 1.3: Typical atomic configuration for EIT generation.

1.3 The EIT interaction

EIT is a phenomenon based on the generation of atomic coherence to modify the optical proper-
ties of an atomic medium, in particular EIT-based systems permit the storage and absorption-
free propagation of light pulses, even at very low light level, i.e., in the limit of single or quasi-
single photon pulses.

To produce EIT we need electromagnetic fields and a multilevel atomic system, i.e., an atomic
system that interacts with the light with more than two levels. The prototype of atomic config-
uration to produce EIT is given by Figl.3. Two electromagnetic fields, whose Rabi frequency
are (2, and (). are coupled with the atomic transitions [1) — |2) and |3) — |2), respectively. We
will show how this interaction scheme will leads to the propagation of light without absorption.
Let us consider a system of Fig.1.3 with an initial population in the two ground states |1) and
|3). We want to induce a loss-free propagation of the probe field. For this reason the first field
to turn on is the coupling field with frequency w., and Rabi frequency .. This process will
pump the largest part of population in level |1), and only a small amount of population will
remain in level |3). At this stage the atomic system evolves into a coherent superposition of the
two ground state |1) and |3).

If we now turn on also the second field, the probe with frequency w,, the atomic system will
have two possible paths to be promoted to the common excited level |2): directly from |1) — |2)
or from the indirect way [3) — |2) — |1) — |2). Both of these paths have an of probability that
is proportional to the coupling field’s Rabi frequency €., but with opposite sign. The result is
a mutual cancellation of the total amplitude probability of find an atom in the level |2). This is
a quantum interference process. The results is that the atomic system is trapped in a pure state
that is a coherent superposition of the two level |1) and |3).

Let us obtain a more detailed description of the process: we have a three level atomic system
in the A configuration. The two applied electromagnetic fields, are applied to the transition
|1) — |2) and |3) — |2) respectively. We consider the most general case, both fields are slightly
detuned from resonance. The probe detuning is 61 = w21 — wp, where wg; is the frequency dif-
ference between the level |2) and |1), while the coupling field’s detuning is da = wag — we.
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Since we are working in the semiclassical approximation, the Hamiltonian will be of the form,

Htot = Hatom + Hint

3
h h
> Eili)il + 2 [Qpe™ ! 2){1] + Qe 1) (2] + S [Qee ™" [2)(3] + Qe 32
=0

where E; for i = 1,2, 3 are the energies of the atomic levels. Now we fix the zero of the energy
in correspondence of the ground state |1), and we define the detunings so that

E, = 0
Ey = héy+ hw,
Es = Ey— hdy— hwe (1.30)

Adopting the IP with respect to the following free Hamiltonian
Ho = hwp|2) (2] + hfwp — wc)[3) (3],

we can write the effective Hamiltonian Hcys in the IP, in the following form without any explicit
time dependence,

Hepp = 101]2) (2| + 161 — 62)[3) (3| + g[ﬂp|2><1| +Qp[1)2l] + 7—;[96|2><3| +Q73)(2]]. (1.31)

To fulfill the two photon Raman condition, we have to impose that the two detunings have to
be equal (§; = d2), or equivalently we have to set the frequency of the field so that the difference
of the two detuning is equal to the frequency difference between the two ground levels |1) and
|2). When Raman conditions are satisfied we obtain the best transparency.

On the basis of the three bare atomic states B = {|1),[2),|3)}, the matrix form of H.s is

0 Q; 0
Hepp = ) Q, 01 Qr . (1.32)
0 Q. 6 —90

Let us describe the dynamics of the system within the dressed state picture, i.e., let us evaluate
the eigenvalues and eigenvectors of this Hamiltonian. Under the Raman condition §; = d3 we
can easily do this and in the limit of small probe detuning, as showed by [4,6,12], we obtain the
following energies

Q
A = 0, (1.34)
Q
Al = 5 (1.35)
corresponding to the three eigenvectors
1 .Q, Qe
|BS)+ = E[ﬁ|1>+|2>+ﬁ|3>}, (1.36)
1
|DS) = ﬁ[QC|1>—QP|3>], (1.37)
1 .Q Qe
BS)_ = —[Z2|1)—-2)+ = 1.
BS)- = —sl@in -2+ 5] (1.38)
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Figure 1.4: Dressed State picture of a three level A scheme.

where Q@ = /|2 +|Q|2. The dressed state picture for the A scheme is in Fig.1.3. The
three eigenvectors are named bright-state |BS), and Dark-state |DS). The reason of the name
relies on their structure: |BS)y have a component from the excited level |2), while |DS) has
no contribution from |2). This implies that spontaneous emission affects only |BSy) and not
|DS). For this reason if the atom is initially prepared in |D.S) (for example with the procedure
described at the beginning of this section), or if we wait for a sufficient long time, the system
relaxes to the dark state after an initial passage through the bright-states. We can notice, in
fact, that |DS) is in fact an eigenstate of the the effective Hamiltonian H.;y with eigenvalue
Ao = 0, i.e., it does not evolves in time, it is decoupled from the effective Hamiltonian (1.32)
. As much as we approach the zero detuning condition the atomic system becomes more and
transparent to the propagation of the probe field. This is clear from the fact that the state
to which the system evolves has no |2) components. The general expression for the dark state
when the two photon resonance is not fulfilled d15 = §1 — d2 # 0 is given by

[Qe]1) + 012]2) — [3)]

and is evident as the dark state decouples from the Hamiltonian function at the Raman condi-
tion.

Ds) =

(1.39)

The early days of EIT start with the first experimental and analytical analysis of the A
scheme that was performed in the 1976 [4]. In this experiment the Coherent Population Trapping
(CPT) [4] was realized. In a spectroscopic analysis of the Na atoms they recorded the absence
of fluorescence spectrum in correspondence of some precise frequencies as the consequence of
the application of two coherent field to the atomic transition of a A scheme. The theoretical
description In subsequent theoretical works [3,5], developed the description in terms of the dark
state configuration of the evolution of a three level atomic system. The pumping of the atoms
into the uncoupled |DS) determine the absence of absorption, and of the consequent emission.
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1.4 Optical Response Under EIT Conditions

The EIT process can be implemented in a number of schemes with more than two effective
levels. During the years, the analysis of other three level configurations alternative to the A
scheme, have shown that although EIT is possible also in other atomic schemes, e.g. see Fig.1.7,
the efficiency of the process of absorption suppression and resonant nonlinear enhancement that
we will discuss in the next sections are smaller in the scheme designed in Fig.1.7. This is mainly
due to the fact that only the A configuration evolves to a dark state that has zero contribution
from the excited level.

1.5 Linear Susceptibility and Group Velocity Slow Down

When two photon resonance conditions are fulfilled, both real and imaginary parts of the suscep-
tibility are radically modified by the two two possible paths absorption. In a two level system,
see Fig.1.2, the profile of the imaginary part x”, is a Lorentzian with a width depending on
the spontaneous decay ~21. In the three level A scheme, this profile is radically modified as
represented in Fig.1.5. Here the linear part of the probe susceptibility is plotted for resonant
coupling field, and as a function of the probe detuning ;. In correspondence of the two photon
resonance (61 = d3 = 0), the eigenstate of the Hamiltonian (1.31) is the |DS) state,i.e., the
system is pumped to the dark state. No contribution from the excited level |2) are involved in
the steady state, and no absorption take place.

dispersion | |
absorption

15

o
3 [

Linear Susceptibility
o

9 19y

Figure 1.5: Linear susceptibility profiles of the real part of and of the imaginary part in the
A scheme for the probe field €. At the two photon resonance conditions §; = do the EIT is
established and a steep variation of the dispersion properties are accompanied by the dramatic
reduction in the probe field absorption.

The range of frequency for which perfect transmission is possible is named transparency window
Aw o |Q]?/T21, and corresponds to the range of frequencies for which the two-photon absorption
condition is fulfilled.
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The fact that region of frequency exists for which we can obtain a perfect transmission of
a probe pulse, is not particularly new. For example a two level system is perfectly transparent
to light propagation, provided that the light pulse is sufficiently far from the resonant condi-
tion. What is new in EIT are two aspects. First of all the fact that the condition of perfect
transparency is accompanied by a steep variation of the refractive index that determines the
slow down of light pulse,i.e., the true novelty of the EIT process is the bandwidth at which the
transparency take place.

The reduction of group velocity in EIT media can be evaluated analytically by solving the
Bloch equation and obtaining analytical expression of the linear susceptibility. Let us consider
a collection of A, identical atoms in the A configuration. We can start from the effective
Hamiltonian (1.31) to evaluate the OBE following the scheme we have adopted for the two level
procedure given in the previous sections,

p11 = Qipar — 1 p12 + Ta1pas,

pa2 = —iQppa1 +i80p12 — iQcpaz + i p32 — [2paa,

P33 = iQcpas — Q2532 + Tagpos,

) . ) . Iy +

pr2 = —i01p12 +iQp(p22 — p11) — iQep13 — 27712/)12’

. . . .k Y13

P13 = —1012p13 + i8pp23 — i p12 — 5 P18

) . . . Iy 4+~

pa3 = ib2pa3 +i25p13 + 107 (P33 — p22) — %pzsv (1.40)

where the terms I'y = I'g; + I'z3 are global decay terms from the excited level, and ~;; with
1,7 = 1,2,3 we mean the decay of coherence induced by random dephasing process, caused for
exemple by the collision of atoms inside an atomic cloud.

We assume the the atom is initially prepared in the ground date |1), so that applying a strong
coupling field (£2.) the dark state will coincide with the ground state |DS) ~ [1). Solving this
set of equation at the steady state and perturbatively developping the obtained expression at
first order in the probe field Rabi frequency (2, we obtain the following expression for the probe
susceptibility

ay _ |mizl? 012 — i713/2

= . 1.41
Xp heo (61 —1T'2/2) (012 — i713/2) — [Q2c|? e

We see that in this expression both the real and imaginary part go to zero for two photon
absorption 612 = 01 — d2 = 0 and for no spontaneous decay I's = 0. In fact without the
spontaneous emission we cannot produce the interference between absorption paths explained
at the beginning of the section 1.3. Eq.(1.41) is almost general, in fact it can straightforwardly
generalized in the case of an EIT interaction produced in an atomic cloud with an atomic density
N, /V instead of a single atom, simply by multiplying the previous expression for the atomic
density.

Together with the transparency, the steep variation of the real part of the linear susceptibility
produces the group velocity slow down. The group velocity represent the velocity at which
propagate the in-phase front of an optical pulse [7], in term of polarization, i.e., susceptibility it

is defined as .

1+n4

vy = : (1.42)
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where ng is the group index and is defined as

wp ORe [X(l)}

ng = Re [X(l)] + 5 9 (1.43)
p
For the three level system the group index ng is
_ Nal[* (1.44)

Tlg = V|Qc|2 )

This expression shows how the reduction of the group velocity takes place. The group index
depends upon the density of the medium and on the coupling field. Increasing the density, i.e.,
increasing the number of atoms or reducing the coupling field, the denominator of eq.(1.42) can
be increased to be much larger than unity, giving the reduction of v,.

1.6 Kerr Nonlinearity based on EIT.

The second typical feature of EIT is that the dramatic reduction of the group velocity is ac-
companied by an increase of the optical nonlinearities. In fact a profile analogous to that of
the linear susceptibility can be obtained for the nonlinear one. This means that in an EIT
medium together with the slow down of a light pulse, we are able to produce strong nonlinear
interaction, i.e., we can produce efficient third order nonlinear optical (Kerr) effects. The Kerr
effect is proportional to the intensity of the light beam, and for this reason the effect that is
possible to appreciate after a photon has passed through a Kerr medium, is a phase accumula-
tion proportional to the intensity of the field.

Solving the set of OBE, for 2, < €)., we can see in Fig.1.6 the nonlinear susceptibility. It is
evident that as soon as the system goes out of resonance from the two photon transition, the real
part grows up much more rapidly then the imaginary one. This reflects in a large increase of the
self-phase modulation with very small absorption. This situation is largely different from the
two level system where all resonant effects are affected by the linear absorption that determines
a complete lost of the pulse.

1.7 Amplitude Variables Method: Inclusion of loss mech-
anisms in the Schrodinger formalisms

In a realistic model of the atom-field interaction, together with the unitary evolution given by
the Hamiltonian, we are faced with various loss mechanisms. These loss mechanisms can be
seen as the results of the interaction of the quantum system with a system or environment that
possesses many more degrees of freedom.

In our case the system is the three level atom of Fig.1.7(a), in the so-called cascade system. The
ground level [1) is a stable or meta-stable state, so there is no radiative decay from |1) to other
states. A probe field, with frequency w,, is applied to the atomic transition |1) — |2) with a
detuning §; from the resonance, while a coupling field, whose frequency is we, is applied to the
[1) — |2) transition with the detuning d>. The Rabi frequencies are Q for the probe field and
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Figure 1.6: Nonlinear susceptibility in a three level A. A small perturbation from the two photon
absorption condition produces large nonlinear effects, and a large nonlinear phase accumulation

Q9 for the coupling field. The Hamiltonian of the system
3
Heascade = 3 Feoi i Qae#"2)(1] + Q3 s 1)(2]) + Qe [3)(2] + Q5er*|2) (3] ). (1.45)
i=1
With respect to the following Hy we can pass to the IP

Ho = hwp|2) (2] + A(wp + we)|3)(3], (1.46)

we arrive at the effective Hamiltonian in the time independent form

HEG3o% = 161[2) 21+ (01 +62)[3) (31 4+ A (201 + Q51121 ) + A 13)(2] +512)(3]), (1.47)

where the detunings and the energy level have been defined

hey = Ey— hw, (1.48)
hés = E3— By — huw;. (1.49)

The loss terms can be included in the Schrédinger description by a phenomenological theory.
From the Schréodinger equation, and from the effective Hamiltonian of eq.(1.47), defining the
quantum state of the atomic system as

[9() = cr(D)1) + ca(t)[2) + e3(1)[3)
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Figure 1.7: Three level schemes in two different configurations, the cascade (A), and the V (B).
Both of these configuration permit to have EIT but with limited efficiency compared to the A
scheme.

we obtain the the time evolution of the amplitudes ¢; for i =1, 2,3

G(t) = —1Qfea(t) (1.50)
ég(t) = —16162 (t) — ’LQlCl (t) — ZQ§C3(ﬁ) (1.51)
ég(t) - —’L((Sl — 63)03 (t) — ’LQgCg(ﬁ) (1.52)

The noise terms can be added phenomenologically by adding terms that give an exponential
decay of each amplitude, so to get

em)zzm@@—%mw (1.53)
éQ (t) = 15162 (t) — %62 (t) + ZQlcl (t) + ZQgCQ, (t) (154)
ew)zz@+@m@—%ﬁw+mm@, (1.55)

where I'; has the to be seen as a dephasing process A.1, while the two terms I's 3 are spontaneous
decay rates from level |2) and from level |3) respectively.

This equation can be easily solved, at the steady state. However, in order to acquire a
real physical meaning, the equation of the AV approach has to be solved not finding the exact
solution of the system at the steady state (which would be C; =0 Vj), but adjusting “by hand”
the normalization condition. Usually we assume that at the steady state the population will be
concentrated in one of the level involved in the dynamics. By imposing that almost the totality
of the atomic population is in one of the states |i) for i = 1,2, 3, we can obtain an approximated
solution for the amplitude coeflicients c; 2 3 at the steady state, while the relation

pij = Crej, (1.56)
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gives the steady state values of the density matrix elements.

1.8 Cross-Phase Modulation

The generation of a phase accumulation on the quantum state of a field, proportional to the
intensity of a second field is named Cross Phase Modulation (XPM) and is realized by the
nonlinear Kerr interaction.
Let us assume that a couple of weak light pulses, i.e., ideally two single photon pulses, probe and
trigger, interact simultaneously with an atomic medium, composed by N, identical atoms in a
suitable configuration that for the moment we do not specify for the moment. If the interaction
between the two pulses is of Kerr type, the dynamics of the two pulses can be described by the
following Hamiltonian

Hyerr = hixadapafas, (1.57)

where @, and a; are the annihilation operators of the probe and trigger field respectively.
The evolution of the field’s operators a,; and d;t is then given by

a q —uxal o ay int
p, (1) (t) = p, (1) ()™ X T Tine (1.58)

where t;,; represent the interaction time, y the parameter containing the Kerr interaction. It is
evident that a modulation in the amplitude of the field produces phase variation at the output.
In the case of the XPM this phase accumulation is induced on the probe (trigger) by the intensity
of the trigger (probe) with the consequent production of a conditional dynamics.

1.8.1 Cross Phase Modulation with cascade system

Let us now consider the XPM for a more specific atomic configuration. We have an ensemble
of N, atoms in the cascade configuration interacting with two EM fields. The cascade scheme
permits to induce XPM. In the cascade scheme we obtain the modification of the nonlinear
interaction on the probe field (©1) by the presence of the trigger field (23) on the transition
|2) — |3), and vice versa.

The atomic system starts in the ground level |1). Solving the system (1.53) at the steady state,
and developing in series of power of 23, which is assumed to be smaller than the detuning ad
the decay rates, we obtain the following expression for the pa; = cac] coherence

W__ 2 0P

L , 1.59
X di2 d2ydy3 ( )

where the “complex detunings” have been introduced di2 = §1 —I'y/2, and d13 = d1 +03 —1'4/2.
From eq.(1.59) we obtain the following expression for the real part of the cross-Kerr nonlinear
effect

N |paz]?[pesl® 1
R B _'a 1.60
e{X } 1% h3€0 5%513’ ( )

If we want to increase the XPM we have to reduce the single photon detuning d;, putting the
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probe field close to resonance. But when the XPM increases, the linear absorption increases

even faster, because
~ Na |p12f” Ta/2
\%4 hEO 5% '

Im{xV} = (1.61)

This relation shows the intrinsic limitation of the cascade scheme for the generation of a large
XPM. If we want to increase the XPM effect we have to decrease the detuning, increasing at
the same time the absorption.

1.9 Cross Nonlinear Interaction in EIT Medium

Recently Schmidt and Imamoglu [13] have showed how to use an EIT medium to modulate the
phase of a weak field proportional to the intensity of another weak field. Schmidt and Imamoglu
based their analysis on a four-level atomic system in the N configuration (see Fig.1.9).

In this scheme we put at resonance a standard three level atomic system in the A configuration,
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Figure 1.8: N multilevel scheme for giant cross Kerr effect between weak pulse proposed by
Schmidt and Imamoglu [13]. The atomic system is prepared on level |1).The presence of the
trigger field Q3 coupled to the level |4) induce an AC-Stark shift of level |3). This put out of
resonance the first lambda composed by level |1),]2),|3) shifting the resonance condition of an
amount proportional to the intensity of the trigger field.

and complete the scheme by adding a third weak field 23 coupled to a fourth atomic level |4).
This field, that we shall call trigger, is put out of resonance with the |3) — [4) transition by an
amount &3, . The trigger field induces an ac-Stark shift on level |3) proportional to |€23]?/d3,
perturbing in this way the EIT resonance and generating a non-linear interaction proportional
to the intensity of the trigger field. If compared to previous XPM obtained from the cascade
three level scheme of Fig.1.7, this EIT based set-up has a cross Kerr interaction which can be
as much as 6-7 order of magnitude larger for the same field and density. This is because due to
EIT, the phase accumulation is in practice loss-free, so that we can approach resonance without
inducing absorption.
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This result has given a great impulse in the search for the optimal conditions for an efficient
XPM even at very low-light level and ideally at the single photon level.

On the other hand, we have to stress that limitations occur for the N scheme.

In fact, the weak probe field is subject to EIT, and the A structure and the atomic population
on level [1) permits to have a strong reduction of its group velocity. This does not take place
for the trigger pulse, which can be considered to be involved in a V atomic configuration and
it is largely detuned. Hence the trigger field does not experience a significant slowing down as
the probe does, resulting in an short effective interaction time during which the weak pulse can
accumulate the phase. It is evident that in order to obtain a joint and large XPM between the
probe and trigger field, their group velocity has to be comparable, i.e. of the same order. If this
condition is not fulfilled, instead of a XPM that increase linearly with the interaction length,
we will have a saturation of the accumulated phase.

The problem of group velocity matching was first solved by Lukin and Imamoglu [77]. They
propose to use a medium composed of an atomic cloud of N, atoms appropriately distributed
between two different isotopes of Rb, Rb®” and Rb®. The first kind of atoms will induce
the XPM due to the four level N scheme of Schmidt - Imamoglu, while the Rb® atoms, that
experience a standard three-level A interaction between trigger and €2; and coupling €. fields,
have the role of reducing the trigger group velocity. In this way the interaction time is increased.
With such a scheme, ideally it should be possible to obtain very large XPM between few photon
with a simultaneous and comparable reduction of the group velocity for both the probe and the
trigger fields. In fact the density of the two isotopes could be carefully balanced do to have
perfect group velocity matchig.

Recently Kurizki et al. [73] have proposed a scheme based on only one atomic species involving six
atomic levels, while others authors [74,75] have studied the possibility of resonant enhancement
of high order nonlinearity in chains of lambda schemes.

1.10 Quantum Information with EIT: Quantum Gates and
Quantum Memory

EIT has attracted much attention for its potential application to high sensitivity magnetome-
ters [19], or for four wave mixing and sum frequency generation [20-23], as well as for the design
of single photon detectors and single photon devices as single photons guns [36] and quantum
memories [26-30]. The XPM properties of EIT have been used to verify experimentally proto-
cols for Quantum Non Demolition Measurement (QND) [16], and finally, all optical Quantum
Phase Gate (QPG) for single photon flying qubits. In this thesis we will concentrate on the po-
tential application of EIT in the implementation of devices for the Quantum Information where
information is encoded in the quantum states of photons.

Several works [41-45], have shown how, on hypothetical Quantum computers, i.e., a com-
puting device able to take advantage of some properties of quantum system, have the ability to
solve problem exponentially faster than a classical computer. Moreover it has been shown that
Quantum Mechanical properties could be usefully adopted to perform Quantum Communica-
tions that permits novel and much more secure way s of transferring information [46].
Quantum Information developed rapidly during last years. The growing in the interest in both
theoretical and experimental aspects of this field, rely on the need of finding novel physical ar-
chitecture for the implementation of automatized calculations [24]. Moreover the need for secure
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communication against eavesdroppers attacks has attracted much interest as the increase of the
request for secure communications.

In Quantum Information science the minimal amount of information that can be sent or
processed is the qubit (quantum bit),i.e., the state living in a Hilbert space of dimension two,
which can be written as,

[¥) = all) + 5|0), (1.62)

where |a|? +|3|> = 1, and where with the logical basis |1),]0) we have indicated two orthogonal
states of a quantum system, like for example the polarization states of a photon, or the state of
an electron around the nucleus, or any other observable property of a quantum system.

The main properties that make quantum systems so attractive for quantum information, is that
the qubits can occupy generic linear superpositions and not only the two states |0) and |1) as its
classical counterpart. The fact that a quantum state can be in an arbitrary superposition of two
or more possible states, is at the basis of the massive quantum parallelism [41,42,44] achievable
by quantum computation. Moreover it has been shown how a number of novel possibilities in
quantum communication are possible taking advantage of the entaglement properties of inter-
acting quantum particles. Entanglement based technologies are ,e.g., Quantum Teleportation,
secure Quantum Key Distribution (QKD), Quantum Cloning.

In this domain EIT has attracted much attention for its ability to permit the propagation of
weak light pulses through dense media, accompanied by strong slow down group velocity and
giant enhancement of Kerr nonlinearties. The group velocity reduction have been studied for
the possibility of store single photon to build quantum memories, while the giant nonlinearities
achievable in EIT media are interesting for the tailoring of devices able to perform conditional
photon-photon operations on single flying qubit states.

A medium able to realize a significant cross-phase modulation is the key ingredient for the
implementation of a quantum gate between two optical qubits. In fact such a gate implies the
existence of conditional quantum dynamics, which is, in fact, realized in the cross-Kerr effect
where an optical field acquires a phase shift conditioned to the state of another optical field.
Using cross phase modulation one can implement a QPG, which is a device able to process, in
a deterministic, and ideally reversible way, the quantum state of a qubit.

The Conditional phase shift Several authors [79,80] have showed that almost any quantum
logic gate, involving two qubits, is universal, and how these quantum gates could be implemented.
The statement of the universality of a quantum gate is important because this conclusion permits
to wire together copies of the same gate to compose more complex operation. It has pointed out
that the conditional dynamics between qubit, could be realized whenever a nonlinear interaction
between qubit, is implemented. Nonlinear XPM can then be adopted for such a scope, in
particular for the implementation of the Quantum Phase Gate (QPG) universal gate.

Let us consider a two-qubit state at the input of a black box that performs a certain operation
on the two input qubits. The operation that a QPG (see Fig.1.9) has to performs is a two-qubit
unitary operation that induces a phase shift on the state of a qubit conditioned to the state of
another qubit. In general each input state on the basis By, = {|00), [10), |01), |11)} can acquire
a phase depending on its state according to

li)1lj)2 — exp {idi;} |i)1lj)2 i,5 =0, 1.



22 Interaction of Atoms with Electromagnetic Fields

v) ¢ v) )
QPG
1) oy, Ty~

Figure 1.9: Quantum phase gate for a two qubit system. At the input we have two qubits the
target qubit (|¢)), and the control qubit («|0) 4+ 5|1)). At the output, the state of the target
qubit is modified depending on the state of the controller. In a QPG, the phase of |¢) is changed
by an amount ¢ conditioned to the quantum state of the control qubit (]0), or |1)).

For example, if we adopt a pair of photons to encode information, the orthogonal quantum states
could correspond to two orthogonal polarizations. In this case one can implement a universal
QPG by means of a nontrivial cross-phase modulation effect between probe and trigger fields
that arises for only one of the four possible input configurations of their polarization.

In matrix representation in the logical basis By, the QPG is defined as

e 0 0 0
Ugrc = 8 ezzm eigol 8 (1.63)
0 0 0 eu
The Conditional Phase Shift ¢ is defined as
¢ = ¢11 + P00 — P10 — Po1, (1.64)

It represents the net effect of a nonlinear interaction that takes place between two qubits. When
this quantity is non zero, ¢ # 0, the quantum phase gate is an entangling gate, i.e. an input
state of two qubits, initially in a factorized state, will evolve to an entangled one after the action
of the QPG. Moreover the QPG is equivalent, up to single qubit unitary operations, to a CNOT
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gate when ¢ = 7 [24,79,97]

Ucnor = (1.65)

o O O
o O = O
= o O O
S = O O

Travelling optical pulses are the natural candidates for the realization of quantum commu-
nication schemes and many experimental demonstrations of quantum key distribution [47, 48]
and quantum teleportation schemes [49-53] have been already performed. Optical systems have
been also proposed for the implementation of quantum computing, even though the absence
of significant photon-photon interactions is an obstacle for the realization of efficient two-qubit
quantum gates, which are needed for implementing universal quantum computation [24].Various
schemes have been proposed to circumvent this problem. Knill and co-workers have proposed
to adopt linear optics for quantum computation. Recently liner optics quantum computation
has demonstrated in the work of [55,56]. Other schemes, like ours, explicitly exploit optical
nonlinearities for quantum gate implementations.

The strong nonlinear properties of the EIT media have all the characteristic to permits
the implementation of strong nonlinear photon-photon interaction. In fact they increase the
interaction time, they induce Giant Kerr interaction, and permits perfect transparency.

The key point is to find an atom-field interaction scheme that produce large nonlinear interaction
in a conditional way at single photon level and for a sufficiently long interaction time.

The first experimental realization of a conditional dynamics between photons, and the first
analysis of the truth table of a QPG, has been realized by the Kimble’s group [97]. The Caltech’s
group found a conditional phase shift ¢ ~ 16° between two frequency-distinct high-Q cavity
modes, due to the effective cross modulation mediated by a beam of Cs atoms. However, the
complete truth table of the gate has not been determined in this experiment. A conditional
phase shift ¢ ~ 8° has been instead obtained between weak coherent pulses, using a second-
order nonlinear crystal [58]. However, this experiment did not demonstrate a standard two-qubit
gate. In such a gate in fact, ¢ depends on the input states, and the gate can be defined only for
a restricted class of inputs (weak coherent states). In practice this is not a bona fide QPG. A 7
conditional phase shift has been realized in the domain of CQED [67], where a quantum phase
gate has been realized adopting a mixed atom-cavity field two-qubit system. Here we will try
to do something different being our purpose to study a quantum phase gate for flying optical
qubits.

In the next chapters we will show how to design several schemes able to produce strong
nonlinear interaction between photons for long interaction time, by taking advantage of EIT
properties.
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Chapter 2

The Tripod Scheme for
Giant-Kerr Interaction

In this chapter we will analyze the monlinear optical response of a specific four-level
atomic system driven into a Tripod configuration for XPM. We will discuss the atomic
structure and the population distribution to fulfill the need of large cross-Kerr nonlin-
earities and group velocity reduction. The Cross-Kerr interaction is calculated in the
semiclassical and in quantum regime adopting the Lukin and Imamoglu few photon
approach [77]. The experimental feasibility of such a gate is here examined in detail.

2.1 Non linear interaction in a Tripod System

In this chapter we propose an alternative scheme for phase gating that can greatly reduce, when
compared with other schemes, the experimental effort for its realizability. The mechanism relies
on an enhanced cross-phase modulation effect which occurs in a relatively simple and robust
four atomic level tripod configuration. Our scheme only requires good control over frequencies
and intensities of the laser beams. We consider a QPG for qubits in which binary information is
encoded in the polarization of an optical field. The four level tripod configuration that we adopt
here has been extensively studied in the past few years. For example, Unanyan et al. [60] used
a tripod configuration to achieve stimulated Raman adiabatic passage (STIRAP) for creating
an arbitrary coherent superposition of two atomic states in a controlled way. Paspalakis and
et al. [61-63], in particular, developed the interesting possibility of using a tripod scheme for
efficient nonlinear frequency generation. Moreover, it was shown that the group velocity of
a probe pulse may be significantly reduced, as in conventional A system [61]. The work of
Malakyan [64] was the first to hint that the tripod scheme may be used to entangle a pair of
very weak optical fields in an atomic sample. This work has been recently extended to the case
of quantum probe and trigger fields in [65], where an adiabatic treatment similar to that of [77]
is adopted.
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The purpose of this chapter is thus twofold. First, we adopt a standard density matrix
approach, including spontaneous emission and dephasings, to analyse the nonlinear optical re-
sponse of a four-level tripod configuration. In particular, we examine the conditions under which
large cross-Kerr nonlinearities may occur in a cold atomic sample. Second, we study the possibil-
ity of employing such an enhanced cross-phase modulation to devise a polarization phase-gating
mechanism which turns out to be rather robust and apt to actual experimental investigations.

The chapter is organized as follows. In Sec. 2.2, dressed states of the atomic tripod are
analyzed and their significance emphasized. In Sec. 2.3, we solve the set of Bloch equations and
derive expressions for linear and nonlinear susceptibilities. In Sec. 2.4 group velocity matching
is discussed in detail, while Sec. 2.5 discusses the operation of a polarization phase gate.

2.2 Dressed States of the Tripod System

The energy level scheme of a tripod system is given in Fig. 2.1. Transitions |1) — |0) and
|3) — |0) are driven by a probe and trigger fields of respective Rabi frequencies Qp and Qr,
while the transition |2) — |0) is driven by a control (or pump) field of Rabi frequency 2. The
system Hamiltonian is

3
Ho= B wili)(i] + (et [1)(0] + Qper0)(1]) + A (e [2)(0] + Qe |0)(2])
1=0
R (e t3)(0] + Qe [0)(3]) . (2.1)

Defining §; = wo —wj — w]@) the laser (frequency w]@)) detunings from the respective transitions

|7) < 10), and adopting the TP with respect to the Hamiltonian
Ho = hwo0){0| + hws|2)(2] + hws|3) (3, (2.2)

and in the dipole and rotating wave approximations, we have the following time-independent
Hamiltonian

Hine = h61{0){0] + A(d1 = 02)|2)(2] + A(61 — 65)[3) (3] + 7 (Qp[1)(0 + 2p[0)(1]) +
+h (Q712)(0] + Q[0)(2[) + £ (Q7[3) (0] + Q7[0)(3]) , (2.3)

Spontaneous emission and dephasing are included below [see Egs. 2.6] as done in the previous
chapter, by means of the Master Equation and the optical Bloch equations.

There are four eigenstates of Hamiltonian (2.3) [60]. When the three detunings are equal,
0; = 6,1 =1,2,3, two of them are degenerate with energy equal to § and assume the following
form:
Qr|l) — Qp|3)

VOL+ Q2
e) = QrQp|1) + Q0Qp[3) — (O +QF) [2) (2.4b)
V(@ +97) (% + 97+ 97F)

Since these states do not contain any contribution of the excited states |0), they belong to the
class of dark states. The other two eigenstates have energies § £ /0% + Q2 4+ Q3. and are

_ Qp[1) £10) +Qr(3) + Q[2)
lex) =

VOL+ 02+ 0% '

le1) (2.4a)

(2.5)
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Qp Qr
g4 g_
3)

Figure 2.1: Energy level scheme for a tripod. Probe and trigger fields have Rabi frequencies Q2p

and Qp and polarizations o and o_. The pump Rabi frequency is 2 while §; = wp —w; — w(P)

J
(L)

denote the laser (frequency w;™’) detunings from the respective transitions [j) < |0).

In the case of different detunings, the expression of the eigenstates becomes more complicated,
and the degeneracy of the two dark states is removed because their energies shift from § to do
and 03 respectively.

To achieve a giant Cross-Kerr interaction with the interaction scheme of Fig. 2.1 by EIT, we
have to verify some conditions:

1. probe and trigger must be tuned to dark states,

2. the transparency frequency window for each of these dark states has to be narrow and
with a steep dispersion to enable significant group velocity reduction,

3. there must be a degree of symmetry between the two transparency windows so that trigger
and probe group velocities can be made to be equal [59,66,77].

These conditions can be satisfied by taking all three detunings nearly equal, in this way the
two dark states are degenerate, and they will have an identical transparency window for both
fields. However, as we seen in previous chapter, the three detunings cannot be exactly equal.
In fact in such conditions the Tripod scheme is linear, i.e., the dispersive part of the nonlinear
susceptibility vanishes [see Eqgs. (2.11)]. Hence, the exact resonance condition will have to be
violated. We will show that if the frequency mismatch is small (within the transparency window
width), then strong, cross-Kerr modulation with group velocity matching can still be achieved
and phase gate operation realized.

2.3 Bloch Equations and Susceptibilities

We will write down the OBE for the tripod system. From the eqns.(2.3,A.21) and eq.(A.22), we
can calculate the Bloch equations for the density matrix elements (including atomic spontaneous
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emission and dephasing) and obtain

i6o0 = —i(y11 + 22 +733)000 + Qpoio — Qpoor

+Q% 020 — Qooz + Q1030 — Qroos, (2.6a)
ic11 = 711000 + V12022 + 1713033 + Qpoo1 — Qpoio, (2.6b)
iGo2 = iY22000 — i712022 + i723033 + Qoo — 2 090, (2.6¢)
i033 = y33000 — 1(713 + Y23)033 + Qroez — Qpo3o, (2.6d)
i610 = —dioo10 + Qpooo — Qpo11 — Qo2 — Qros, (2.6e)
1020 = —d20020 + Qogo — Qo2 — Qpoar — Qroas, (2.6f)
i030 = —d3oos0 + Qoo — Qposz — Qpog1 — Qosg, (2.6g)
i012 = —di2012 + Qpogr — QT 0o10, (2.6h)
i613 = —di3013 + Qpooz — Qroio, (2.61)
i0o3 = —dazo23 + Qooz — Q1090, (2.6j)

where decay rates 7;; describe decay of populations and coherences, and we have defined complex
“effective” global detunings as djo = 0; + ivjo and dij = d; — §; — iy, with 4,5 = 1,2, 3.

We consider the steady state solutions of the Bloch equations. As we did in the previous
chapter for the simpler two and three level system, we put to zero the time derivatives, and
assume that the final population distribution will be symmetric with respect to the 1 < 3
exchange, i.e., 011 & o33 &~ 1/2, with the population of the other two levels vanishing. This
condition is fulfilled provided the intensity of the pump field is stronger than the intensity of
both probe and trigger |Q|> > |Qpr|?, and the detunings and decay rates are of the same
order of magnitude. This allows to decouple the equations for the populations from those of the
coherences. This simplifies the problem, and permits to obtain the steady state solution for the
latter, yielding the probe and trigger susceptibilities according to

No|up|? o o10(t)

xp tglgo hﬁo QP ’ ( 7a)
Nalpr?  os0(t)
L S A 1)

where N, is the atomic density and pp r the electric dipole matrix elements for probe and
trigger transitions respectively. Rabi frequencies are defined in terms of electric field amplitudes
Epr as Qpr = — (up,1 -ep,1) Epr/h, with ep 1 being the polarization unit vector of probe
and trigger beams. The resulting general expression for the steady-state (ss) probe and trigger
susceptibilities are

1
(010)5s 1+ 1 (dr2das/dis) |Qp*|Qr 2 {71 di2d13
Qp N 4 (diodi2 — |Q]?) (d3odas — |2]2) 2 diodiadiz — di3|Q? — di2|Qr|?
1 d12dl3d23|QT|2 } (2.8a)
2 diydizdas — di3|Q2 — das|Qp|2 [ ‘
-1
(030) 44 _ 1 1 (dgsdﬁ/dﬁ) |QP|2|QT|2 {71 d3sdis
Qr 4 (d30d§3 - |Q|2) (dfodT2 - |Q|2) 2 d30d§3d’1‘3 - d’{3|Q|2 - d§:>,|Ql':’|2

1 d33diadiz|Qp | } A (2.8b)

_5 dfodﬁdb - dIa|Q|2 - df2|QT|2
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We are interested in the XPM between probe and trigger fields. Therefore, we keep the two
lowest order contributions: linear and third-order nonlinear susceptibilities, neglecting the higher
orders in the expansion. This yields

xp = x5 +xP B, (2.92)
xr = X&)+ x| Ep? (2.9b)

that is, each susceptibility has a linear and a cross—Kerr nonlinear term, while self-phase modu-
lation terms are of higher order. Both susceptibilities have a linear contribution because of the
nonzero stationary population in levels 1 and 3. Linear susceptibilities are given by

o _ Nolpp® 1 di2 910
Xp hGQ x 2 d10d12 — |Q|2, ( ' a)
1) Nalpz|® 1 dss
= = 2.10b
Xr Fbeo . 2 d30d;3 — |Q|2, ( )

where the factor 1/2 in each equation comes from the symmetric steady state population distri-
bution. The cross-Kerr susceptibilities are instead given by

2 2
3 _ |up|*|pr] y 1 dia/drs3 ( dy2 n da3 ) 9 11a
Xp “ h360 2 d10d12 — |Q|2 d10d12 — |Q|2 d§0d23 — |Q|2 ’ ( )
2 2 * * * *
B — N | |*| e % 1 d3s/dis < diy dys ) 211b
xr “ W 2dudyy — 9P \ Tl — 197 T dods, - ) G

Note that Egs. (2.10) and (2.11) are completely symmetric with respect to the 1 < 3 ex-
change. This exchange symmetry is ensured by the complex conjugate terms in (2.10b) and it is
expected because of the symmetry of the system and of the population distribution. Note also
that in the absence of dephasing, the nonlinear susceptibility has a singularity at d; = d3. The
necessary regularization is provided by the nonzero dephasing term ivy;3.

Paspalakis and Knight [61] have recently analyzed the properties of the tripod system in a
somewhat different setup. It is nevertheless instructive to compare the results of this Section
with theirs. In the scheme of [61], population is assumed to be initially in the ground state |1).
Provided that |Qp|* < |©2]2, |Qr|? population remains in |1) in the steady state. Paspalakis and
Knight calculate the expression for probe susceptibility to the first order in Qp. It is easy to
see that their expression is consistent (up to a factor 1/2 determined by the different population
distribution) to our result in Eq. (2.8a): considering only terms to the first order in Qp leaves
only the first term in the curly brackets of (2.8a). Additional terms in Egs. (2.8) arise because
we are looking for a cross-Kerr nonlinearity in both probe and trigger, so that all the terms of
third order have to be included.
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2.4 Group Velocity Matching

The linear and nonlinear susceptibilities of Egs. (2.10) and (2.11) have all the properties required
for a large cross-phase modulation. In fact, our tripod system can be seen as formed by two
adjacent A systems, one involving the probe field and one involving the trigger field, sharing the
same control field. Therefore both fields exhibit EIT, which here manifests itself through the
presence of two generally distinct transparency windows, corresponding to the two dark states
of Eq. (2.4). Perfect simultaneous EIT for both fields takes place when the two transparency
windows coincide, i.e., when the two dark states are degenerate, which is achieved when the
three detunings §; are all equal. In this case all physical effects related to standard EIT are
present and in particular the steep dispersion responsible for the reduction of the group velocity
which is at the basis of the giant cross-Kerr nonlinearity (see Fig. 2.2). The condition of equal
detunings (exact double EIT-resonance condition) is important also for another reason. In fact,
together with the symmetry of Egs. (2.10) and (2.11) with respect to the 1 «» 3 exchange, it also
guarantees identical dispersive properties for probe and trigger and therefore the same group
velocity. As first underlined by Lukin and Imamoglu [77], group velocity matching is another
fundamental condition for achieving a large nonlinear mutual phase shift because only in this
way the two optical pulses interact in a transparent nonlinear medium for a sufficiently long
time.

The group velocity of a light pulse is given in general by eq.(1.42), where ¢ is the speed of
light in vacuum and ng, is given by equation (1.43)

1 wo [ ORe[x
”giRe[X]+?O< &‘E])

is the group index, wy being the laser frequency. In the tripod configuration the group index
of previous equation and of eq. (1.43) is essentially determined by the linear susceptibility O,

because contributions from the nonlinear terms are orders of magnitude smaller and can be
neglected. Using Egs. (2.10), it is possible to get a simple expression for the two group velocities
in the case of equal detunings. This condition corresponds to the center of the transparency
window for each field, where Re[x(l)] vanishes, and the group velocity is reduced due to a large
dispersion gradient. One has

4hceg

(vg) p B VAPSE (1P + |1Q7/%) (2.12a)
4hce
(vg) WWOTP (12p)* +97), (2.12b)

so that, as expected from the 1 «» 3 symmetry, group velocity matching is achieved for |Q2p| =
Q.

In the previous expression for the group velocity the nonlinear contribution are different
from zero. The presence of the cross-Kerr for both the weak fields, gives a group velocity that
depends upon the non-linear interaction. This fact can give bad propagation dynamics of the
light pulse. The presence of nonlinear dynamics determines the splitting of the original pulse in
several components, each with a different amplitude and propagating with its own group velocity.
The consequent destruction of the group velocity matching condition is straightforward. Our
tripod-scheme set-up is not affected by such a problem, because choosing probe and trigger field
much weaker than the coupling field (Q2pr < ). The group index is dominated by the coupling
field and there is no appreciable nonlinear effect on the propagation dynamics.
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Figure 2.2: Plots (a) represent absorption and dispersion for probe and trigger, plotted versus
their respective frequencies (in arbitrary units). Parameters are: Qp = Qp = 0.1y, Q = 7,
d2 = 0.1v. For probe plot d5 = 0.1, and for trigger plot §; = 0.17. Plots (b) shows absorption
and dispersion for probe and trigger, plotted versus their respective frequencies (in arbitrary
units), for the set of parameters that permits to have the symmetric group velocity slow down
and the symmetric cross kerr interaction on the two weak fields (see eq.(A.14)). Parameters are:
Qp = Qp =7, Q =4.57, §2 = 10~. For probe plot d3 = 10.02v, and for trigger plot §; = 10.01~.

Unfortunately, it is possible to check from Eqgs. (2.11) that when §; = 0, Vi exactly, the system
becomes linear, i.e., the real part of the nonlinear susceptibilities vanish and there is no cross-
phase modulation. This means that we have to “disturb” the exact EIT resonance conditions, by
taking slightly different detunings. This is a general conclusion, valid for any atomic level scheme
resembling multiple A systems [59,74,75]. If the double EIT-resonance condition is disturbed
by a small amount, one remains within the common transparency window and the absorption
is still negligible. Moreover, the two group velocities can be matched also in the non-resonant
case. In fact, from the symmetry of Egs. (2.10), one has that the gradients - and hence the
group velocities - can be kept symmetric and all the conclusions for the exact resonance remain
valid in the vicinity of resonance as well.
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2.5 Phase Gate Operation in the Tripod System

Experimentally during last years there have been a lot of work on the EIT realization on Rb
atoms. The typically adopted transition lines are the Dy and Ds. In the case of the tripod a
possible experimental configuration employing the giant Kerr nonlinear phase shift achievable
in the tripod scheme discussed above is provided by a 3’Rb cell in a magnetic field, in which
states are in the D; line, and more precisely |1), |2) and |3) correspond to the ground state
Zeeman sublevels |55 5, F' = 1,m = {—1,0,1}), and state |0) corresponds to the excited state
|5P5/5, F' = 0). One realizes the tripod scheme of Fig. 1 (and therefore a significant nonlinear
phase shift) only when the probe has o polarization and the trigger has o_ polarization. When
either the probe or the trigger polarizations (or both) are changed, the phase shifts acquired
by the two pulses do not involve the nonlinear susceptibilities and are different, so that the
resulting conditional phase shift is nonzero. In fact, when they have the “wrong” polarization
(probe o~ polarized or trigger o+ polarized) there is no sufficiently close level which the atoms
can be driven to and the fields acquire the trivial vacuum phase shift gbé =k;l, j = P,T, where
l in the length of the gas cell. Instead, when only one of them has the right polarization, it
acquires a linear phase shift (bj 7 =P, T, where

lin>

— (1 + 27rx§.1>) . (2.13)

lin

P, T
nlin

Denoting with ¢
configuration is realized, we can write the following truth table for the polarization QPG

the corresponding probe and trigger nonlinear phase shift when the tripod

o) ploT)r = e 0T ploT) (2.14a)
o) plot)r  — e 10T plot) g, (2.14b)
o plotyr = e Gt |0t plo T, (2.14c)
o ploThr = e |o T plo ), (2.14d)
with the conditional phase shift being
¢ =0 + 6T — by — Glims (2.15)

For a Gaussian trigger pulse of time duration 7, whose peak Rabi frequency is )7, moving
with group velocity vg through the atomic sample, the nonlinear probe phase shift can be

written as

732 R2 Q|2 erf[Cp]
4|pr)? Cp

Re[x ], (2.16a)

where (p = (1 — vf /ng)\/il /U;D 7r. The trigger phase shift is simply obtained by changing
P < T in the equation above

/202 |Qp|? erf((r]

e % Re[xP], (2.16b)

oT. = kypl

nlin

with the same appropriate changes in the definition of (7.
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In the 8"Rb level configuration chosen above, the decay rates are equal ;0 = 7, and we
choose equal dephasing rates 7;; = 7q for simplicity. For Qp ~ Qp = v, Q = 4.5y, and
detunings d; = 10.017, do = 107, d3 = 10.027, by assuming a low dephasing rate 74 = 102,
we obtain a conditional phase shift of 7 radians, in a gas cell of length [ = 0.7 cm, density
N, = 3 x 10'2 cm™3. With these parameters, group velocities are virtually the same, giving
erf[¢p]/¢p = erf[¢r]/¢r = 2/+/7. Probe and trigger susceptibilities corresponding to these
parameter values are shown in Fig. 2.2(b). Note that the absorption vanishes over a wide range
of frequencies due to the large size of atomic detunings. The values of the Rabi frequencies
correspond to classical probe and trigger fields. The above parameter choice shows that a
demonstration of a deterministic polarization QPG can be made using present technologies.

As discussed above, we had to move from the exact double EIT-resonance condition in order
to have a nonzero nonlinearity and in such a condition the linear susceptibilities do not vanish.
Actually, the linear contribution is predominant. In fact, the ratios of nonlinear to linear phase
shifts are given by

prim Q|2 [ 1 ( di2 dos )}
— = Re | — + , 2.17a
113" 4 d13 d10d12 — |Q|2 dgodgg — |Q|2 ( )
PP 1Qp)? [ 1 ( di2 d3s )]
oy 4 diz \diodiy — QP d3odss — Q)2

and for the above choice of parameters, they are of order ~ 1/64. This means that under the
optimal conditions corresponding to a m conditional phase shift, the total phase shift in each
input—output transformation is very large, of the order of 657. The experimental demonstration
of the QPG requires the measurement of the conditional phase shift, i.e., of a phase difference
and therefore it is important to keep the errors in the phase measurements small. These errors
are mainly due to the fluctuations of the laser intensities and of the detunings. In particular,
intensity fluctuations of 1% yield an error of about 4% in the phase measurement. It is more
important to minimize the effects of relative detuning fluctuations but this can be achieved by
taking all lasers tightly phase locked to each other.

Another important limitation is that due to dephasing of the ground state coherences, whose
main effect is to increase absorption. Absorption is a crucial issue in the case of single photon
polarization qubits. In fact a non negligible absorption implies a nonzero gate failure proba-
bility (one or both qubits missing at the output), making therefore the present QPG, which is
deterministic in principle, a probabilistic gate. In our scheme, it can be checked that, if the
dephasings do not become very large, i.e., v = 27 x 10 kHz, or 74 ~ 102+, this increase of
absorption is negligible, as shown in Fig. 2.3.

It should be mentioned that the conclusion above holds for strong control field strengths of
order ) ~ . If a weaker control is used, the dephasing must also be lower in order to keep
absorption negligible.

2.6 Quantized probe and trigger fields

We now consider the case when probe and trigger fields are quantized [72]. Pump field is still
considered much stronger than the probe and the trigger and therefore its quantum fluctuations
are neglected and is thus kept classical. We adopt the formalism developed by Lukin and
Imamoglu [77] and Fleischhauer and Lukin [68] and apply it to the atoms in tripod configuration.
A similar approach has been followed in the recent work of Petrosyan and Malakyan [65].
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Figure 2.3: Probe absorption (scaled) at the center of probe transparency window, plotted
against the dephasing rate, for Qp = Qp =, Q@ =4.5v, ; = 0.

The interaction Hamiltonian is
dz
Hipy = — fN[h(SlUOO + h(01 — d2)022 + I(d1 — 3)033]

+ﬁgp(Ep001 + E;Jlo) + ﬁgT (ETUog + E;Jgo) + hQ(UOQ + 0'20)], (218)

where L is the interaction length along the propagation axis z, gpr denotes coupling strengths

of probe and trigger fields EA’RT to the respective atomic transitions, and o;; = % ok ag-c) are

the collective operators for the atomic populations and transitions for N atoms in a medium.
The equations for probe and trigger pulses propagating along z—axis through the tripod-

media are given by

0 0\ - .
(5+C&)Ep(z,t) = —’LgpNa’lo, (2.19&)

0 0\ =~
<—+C—Z) r(z,t) = —igrNoso, (2.19b)
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while the equations for the atomic coherences operators

G10 = —idyoio —igpEp(o11 — 000) — igrErois — iQoia, (2.19¢)

Go0 = —idagoag — igpEpoar — igrEroas — iQ(02 — 000), (2.19d)

G30 = —idsooso —igpEpos —igrEr(oss — oo0) — iQ0sa, (2.19)

G12 = —idiao12 +igpEpoos — iQoio, (2.19f)

o135 = —idizoi3 +igpEpoos — iE;Ulo, (2.19g)

Go3 = —idagoay — igrEl oy + 9003, (2.19h)
where the generalized detunings d;; for 7,5 = 0,...,3 have been previously defined.

We proceed by assuming low intensity for probe and trigger fields, g;(E;) < € and strong
pump [©2%/70;7:; > 1. The latter condition also implies that the EIT resonances for both,
probe and trigger fields are strongly saturated. Furthermore, if gp ~ gr, for a probe and trigger
fields of equal mean amplitudes (E;), we can assume (090) & (022) ~ 0 and (01;) = (033) ~ 1
as in the semiclassical case. Solving the equations (2.19¢) for weak probe and trigger field, we
can write 019 in function of 012, and in the same way, the o3¢ in function of o35. This gives the

following equations for the pulse propagation,

o 0 012

ol = - (E + ’Ld12) _Q (2'20)
_ 0 032

g10 = —(5 — ’Ldgg) _Q . (2'21)

This equations permits to obtain the following relations

o 9\ - _ gpN [0

(& + C&) EP(Z,t) = T (E + ’Ld12) J12, (222&)
o 0\ » _ grN [0

(E + C&) ET(Z,f) = —Q (& — ’Ldgg) 0392. (222]:))

The symmetry of these equations with respect to the exchange of the probe and trigger, with
respect to the related density matrix elements, shows full symmetry between the probe and the
trigger dynamics. Note also that the symmetry is intimately linked to the atomic population
being equally distributed between |1) and |3) atomic states.

If, furthermore, a slow change in the pump - or a constant, coherent - €) is assumed, we can
perform an adiabatic elimination of the atomic variables. From the equation for 615 and 32 we

have
- i(2+d ) +225 (2.23)
o = a\or 12 |012 Q PO02 .
1 /0 .
Jg30 = 5 (a — ’Ld23)0'32 + gﬁTETO'OQ. (224)
From eq.(2.19¢) we have
9 gp X .
(& + Zle)Ulo + ’L?Ep + ’LgTETO'lg == 7190’12, (225)
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and from here we can obtain an expression for the o2 as a function of eq.(2.23)

170 1 /0 0 .
o12 = 5(@ + Zdlo) 5(@ + Zd12)012 + %(& + Zd12)EPUO2
7%Ep - %ETUlg. (226)

This equation will give us an approximate expression of the 012 coherence, where the small terms
proportional to the product between the weak probe field gp Ep terms and the small coherence
002 have been dropped out,

1 gpdig J - 1 gpS)

~ —Ep4-—I
20P drodia — [P 0t T T 2 drodis — O

O12 Erois. (2.27)

Now we have to eliminate the dependency on o3 in the previous expression. From eqns.(2.19¢)
at the steady state we have

013 = g_pEPUOS - g—TET0107
d13 d13
9P9T< dos di2 ) At £ t
— + Ep = 0a4,. 2.28
2d13 \dsodoz — |Q?  diodi2 — Q2T F 3 (228)

Adopting the same steps to the trigger field grEr we can evaluate the atomic coherence and
perform the adiabatic elimination also for the trigger field. Inserting the previous relations in
the eq.(2.22a) we arrive at the following expression:

o 1 0. i 2

0 1 0\ » - 0? . P,

9, L O0Np _ 5 P b v ingBrELE 2.29h
(82 + N 6t> T KT T+5Tat2 T +inrErEpEp, ( )

where group velocities of probe and trigger pulses, vép), p,gT) are given by the usual definition

(see eq.(1.43)) in terms of the respective group indices ngz)

1 2N
Py _— 1 9piV 2.30
" 2 drodrs — Q2 (2.30a)
1 2 N
m _ 2 griv 2.30b
"o 2 dsodss — Q7 (2:30b)

These expressions are consistent with the semiclassical case for the case of equal couplings g;,
equal detunings and low intensity probe and trigger. The low intensity condition gj<E‘j) < Q)
has its semiclassical analogue in |Qp | < [].

The terms —kpEp and —kpEp describe single-photon loss due to dephasing and the corre-

sponding rates are

(P)
op = 2 (2.30¢)
&
(1)
PR (2.30d)

c
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The last terms in eqs.(2.29) are associated with the cross-Kerr interaction between the two
pulses, and their coupling coefficients are given by

lgpg%N 1 di2/dis di2 da3
= - 2.30
ne 27T62 x 2 d10d12 — |Q|2 x d10d12 — |Q|2 + dgodgg — |Q|2 ’ ( e)
191299%]\[ 1 dgs/dfs 12 d3s
= - . 2.30f
n on® " Dy — |QF " \dadiy — [QF | daods, — [ (2.306)

Finally the second order derivative terms describe the dispersion of the pulses, with coefficients

dfongp)
= 2.30
613 C|Q|2 ) ( g)
d30n§,T)
= . 2.30h
The transparency window widths are
ey _ e QP
dwtr - ’Yl ns(]P’T) ’ (231)

where we assumed ;o = 7. In general case, v — 719 for probe and v — ~3¢ for trigger.
When single photon loss kpr and wave dispersion 8pr are negligible, the solution of these
coupled equations can be written as

Ep(z,t) = Ep(t')exp [inPE}(t')ET (t')} , (2.32a)

Er(z,t) = Er(t)exp [inTE;(t’)EP (t/)} , (2.32b)

where we adopted a reference moving at the group velocity vy, i.e. the new time is defined as
t' =t — z/vy. Following the approach of Lukin and Imamoglu [77], we conclude that for an
initial multimode coherent states |ap, ar) (see Appendix C), the probe and trigger fields after
propagation through the medium of length ! become

(Ep(z,t)) = ap(t') x exp { [—2sin® (@p/2) + isin ®p] %} (2.33a)
(Bp(z,t)) = ap(t') xexp { [—2sin® (®r/2) + isin @] %}. (2.33b)

where ®pr = (”7#) IAw = enprAw (Aw being pulse spread) is the quantum phase shift
obtained due to the nonlinear interaction between probe and trigger.

It can be shown further that a pair of single photon wave packets, one being probe and the
other trigger, acquire respective phase shifts ® p 1 as a result of the nonlinear interaction. This
is a general property of a solutions for field operators given by Egs. (2.32), and has been proven
by Lukin and Imamoglu [77]. As shown by Petrosyan and Malakyan [65], these large nonlinear
phase shifts can be used to create quantum entanglement.

However, we have to stress that the validity of the previous quantum description of the tripod
system, is limited by the validity of the adiabatic elimination, and within the approximation
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that the probe and trigger quantum fields are well described by weak coherent states. Therefore,
even though quantum, this treatment is not fully satisfactory.

In chapter four we will develop an analytical and numerical approach to treat the multilevel
system dynamics in the full quantum limit, without any adiabatic elimination of the atomic

dynamics.



Chapter 3

Five level M scheme for Giant
Kerr interaction: Semiclassical
treatment

In this section we take into account the five level M-scheme configuration. Like n the
previous chapter, the aim is to give an analytical description of the system, and to find
the optimal conditions to obtain a giant Cross-Kerr interaction between optical pulses.
Moreover we perform a detailed study of the group velocity of the involved fields. We
find the conditions under which it is possible to match the group velocities, and we
give an estimate of the possible use of such a scheme for a QPG implementation. The
analysis we have performed is at a semiclassical level, adopting an AV and an OBE

description.

3.1 Atom-field interaction

In a standard three-level cascade scheme, shown in Fig. 1.7a, nonlinear effects are obtained
alongside absorption, which increase as the fields are tuned closer to the atomic transition [13].
To reduce the absorption to an acceptable level, light fields need to be strongly detuned from
the intermediate atomic level |2), simultaneously reducing however the size of the nonlinearity,
since both are inversely proportional to the square of the detuning.
The double A nature of a five level M configuration offers the opportunity to have a strong
and stable EIT process that reflects in cross Kerr interaction and a simultaneous group velocity
reduction for pulses propagating inside the atomic sample.

In this chapter we perform a semiclassical analysis of the interaction of light with atoms in
the M configuration, in which the amplitude of the four fields involved is described in terms of
the corresponding Rabi frequency. The aim is to estimate the effects of noise sources, such as
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dephasing and spontaneous emission, both on the nonlinear interaction and on group velocity
matching. The semiclassical regime offers a clear picture of the physical aspects involved in
EIT-based nonlinear optics, and well describes a number of recent experiments [37,89,90]. To
this end we consider two different configurations of atom-field interactions, which we will call
the asymmetric (see Fig. 3.1) and the symmetric (see Fig. 3.9) M scheme. The chapter is thus
composed of two main parts. In Sec. 3.2 we describe the physics of the asymmetric M-scheme.
We start by defining the system and calculating the susceptibilities using an approximate treat-
ment employing amplitude equations. These analytical calculations are then compared with the
results of the numerical solution of the full system of Bloch equations. Finally, the conditions
for group velocity matching are analyzed. In Sec. 3.3 the physics of the symmetric M-scheme is
described by following the same order as in Sec. 3.2. Conclusions are drawn in Sec. 3.4.1.

3.2 The Asymmetric M Scheme

The M-system under consideration has a double adjacent A structure as shown in Fig. 3.1, where
atoms with five levels (three ground states |1), |3), |5), and two excited states |2), |4)) interact
with four electromagnetic fields [84]. This configuration can be realized in Zeeman-splitted alkali
atoms, such as 87Rb atoms.

On transitions |3) < |2) and |5) < |4) we apply two strong fields, the coupler Q2 and the tuner
Q4 respectively. On the transition |1) < [2) a probe field is applied (with ), while on the
transition |3) < |4) a trigger field (with Q3) is applied. In this chapter, we will analyze the XPM
and the group velocity matching between the probe and the trigger fields. We call the scheme
of Fig. 2 the asymmetric M scheme due to the asymmetric distribution of the initial atomic
population. All the atoms are in fact assumed to be initially in state |1) so that they directly
feel the effect of the probe field only, while the effect of the trigger field is only indirect. Due
to this inherent asymmetry, the dynamics experienced by probe and trigger fields are always
different, even when the corresponding parameters (Rabi frequencies, decay rates, detunings)
are equal. The symmetric version of this scheme will be analyzed in Sec. 3.3.

The detunings d; (see Fig. 3.1) are defined as follows

Ey—Fy = hw +hé, (3.1a)
Ey—FEs = hwy+ 7o, (3.1b)
E,—Fs = hws+ hds (3.1¢)
Ey—Fs = hwy+ héy, (3.1d)

where E;, (i = 1,...,5) is the energy of level |i), and w; is the frequency of the field with Rabi
frequency €;.
The Hamiltonian of the system is

5
Ha = DO Eli)(il+ 5 (e ™ 2) (1] + Qoe™1[2) (3

+ Qze™ "3 |4) (3] + Que ™ |4)(5| + h.c.), (3.2)

where h.c. denotes the hermitian conjugate. Moving to the interaction picture with respect to
the following free Hamiltonian

Ho = Er|1)(1] + (B2 — hé1)[2)(2 + (Es — ho12)[3)(3| + (E4 — hd1s)|4) (4| + (E5 — ho14)|533)
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2 S e
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“\ Q0 . Q4(1)
» coupling _3(t) tuner
trigger

|5)

[3)

[1)

Figure 3.1: Asymmetric M scheme. The probe and the trigger fields, with Rabi frequencies €23
and Q3 respectively, together with the stronger pump fields, the coupler and the tuner (with
Rabi frequencies Qs and €4, respectively) drive the corresponding transitions. All the atoms
are assumed to be in state |1) and the detunings are defined in Egs. (3.1).

where
d12 = 01— g, (3.4a)
013 = 01— 0o+ 03, (34b)
01a = 01— 02+ 03 — 4, (34(3)

we get the following effective time-independent Hamiltonian

Hff?r = h61|2)(2] + 1b12[3) (3] + Rd13|4) (4] + 1d14/5) (5]

3.2.1 Amplitude variables approach

We now study the dynamics driven by Eq. (3.5). As we saw in first chapter, we can include
the spontaneous emission and dephasing process in the description of the system, first in a
phenomenological manner by including decay rates I'1V for each atomic level |i) in the equations
for the amplitude variables (AV) of the atomic wave-function. From an intuitive point of view,
for the excited levels |2) and |4) these rates describe the total spontaneous decay rates, while
for the ground states the associated decay rates describe dephasing processes [6]. Therefore, the
evolution equations for the amplitudes b;(t) of the atomic state

OIS AGID (3.
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become
. FAV
b, = — iQb,, (3.7a)
by = ( ) bo — Qb1 — 182203, (3.7b)
by = (T i612) by — i0bs — iQ%ba, (3.7¢)
. AV
b = ( 2y ¢513) bi — isbs — s, (3.7d)
. AV
bs = — ( 52 + 2514) bs — iQ3by. (3.7e)

The system’s initial state is assumed to be the ground state |1). Since an efficient XPM requires
a dispersive interaction, we tailor the dynamics in such a way that this initial condition on the
populations remains essentially unaltered, even when the system reaches the steady-state, i.e.,

by® ~ 1. (3.8)

To this end we assume that the control field 25 is stronger then the probe field 2, with the
system being approximately on Raman resonance for the first and the second A subsystems
(01 ~ 2 and d3 ~ d4). Equations (3.7) are then solved in the steady-state. In order to
get a consistent expression for the nonlinear susceptibilities one has to consider higher order
contributions to Eq. (3.8), which is obtained by imposing the normalization of the atomic wave-
function of Eq. (3.6) at second order in |24 /22|. One gets the following expression for the steady
state amplitudes

[ ? [1ds” + |922/°]

T S PP )
e o= 0% [|Q4|2—6%j5]+|93|2d5b§s (3.9b)
by = 791957@"25 s s (3.9¢)
b - _9195?3655 as (3.94)
by = 919153939%?, (3.9¢)

where we have defined

dy =6, — I3V /2, )
ds = 619 — 04V /2, )
dy = 613 — 03V /2, (3.10c)
ds = 614 — T8V /2, (3.10d)
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D = [dads — [Q2]?] [dads — |Qu]?] — dads|Qs]%. (3.11)

These results can be used to determine the probe and trigger susceptibilities, which are defined

as
Npyo 58,% Nlp12|? oo, 55,
= b53%b]7" = ————b5°b]" 12
xP V{:‘ogl 271 Vh{:‘le 27 ’ (3 a)
N,LL34 58,% N|,LL34|2 SS., %
= b3%bs"" = ————b3°by" .12b
XT V{:‘Ogg 473 Vh{:‘oQg 473 ’ (3 )

where N is the number of atoms interacting with the electromagnetic field, V is the volume
occupied by the gas, and ¢( is the vacuum dielectric constant. Doppler broadening is neglected
here. It is well known that first order Doppler effect can be cancelled by using co-propagating
laser fields [4]. In particular we emphasize that this is valid for cold atomic media in a magneto-
optical trap as well as for a standard gas cell.

Inserting Eqs. (3.9) into Egs. (3.12) and expanding in series at the lowest orders in the probe
and trigger electric fields, & and &3 respectively, one gets

e~ xW B g2 4 R g2 (3.13a)
xro~ xehal (3.13b)

where we have introduced the linear susceptibility Xg,l), the third-order self-Kerr susceptibility

xg”Sk) and the third-order cross-Kerr susceptibilities xg’;k). Egs. (3.13) clearly show the asym-
metry of the scheme between the probe and trigger fields, with the latter possessing a nonzero
cross-Kerr susceptibility only. This is a consequence of the asymmetry of the population distri-
bution, which essentially remains in the ground state |1) all the time. This means that the trigger
field drives a virtually empty transition, hence the contribution to the susceptibility comes only
from higher order (see [71] for discussion on the link between the population distribution and a
linear contribution to susceptibility). It will be shown in Sec. 3.3 that the symmetric M-scheme
brings about both a linear and a self-Kerr contribution to the trigger susceptibility.

By using Egs. (3.9) and the definitions of Egs. (3.10) into Egs. (3.12), and comparing with
Egs. (3.13) at the corresponding order in the electric fields, one gets the explicit dependence of
the linear and nonlinear susceptibilities as a function of the system parameters, i.e.,

(1) - N|,LL12|2 512—ZF§4V/2

— 14
Xp Vheo (01 — T4V /2) (612 — T4V /2) — |2 (314

for the probe linear susceptibility, and
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as as 2
@3sk) _ Nlpaa]? —df3 {|d12| +|92|2]

(3.15)

P as jas as jas ’
ViSeo [dgsdss — |Q2[2] dg>ds — Q)2
k) _ N|pa|*|pzal? |Qo|%dS (3.16)
P = 3 s as jas ’ '
Vheo [dlludu - |Q2|2]2 [d13d14 - |Q4|2]
. N 2 2 0O 2das
W3R |1a2]*|psa Q22| df (3.17)

3 b)
VIS0 jageass — Q] [dsass — 0]

for the third-order nonlinear susceptibilities. The complex detunings d{*, d{3, d{3, d{; have been
defines as

des = 6 —il5V /2 (3.18)
ds = 819 —il4V /2 (3.19)
a = 513 —ilV /2 (3.20)
w = o — T8V 2. (3.21)

The two cross-Kerr susceptibilities are identical whenever the quantity

(61 — 09V /2) (012 —iT5Y /2) — |2,
is (at least approximately) real. This happens in the typical EIT situation we are considering in
which || is large enough. In fact, when [Q2[? > | (61 — il'4Y /2) (12 — T4 /2)|, one has [59)]

(R (Bek) _ Nlpiz|?|p3al? 514 —ilgY /2
P AT - 3 . . .
VIS0 |Quf2 (815 — T4 /2) (614 — T4V /2) — [Qu ]

(3.22)

We shall see in the next section that these approximate expressions for the nonlinear suscepti-
bilities fit very well with the numerical solution of the exact dynamics of the system.

The asymmetric M-scheme can be seen as an extension of the four level N-scheme introduced
in Ref. [13], with the addition of the coupling to an additional level |5) provided by the tuner field
with Rabi frequency €4. In fact, it easy to check that upon setting 4 = 0 in Eq. (3.15b), one
recovers the third-order nonlinear susceptibility of the four-level N-scheme derived in Refs. [13,
37]). As we will see below, the role of the tuner field is to enable a fine tuning of the group
velocities, in order to achieve group velocity matching between probe and trigger [59,73,77].

3.2.2 Comparison with the Optical Bloch Equations

We now study the dynamics of the asymmetric M scheme of Fig. 3.1 by means of the optical
Bloch equations (OBE) (see Appendix A), which allow to describe spontaneous emission and
dephasing rigorously and no more phenomenologically as in the AV treatment presented in the
preceding section. We consider six spontaneous decay channels, i.e., the decay of the excited
state |2) onto the three ground state sublevels |1), |3), and |5) with rates T'a;, I's3 and T'os
respectively, and the corresponding decay of the excited state |4) onto the three sublevels |1),
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|3), and |5) with rates I'y1, T'43 and T'y5 respectively. Moreover we consider dephasing of the each
level |¢) with dephasing rate +;;, so that the master equation for the atomic density operator o

is given by
. { Tw . . At oa At a
o = -7 [H:ﬁc,o] + Z Z T3 (20;6100};[ — U;ilUklU — Ja};lokl)
1=2,4 k=1,3,5
: al
kk /o4 . . .
+ZT(20kkO—O—kk*0kkU*UUkk); (323)

k=1

where H;ﬁ is given by Eq. (3.5) and 65 = |k)(I|. The corresponding system of OBE’s for the
mean values 04 (t) = (6, (t)) = 0;;(¢) is displayed in Appendix A.2.1 as Egs. (A.23) and (A.24),
where we have defined for convenience the total decay rates

Ty = Tao1 +T23+ a5, (3.24)
Ty = Ty +Ty3+Tys, (3.25)

and the composite dephasing rates
Yij = Yii +Vjj, t=1...5. (3.26)

The OBE for the M scheme are quite involved and less suited for an approximate analytical
treatment with respect to the AV equations of the preceding section. In fact, if we consider
again the condition |Q; /] < 1 and, consistently with Eq. (3.8), we assume that

o1~ 1, (3.27a)
o ~ 0, j=2...5 (3.27b)

at the steady state, it is possible to see that by inserting Eqs. (3.27) into Eqgs. (A.24) for the
coherences, one gets a satisfactory expression for the probe linear susceptibility only. To be
more specific, only the approximate linear susceptibility fits well with the numerical solution
of the OBE, while it turns out to be extremely difficult to derive analytical expressions from
Eqgs. (A.23) and (A.24) for the nonlinear susceptibilities, as simple as those of Egs. (3.15), and
which reproduce in the same way the exact numerical solution in the EIT regime we are studying.
Obviously, one can exactly solve analytically the OBE, but the resulting expressions are very
cumbersome and not physically transparent such as those of Egs. (3.15). For this reason we will
analytically derive from the OBE the probe linear susceptibility only, and we will then use the
OBE only for the numerical determination of the atomic steady state. Additionally, deriving
this result will enable us to draw a formal analogy between the AV and OBE treatments (see
Egs. (3.30) below).

The probe susceptibility is defined in terms of the atomic coherence o1 as (see also
Eq. (3.12a))
_ Npiz  Npe
N V{:‘Ogl 12 = VFLEOQl 12

Using Egs. (3.27) and performing a series expansion at the lowest order in the probe and trigger

XP (328)

fields, we arrive at an approximate solution for o2, which, inserted into Eq. (4.27), gives the
following expression for the probe linear susceptibility
1) _ Nlpiaf? d12 —im13/2

— . 3.29
Xp Vheo [012 —ims/2][01 — i (P2 + m2) /2] — |Q2]? ( )
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By comparing Eq. (3.29) with Eq. (3.14), one can immediately see that the AV and OBE
predictions for the probe linear susceptibility coincide provided that the phenomenological decay
rates F;‘W are appropriately interpreted, i.e.,

Y« Tyt o, (3.30a)
sV o s (3.30b)

This comparison shows therefore that the AV approach provides a treatment of the atomic
dynamics simpler than the OBE’s approach, but roughly equivalent, and that the intuitive
interpretation of its phenomenological decay rates FZAV as spontaneous emission total decay
rates for the excited states, and as dephasing rates in the case of ground state sublevels, is
essentially correct, especially in the typical case in which dephasing rates are much smaller than
spontaneous emission decay rates (see Egs. (3.30)).

We then consider the numerical solution of the OBE and we compare it with the analytical
treatment based on the AV approach presented above. The numerical calculations are performed
in the range of parameters corresponding to EIT, i.e., [1], Q2| < [Q3], Q4] and we stay near
two-photon resonance for both the probe and the trigger field. In Figs. 3.2-3.5 we compare the
analytical solutions of Eq. (3.14) and Egs. (3.15) with the numerical solution of the complete set
of Bloch equations given in the Appendix A. From these plots it is evident that our analytical
treatment works satisfactorily well, except for a small interval of values of the detuning, corre-
sponding to the maximum probe (or trigger) absorption. In such a case, the detunings match
the Rabi frequencies of the two pumps, and the probe (or trigger) field is in resonance with
a single atomic transition. The atoms are significantly pumped to the excited levels and the
population assumption of Eq. (3.8) is not fulfilled. In fact, the discrepancy between the exact
numerical solution of the OBE and the AV approach is strictly related to the atomic population
out of level |1) which, in the case of Fig. 3.2, is about 14% of the total population.

Figs. 3.2-3.5 refer to a situation with small dephasing rates (V i,j, v;; = I'{V = I'dV =
10~*T'y ~ few kHz) which are typical for not too dense gases. For larger values of the dephasing
rates (some tens of kHz), we have seen that the analytical prediction of the AV approach of the
preceding section starts to depart from the exact solution of the OBE.

3.2.3 Group velocity matching

The propagation equation for the slowly varying electric field amplitudes ¢;(z,t), i = P, T,
defined as
Ei(z,t) = ei(z,t) exp {ik;z — iwit} + c.c. i =P, T,

is given by

0 1 0 k; .
I =iy - =PT 31
(az +UZg at) ei(2,t) 22)(1(2,25)61(2’,15), ¢ Ul (331)

where v; is the group velocity, generally defined as v; =c/(1+ n;), with ¢ the speed of light in

i1 1. Wi IRel[xi]
ng = 2Re[xz]+ 5 ( Em )wi (3.32)

vacuum and

the group index, w; being the central frequency of pulse . The solution of Eq. (3.31) is

ki [?
i(z,t) = &;(0,t — iz) exp {25 / dz'xi(z',t)} : (3.33)
v 0

g9



3.2 The Asymmetric M Scheme 47
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Figure 3.2: Comparison of the numerical solution (dotted line) of the OBE with the analytical
prediction of Eq. (3.14) (full line) for the real part (above) and imaginary part (below) of the
linear probe susceptibility versus the normalized probe detuning d;/T'y. The parameter used
are the following: T4V = Ty = 36 MHz, I'{'V = Ty = 38 MHz, 6, = 63 = 04 = 0, V i,]
vij = T4V =T8V = 1074y, Q1 = 0.08Ty, Qg = 21y, Q3 = 0.041y, Q4 =Ty,

so that, using Eqs. (3.13), the nonlinear cross-phase shift for the two fields of interest is given
by

ck — 2’1/ dzRe[x 5] ler (2, 8)[?, (3.34a)
ok — —/ dzRe[x5 ] lep(z,1)]?, (3.34b)

where [ is the length of the atomic medium. These nonlinear cross-phase shifts are of fundamental
importance also for quantum information processing applications. In fact, the CPS of Eq. (4.3)
is determined only by these cross-Kerr contributions to the total phase shift, because the linear
and self-Kerr contributions cancel out, as shown in Refs. [59, 71].

For Gaussian probe and trigger pulses of time durations 7p and 7, and with peak Rabi

frequencies QY o and Q’}eak respectively, the nonlinear cross-phase shifts can be written as (see
also Refs. [59,71])

e wil VARRIQEN erf[Gp]
P e Jpa? Cp
or _ wal VIR2|QE 2 erfCr]
T Z |M12|2 ¢r

Relx5™), (3.352)

Relx%"], (3.35)
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Figure 3.3: Comparison of the numerical solution (dotted line) of the OBE with the analytical
prediction of Eq. (3.15b) (full line) for the real part (above) and imaginary part (below) of
the probe cross-Kerr susceptibility versus the normalized probe detuning §;/I'y. To reduce as
much as possible the influence of the self-Kerr susceptibility we have considered a probe Rabi
frequency ©; much smaller than that of the trigger field. Parameters are: ['4'Y = I'y = 36 MHz,
M4V =Ty =38 MHz, 63 = 03 = 64 = 0, V i,j 75 = T4V = T8V = 10747y, Q1 = 0.004T 4,
Qo =200y, Q3 =0.04Ty, Q4 =T'y4.

where (p = (1 — Uf/vg)\/il/vaT and (r is obtained from (p upon interchanging the indices
P «— T. Large nonlinear cross-phase shifts take place for appreciably large values of the two
cross-Kerr susceptibilities real parts, and especially when probe and trigger velocities become
equal, i.e., when (pp — 0, in which case the erf[(]/{ reaches the maximum value 2/y/7. In
this limit the cross-phase phase shifts linearly increase with the length of the atomic medium I.
This explains why achieving group velocity matching, vf = ng,
Moreover group velocities become small for large group indices and this condition can be achieved
within the EIT transparency window, where Re[y] vanishes, and the group velocity is strongly
reduced due to a large dispersion gradient ORe[x]/dw.

Let us see how small and equal probe and trigger group velocities can be obtained. We
consider the approximate analytical expressions for the susceptibilities of Eqs. (3.13)-(3.15)
derived above within the AV approach, and which we have seen to work very well in the EIT

is of fundamental importance.

regime. Assuming to stay at the center of the transparency window for the probe (412 = 0)
where the dispersion gradient is maximum, and neglecting dephasing rates I'4'"" and I'2'V, which
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Figure 3.4: Comparison of the numerical solution (dotted line) of the OBE with the analytical
prediction of Eq. (3.15a) (full line) for the real part (above) and imaginary part (below) of
the probe self-Kerr susceptibility versus the normalized probe detuning 6;/T's. To reduce as
much as possible the influence of the cross-Kerr susceptibility we have considered a trigger Rabi
frequency €23 much smaller than that of the probe field. Parameters are: I'4V = I'y = 36 MHz,
FfV = I'y = 38 MHz, 0y = 03 = 04 = 0,V i, Yij = F?V = F?V = 10_4F4, 0 = 0.5I'4,

Qs = 2Ty, Q3 = 0.005Ty, Q4 = T4y.

are typically much smaller than all the other parameters, one gets

N |p12]?wr

P 2
———————(1+1Q ,

ng V 25€0|QQ|2( | 3| 6>
N |uza|?ws

T 2
———— |0

n, 2560|Qz|2| 1178,

where [59]
(8% + 19 P) [ (Brsd1a — 194]%)° = 3, (1Y /2)°]

2
[(Grs010 = [942)° + 62, (02V /2)°]

In the EIT situation we are considering it is ng, ng > 1, so that, using Egs. (3.36),

WP € o 2hegc| Qs |?

S (N/V)|pePwr (1 +(Q3)28)
T £ o 2hegc|Qz)? .

T ng (N/V)|psalPws| 0?8

(3.36a)

(3.36b)

(3.37)

(3.38a)

(3.38D)
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Figure 3.5: Comparison of the numerical solution (dotted line) of the OBE with the analytical
prediction of Eq. (3.15¢) (full line) for the real part (above) and imaginary part (below) of
the trigger cross-Kerr susceptibility as a function of the normalized trigger’s detuning ds/I'y4.
Parameters are similar to those of Fig. 3.2, T4V = I'y = 36 MHz, T}V = I'y = 38 MHz,
61 =0 =104 =0, Vijy; =14 =TV =107y, Q1 = 0.08y, Oz = 21y, Q3 = 0.041y,
Q4 = F4.

As expected, the asymmetric M-scheme does not yield equal slow down of both trigger and
probe pulse automatically as, for example, the scheme of Petrosyan and Kurizki [73] does. In
fact, the two expressions of the group velocities are generally different. Nonetheless, Eqgs. (3.38)
show that group velocity matching is always achievable by properly adjusting the parameter 3,
which means adjusting the tuner intensity |[24|* and the composite detuning d14. This shows
that the present asymmetric M-scheme can be seen as a modified version of the N-scheme of
Ref. [13], in which the tuner pump field is added just in order to “tune” the group velocity of
the trigger pulse so to make it equal to that of the probe. The possibility to achieve group
velocity matching is shown in Fig. 3.6, where both the numerical result derived form the OBE
and the approximate analytical expressions of Eqgs. (3.38) are plotted versus the trigger detuning
d3. Two different values of d3 exist for which v} = v] ~ 1000 m/s (see Fig. 3.6). Parameter
values here correspond to typical values for a cell of 8’Rb atoms, i.e., 'V = I'y ~ 36 MHz,
IV =Ty ~ 38 MHz, N/V ~ 3 x 103 em™3, 6; = 6 = 0, 04 ~ 63 ~ 20Ty, ; = 0.08Ty,
Qo =20y, Q3 = 0.04y, Q4 = Ty, V ij, 5 = 4V =T2Y = 107*T'y. Moreover Fig. 3.6 clearly
shows that the simple expressions of Eqs. (3.38) well reproduce the exact numerical solution of
the OBE.
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Figure 3.6: Group velocity of the probe and trigger pulses versus the normalized trigger detuning
d5/T'4. Full lines denote the analytical predictions of Egs. (3.38) (the thick line refers to the probe
and the thin line to the trigger). Circles and dots refer to the numerical solution of the OBE for
the probe and trigger group velocity, respectively. This figure shows how it is possible to obtain
group velocity matching in the asymmetric M-scheme: two different values of 5 exist for which
vf = ng ~ 1000 m/s. The parameters are those of the D; and Do line in the 8”Rb spectrum:
gV =Ty ~ 36 MHz, '}V =Ty ~ 38 MHz, 6; = 63 = 0, §5 ~ 63 ~ 200y, Q; = 0.08[y,

Qo =20y, Q3 = 0.04Ty, Oy =Ty, V ij, vi; =4V =TV =1074Ty, N/V = 3.0- 1013 em~3.

3.2.4 Pulse propagation

In previous Section, we have addressed the problem of group velocity matching between probe
and trigger fields in the asymmetric M-scheme. It should be emphasized that the analysis and
the results presented there are strictly valid for the continuous-wave (cw) fields. We would
now address that same problem but with the pulsed probe and trigger fields in mind. At first
look, Egs. (34) appear to suggest that the group velocity matching would not be possible in
the pulsed regime. As the group velocity of the trigger pulse is inversely proportional to the
square of the probe pulse, trigger suffers anomalous nonlinear dispersion, i.e. in the presence
of a pulsed probe, the trigger pulse will get distorted, splitting into several components, each
having a different group velocity.

It will be shown in this Section that the above conclusion is an artifact of the usual approxi-
mations made to obtain a closed and compact expression for group velocities. In particular, the
X3
given by Egs. (3.38) and nonlinear susceptibilities x; being those of Egs. (3.15). This is equivg—
alent to the adiabatic elimination of the atomic degrees of freedom. Such adiabatic elimination,
strictly speaking, is not valid in the parameter regime explored in this paper: strong nonlin-

pulse propagation in this approximation is described by Eqgs. (3.31), with group velocities v
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Figure 3.7: Pulse propagation in the AMS, in regime of long pulses in time.
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Figure 3.8: Pulse propagation in the AMS in regime of short pulses in time.

ear interaction between probe and trigger pulses suggests that the contribution of the atomic
medium is far from being adiabatic. Also, it should be noted that the dephasing processes have
been neglected in the derivation of v;. For the adiabatic case, the above conclusion is correct:
the trigger pulse suffers anomalous dispersion and its group velocity becomes singular towards
the edges of a probe pulse. However, pulse propagation through the asymmetric M-system do
not follow such a simple approximate evolution. Full propagation problem must then be solved
which includes adding the time-dependent equations for the pulses to the OBEs A.23, and nu-
merically solving the resulting system of equations. In the above equation, it is understood that
op = o012 and o = 034.

N p;
VZ) oilzt), i=PT, (3.39)

o 10 k;
L2 ENE(a ) =2
(32 + c@t) i(zt) =2 2
results are shown in Fig.3.7 and in Fig.3.8, for the same set of parameters that give group
velocity matching in previous sections. Vertical axes are scaled with the spontaneous emission
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parameters. We can see the emergence of two different regimes, a long-pulse regime, and a
short-pulse regime. Here with long and short we mean in time. The inverse of this “length”
is compared with the transparency window. Long pulse (narrow frequency bandwidth) fit well
in the transparency window, while long pulse (wide frequency band) do not. In the case of
long pulses propagate troughs the medium with untouched amplitude, only a small reduction
of the amplitude is due to the presence of not perfect EIT condition and then to the non-zero
imaginary part of susceptibility. For the short pulses the situation is completely different. It is
clear from Fig.3.8, that the pulses are distorted, because they spread outside the transparency
window. Trigger, as the probe, shows a reduction of the amplitude, moreover it also split into
several components which then continue to propagate with a different group velocity each.

It is also noted that in the long-pulse regime, both of the pulses propagate virtually undis-
torted, with a group velocity uniform across each of the pulses. Our simulations suggest that
the approximate Eqgs. (34) are valid, as long as the Rabi frequencies there are considered to be
taken at the peak of the pulse, i.e. £ — Qpeqr.

3.3 The Symmetric M—scheme

In this section we analyze the symmetric M—scheme [84], schematically shown in Fig. 3.9. The
initial conditions and the configuration of the fields are slightly different from those of the
asymmetric case of Sec. 3.2. The same five levels could be used, but all the atoms are now initially
prepared in level |3) (see Fig. 3.9). Moreover, the role of the probe and of the coupler fields
are exchanged, i.e., now the probe field (still with Rabi frequency €; and central frequency wy)
couples levels |2) and |3), while the coupler (still with Rabi frequency s and central frequency
wo) induces transitions between levels |1) and [2). The role of trigger and tuner fields remains
unchanged. In such a way, the scheme becomes symmetric for probe and trigger, and the two
fields experience ezxactly the same dynamics whenever the corresponding parameters are made
equal, i.e., when the Rabi frequencies are correspondingly equal (21 = Q3, Q2 = Qy), as well as
the detunings, (6, = d3, d2 = d4), which are now defined similarly to those of the asymmetric M
scheme (see Eqs. (3.1)) except for probe-coupler exchange, i.e.,

Ey—Ey, = hws+ hos, (3.40a)
Ey—FE3 = hwy + hoy, (3.40b)
Ey—FE3 = hws+ hds, (3.40¢)
Ey—FEs = hwy+ hdy. (3.40d)

In this way, the scheme can be seen again as formed by two adjacent A, one for the probe
and one for the trigger, now however symmetrically placed with respect to state |3). As we
have done for the asymmetric M scheme, we assume to stay close to the two-photon resonance
conditions, d; ~ Jo and d3 ~ d4, and moreover that || < [Q2], and |Q3] < |Q4], so that both
probe and trigger will experience EIT. As we have seen above, a large XPM is obtained when
the group velocities are equal [31,59,71,73,77,83], and the advantage of the present symmetric
M-scheme is that group velocity matching is automatically achieved once that the scheme is
exactly symmetric between probe and trigger.
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Figure 3.9: Symmetric M scheme. The probe and the trigger fields, with Rabi frequencies 24
and Qg respectively, together with the stronger pump fields, the coupler and the tuner (with
Rabi frequencies Q9 and ()4, respectively) drive the corresponding transitions. All the atoms

are assumed to be in state |3) and the detunings are defined in Eqgs. (4.2).

The Hamiltonian of the system is
5 . .
Hs = Y Eili){il + ki (Qae™ ™ (2)(3] + Qae ™2 |2)(1]
+ Qge ™M 4) (3] + Que” ) (5] + h.c.) .

Moving to the interaction picture with respect to the following free Hamiltonian

Hy = B3|3)(3| + (B2 — 761)|2)(2| + (E1 — hd12)|1)(1]
+(Ea — hds)|4) (4] + (E5 — hds4)[5) (5],

where

d12 01 — 02,
03a = 03— da,

we get the following effective Hamiltonian

HZp s = ho1]2)(2| + ho12|1) (1] + hds|4) (4] + hdsa|5) (5|
+180|2) (3] 4 A |2) (1] 4 A3 |4) (3] 4 A |4) (5|
+hS0[3) (2] 4 A5 [1)(2] + AQ[3) (4] + RQ;[5) (4].

3.3.1 Amplitude Variables Approach

(3.41)

(3.42)

(3.43a)
(3.43D)

(3.44)

We first study the system dynamics by means of the AV approach, in which the state of the
atom is described by the wave-function of Eq. (3.6), whose time evolution is determined by
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the Hamiltonian of Eq. (3.44), supplemented with phenomenological decay rates FfW for each
atomic level |i). The corresponding evolution equations for the amplitudes b;(t) are

bi(t) = —udiby(t) — 1 QUba(1), (3.45a)
bo(t) = —udabo(t) — 1Qb1 (t) — 120 b3(t), (3.45b)
bs(t) = —udsbs —1Q5ba(t) — 182ba(t), (3.45¢)
ba(t) —1dyby(t) — 1Q3bs(t) — 1Qbs (), (3.45d)
bs(t) = —udsbs(t) — 1Usba(t), (3.45¢)
where, similarly to what we have done for the asymmetric case, we have defined
dy = 61— V)2, (3.46a)
dy = & — I3V )2, (3.46b)
ds = —i4V)/2, (3.46¢)
dy = 03—V )2, (3.46d)
ds = &34 —il2V /2. (3.46¢)

Since we choose again |1 /Qs| < 1 and |Q3/04] < 1, it is reasonable to assume that the atomic
population remains in the initial state |3) to a good approximation

b3 ~ 1. (3.47)

The set of equations (3.45) is then solved in the steady-state. In order to get a consistent
expression for the nonlinear susceptibilities one has to consider higher order contributions to
Eq. (3.47), which is obtained by imposing the normalization of the atomic wave-function of
Eq. (3.6) at second order in [/2| and |Q23/Q4]. One gets the following expression for the
steady state amplitudes

ol [l 196] 98] [l + 9P

b = RSN AT (3.48a)
by = ﬁ 5 (3.48D)
by = M?ﬁ*ﬁsﬂdzbés, (3.48¢)
g -1 St (50
b = %bgé (3.48¢)

These results can be used to determine the probe and trigger susceptibilities, which are now
defined as (see Egs. (3.12))

N,LL32 bssbSS,* o N|:LL32|2 bssbss,*

= =— 3.49
XP VEogl 2 V3 thoﬂl 2 V3 ) ( a‘)
N:U/34 88, % ]V|,U/34|2 S8, %
= bi%b" = — b2, 3.49b
X Veols 8 VheoQs * 3 (3.49b)
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Inserting Eqgs. (3.48) into Egs. (3.49) and expanding in series at the lowest orders in the probe
and trigger electric fields, £ and &3 respectively, one gets

xp o= X8+ aEE R+ x B g, (3.50a)
1 3,sk 3,ck
xr = Xy €+ X I6 P, (3.50b)

where we have again distinguished the third-order self-Kerr susceptibilities Xg;o”;k) from the third-
3

order cross-Kerr susceptibilities x P,’TCk). Using Egs. (3.48) and the definitions of Eqgs. (3.46), we
get the following expressions for the linear susceptibilities,

O Nlpz2|? d12 — 7V /2 (3.51a)
P VﬁEO (51 — ZF?V/Q) ((512 — ’LF’PV/Q) — |QQ|2
(1 _ Npzal® d34 — il /2 (3.51b)
r Vheo (85 —il4V /2) (034 — T2V /2) — Q)2 '
and the following ones for the nonlinear susceptibilities,
_gsym sym |2 2
oy _ Nl asy™ [l + 1] .
P - SYym 35ym SyYm Sym ’ :
Vieo [ diy™ — Qo) |di ™ di™ — Q][
_gsym sym |2 2
X(B,Sk) _ N|u34|4 d34 |:|d34 | + |Q4| :| (3 52b)
T - SYym 18ym SYm 3Sym ’ :
Vieo [ dsy™ — Q) |d5™ d5g™ — |Qal?[?
_gsym sym |2 2
ek _ Nl psal? g™ [ + 9P (3.52)
: VB0 [dimdig™ — Qa2 a3 d3g™ — |Quf?*
_gsym sym |2 2
X(S,ck) _ N|,LL32|2|,LL34|2 d34 |:|d12 | + |Q2| :| (3 52(31)
! Vheo (a5 dsy™ — |Quf?) |di" diy™ — Qa2

where the complex detuning di¥™, d3’™, and d}5™,d54"™ have been defined as

& = 5 — iy )2 (3.53)
&Y = 51— iV /2 (3.54)
" = 53— T3V )2 (3.55)
A" = G34 — DRV /2. (3.56)

From previous equations, first of all, we note that the expressions of the probe and trigger
susceptibilities above are completely symmetric. This means that probe and trigger experience
the same linear and Kerr susceptibilities, as soon as the corresponding parameters correspond,
i.e., M32 = W34, Ql = Qg, QQ = Q4, 51 = 53, 52 = 54, Ffv = F?V, F?V = Ffv More-
over, the probe linear susceptibility of Eq. (3.51a) and the self-Kerr susceptibility of Eq. (3.52a)
coincide with the corresponding ones of the asymmetric case, Eq. (3.14) and Eq. (3.15a) re-
spectively, because the phenomenological decay rate T'{'V here plays just the same role of the
phenomenological decay rate F3AV of the asymmetric scheme. This is not surprising, since the
probe response in the absence of the trigger field is the same in the two M scheme studied
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here. Finally the cross-Kerr susceptibilities of the two schemes are generally different, both for
the probe and the trigger, even though they possess a similar structure. The main relevant
difference between the two cross-Kerr susceptibilities is in the dependence of their real parts
upon the detunings. In fact, in the asymmetric case both real parts are proportional to the
composite detuning d14 = d12 + d34 (see Eqs. (3.4) and (3.43)), so that one has a nonzero XPM
as soon as one of the two A subsystem is shifted from the two-photon resonance condition. In
the symmetric case instead, Re{xg’Ck)} is proportional to 412 and Re{ng”dc)} is proportional
to d34, and the two-photon resonance condition has to be violated by both A subsystems if each
field has to experience a nonzero XPM.

3.3.2 Comparison with the Optical Bloch Equations

We now study the dynamics of the symmetric M scheme of Fig. 3.9 by means of the OBE, which
allows to describe spontaneous emission and dephasing more rigorously. Due to the similarity
of the symmetric and asymmetric M schemes, we consider the same spontaneous emission and
dephasing processes described in section 3.2.2. As a consequence, the master equation for
the atomic density operator o is again given by Eq. (3.23), with the only difference that the
Hamiltonian H, gﬁ is replaced by the corresponding Hamiltonian H esf ¢ of the symmetric scheme,
given by Eq. (3.44). The corresponding system of OBE’s is displayed in Appendix A.2.2 as
Egs. (A.25) and (A.26), where we have used the definitions of Eqgs. (3.24)-(3.26).

Also in this symmetric case, the OBE are less suited for an approximate analytical treatment
with respect to the AV equations of the preceding section. In fact, if we consider the conditions
121 /92| < 1 and [Q3/| < 1 and, consistently with Eq. (3.47), we assume that

o5 o~ 1, (3.57a)
0, j=1,2,4,5, (3.57b)

Q

0jj
at the steady state, it is possible to see that by inserting Egs. (3.27) into Eqgs. (A.26) for the
coherences, one gets a satisfactory expression for the probe linear susceptibility only. To be more
specific, only the approximate linear susceptibility fits well with the numerical solution of the
OBE. It is not easy to derive analytical expressions from Eqs. (A.25) and (A.26) for the nonlinear
susceptibilities which would be as simple as those of Eqs. (3.52) and which would reproduce in
the same way the exact numerical solution of the OBE within the EIT regime. Again, one
could exactly solve analytically the OBE, but the resulting expressions are very cumbersome
and not physically transparent as those of Egs. (3.52). For this reason we will analytically derive
from the OBE the probe linear susceptibility only, and we will then use the OBE only for the
numerical determination of the atomic steady state. In addition, deriving this result will enable
us to draw a formal analogy between the AV and OBE treatments (see Egs. (3.60) below).

The probe and trigger susceptibilities are now defined as

N pso N |p32]?
_ _ _ Nlusa|” 3.58
XpP Veols 32 Vieoths 032, ( a)
N N 2
wp = Npsa o Nlpsal® (3.58b)

n V6053 734 = Vh{:‘oQg

Using Egs. (3.57) and performing a series expansion at the lowest order in the probe and trigger
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fields, we arrive at the following expressions for the probe and trigger linear susceptibilities

(1) _ Nlps2l” 612 — i713/2 3 594

P = Vheo B —ir13/2 1 — i (T 712) /2] — 061 (3:59)
N 2 O34 — 1 2

(1) _ Nlpsal 34 — 1753/ (3.59D)

T Vhey [634 — ivs3/2][03 — i (D4 + v54) /2] — [Qu]?

The probe linear susceptibility of Eq. (3.59a) coincides with that of the asymmetric M scheme
of Eq. (3.29), as it must be, since the linear properties of the probe in the two M schemes
are identical. Moreover, as noted before, due to the symmetry of the scheme, this probe linear
susceptibility coincides with that of the trigger of Eq. (3.59b) when the corresponding parameters
coincide, i.e., 32 = 34, (51 = (53, (52 = 64, QQ = Q4, Fg = F4, Y54 = Y12 and Y53 = Y13- By
comparing Eqgs. (3.59) with Egs. (3.51), one can also see that the AV and OBE predictions for
the linear susceptibilities again coincide provided that the phenomenological decay rates F;‘W
are appropriately interpreted, i.e.,

sV o Tyt (3.60a)
iV o s, (3.60b)
IV o Ty s, (3.60¢)
IV o s (3.60d)

This shows again that the intuitive interpretation of the phenomenological decay rates F;‘W as
spontaneous emission total decay rates for the excited states, and as dephasing rates in the case
of ground state sublevels, is essentially correct.

We then consider the numerical solution of the OBE and we compare it with the analytical
treatment based on the AV approach. The numerical calculations are again performed in the
limits discussed above, i.e., [Q4], |Q2] < [Q3], |24] and we stay near the Raman resonance for both
the probe and the trigger. In Figs. 3.10-3.12 we compare the analytical solutions of Eqs. (3.51)
and Eqs. (3.52) with the numerical solution of the complete set of Bloch equations given in
the Appendix B. Fig. 3.10 shows the linear susceptibilities and refers to a perfectly symmetric
situation between probe and trigger, i.e., 4V =Ty =TV =T, =T = 27 x 6 MHz, Q; =
Q3 =008, Qo =Q =T1,6, =6, =0,V ijvyy; =4 =T{Y = 107%I". As a consequence,
the probe and trigger linear susceptibilities as a function of the respective detunings §; and
03 are two indistinguishable curves. In such a case, group velocity matching is automatically
guaranteed whenever pigo = psq. Fig. 3.10 shows that Eqgs. (3.51) work very well, except when
the detunings correspond to the maximum probe (or trigger) absorption. In such a case, the
detunings match the Rabi frequencies of the two pumps, and the probe (or trigger) field is in
resonance with a single atomic transition. The atoms are significantly pumped to the excited
levels and the population assumption of Eq. (3.47) is no more fulfilled.

Fig. 3.11 shows the cross-Kerr susceptibilities again in a perfectly symmetric situation be-
tween probe and trigger so that their plots as a function of the respective detunings §; and
03 exactly coincide. However, in order to reduce as much as possible the influence due to the
simultaneous presence of the self-Kerr susceptibility, we have considered a probe Rabi frequency

Q1 much smaller than that of the trigger in the ng’Ck) plot and wviceversa a trigger Rabi fre-

quency {23 much smaller than that of the probe in the X(T?”Ck) plot. To be more precise, Fig. 3.11
refers to T4V =T, =TV =Ty =T =27 x6 MHz, Qy = Q =T, 6, = 6, = 0, V i,j

v =TV =TAY = 107T, and ©; = 0.002T', Q3 = 0.08" in the case of the x'5"** plot, and
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Figure 3.10: Comparison of the numerical solution (dotted line) of the OBE with the analytical
prediction of Egs. (3.51) (full line) for the real part (above) and imaginary part (below) of both
probe and trigger linear susceptibilities versus their respective normalized probe detunings 61 /T
and 03/T". Probe and trigger susceptibilities exactly overlap because we consider the perfectly
symmetric situation ['4V =Ty =T{V =Ty =T =27 x6 MHz, Q1 = Q3 = 0.08T, Qy = Qy =T,
8o =084 =0,Y1i,jy; =Y =T8V = 107*T, sz = p34, which guarantees perfect group velocity
matching.

to Q3 = 0.002I", Q; = 0.08I in the case of the x%?’ck) plot. We can see from Fig. 3.11 that the
AV approach gives a satisfactory description also for the cross-Kerr susceptibility, except when
probe or trigger absorption is maximum, as it happens for the linear case.

Finally Fig. 3.12 shows the self-Kerr susceptibilities again in a perfectly symmetric situation
between probe and trigger. As a consequence their plots versus the respective detunings d; and
03 exactly coincide. Here, in order to reduce the influence due to the simultaneous presence of

the cross-Kerr susceptibility, we have considered a trigger Rabi frequency €23 much smaller than
(3,sk)

that of the probe in the x plot and viceversa a probe Rabi frequency €27 much smaller than
that of the trigger in the ng"’Sk) plot. The parameters are the same as in Fig. 3.11, except that
(3,5k)

here we have chosen Qy = Q4 = 2I', €1 = 0.4I', Q3 = 0.004I" in the case of the x plot,
and Q3 = 04, Q; = 0.004T" in the case of the x%?’Sk) plot. The agreement between the AV
prediction and the numerical solution of the OBE is satisfactory.

3.4 Group velocity matching

As we have seen in section 3.2.3, the condition of group velocity matching is of fundamental
importance for achieving a large cross-phase modulation between probe and trigger fields. It is
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Figure 3.11: Comparison of the numerical solution (dotted line) of the OBE with the analytical
prediction of Egs. (3.52¢,d) (full line) for the real part (above) and imaginary part (below)
of both probe and trigger cross-Kerr susceptibilities versus their respective normalized probe
detunings 01 /T and d5/T". Probe and trigger susceptibilities exactly overlap because we consider
a perfectly symmetric situation: T'sV =Ty =T34V =Ty =T = 27 x 6 MHz, Qy = Q4 =T,
02 =04=0,Y1jv; = 'V =14V = 107T"; moreover we have chosen ; = 0.002T", Q3 = 0.08T
in the case of the XS"’Ck) plot, and wviceversa Q3 = 0.002I", €23 = 0.08[" in the case of the X(TB’Ck)
plot, in order to reduce as much as possible the influence of the self-Kerr susceptibilities.

evident from the inherent symmetry of the present scheme that the condition of equal probe and
trigger group velocities is automatically achieved when the corresponding parameters are equal
i.e., H32 = W34, 51 = 53, 52 = 54, QQ = Q4, FQ = F4, V54 = Y12 and Y53 = Y13, W1 = W3. This
is the main advantage of the symmetric M scheme over the asymmetric one. The contribution
of the nonlinear susceptibilities to v, is negligible with respect to that of the linear one, which
is nonzero for both probe and trigger in this case (see Eqgs. (3.50)). Therefore, approximating
x with the linear contribution x(*) and inserting Eqs. (3.51) into the definition (1.43), one gets
the following expressions for the two group indices

Nlian|? d d? + (Qs?

nl = a2l g L wi (df + || l , (3.61a)
2Vh50 d1d2 - |Q2| (dldg - |QQ|2)
N 2 d d2+ 9 2

ng’ _ |34 Re 5 . w3( 5 + || 2 , (3.61Db)
QVFLEQ d5d4 - |Q4| (d5d4 — |Q4|2)

where we have used the definitions of Eqgs. (3.46) for d;, j = 1,2,4,5. The symmetry between
probe and trigger discussed above is evident also in these expressions. Eqgs. (1.42) and (3.61)
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Figure 3.12: Comparison of the numerical solution (dotted line) of the OBE with the analytical
prediction of Egs. (3.52a,b) (full line) for the real part (above) and imaginary part (below)
of both probe and trigger self-Kerr susceptibilities versus their respective normalized probe
detunings 01 /T and 03 /T". Probe and trigger susceptibilities exactly overlap because we consider
a perfectly symmetric situation: T4V =Ty =T{V =Ty =T = 27 x 6 MHz, Qy = Q4 = 2T,
0 =04=0,V1ijy; = 'V =14V = 107T"; moreover we have chosen ; = 0.4T, Q3 = 0.004"
in the case of the XS"’Sk) plot, and viceversa Q23 = 0.4", ; = 0.004I" in the case of the X(TB’Sk)
plot, in order to reduce as much as possible the influence of the cross-Kerr susceptibilities.

are now compared with the corresponding ones obtained from the integration of the full set of
Bloch equations of Appendix A.2.2. The comparison is shown in Fig. 3.13, which refers to the
completely symmetric situation between probe and trigger defined above and therefore shows
exact group velocity matching for all values of the detunings 6; = d3. Fig. 3.13 shows an excellent
agreement between analytical and numerical results. The only points in which the two curves
do not coincide exactly are when the detunings match the Rabi frequencies of the two pumping
field. In fact in this conditions the fields are in resonance with a single atomic transition and
the atoms are pumped to the excited levels. The other points that determine the disagreement
are in the vicinity of the peaks. In fact in these regions the derivatives are small, because of the
change in slope of the real part of the susceptibilities. Hence, the group index of Egs. (3.61) is
small, and the group velocity jumps near c.

In some cases, the perfectly symmetric conditions guaranteeing group velocity matching, i.e.,
H32 = 434, 51 = 53, 52 = 54, QQ = Q4, FQ = F4, Y54 = Y12 and Y53 = Y13, are difficult to realize
in practice. In fact, sometimes it may be convenient to use transitions with different Clebsch-
Gordan coeflicients, yielding therefore a significant discrepancy between pza and ps4. The other
symmetry conditions above are less problematic because detunings and Rabi frequencies can
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Figure 3.13: Group velocity of the probe and trigger pulses versus the normalized detunings
91/T" = 03/T. Lines denote the analytical predictions of Eqgs. (1.42) and (3.61) (the full line refers
to the probe and the dashed line to the trigger). Circles and dots refer to the numerical solution
of the OBE for the probe and trigger group velocity, respectively. Parameters correspond to the
perfectly symmetric situation considered in Fig. 3.10, that is, I3V =Ty =T}V =Ty =T =
27 x 6 MHz, Q1 = Q3 = 0.08T, Qo = Qy =T, 62 = 54 = 0, V i,j v;; = {1V =T'{Y = 107T, and
we have chosen p32 = pgs = 10722 C -m, and N/V = 3.0 x 10'3 cm~3. Due to symmetry, one
has perfect group velocity matching within a large interval of values for the detunings.

always be made equal by the experimenter, and moreover decay and dephasing rates, even
though not perfectly equal, are often comparable to each other. Just to give an example, one
could implement the symmetric M scheme of Fig. 3.9 by using the D; and Dy line of the
8Rb spectrum.The Zeeman sublevels [5P; oF = 1,m = 0) and [5P35F = 1,m = 0) could be
chosen as levels [2) and [4), respectively, while the Zeeman sublevels |55, /2 F = 1,m = —1),
1581 /2F =2,m = 1) and [5P; 3 F = 1,m = 1) could chosen as levels |1), |3) and |5), respectively
(see also Ref. [59] for a similar choice). For these levels the atomic transitions related to the probe
and trigger have dipole moment matrix elements jizo, 34 differing by a factor /10, violating
therefore the symmetry condition.

It is evident however that this slight asymmetry can be compensated (so that group velocity
matching can be still achieved in a restricted but still useful range of detunings) by properly
adjusting the Rabi frequencies of the tuner field €24 and of the coupling field 22, which will be
no more equal. In fact, by imposing group velocity matching at the center of the transparency
window, i.e., for §15 = d34 = 0, we derive the condition

QQ = OéQ47 (362)
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Figure 3.14: Group velocity of the probe and trigger pulses versus the normalized detunings
91/T" = 63/T. Full lines denote the analytical predictions of Eqs. (1.42) and (3.61) (the thick
line refers to the probe and the thin line to the trigger). Circles and dots refer to the numerical
solution of the OBE for the probe and trigger group velocity, respectively. Parameters correspond
to the five—level scheme derived from the D; and Ds lines of the 3"Rb spectrum described in the
text, T4V = I'y ~ 36 MHz, T'{Y = I'y ~ 38 MHz, p3 = 1.27 x 1072° C-m, pzq = 5.7 x 10730
Cm, Q4 =1, Qy = 2221, Q) = Q3 = 0.08, o = 64, = 0, V i,j y5; = {1V =TV = 107T,
N/V = 3.0 x 10'® em™3. The asymmetry between the two dipole moment matrix elements has
been compensated by adjusting the value of €25. In this way group velocity matching is achieved
within the entire EIT window.

where the correction factor « is given by

[ |ps2|? w1
= —. 3.63
“ |M34|2 w3 ( )

As shown in Fig. 3.14, if the adjustment condition of Egs. (3.62) and (3.63) is taken into account,
one still gets equal probe and trigger group velocities in the case of the 87Rb five-level scheme
specified above, at least within the entire EIT window.

3.4.1 Role of the dephasings on absorption and group velocity match-
ing.

The studied M-scheme show good performances for the nonlinear interactions and for the group

velocity reduction even in presence of realistically dephasing process. Here we want to illustrate

how destructive are the dephasing process, in particular for the group velocities matching.
Group velocity matching is a crucial condition for the realization of a strong XPM. In previous
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Figure 3.15: Numerical estimation of the effects of the ground states dephasings on the probe
group velocity and on the linear absorption for the probe field. Parameters are €23 ~ 0.0814,
Qo ~ 2Ty, Q3 ~0.04y Q4 ~ Ty and 6y = 92 = 0, and 4 =~ I3 ~ 20Ty, with T’y ~ 38Mhz, all
the dephasings of the ground state are assumed to be equal.

section we have taken dephasing process three order of magnitude smaller then the spontaneous
decay rate. Here we want to illustrate the effect of dephasing process on the matching of the
two group velocity for the two M-schemes studied in the previous sections, and the effect on
the imaginary part of linear susceptibility, i.e., on the absorption process. We have solved
numerically the master equation of both the M-schemes and we have plotted the group velocity
and the absorption in function of dephasing process 74. An improvement of the absorption in
the middle of the transparency window of an EIT profile take place, and the steep variation of
the real part of the linear susceptibility is reduced inducing on the pulse a larger group velocity.
This situation is depicted in Fig.3.15(a).

From Fig.3.15(b) we can see how the probe is more sensitive to the introduction of dephasing.

The result is that as we increase the dephasing, the absorption of the probe pulse grows, and
becomes several orders of magnitude larger, while the dispersion is less sensitive. The largest
effect of the increase of the dephasing on the trigger pulse is on its group velocity, which rapidly
increases (see Fig.3.15) and group velocity matching could be compromised.
The symmetry of the M-scheme, implies a better tolerance of group velocity matching against
dephasing (Fig.3.16). Fig.3.16 shows that increasing the dephasing, the absorption increases
and analytical prediction starts to fails. In fact absorption of the fields means that the system
start to have a non negligible probability of being in the excited level |2) and |4).



3.4 Group velocity matching 65

- - -numerical
— analitical | 0.025¢

Absorption
o o
=
o 8

o

o

=
.

0.0051¢

0 0.05 0.1 015 0.2 025 0.3 035 04 045 05 00 0‘_2 0‘.4

z 06
Y /T 74

Figure 3.16: Probe and trigger group velocity, Fig.3.16a, and the absorption at the center of
the transparency window Fig.3.16b, for the SMS scheme. The numeric calculation of the group
velocity (continuous line in Fig.3.16a) is compared with the analytical expression for the group
velocity provided by eq(3.61). It is evident how the group velocity matching starts to disagree
when absorption mechanisms become important and the population assumption b33 ~ 1 is no
more well fulfilled. Parmeters are the same of Fig.(3.13).



66 Five level M scheme for Giant Kerr interaction: Semiclassical treatment




Chapter 4

Cross-phase modulation at the
single-photon level: Full quantum
calculation

Adopting a non degenerate perturbation theory, we analyze the performance, for QPG
implementation based on the symmetric M-scheme described semiclassically in the
previous chapter. The adoption of the perturbative treatment permits us to develop a
full quantum treatment of the system dynamics.

The performance, i.e. the conditional phase shift ¢ and fidelity F, of this two-qubit
quantum phase gate for travelling single-photon qubits is thoroughly examined in the
steady-state and transient regimes. In the steady-state regime, we find a general trade-
off between the size of the conditional phase shift and the fidelity of the gate operation.
However, this trade-off can be bypassed in the transient regime, where a satisfactory

gate operation is found to be possible, significantly reducing the gate operation time.

4.1 Introduction

In this chapter we perform a full quantum description of the interaction of two quantum probe
and trigger fields with A, in the five-level symmetric M-scheme, studied in the previous chapter
from the semiclassical point of view. The two quantum fields undergo cross-phase modulation
induced by EIT. The performance of this two-qubit quantum phase gate for travelling single-
photon qubits is thoroughly examined in the steady-state and transient regimes, by means
of a full quantum treatment of the system dynamics. In the steady-state regime, we find a
general trade-off between the size of the conditional phase shift and the fidelity of the gate
operation. However, this trade-off can be bypassed in the transient regime, where a satisfactory
gate operation is found to be possible, significantly reducing the gate operation time.

The scope of this chapter is to assess the performance of a two-qubit quantum phase gate
(QPG) for travelling single photon qubits [59,66,71,77,91-93], based on the cross-Kerr nonlin-
earity which is generated in a five-level atomic medium.
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Figure 4.1: Energy levels of the “M”-scheme. ); are the Rabi frequencies of classical fields, while
gp,+ denote couplings of the quantized probe and trigger fields to their respective transitions. d;
are the detuning of the fields from resonance.

Most of the literature focused only on the evaluation of the CPS and on the best conditions
for achieving ¢ = 7 [59,66,71,77,91-93], while the gate fidelity, which is the main quantity
for estimating the efficiency of a gate, has been evaluated in the full quantum limit in Ref. [83]
for the first time. Here we provide the details of the calculation of the fidelity and the CPS
of Ref. [83], which showed the presence of a general trade—off between a large CPS and a gate
fidelity close to one, hindering the QPG operation, in the stationary state. However, we shall
see that this trade-off can be partially bypassed in the transient regime, which has never been
considered before in EIT situations, still allowing a satisfactory gate performance.

The qubits are given by polarized single-photon wave packets with different frequencies, and
the phase shifts ¢;; are generated when these two pulses cross an atomic ensemble in a five-level
“M” configuration (see Fig. 4.1). The population is assumed to be initially in the ground state
|3). From this ground state, it could be excited by either the single-photon probe field, with
central frequency w;, and coupling to transition |3) < |2), or by the single-photon trigger field,
with central frequency w; and coupling to transition |3) < |4). We assume that the five levels are
Zeeman sub-levels of an alkali atom, and that both pulses have a sufficiently narrow bandwidth.
In this way, the Zeeman splittings can be chosen so that the atomic medium is coupled only
to a given circular polarization of either the probe or trigger field, while it is transparent for
the orthogonally polarized mode, which crosses the gas undisturbed [59]. As a consequence, the
logical basis for each qubit practically coincides with the two lowest Fock states of the mode
with the “right” polarization, |0;) and |1;) (j = p,t), while the “wrong” polarization modes will
be neglected from now on.

A classical pump field, with frequency w; and Rabi frequency €21, couples to the transition
|1) < |2), while a second classical pump field, with frequency w4 and Rabi frequency 4, couples
to the transition |4) < |5) (see Fig. 4.1). We consider a cylindrical, quasi-1D, atomic medium
with the two classical pump beams propagating along its axis, collinear with the two quantum
fields in order to avoid Doppler broadening. When the probe field is on two-photon resonance
with the pump field with Rabi frequency €21, and the trigger field is on two-photon resonance
with the pump field with Rabi frequency €14, the system exhibits EIT for probe and trigger
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simultaneously. As in the semiclassical SMS scheme this simultaneous EIT condition is achieved
when
01 = 0, 03 = da, (4.1)

where the detunings ¢; are defined by

Ey—FEy = hw + "oy, (4.2a)
Ey—Es = hw,+ hés, (4.2b)
Ey—F3 = hw + hos, (4.2¢)
Ey—Fs = hwy+ hdy. (4.2d)

A nonzero CPS occurs whenever a nonlinear cross-phase modulation (XPM) between probe and
trigger is present. For small frequency mismatch €15 = §1 —d2 and €34 = d5—04 (both chosen to be
within the EIT window), absorption remains negligible and the cross-Kerr interaction between
probe and trigger photons may be strong. The consequent CPS may become large, of the order
of m, if the probe and trigger pulse interact for a sufficiently long time. If the two single photon
pulses enter simultaneously the atomic medium, their interaction time t¢;,,; is optimized when the
group velocities of the two pulses are equal, so that t;,, = L/v,, where v, is the common group
velocity of the pulses and L is the length of the gas cell. The inherent symmetry of the scheme
guarantees perfect group velocity matching for probe and trigger whenever §; = d4, d2 = 3
and g,/ = g¢/Qua, where g; = pj\/wj/2heoV; (j = p,t) is the coupling constant between the
quantum mode with frequency w; and mode volume V;, and the corresponding transition with
electric dipole moment ;.

The chapter is organized as follows. In Sec. 4.2 we describe the model used in the remainder
of the chapter. Sec. 4.3 shows the results of a perturbative calculation for the CPS. These are
used as a motivation to pass to a density matrix based calculations in Sec. 4.4, describing a
QPG operation in a steady-state. Then, the transient regime in explored in Sec. 4.5, while in
Sec. 4.7 a scheme for the experimental verification of the QPG operation is discussed in detail.

4.2 Model

In this Section, we present the model we have adopted for a full quantum description of the
interaction of the two single-photon wave-packets with the atomic medium possessing the level
structure outlined in Fig. 4.1. To this end, we make the following two assumptions which, even
though not simple to realize experimentally, are more technical than physical in nature:

1. We assume perfect spatial mode matching between the input single-photon pulses enter-
ing the gas cell and the optical modes naturally excited by the driven atomic medium,
and which are determined by the geometrical configuration of the gas cell and of the
pump beams [85]. This allows us to describe the probe and trigger fields with the right
polarization in terms of single travelling optical modes, with annihilation operators a, ;.

2. We assume that the pulses are tailored in such a way that they simultaneously enter gas
cell and completely overlap with it during the interaction (see Fig. 4.2). This means that
their length (compressed inside a medium due to group velocity reduction) is of the order
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Figure 4.2: A schematic plot of the assumed single-photon pulse propagation through the gas
cell of length L and diameter d (color online). The pulse length is assumed to coincide with the
cell length L, and the pulse waist w is assumed to be of order of cell diameter d.

of the cell length L and their beam waist is of the order of the cell radius. In this way, the
two pulses interact with all N, atoms in the cell at once, and moreover, one can ignore
spatial aspects of pulse propagation.

With these assumptions, and neglecting dipole-dipole interactions, the interaction picture Hamil-
tonian may be written as

H = he19811 + ho2S99 + ho3S44 + hessSss (4.3)
+h/ N, (5’21 + Sm) + hgp/ Na (dpg23 + 5'3261;,)
+hgiv/ Ng (dt§43 + 334@) + hQu/ N, (5'45 + 5'54) ,

where we have defined the collective atomic operators

N,
N 1 <.
Su = —==> ok, kFI=1,...5 (4.4)
vV Na i=1
Ng .
Sk = ZO’}Ck, (4.5)

with of, = |k);(l| being the operator switching between states k and [ of the ith atom. The
initial state of the system corresponds to a probe and a trigger single-photon pulse with generic
polarization, simultaneously entering the medium in which all the atoms are initially in state
|3). Since we consider only the polarization mode interacting with the medium, both for the
probe and the trigger, the initial state can be written as

N,
i) = (Q)13)i @ (cool0p) @ [01) + con|0p) @ [1¢)
=1
+c101p) ®[00) + c11]1p) @ [14)) - (4.6)

Due to the above assumptions, the passage of the two pulses through the atomic medium of
length L corresponds to the time evolution of this state, for a time ¢;,, = L/v,, according to
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the master equation [6]

. N,
. ( Yk j
¢ = -z [H, o] + Z 3 (QUkkaokk o]0 — O‘O‘ik) :
k 7j=1
Vil
+ Z Z (QUszUkl agakla - ooﬂofd) (4.7)

including not only the coherent interaction described by the Hamiltonian of Eq. (4.3), but
also the spontaneous emission from the excited states | = 2,4 to the ground states k = 1,3,5
(vr1 denotes the corresponding decay rate) and the dephasing of levels |k), k = 1,2,4,5, with
dephasing rate yi. Typically the dephasing rates are much smaller than the decay rates,
Vit > Yk, VK, L

Since the initial state of Eq. (4.6) contains at most two excitations, the coherent time evolu-
tion driven by Eq. (4.3) is simple and restricted to a finite-dimensional Hilbert space involving
few symmetric collective atomic states. In fact, each component of the initial state of Eq. (4.6)
evolves independently in a different subspace. The component with no photon is an eigenstate
of H and does not evolve. The ®fV:”1 [3)i]0p) ® |1;) component evolves in a three-dimensional

Hilbert space which it spans together with the two states |eflo’0)> and |eg0’0)>. Here, we have
defined the symmetric collective states
|e(npme)y — Z 131,32, .., Tiy o5 30, @ ) @ |1, (4.8)

where 7 = 1,2,4,5. In a similar fashion, the component with only one probe photon evolves in

a three-dimensional Hilbert space spanned by the three states ®£V:“1 [3)i]1p) ® |04), |e§0’0)>

o)

and

. The component with one probe and one trigger photon evolves in the five dimensional
subspace spanned by the four collective states |e§0’1)>, |e§0’1)>, |e§1’0)>, and |egl’0)> and the state

RN 13)il1,) @ [1,).

4.2.1 Decoherence Effects

Decoherence effects, and more specifically spontaneous emission from each atom complicates
this dynamics. However, we are in the weak excitation limit where, for [ # 3, (aljl) ~ N1 <1,
as shown by the fact that the Hamiltonian dynamics involve only the symmetric atomic states
of the form of Eq. (4.8). This limit allows a drastic simplification of the effective time evolution.
Following Duan et al. [86], we can introduce Fourier transforms of the individual atomic operators
shy = Z;V 0_1 7 e i/Na |\/N,, where 59, = Sy are the collective operators defined in Eq. (4.4).
The sum over the atoms in Eq. (4.7) then transforms to the sum over the collective atomic
modes with index p. In the weak excitation limit, the operators s}, approximately commute
with each other. This means that they represent independent collective atomic modes, and one
can trace over the p # 0 modes, so that the spontaneous emission term in the master equation
becomes

> (2808}, - SliSuc — o81,5u) (4.9)

Kl

where the sum is now over the six “collective” spontaneous decay channels only, each character-
ized by the single-atom decay rate ;. A similar argument applies to the dephasing term in the
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master equation (4.7). In fact, if we restrict to the subspace of the symmetric collective states of
Eq. (4.8) involving only single atomic excitations, we can approximate in the dephasing terms
of the master equation,

Na
Z’ykaO’ikO’Uik ~ ZykkSkkoSkk, (410)
k Jj=1 k

where Sy is given by Eq. (4.5). Using Eqs. (4.9) and (4.10), the master equation of Eq. (4.7)
in the weak excitation limit becomes
1

h

o =

[H, O’] + ; 7% <2gkk0»§kk — SkkU — ngk)
kL (98 56t _ &t & &t &
—I—Z > (QSMO’SM — SleklU — aSkZSkl) , (4.11)
kl

that is, it involves only the operators of the collective atomic mode with index p = 0. This
actually means that the single photon probe and trigger pulses excite only a restricted number
of collective atomic states, so that the atomic medium behaves as an effective single 5-level atom,
with a collectively enhanced coupling with the optical modes g;v/N,, but with single-atom decay
rates i, dephasing rates yxr, Rabi frequencies €;, and detunings §;.

Spontaneous emission causes the four independent Hilbert subspaces corresponding to the
four initial state components to become coupled. Moreover, the “cross” decay channels [4) —
[1) and |2) — |5) couple the above-mentioned collective states with six new states, |e§1’0)>,
e§1’0>), |e§2’0)) (populated if v41 # 0), and |e§0’1)), |e£10’1)>, |eé0’2)> (populated if 25 # 0).
Therefore Eq. (4.11) actually describes dynamics in a Hilbert space of dimension 18, which we
have numerically solved in order to establish the performance of the QPG. Notice that, due to
the combined action of the cross-decay channels and of the Hamiltonian (4.3), the states |e§1’0)>,
|eg1’0)), |eé0’1)> and |e§10’1)) are coupled also to doubly excited atomic collective states without
photons which are neglected by our treatment. However, as we shall see below in the chapter, a
good QPG performance is possible only when spontaneous emission events are rare. Under this
condition, the probability to populate these doubly excited atomic collective states during the
atom-field interaction is completely negligible, and therefore our model based on the effective
single five-level atom description provided by Eq. (4.11) is essentially correct.

4.2.2 Definition of the Fidelity

The main objective of this work is the determination of the performance of the full optical
quantum phase gate. The quantity to be evaluated is the fidelity, that in general is a measure of
how much an output state overlap the state of an ideal device. Evaluate the Fidelity is of crucial
importance to realize if an all optical quantum phase gate can be used in realistic technological
devices.

Here to characterize the QPG operation, we calculate both the CPS ¢ of Eq. (1.64) and
the fidelity of the gate. The accumulated CPS ¢ as a function of the interaction time t;,; is
obtained by using the fact that the phase shifts ¢;; of Eq. (1.64) are given by combinations of
the phases of the off-diagonal matrix elements (in the Fock basis) of the reduced density matrix
of the probe and trigger modes, of(t) = Tratoms{o(t)}.

The gate fidelity is given by [24]

/

F(t) =/ (Wia(®) loy ()] ia(?)), (4.12)
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where

[Via(t)) = cooexplicoo(tint)}0p,0t) + co1 explicor(t)}|0p, 1¢) + c10 expligio(t)}|1p, 0¢) +
+c11exp{ign (¢)}H1p, 1e) (4.13)

is the ideally evolved state from the initial condition (4.6), with phases ¢;;(t) evaluated from
of(t) as discussed above. The overbar denotes the average over all initial states (i.e., over the
¢ij, see Poyatos et al. [87]). The above fidelity characterizes the performance of the QPG as
a deterministic gate. However, one could also consider the QPG as a probabilistic gate, whose
operation is considered only when the number of output photons is equal to the number of input
photons. This analysis will be performed by means of the quantum trajectories analysis (A.3).
The performance of this probabilistic QPG could be experimentally studied by performing a
conditional detection of the phase shifts, and it is characterized by the conditional fidelity
Fe(t), which will be discussed in Sec. 4.4.

4.3 Perturbative Regime

Now that we have clarified how we will evaluate the two quantities that characterize the QPG
we analyze the system in the perturbative regime. The conditional fidelity is always larger
than the unconditional one, but they become equal (and both approach 1) for an ideal QPG
in which the number of photons is conserved and all the atoms remain in state |3). This ideal
condition is verified in the limit of large detunings d; > ~i; so that spontaneous emission is
significantly suppressed and can be neglected, and very small couplings g;v/N, < ;. In this
limit, each component of the initial state of Eq. (4.6) practically coincides with the dark state of
the four independent Hamiltonian dynamics discussed in Sec. 4.2. The system with the initial
state containing zero probe and trigger photons does not evolve, i.e. stays in the initial state
®ZJ.V:“1 13)i]0p) @ |0¢) all the time. The subsystem containing one probe and zero trigger photons
as the initial state evolves according to a reduced three-dimensional Hamiltonian, which in the
basis formed by the states ®fV:“1 13)i|1p) ® 104), |e§0’0)> and |e§0’0)>, is given by

0 gpVNe 0
H,=| gpvVNa 01 Q. (4.14a)
0 Ql €1

Similarly, the subsystem containing one trigger and zero probe photons as the initial state evolves

according to a reduced three-dimensional Hamiltonian, which in the basis formed by the states
Ng 0,0 0,0 L

;4 13)il0p) ® [14), |e§l )> and |eg )>, is given by

0 gvVN, 0
Ht = gtV Na (53 Q4 . (414b)
0 Q4 €2

Finally, the subsystem containing initially one photon each in probe and trigger modes evolves
according to a reduced five-dimensional Hamiltonian, which in the basis formed by the states
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ey, 1eS 1), @ 13)il1,) @ (1), lef™?), and [ef"), is given by

51 Ql gp\/Na 0 0

Ql €1 0 0 0

Hyp =1 gV/No, 0 0 gvV/N, 0 ) (4.14c)
0 0 0 03 Oy
0 0 gt\/N_a Qy €2

The phase accumulation experienced by the various components of the quantum state of the
fields will be proportional to the eigenvalues of these matrices. The four phase shifts ¢;; can be
evaluated as a fourth-order perturbation expansion of the eigenvalue corresponding to the dark
state in each subspace, multiplied by the interaction time ¢;,;. The CPS is then calculated as

¢ = (Mg, — Am, — Ag, tint. (4.15)

where the \’s denote the eigenvalues of the corresponding reduced Hamiltonian, with Ap; < ¢11,
Ap < @10, A <= do1 and ¢op = 0, in agreement the with general definition of Eq. (1.64)

¢ = ¢11 + ¢oo — $10 — Po1-

Then the conditional phase shift have to be evaluated calculating the eigenvalues of the previ-
ous hamiltonian. This has been done adopting a fourth order perturbation theory, where the
perturbation parameters are the small single photon coupling g, and g; (see Appendix B). The
order of perturbation, the fourth, is needed to take into account the effects that depends on
the square of the probe and trigger coupling g, and g; to which the cross Kerr interaction is
proportional.

Following the procedure described in the Appendix B, the zeros order eigenvalues are

53—62 53—62 2
Ny = 2 i\/( )+, (4.16)

51—61 51—61 2
o= 2 i\/( )+ (4.17)

At second order we get (see Appendix B)

AZ = —g20

trigger

1 1
2

T : 4.18
4[A1(Qi+d17t) Xf_(Qide?_,t)} (4.18)

where with dy ; = Ay — 3. The correction of the eigenvalues at the fourth order is

1 1 1 1
AL =gt + X + :
Ay 7y B et Rl o o e B Py e
(4.19)
In the case of the probe field, it is sufficient replace Ay — A\, g+ — g, and Q4 — Q.
The phases ¢19 and ¢g1 of the QPG are defined by
o1 = ()‘3: + 5A1(Eizgger + 5)\1§;4“1)'gger)tint’ (420)
2 4
o0 = L+ A Nin. (4.21)
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We have illustrated the solution for the trigger field, the same results holds for the probe up to
a suitable redefinition of dy , = M — d;. Now we calculate the eigenvalues of the H,; matrix,
that will include a cross Kerr interaction term. We proceed as before for the Hamiltonian that
describes the single photon evolution. The unperturbed eigenvalues for matrix H); are the same
of the two separate cases H,, and H, the second and third order perturbative terms are

1 1
| ]
ot NN B, (BB

1 1
—g2Q5 : 4.22
8 e, T, )

Adopting the A;, and O, variables defined by eq(B.17) to simplify the expressions, we obtain
an expression that gives the fourth order term of the eigenvalue of the H,,; matrix that describe,
in practice, the conditional interaction

o = oMY = [g203A + 2030, | [20301 + 20304 tin. (4.23)

This term is the key term, responsible for the cross-phase modulation. In fact expanding the
product we obtain four terms. The two proportional to g2Q3 and g{Q} cancel with the /\(1;12 and

)\52, and the residual terms give the conditional phase shift. In fact putting all these results
together and applying eq.(1.64) we have

¢ = ()‘1(;? - 6)‘;(;71")0176 - 6)‘1(5;4"29967“)251'"15 = g;%ggggﬂit"ﬁ{jxtep + A;D@t}‘ (424)

After some algebra we arrive at the expression for the CPS

5 = 959t Natint " [634(6?2 +07) | en(eds + Qi)}
(€3403 — Q) (€1201 — ) (1201 = QF)  (e3403 — Q3)

(4.25)

This prediction is verified by the numerical solution of Eq. (4.11) in the limit of large detunings
and small couplings.

However the resulting CPS is too small, even for very long interaction times (i.e., long gas
cells): for example, for gp7t\/m = 0.5 MHz, €12,3¢ = 1.9 MHz, ;4 = 65 MHz and ;3 = 1.9
GHz, we obtain a tiny CPS of only 3 x 10~* radians when ¢;,; = 10~* s, which corresponds to
L ~ 30 Km. This is not surprising because this limit corresponds to a dispersive regime far from
EIT. In this regime, transparency is achieved by means of a strong coupling field, producing a
well-separated Autler-Townes doublet [6]. At the same time, the size of nonlinearity is small due
to the extremely weak coupling of the quantized fields to their respective transitions. The results
are, therefore, not different from those expected from XPM in a standard nonlinear optical fiber.
Therefore, one has to explore the non-perturbative regime of larger couplings in order to exploit
the low-noise, large-nonlinearity properties of EIT and achieve a satisfactory QPG operation.

4.4 Steady-State QPG Operation

A large amount of work exploring EIT-based nonlinear optical phenomena considers the steady-
state of a generic EIT-based system as being the natural state in which to predict and test
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Figure 4.3: Conditional phase shift as a function of the interaction time for N, = 108, §; =
83 = 7.57, €12 = €34 = 0.057,9, = g+ = 0.00117, Q1 = Q4 = 1.875y and Yk = Ypn = 1073y, V k.
We have taken equal decay rates, vo1 = Y23 = Y25 = Va1 = Y43 = Y45 = /3, with v = 27 x 6
MHz. Solid line represents the phase shift, as calculated from the full master equation, while
the dashed line gives the perturbative prediction of Eq. (4.25).

different phenomena [13,18,59,76]. We shall see in this Section that it is not possible to achieve
a satisfactory QPG performance in such a steady-state regime.

In this Section, we analyze the performance of the QPG at the steady state. To this end, we
consider two different parameter regimes:
(i) the regime of long interaction times, a natural extension of the perturbation analysis of
Sec. 4.3,
(ii) the regime of short interaction times, corresponding to a non-perturbative regime with
strong atom-field coupling.

4.4.1 Long Interaction Time

Naturally extending the perturbative analysis, we solve the master equation (4.11), and show
the results in Figs. 4.3 and 4.4. Fig. 4.3 shows the result for the conditional phase shift. Solid
line has been calculated from the solution of Eq. (4.11), as explained in Sec. 4.2. The dashed
line is the ‘benchmark’ solution, obtained from the eigenvalues of the associated Hamiltonian,
by using Eq. (4.15). The eigenvalues of the Hamiltonians of Eqs. (4.14) have been calculated
numerically for the set of parameters of Fig. 4.3.

It is evident that the ‘benchmark’ solutions offers a reasonably good estimate for the size
of the CPS. The exact dynamics driven by the master equation (4.11) presents an additional
oscillatory behavior both on a short time scale (transient processes), and on a long-time scale.
The longer time scale comes from the fact that to induce the cross-Kerr nonlinearity, one has
to detune the fields away from the dark resonance. This detuning is very small and is seen in



4.4 Steady-State QPG Operation 77

4 ) ) ) )
0 100 200 300 400 500
Time [y ]

Figure 4.4: Gate fidelity of Eq. (4.12) versus the interaction time, for the same set of parameters
as in Fig. 4.3. The solid line is the unconditional gate fidelity F(t), while the dot-dashed line is
the conditional one, F¢(t).

the oscillations on a long time-scale. As both probe and trigger fields are detuned by the same
amount, only one frequency of long-time oscillations is observed.

In Fig. 4.4, fidelities (averaged over all possible two-qubit initial states) are shown in two
cases. Both are calculated by using Eq. (4.12), but they differ in the way o(t) is defined. The
solid line in Fig. 4.4 refers to the unconditional fidelity F(t), which is calculated from Eq. (4.12)
by taking o;(t) = Tre{o(t)}, where o(t) is the solution of the master equation (4.11). The
unconditional fidelity quantifies the performance of the QPG as a deterministic gate for single-
photon qubits.

The dot-dashed line in Fig. 4.4 refers to the conditional fidelity F°(t), which is evaluated ac-
cording to Eq. (4.12), but with o4 (¢) replaced by 0§ (t) = Trat{[n; (t)) (¥ns ()] }/ (ns ()10 (2)),
where |1, (t)) is the (non-normalized) evolved atom-field state conditioned to the detection of
no quantum jumps [112], i.e., of no photon loss by spontaneous emission. This fidelity can
be measured by post-selecting those measurement results that conserve photon number, i.e.,
discarding those data sets where at least a photon from the initial two-qubit state has been
lost to the environment. The conditional fidelity quantifies the performance of the QPG as a
probabilistic two-qubit gate.

In Figs. 4.3 and 4.4, we have found at best a CPS of ~ 7 in correspondence with fidelities
F(tint) and FC(tint) equal to 60% and 80%, respectively. This is due to the general presence
of a trade-off between the size of the CPS and of the gate fidelity, as well as to the atomic
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Figure 4.5: Conditional phase shift as a function of the interaction time for N, = 108, §; = 3 =
9.57, €12 = €34 = 0.2, gp = gr = 0.018vy and Q; = Q4 = 197y and ygx = Ypn = 10737, V k. We
have taken equal decay rates, y21 = Y23 = a5 = Y41 = Va3 = Va5 = /3, with v = 27 x 6 MHz.
Solid line represents the phase shift, as calculated from a density matrix, while the dashed line
gives the eigenvalue solution.

dephasing . This is an important result of our chapter, which actually holds true in any EIT-
based nonlinear optics systems. In fact, both the conditional and the unconditional gate fidelity
approach 1 in the limit of very small g;, but this limit yields a CPS which becomes appreciable
only for unrealistically long gas cells. Therefore a larger CPS requires a larger ratio g;v/N,/€;.

np,nt)>

This condition however increases the population of the collective atomic states |e§ and

|eé"”’n")> at the expense of the initial atomic state |3), thus unavoidably decreasing the gate
fidelity. Similar conclusions hold for other options, such as increased detunings d;, or adjusting
two-photon detunings €;;. Therefore, just the pure coherent unitary evolution of the system,

governed by the Hamiltonian of Eq. (4.3) causes this inherent trade-off.

4.4.2 Short Interaction Time

To further illustrate our findings, we calculate the CPS and the gate fidelities in the range of
parameters where the total interaction time is an order of magnitude smaller than in Sec. 4.4.1.
The CPS and the gate fidelities are calculated as described in Sec. 4.4.1, and the results are
shown in Figs. 4.5 and 4.6. To obtain a CPS of the order of 7 in a shorter interaction time
(tint ~ 50/7), we have assumed a larger ratio g;4/N,/Q;. The trade-off between the amount of
accumulated nonlinear phase shift and the gate fidelity is now even more pronounced: we find
at best a CPS of ~ 7 in correspondence with fidelities F(t;n:) and F¢(¢;,:) equal to 65% and
73%, respectively. As expected, having a stronger atom-field coupling enhances the processes

IWithout the dephasing, steady-state fidelities reach the values of 77% and 83% for unconditional and condi-
tional cases, respectively
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Figure 4.6: Fidelity, averaged over the initial states of a two-qubit system, for the same set of
parameters as in Fig. 4.5. Solid line is the unconditional gate fidelity, while dot-dashed line is
the conditional one.

lowering the fidelity. The system ends up with a large CPS faster, but this is achieved with a final
state in which the probability of loosing the probe and trigger photons by spontaneous emission
or within the atomic medium is no more negligible. We notice that in this short interaction
time case dephasing does not have an appreciable effect, that is, the results without dephasing
are indistinguishable from those with dephasing shown in Figs. 4.5 and 4.6, due to fact that
dephasing rates in a dilute gas are typically much smaller than decay rates. The only possible
way to circumvent this trade-off is to explore the transient regime, which will be discussed in
the following Section.

4.5 QPG Operation in Transient Regime

In Sec. 4.4, we have found that the QPG operation of EIT-based nonlinear system in a steady-
state is plagued by the trade-off between the phase shift size and the gate fidelity. In an
attempt to find favorable conditions for the QPG operation, we consider the transient regime,
when yt;,: < 1. As discussed above, in order to accumulate a significant CPS in such a short
time one has to consider the strong coupling regime with a large ratio gjv/N,/€;. Therefore,
the trade-off between fidelity and a large nonlinear interaction is present also in the transient
regime. However, when g;/N,/; is large, the transient dynamics is characterized by Rabi-like
oscillations of the atomic populations and of the photon number, determining, as a consequence,
coherent oscillations of the gate fidelity. In such a case one cannot exclude the existence of special
values of the interaction time t;,; corresponding to a maximum of the gate fidelity close to one,
and at the same time, to a value of the CPS close to 7.
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Figure 4.7: Fidelity of the QPG operation for N, = 108, 6; = 63 = 157, €12 = €34 = 0.017,
gp = gr = 0.0022v, Q1 = Q4 = 47y and Y = Ypr = 10737, V k. We have taken equal decay
rates, Y21 = Y23 = Y25 = Y41 = Y43 = Va5 = /3, with v = 27 x 6 MHz. The unconditional
fidelity (solid) and conditional fidelity (dashed) are shown. See text for details.

We show that this fact is actually possible in Figs. 4.7 and 4.8, where we see that a CPS of
~ 7 radians is obtained in the transient regime for ¢;,; ~ 0.4/ ~ 10 ns. At the same interaction
time, the unconditional gate fidelity (Fig. 4.7, full line) is about 94%, while the conditional gate
fidelity reaches the value of 99% (Fig. 4.7, dashed line). The conditional gate fidelity is obtained
in correspondence with a success probability of the gate equal to 0.94, calculated from the norm
of the Monte-Carlo wave function [112]. The probe and trigger group velocities are calculated
to be v, ~ 3 x 10° ms™?, yielding a gas cell length L = vgt;n¢ ~ 3.1 cm. The value of g; yields
an interaction volume V ~ 2- 1073 cm?, corresponding to a gas cell diameter of about 330 ym
and to an atomic density N,/V ~5-10 cm=3.

It is interesting to note that the quantity that we calculate, the conditional phase shift ¢,

effectively depends upon the mutual interaction that takes place between the probe and trigger
photons when the M type interaction take place. This can be argued from Fig4.9a. This figure
shows that for the interaction time for which we have the 7 conditional phase shift and the
maximum in fidelity, corresponds to a maximum of probability of finding the atoms in the level
|3). More important, when the probability of having the fields in the Fock states |0,1), |1,0),
and |1,1) are in phase at their maximum, we get simultaneously the maximum fidelity F and
the maximum CPS.
The maximum value of the CPS is obtained when the nonlinear cross Kerr interaction takes place;
and this happens when the probability of being in states |0, 1), |1,0), and |1, 1) is simultaneously
maximum. Moreover the fact that the oscillating collective atomic state returns to the level |3)
(see Fig.4.9b), ensures the high fidelity of the transient process.

A comment about the calculation of the common group velocity of the two wave-packets, vg,
is in order. As mentioned earlier, EIT is stationary phenomenon, and in fact, the conventional
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Figure 4.8: Conditional phase shift ¢ versus the interaction time, for the parameters of Fig. 4.7.
See text for details.

vy is a steady-state quantity which it is obtained from the susceptibility x according to eq.(4.26)

Vg = C

L LRely + 22 (—af;uf’d” (4.26)

(wo is the central frequency of wave-packet), where the susceptibility of the j-th field, x; (j =
p,t), is evaluated from the associated steady-state atomic coherence o3% as

_ Nl

;= 2, 4.27
J VhEoﬂj J ( )

Instead, the above results are obtained in the transient regime where vt;,; < 1, and for this
reason we have estimated the group velocity in a different way. We have evaluated the relevant
time-dependent atomic coherence o;(t) and the corresponding “instantaneous susceptibility”
x;(t) from the reduced atomic density matrix oreq(t) = Trficas{o(t)}, with o(t) being the
solution of Eq. (4.11). The corresponding “instantaneous”group velocity v, (t) has been then
averaged over the time interval between 0 and t;,¢, providing in this way our estimate of the
“transient” non-stationary group velocity of the single-photon wave-packets. For the parameters
of Figs. 4.7 and 4.8, this non-stationary v, is approximately equal to ¢/100 and it is about one or-
der of magnitude smaller than the conventional v, obtained from the steady-state susceptibility.
This appreciable slowing down of the group velocity is a signature of a sort of “non-stationary”
EIT process.

In order to verify that this non-stationary dynamics are really reminiscent of EIT, in the
next subsection we compare these results with a numerical study of the three-level ladder atomic
scheme (see Fig. 4.10), yielding XPM without EIT. Here we anticipate that we have found a
smaller gate fidelity (~ 78%) for a corresponding set of parameters, providing therefore further
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Figure 4.9: Figure (a) shows the Rabi oscillations of the probability of finding the system in
level 10,0), [1,0), |0,1), |1,1), respectively, when the atom is on atomic level |3). Fgure (b)
shows the probability of finding the atoms in the atomic level |3).

support to the presence of a moderate, non-stationary EIT process in the transient dynamics of
our five-level M scheme.

4.5.1 The Conventional Three-Level Scheme

The atomic ladder scheme (see Fig. 4.10) is well-known to exhibit XPM of the two fields in-
volved [13]. In order to achieve a reasonable size of cross-phase shift, the detuning of the
intermediate state d, needs to be large. This minimizes spontaneous emission (~ 72/d7), but
also the size of XPM ~ 1/47.

In order to evaluate the XPM in a manner comparable to what we have done for the M-
scheme, we make similar assumptions and arrive at a description analogous to the one described
in Sec. 4.2. The Hamiltonian is now given by

Hy = h5p§22 + k(6 — 6t)§33 + hgpv/ Na (&pSQI + Smd;;)
+hge/Na (dtgzg + 8a] ) . (4.28)

Following the same reasoning as in Sec. 4.2, we arrive at the effective master equation (we neglect
here atomic dephasing)

i
h
+% (25’2305'32 — ggggggd — O’S’Qg,gzgg) 5 (429)

o = £30' = [Hg, O’] =+ % (23120S21 — 3213120' — Ugglglg)

where 12 and 723 denote the spontaneous emission rates from levels |2)and|3) to levels |1)and|2)
respectively, and the operators Sij denote collective atomic operators, in the spirit of Eq. (4.4).

The results of the calculation of unconditional quantities are shown in Fig. 4.11, for a pa-
rameter regime comparable to that discussed above for the five-level M scheme. The atoms are
assumed to be in the collective state ®5V:“1 |2); initially, as this is found to give better results.
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Figure 4.10: Energy levels of the ladder scheme. g, ; denote couplings of the quantized probe
and trigger fields to their respective transitions. d,; are detunings of the probe and trigger fields
from resonance.

The reason is a more efficient photon-photon interaction since the initial state is symmetric with
respect to probe and trigger photons. At the interaction time t;,; =~ 0.12/7, the CPS reaches the
value ~ 7 and at the same time the unconditional fidelity is found to be ~ 78%. It is possible
to see that the conditional fidelity, even though higher, always remains significantly lower than
that obtained in the M-scheme.

Therefore, we conclude that the optimal results for the QPG operation can be found in the
“transient EIT-regime”. The general trade-off between the nonlinear phase shift and the fidelity
is still present, but it is compensated by the transient oscillations in the populations of atomic
levels. In fact, the numerical results show that, in the parameter regime under consideration, the
population of the excited states |eg"”’nt)> and |e§1"”’nt)> is always negligible, and one has coherent
oscillations of the population between the states |e§"p’nt)), ), 13)i ® [np, ng) and |e£-)np"nt)>. At
the interaction time t;,; corresponding to the maxima of the gate fidelity in Fig. 4.7, atoms
are largely found in state @), |3); ® |ny,n), and the relative populations and phase relations
between the states of the two photonic qubits are consistent with the “ideal” state of Eq. (4.13).

4.6 QPG operation with longer pulses

In a recent experiment [98], performed in Paris by the group of Grangier, a single photon emitter
has been realized. This single photon source adopts a coherent adiabatic passage procedure on
a single multilevel Rubidium atom. The atomic transition involved in the experiments are the
same we have used to propose the experimental implementation of the all-optical quantum phase
gate. This experiment produces a single photon pulse of a duration determined by the lifetime
of the excited level and it is therefore ...... and approximately equal to 25 nsec.

In this section we recalculate numerically the conditional dynamics, and the expected group
velocity adopting the properties and the parameters of the pulses generated in the recent exper-
iment [98]. The pulses’ duration for the Grangier experiment is more or less the double of that
one we adopted in the section of the transient regime. Assuming that the probe and trigger
fields are single photon pulses of duration of 25 nanoseconds, compared to the previous set up
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Figure 4.11: Average fidelity (top figure) and conditional phase shift (bottom figure) as a func-
tion of time for the three-level ladder scheme of Fig. 4.10 and for N, = 108, 6, = 10v, 6 = 0
and g, = g = 0.0022v. The spontaneous emission rate is 721 = 732 = v = 27 x 6 MHz.

we have to adapt the dimensions of the atomic cloud and consequently all the other parameters,
like coupling g, ¢ and the density. Results for the new parameters are represented in Fig.(4.12).

The results of the numeric simulations are obtained, as in the preious sections, for all possible
initial states, and show that for a conditional phase shift of 7, corresponds a fidelity of around
90%. The difference between the deterministic fidelity (continous-blue line) and that from the
post-selection scheme (dashed line) is smaller than in the transient regime transient regime of
the previous Section. This is because the larger interaction time of 25 ns determines a larger
probability for jumps to take place. The fidelity in the transient regime is maximum when
the probabilities of find the atomic-field system in the states |3,1,1),]3,1,0), 3,0, 1) are at their
maximum and in phase. Here, the adoption of pulses longer than in the previous case determines
an exponential reduction of this probability resulting in a reduction of the best achievable fidelity.
Also the non stationary group velocity has been evaluated as in the previous Section: the results
gives a smaller group velocity of 1.5x 10%m/sec. Also in this new parameter regime the behaviour
of the group velocity is consistent with the presence of a weak EIT regime.
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Figure 4.12: Conditional phase shift (left) and the fidelity (right) of a QPG operation for
N, = 108, 03 = 83 = 67, €12 = €34 = 0.057, g, = g: = 0.0009y and ; = Q4 = . For 8"Rb,
~v = 27 x6 MHz, giving the interaction time (i.e. pulse length) of ~ 25 ns for |¢| ~ 7. Dot-dashed
line denotes the deterministic fidelity, while solid line denotes the conditional fidelity.

4.7 Proposal for an experimental verification of a QPG

Occupation number logical basis —In this section we describe a Michelson-like interferometer (see
Fig 4.13) for two-photons product state |1g)|1p) with the ‘right’ o~ circular polarization, where
R (red) refers to the probe field and B (blue) to the trigger. We show that the interferometer is
able to reveal and measure the QPG phase shift. The probe and trigger fields with a bandwidth
of 40 + 100 MHz (corresponding to 2510 ns 1/e half width pulse duration) are separated in
frequency by ~7 THz and are resonant with the 8"Rb hyperfine transitions D1 F =2 — F' =1
at 794.7 nm (377.228 THz), and DoF =2 — F’ =1 at 780.2 nm (384.225 THz), respectively.

The interferometer is realized by a 50/50 beam splitter (BS) and using a Fabry-Perot cavities
(FPq2) instead of mirrors. The FPs reflect back the probe field, which is then superimposed
on the BS and detected by an APD (Dg), and transmit the trigger field detected by an APD
in each arm (Dp; e Dpy). This implies that only the trigger frequency is resonant with the
FPs’ cavity, which has a cavity length of 2 mm corresponding to a FSR is 74.85 GHz, while
the probe frequency falls in the middle of the previous 93*" and 94*" FSRs. According to the
photon bandwidth a Finesse of 10% determines a reflectivity for the probe field of 99.9% (see the
spectra in the Right Inset of Fig. 4.13).

As the bandwidth of the two photons are well distinct in frequency and the FPs filter out the
trigger field, the apparatus determine an interferometer only for the probe field. The coincidence
probabilities P(R,B1), between Dy and Dpy, and P(R,B2), between Dy and Dpa, post-select
the events in which the trigger photon was either in the arm 1 or arm 2, with any informations
on the probe, which interferes. In this case the coincidence probabilities are equal and given by

P(R,B1) = P(R,B2) = [1 + cos /8 (4.30)

where ® represents the phase difference due to the different optical paths of the two arms the
probe experiences. In arm 2 a delay line (DL) is added to compensate the difference in the
optical path and to scan for the interference pattern. In the Left Inset of Fig. 4.13 is shown a
Sagnac-like version of the interferometer, which allows for an auto-compensation of the optical
path delay as the two arms coincide.
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Figure 4.13: Scheme of the proposed experiment for a measurement of the non-linear phase shift
in a QPG. A Michelson-like interferometer with a two-photons input state |1g)|1s), probe and
trigger, respectively, allows to measure the non-linear phase induced by the EIT on the logical
basis of the qubits, which coincide with the two lowest Fock states. Two intense classical fields
oy and «., tuner and coupling respectively, are necessary to the 5-levels EIT process. L is a
lens for the mode matching in the EIT. BS a 50/50 beam splitter. DL a delay line. FPq o
Fabry-Perot cavities. Dg p1,p2 are avalanche-photodiodes APDs. Left Inset — Scheme using a
Sagnac interferometer for avoiding the optical path difference. M is a mirror. Right Inset —
Frequency spectrum for a 2 mm FP cavity length and Finesse equal to 103. In the plots are also
reported the spectra of the probe and trigger photon.

When an EIT system is considered in one arm, let’s say the arm 1, a non-linear contribution
to the phase is added by the QPG, whether the trigger photon is present in the arm 1 or not. The
EIT requires two intense classical fields resonant to the DoF = 1 — F' =1 (384.232 THz) and
DiF =1— F' =1 (377.235 THz), o~ circularly polarized tuner field (o), and o™ circularly
polarized coupling field (), respectively. The coincidence probabilities P(R,B1), between Dy
and Dg1, and P(R,B2), between Dg and Dga, post-select the events in which the trigger photon
is in the arm 2 and hence a non-linear phase is not added to the interference amplitude. Instead
a non-linear contribution to the phase is expected when detections on Dy are post selected by
the detection on Dgs. Fig. 4.14 represents the diagram of the four amplitude probabilities after
the action of the BS and the FPs on the two-photons state. The non-linear phase ¢1; is added
only to the first diagram.

According to the true-table and the amplitudes of Fig. 4.14, the coincidence probabilities can



4.7 Proposal for an experimental verification of a QPG 87

H [1:)011R) t |0RMI1R)

02| doo | %o

|1:)(108) ©|0R)I08)

4— > O
¢10 [ doo

[1:)| %0 | ¢a

Figure 4.14: True-table of the QPG for a logical basis of the qubits determined by the two lowest
Fock states. On the right the diagrams corresponding to the probability amplitudes after the
action of the BS and the FPs on the two-photons input state.

be evaluated to be

P(R,B1) = [1+4 cos(®+ ¢)]/8 (4.31)
P(R,B2) [1+ cos ®]/8 (4.32)

with ® = @+ (¢10 — 2000 + ¢40), G40 the phase due to the probe photon reflected in arm 1 with
‘wrong’ ¢ circular polarization. The phases ¢19 and ¢gg were introduced in Egs. (4.15,1.64) as
the QPG phase ¢ = ¢11 — do1 — P10 + ¢oo. The phase difference between the two interference
patters determined by the two coincidence probabilities determines univocally the value of ¢.
In the case of an ideal QPG for which ¢ = 7 the two coincidence probabilities are in opposition
of phase.

Polarization logical basis — The previous proposal indirectly tests the QPG based on the
EIT detecting the non-linear phase shift by a Michelson interferometer and coincidence mea-
surements. A direct measurement of the true table or a test on a general qubit state requires a
control and measurement of a superposition of vacuum and one photon state. While the gener-
ation of a superposition of vacuum and single photon state has been already achieved [98], the
measurement of such a superposition requires a difficult homodyne measurement [99,100]. How-
ever a logical basis for the qubits can be chosen as the circular polarization basis of the probe
and trigger photons. A test of the QPG will then require the detection of both the photons
solving the problem of the detection of Fock states superposition.

The experimental setup is the same as in Fig. 4.13, but the qubits are now encoded in the
polarization of the input two-photon state. According to the true-table and the amplitudes in
Fig. 4.7 it is possible to derive the coincidence probabilities P(R;,B1;) and P(R;, B2;), with
i, j = {+a 7}a as

P(R;,Bl)) = [L+4cos(®+¢,;;)]/8 (4.33)
P(R;,B2;) = [l+cos®]/8 (4.34)
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Figure 4.15: True-table of the QPG for a logical basis of the qubits determined by orthogonal cir-
cular polarization basis. On the right the diagrams corresponding to the probability amplitudes
after the action of the BS and the FPs on the two-photons input state.

with ® = ® + (g0 — 2000 + P(iw1)0), Where i @ 1 is the sum mod 2. The phase ¢ is now given
as aij = ¢ij — ¢io — $oj + doo, Wwhere @;o is the phase due to the EIT for the probe photon
with polarization ¢ and no trigger photon present, and same meaning for the other phases. It is
—’ =1 it is obtained the previous expression of the QPG phase for the

¢

notable that for i = j =
logical Fock states basis. Four possible choices of the probe and trigger polarizations determine

the phases

b =¢—— —p-0— bo— + doo

Gy =Pt — 90— bot + P00 (4.35)

P = bp— — D0 — Po- + P00

Giq = Pt — P40 — o+ + P00
which satisfies the relation ¢__ — ¢, —d_, + ¢,y = ¢p__ —ds_ —¢_4y + ¢4y = ¢. In
the case of an ideal EIT for which ¢10 = ¢o+ = ¢4 = @00, P-4+ = ¢—0 = ¢r and ¢ =
¢o— = ¢p, where ¢4 p are the phases acquired by the single photons, we have é__ = ¢, and
b L= ) L= @ 1+ = 0. In a way the phases between the two coincidence interference patterns

allows a measurement of the QPG phases in the diagonal basis, i.e. in the single qubit states
for which the only QPG phase non zero is the conditional phase shift ¢.

General polarization qubit input states — The polarization logical basis allows for a direct
observation of coherence and production of entanglement as necessary conditions for a QPG.
Let assume to encode the information on the polarization state of a two photons, and then
send them into the EIT system for QPG, as shown in Fig. 4.7. The outpout photons, as shown
in Fig. 4.7, are split by a dichroic mirror (an angled FP cavity with the same parameters as
before) and then collected in two APDs (Dgr and Dp) for coincidence counting. In front of
each detector a tomographic system constituted by a QWP, HWP and a PBS, is placed for the
complete reconstruction of the polarization state of the output state gaining information on the
coherence properties of the gate. It has also been shown [97] that an input state for the QPG
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Figure 4.16: Scheme of the proposed experiment for a complete characterization of the QPG.

Two photons in the o polarization state (logical state |0z) ®|05)) are transformed by a QWP,
corrisponding to two Hadamar single-qubit gates, and then to the EIT (QPG). A Fabry-Perot
cavitiy with the same parameter as before transmits the trigger photon and reflect the probe to
two tomographic measurement systems (Tg ) and detected by APDs.

given by [(|o}) + [05)) @ (lo) + [05)))]/2 can quantify the entanglement of the output state,
for which the CHSH inequality is 21/1 + sin? ¢ where 2 is the upper classical limit.
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Chapter 5

A Quantum Error Correction
scheme by Atoms and Cavities

The correction of the errors has been of fundamental importance for the development
of contemporary computing devices and also in the advances in communications. In
this chapter we focus our attention to the possible realization of a Quantum Error
Correction Code (QECC). The goal of this chapter is to show how it is possible to
implement a QECC by adopting the interaction of circular Rydberg atoms with the
quantized mode of a cavity field.

We illustrate the basic ideas of error correction and we show the main difference
between classical and quantum error correction. A QECC protocol based on atoms-
cavity QED interaction is described. Then we give and describe the results of the
simulation of an experimental realization of the protocol under realistic experimental
conditions.

5.1 Basic Principles of Quantum Error Correction

Let us assume that we have two distant stations, Alice and Bob, that share a message. In general
the communication channel over which the information is sent is a noisy one, i.e. it is affected
by unknown errors of various type [24,101,103,104]. The origin of these errors is the coupling of
the system with the environment Fig.(5.1), and the degradation of the information encoded in
the quantum state is named decoherence. The ability to reveal the errors that have affected the
sent message, and finding a way to correct them constitute the central task of Quantum Error
Correction (QEC).
Any classical or quantum error correction scheme is based on the main steps:

e FEncoding: Generating several copies of the original message we want to send.

e Decoding: The application of a measurement procedure for the encoded states permits to
reveal if errors have occurred.

e Correction: With the information obtained from the previous step we can decide which
kind of operation has to be applied (if needed).

The objects that are transferred from a station (Alice) to another (Bob) is a set of qubits

[¥s) = a]0) + B[1), (5.1)
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Figure 5.1: Sketch of a transmission’s channel affected by noise due to the interaction with the
environment

where |a|? + |3 = 1. When we send a qubit through the noisy channel, it interacts with the
environment and its state evolves to a different state. The environment can be described in
terms of a collection of operators {F%)}, that act on the quantum states of the system, and a
collection of states |¢))g. For each qubit sent from Alice to Bob we can apply the following
interaction scheme. At ¢ = 0, we assume that the system and the environment are factorized

[¥)in = [¥)s ® [¥)R. (5.2)

After the transmission of the state, due to the influence of the environment’s operators F%) we
have

Whout = D [W)RTR [¥)s, (5.3)
The reduced state at Bob’s site is

pBob = TTrR([¢)out (¥]), (5.4)

which is, in general, a mixed state because Bob does not have access to the environment variables
and he has to trace over all possible degrees of freedom of the environment. Moreover the state
will differ from the pure one sent by Alice.
In the transmission of quantum systems the errors that can affect the qubits are more numerous
than those in the classical counterpart. Together with bit-flip errors that cause a flip in the
quantum state of the system, also phase-flip errors can occur. These cause the flip of the relative
phase between the two components of a qubit.

To fight against decoherence, the key resource, in quantum as well as in classical error
correction, is redundancy. It is the simplest approach to correct errors, and it consists in the
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encoding of the information in a redundant way so that it is possible to identify the errors and
recover them. During the encoding procedure the first step is to prepare many copies of the
information to send. Moreover while making copies of a classical bit is easy, with qubits things
are different. In the quantum domain we have some additional considerations that have to be
taken into account. For qubits the following limitations hold

e The no cloning theorem states that it is not possible to make copies of a quantum state.
o Measurements typically destroy quantum information.

The resource that can be used in QEC to complete the encoding step is entanglement. By
enlarging the Hilbert space we can build a non separable state of two or more systems, starting
from the original one (5.1). The additional quantum systems “helping” the principal qubit are
named ancillas. The quantum state describing the composite system of the principal system S
and the ancillas a1, as will be part of a Hilbert space given by the tensor product of the Hilbert
space of the each system Hg 1,02 = Hs ® Hy1 © Hyo.

Let consider our qubits in the state (5.1). It is possible to define the encoded basis

0) = 10)@10)©]0) (5:5)
1) = [MHehel), (5.6)

and the initial state (5.1) of the qubit that we are sending can be mapped, by applying a suitable
unitary evolution U, into the state

al0) + B[1) — af0) + Gl1L), (5.7)

which means the implementation of the logical state [¢1,) (encoding).
The QEC protocol continues by the next three steps:

e To avoid the perturbation of the encoded qubit during the measurement of the ancillas
states, we have to decouple ancillas from the states of the encoded qubit before we measure
them. For that Bob applies an unitary operation to the qubits on the logical basis sent by
Alice in such a way the ancillas are decoupled from the principal qubit (decoding).

e We have to detect the two ancillas. From their state we can know which error occurred,
so that we can correct it.

e We can perform the recovery procedure, applying a unitary operation 4T on the qubit
that, in practice, invert the effect of the environment.

Now if errors occur with probability p, we can calculate the probabilities that a bit-flip error
occurs on one of the three qubits that composes the encoded state of eq.(5.7) see Tab.5.1 The
final state, after the correction protocol, can be written as

prinat = [(1=p)* +3p(1 = p)*|l) (¥l + ..., (5.8)

and depends on the total probability that error can occur in one of this three qubits. The
additional terms, non showed here, depend upon the probability that a two-qubit flip occurs,
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Table 5.1: Probability of errors through a channel that affected by bit flip errors.

Input state Output state | Probability ||
Y1) = al0L) + B[11) | a]000) + B[111) | (1 —p)°
«|001) + 3|110)
L) al010) + 5]101) | p(1 —p)?
«|100) + 3|011)
«|011) 4+ 3[100)
Y1) a|101) + §J010) | p*(1—p)
«|110) + 3]001)
L) a[111) + 5000) P’

they give a positive contribution to pfine but they are much smaller than the terms showed
when p < 1/2. This is an important assumption for the validity of the bit-flip error correction
schemes and in general is easily fulfilled.

The final goal of the QECC is to improve the fidelity F of the transfer of information. The
evaluation of the overlap between the sent qubit |¢) and the transmitted final state given by

Pfinal SiVes
F =\ (VL |prinatl Y1) = /1 - 3p? + 2p3, (5.9)

The important point is that QEC cancels errors at first order in p, so that when p — 0, the
fidelity in the presence of QEC, converges to unity much faster than in the case of no QEC

5.1.1 Quantum Error Correction with Cavity-QED

We now describe a protocol for the correction of the bit flip errors that occurs on an encoded
qubit. The protocol is expected to work in the limit of p < 1/2 so that the probability that a two
bit flip occurs is exponentially small, as seen in the previous section. The reason for which we
focus on the use of a cavity-QED (C-QED) system to implement the error correction algorithm
is due to the high degree of control nowadays available on C-QED devices. In particular as
we cannot copy a qubit (5.1) we need the ability to entangle the encoded qubits with the two
ancillas, and C-QED permits to implement the gates needed for this operation. Moreover the
long decoherence time, available in C-QED based set up, permits to store quantum information
in the cavity modes. This storage is useful because the information recorded in the cavity mode
can be read-out by an appropriately prepared atom, and the detection of the atomic states
permits to recover the quantum information with a good fidelity.

5.2 The Interaction Hamiltonian

Here we describe the model we adopted to take into account the interaction of the atoms with the
quantized mode inside an cavity. We have already described the interaction of a two level system
with an electromagnetic field, where the field was treated semi-classically. Here we introduce
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the Jaynes-Cummings model [105], in which the field is treated quantum mechanically.

Let us consider a two level system as for example the one given in Fig.1.1. The atom are now
placed inside a cavity C. The atom will interact with the electromagnetic field associated with
a single cavity mode quasi-resonant with the atom. In the passage from a semiclassical to a
quantum description, the field is described [2,11,105] by the creation and destruction operators
of the field @ and af,

E(t) = Ey(H)E(F) (a + aT), (5.10)

where £(7) is the mode function. The free evolution Hamiltonians are given by the Hamiltonian
of the field Hie1q = hwe(ata + 1/2), and that of the atom Hiom = hwa|2)(2| 4 Aws [1)(1].
These terms, together with the interaction Hamiltonian Hi,, = —pE(t) = 1g(r)h(|2)(1]a —
a'[1)(2]), in the RWA approximation give the total Hamiltonian

H = Hatom + Hcavity—field + Hint;
huws|2)(2] + hwr|1)(1]) + hweala + 2g(r)h(|2)(1]a — aT|1)(2]), (5.11)

where g(r) = go€(r) = —Eo&(r)p/fi is the space dependent coupling of the atom with the cavity
mode depending upon the atomic dipole p and on the quantization volume. £(r) is the mode
function, and Ey = y/hwc/2e0V is the electric field of the vacuum where V' is the quantization
volume defined as [ d®r|E(r)|?,i.e. the volume occupied by the field’s mode.

In what follows, we place the zero of energy between the two atomic levels, so that Hyiom =
hwat(|2)(2] — |1)(1]), and applying the IP with respect to it, we can write the Hamiltonian as

H = Aata+ z%(eﬁmm —2)(1]a), (5.12)

A is the detuning between the frequency of the cavity mode and the atomic transition.
This Hamiltonian describes the unitary time evolution of the atom-field system when an atom
is injected inside the cavity.

5.3 The QECC Protocols

For the realization of the protocol we need two cavities (see Fig.5.2) C; and Cy placed one after
the other. Four different atoms A, As, A3, A4, are injected through the cavities interacting
sequentially with C; and Cs.
The atoms are three level atoms in the cascade configuration |i), |g), |e), where |é) is the ground
state, |g) is the intermediate state, and |e) is the excited state. The quantum information that
we want protect, is encoded in the first atom A;, while the second (As) and the third atom
(A3) are the “ancillas” atoms, that have the role of revealing the syndrome. Finally the fourth
atom Ay is the detector. It is the atom on which the information, originally encoded in the the
quantum state of A1, has to be transferred and, if needed, corrected.

The zones indicated with R; are usually named Ramsey zone, where the atoms interact with
a classical electromagnetic field.
In the First step, the first atom A; is prepared in level |e) before entering the first cavity C;.
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Figure 5.2: Scheme for atom cavity interaction based QECC.

This can be done by applying a m-pulse in the first Ramsey zone R;, in resonance with the
atomic transition |g) — |e). In fact in the Ramsey zone the Hamiltonian is

Hramsey = hle) (el + 5 (Quiledgl + Qalo)el). (5.13)

The consequent atomic evolution at resonance, A = 0, starting from |g), is (see eq.(1.15))

2

—arg(Qr1) sin

[9(#)) = cos lg) — e le). (5.14)

Therefore, the |e) state is prepared by applying a m pulse, i.e. if a the duration of the interaction
tint and Rabi frequency Qp satisfy Qprtin/2 = .

Second step. The first atom enters cavity C;. The cavity has to be initially prepared in the
vacuum state and when A crosses it the Hamiltonian (5.12) determines the evolution

Qe lt Qealt
le,0c,) — cos | ;1| le, 0) — e 1A8(%e1) gipy %L{], 1). (5.15)

By controlling the atom-cavity interaction time we can prepare an effective initial qubit, involv-
ing both A; and C} in the generic superposition

[)ene = a(t)]e; 0) + B(H)]g, 1), (5.16)

with a(t)]> + |B(t)]* = 1.

At the third step we prepare the encoding of the principal qubit with the two ancillas to obtain
a state of the (5.5) type. The two ancillas Az, A3, are chosen to be atoms emitted in state |3).
When they pass through the first Ramsey zone R; they resonantly interact with the EM field
and after a m/2-pulse they are prepared in the state

) aray = %(m +19)- (5.17)
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Crossing C; they experience a 27 interaction resonant with the |g) — |e) transition. The 27
interaction determines a controlled phase accumulation on the atomic state |g) 4, 4, resulting in

|1>C1 |g>A2,3 - _|1>Cl |g>A2,3'

When both the ancillas have crossed Cq, the final atoms-cavity state will be

a(t)le,0) + B(t)]g,1) — a(t)lea,, +az: +45,0c,) + B(t)lgar, —a,— 455 1), (5.18)

where [+) 4, = %(Iim +|g)a,), with j =1,2,3.

At the next step, the fourth, atoms are sent from Alice to Bob through the noisy channel, which
in the experimental proposal is represented by the second Ramsey zone Rs.

Let us for the moment assume that no error has taken place during the passage through the
noisy channel. In what follows we describe the evolution of the global system’s state as all the
other steps of the protocols are realized in the three possible situation, no error, error on one
of the ancilla atom, error on the encoded qubit .

We are faced with three possible situations:

e Case 1: No bit-flip error.
At step five the A; will interact with the cavity Co by a m-pulse. The only part of the
state (5.26) that evolves, is |ea,,0¢,). This interaction disentangles the first atom from
the other system giving

WJ) = [a(t)|+A2’ +45,0c, 1CQ> + B(t” T A2 T Az 101’002” |g>A1' (519)

This transformation transfers the encoded qubit from the cavity-atom C; — A; given by
the relation (5.15) to the an encoded qubit that involves the two cavities C; — Co. When
the two ancillas pass through the second cavity they experience the same transformation
than in Cy, applying the 27-pulse to atoms Aj 3, so that the two ancillas are decoupled
from the encoded C; — Cy state as it must be for a decoding process. The resulting state
will be an entangled state of the two cavities only,

[¥) = [a®)l0)c, 1), + B(H)[1)cr]0)c. ]| =) ] =) 4s- (5.20)

We arrive at the final sizth step of this error correction protocol. Here the detection of the
ancillas’ states is performed, and if an error is revealed the correction procedure is applied.
In this step the fourth atom A4 starts to play its role. The A4 has the function to reload
the information now encoded in the C; — C2 entangled state and record the information
stored in the atomic state. The need for this fourth atom is in fact evident, the only
information that can be easy to read by the detector is that recorded in the atomic state.
Atoms Ay is prepared in the |g) state, it passes, without any interaction, through the first
cavity and the first two Ramsey zones. Assuming that no error takes place on this atom,
it arrives in the state |g) at Co. To A4 we apply a m-pulse resonant interaction as before,
the only part of the global state that evolves is |g)a,|1)c, — —|e)a,|0)c,. The evolution
of the whole cavities-atoms system, after the passage of the last atom, is

W) = [ = a®)0)c, le)a, + BB)1)cilg) au] =) 42| =) 4o (5.21)
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Now we detect the two ancilla states. If we obtain the ancillary state |—)a,|—)a,, we can
argue that the qubit has not been affected by any bit-flip error. The state of eq.(5.21) and
(5.17) are not identical. Although the amplitude probabilities are exactly the same, they
differ by a difference of 7 in the relative phase. This is a consequence of the sequence of
pulses that permits the entanglement and disentanglement that constitute the protocol,
but there is a simple way to correct this “problem”. As it is a relative phase difference that
affect the final state with respect to the encoded one, it is sufficient to apply a classical
resonant 27-pulse in the Ry zone to the final state. This will change the phase of the Ay
state only, permitting to obtain a perfect matching of the final and of the initially encoded
state.

e Case 2: bit-flip error on the ancillas. The possible situation is that a single bit-flip
error on one of the ancilla atoms takes place. We have assumed that two bit-flip errors
are much less probable than single bit-flip errors. If such an error on one of the ancilla
takes place, the final state (5.21) will have one of the decoupled ancillary state flipped
=)Ao ]=Vas — |+) A0y | =) 45, | =) 4s, [+)45. By detecting such a state on the ancillas, we
can distinguish that the error has not involved the qubit we are sending, and therefore no
correction is needed. As before the only thing we have to do is to apply a classical pulse
to correct the relative phase as in the previous case.

e Case 3: bit-flip error on the encoded qubit. If a bit-flip error occurs during the
passage of Ay in Ra, the effect will be the exchange between |g)a, < |e)a,. The state
after the first atom has interacted with Co now becomes

|"/)> = a(t)|0>cl |g>A1| + +>A2,3 + ﬁ(t)|1>cl|e>Al| - 7>A2,37 (522)

and after the passage of A4 we have

[¥) = [a(®)[0)cylg)as — BOM)eyle)as] | + +) Az (5.23)

In this case we have to apply the error correction, that consists of a feedback 7w pulse in R3
that flip the |e) < |g) in Ay, followed by a 27-pulse that change the phase of the |ga,, 1)
state. After the measurement of the two ancillas we obtain a final state

[¥) inat = a(t)|0)c, |g) 4, + B(B)[1) ey le) ass (5.24)

that is exactly the initial atom-cavity state provided the we make the exchange Ay < Ay.
The original encoded state is restored and quantum information has been safely transferred
from Alice to Bob.

5.4 Experimental set-up, Cavity and Rydberg states

The proposed QECC scheme gives the result of eq.(5.24) provided that all the evolutions at each
step, are unitary. In general this is not true due to the fact that cavities and atoms experience
their own interaction with the environment. This makes time evolution only approximately
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unitary. For what concerns the atoms spontaneous emission is present, and depends on the type
of atoms that we use in the experiment. For the cavity we have to take into account photon
leakage. The photons can remain inside a cavity only for a limited time, after which the photons
are lost mainly by scattering, but also transmission and absorption of the mirrors play a role.
For a realistic analysis of the performance of the QECC protocol we have to include these losses
in the treatment. This analysis shows us how the atoms and the cavities involved have to be
chosen so to reduce the effect of the environment. To this end the protocol has been tailored for
the experimental set-up involving microwave cavities and Rydberg atoms studied at the ENS in
Paris.

5.4.1 The Circular Rydberg States

Adopting atoms with the right properties, namely long decay time and right velocities, is of
crucial importance in the realization of the protocol. The circular Rydberg states [108] are
excellent candidates for the protocol’s implementation. They are atoms possessing large principal
quantum number n, i.e. of the order of 50, and maximum angular momentum [ = n — 1. The
large principal quantum number and the large [ permit to describe the orbital in a classical way,
and the electron orbital is a circular. The three level cascade structure can be found around
n = 50, more precisely we can choose n = 51, 50,49 for |e), |g), |¢) respectively. Circular Rydberg
states in this configuration represents a well studied experimental set-up [107,109-111] that has
been adopted by the Haroche’s group in a number of experiment during last years. Rydberg
atoms posses interesting properties because the radiative lifetime of the three levels |e), |g), |¢)
is of the order of Tytoms = 30ms. This long radiative time permits to have negligible effect on
the atomic coherence from the spontaneous decay rate. The dipole moment matrix elements are
very large, of the order of 1250 a.u for the |e) < |g) transition.

The circular atoms can be prepared with a purity of > 98% [106] and the velocity of the atoms
emitted by the atoms gun can be controlled with great precision (the precision is ~ +2 m/sec).
The position of each atoms inside the apparatus is known with a +1-mm precision. The process
of optical pumping devoted to the preparation of the circular states has an efficiency of 0.2
“right” atoms for pulse, with a Poissonian statistics.

5.4.2 The Cavity

The cavity that is adopted in [106,107,110,111] is an open Fabry-Perot resonator made with
two spherical superconducting niobium mirrors facing each other at a distance d = 27.6 mm,
the diameter D of the cavity is D = 50 mm, and the radius of the mirrors is R = 40 mm. The
resonator is in resonance with the e «<» g transition, with a photon storage of Tcqvity = 1+ 10ms,
this correspond to a very large quality factor of Q = 3 x 108. To obtain an optimal atom-cavity
mode interaction we need that the cavity is as much as possible in the vacuum state at the
beginning of the various steps. To this end, the cavity is cooled down, to avoid the presence
of thermal photons. Moreover, as after the cooling the mean number of photons is still ~ 0.7,
every experiment includes at the beginning a flux of resonant atoms in |g) that passing through
the cavity, have the role of absorbing the residual photons. Adopting this technique the cavity
can be prepared to contain 0.1 photons after a cooling sequence.

Passing through the cavity, the atoms are coupled with the field by the g factor which is a
Gaussian function due to the profile of the cavity field, that depends on the interaction time,
the time spent by the atom within the cavity, on the atoms’ velocity v, and on the parameter
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wo is the width of the Gaussian. wy depends on the specific parameters of the cavity, like the
distance d between the cavity’s mirrors and the radius R of the mirrors.

Therefore the resulting time dependent coupling is a Gaussian with the envelope given by the
relation

= Do) = D exp (-
g(t) = Le(wt) = Lexp 2 ). (5.25)

The control over the interaction time between the cavities and the atoms, can reach an high
degree of accuracy in the cavities we are thinking to adopt [106]. This control is based on Stark-
shift tuning [106,107] of the atoms injected inside the cavities. This approach to the control of
the interaction time is based on a rapid modification of the resonance condition under which
the atom interacts with the cavity mode. In practice, applying a tension at the end of the two
mirrors, we can rapidly modify the field inside the cavity. This induces a quadratic Stark-shift of
the atomic levels that for the Rydberg atoms is particularly strong [107], permitting to modulate
the interaction between the atoms and the cavity. In this way it is possible to build all possible
superposition of atom-cavity state generated by the Rabi angle Qt;,,; € [0, 27].

5.5 Numerical Simulation

The sequence of the operation needed by the protocol has been simulated adopting the pa-
rameters of the realistic devices adopted in a real experimental set-up as for example that of
references [106,107,110,111]. The quantum trajectories approach [112], is adopted to perform
the numerical simulation of the protocol. Three different initial encoding configuration have
been adopted, i.e. different values of the a and 3 after the first atom has passed the first cavity.
The main source of decoherence, apart from the noisy channel is the cavity decay rate k. For
this reason the simulations have been performed to find out the role of such a decay process in
the efficiency of the algorithm.

5.5.1 Simulation of the Noisy Channel

The Rydberg states are affected by a strong quadratic Stark shift. Let us now see how the
quadratic Stak shift effect can be used to engineer a noisy channel.

In the second Ramsey zone Rs the atoms interact for a controllable time with a classical elec-
tromagnetic field. Appling a 7/2 pulse to the A; atom the state

|’l/)> = a(t>|+A17+A27 + Az, 0C1> =+ 6(t)|71415 T AT Az 1C1>7 (526)

is produced. On the basis of the |+) states a phase-flip error is equivalent to a bit-flip error on
the basis of the |e)4, and |ga,). The reason for which we have to rotate the A; state before
applying the noise is due to the fact that from an experimental point of view the random effect
of the environment on the atomic states of A;, on which the qubit is encoded, can be modeled
as a random Stark shift on the atomic energy levels of the A;. This random fluctuation of the
energy levels will reflect as a random spin-flip on the |+) basis’s state. After the application
of the random noise, we can return back re-applying an inverse 7/2 interaction. In this way, if
there have been no error, the A; state at the entrance of the second cavity Ca, when the qubits
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starts to be processed by Bob, it will be exactly the same than at the exit of C;.

The error induced by the noisy channel, in our experiment is then given by the application of
a random electric field in the Ramsey zone Ry. What is random is the intensity of this electric
field. This random electric field induces a shift of the energies of the three levels of interest,
i,9,e, due to quadratic Stark effect. Therefore we have three energy shifts, AFy, k =1i,g,e on
each state,

T
UV — Y exp {zEAEk} k=i1,9,¢, (5.27)

where T is the duration of the random electric field pulse in Rs.
As a consequence, the density matrix elements of the whole system will acquire random phase
shifts. Each off-diagonal matrix element with respect to atomic indices, i ,e , g, will acquire a
random phase shift given by

T
el

Pkl = Pkl eXp{ h (AEy — AEl)} k,l=1i,g,€e (5.28)

Referring to real Rydberg atoms we need the knowledge of the shifts AFEy. This is provided by
the following relation [107]

1
AE® = -3 [7712 —6(|m|? +n1)? + 601 (jm| — 1) + 6n(|m| +1) — g|m| + 8} nt|€)?,  (5.29)

where ny is the parabolic quantum number (zero for the circular Rydberg states), n is the
principal quantum number (n = 49,50,51 for |i),|g), |e) respectively), and |m| = n — 1 is the
magnetic quantum number. For circular Rydberg states we have

7

1 21
AE, = -3 {7712 +5n+ 5} n*|B|? = an|B)?, (5.30)

in appropriate atomic units, which however, we shall see, will be unimportant. In fact, thanks to
this formula, the change of the off-diagonal matrix element due to the application of the “error”,
i.e., of the random electric field, can be written as

_ T|EP
Pk,l = Pk, €XP ? 7

(g — al)} = praexp{—i¢ (ar — )}, (5.31)

where ¢ is a random phase proportional to the intensity of the Stark field and which becomes
the random variable with flat distribution. The knowledge of the atomic physics of circular
Rydberg states is important only for the determination of the n-dependent factors in the phase
shift, «,,, which are needed in order to know the effect on each atomic level, |7}, |g), |e).

The QT approach permits to manipulate the evolution of the wave function instead of a density
matrix, as it happens in master equation simulation. This means, from the numerical point
of view, manipulating smaller objects. In fact the evolution takes place in a Hilbert space of
dimension 324 x 324 (dims (Haioms) = 81 = 3%, while the state of the two cavities with one
photon has dimensions (Heqy;) = 22). With quantum trajectories we study the evolution of a
vector of 324 elements and only at the end of the time evolution we determine the density matrix
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by averaging over the trajectories. The result of a simulation of the QECC protocol over 1000
trajectories is showed in Fig.5.3. During each trajectory a flat-distributed random error between
[0, ®rmaz] on the encoded qubit is induced, by applying a flat-distributed random electric field.
At the end of each evolution the overlap of the initial and final state is evaluated and the fidelity
5.9 calculated in both cases, when we apply correction and when we do not complete the final
correction step,i.e. we do not turn on the interaction on the R3 Ramsey zone for the fourth
atoms.

It is evident there is a great difference in the final fidelity if we do not apply the feedback
correction procedure. Both the corrected and uncorrected fidelity are oscillating function of the
error, that converges for large values of the error.

In the case of Fig.(5.3) the encoded qubit is obtained by applying a pulse of tailored duration
on C; so that the final encoded state is v/0.6|g) 4, +1/0.4|e) 4,. If we do not apply the correction
the fidelity of the transmission is reduced down to 60 < 65% of the initial value. The fact that
for a perfect channel, i.e. when the applied random error is zero (¢pprax = 0), the fidelity with
and without the feedback, do not start from unity, depends on the fact that the evolution is
not unitary. In fact, also for a perfect channel, the losses that come from the cavity decay rate
(fixed at k = 100H z that correspond to a time of storage of 10 milliseconds, a realistic value for
the current cavity technology), and the spontaneous emission rate ~, that is k/30, determine a
non zero probability of errors. On the other hand, we have to consider that the high quality
factor of the cavities and the adoption of the circular Rydberg states permits to maintain under
control these latter loss terms. In fact if compared to the time scale of the efficient interaction
inside the cavity, that is around 20usec (for a Gaussian mode of 6 mm of width), they affect
only partially the time evolution of the system.

The mean fidelity represented in Fig.(5.3) shows how, for realistic parameters, the correction
of the error is possible. Moreover we have to stress the fact that, in the simulation, a perfect
efficiency of the detectors is assumed. The inclusion of imperfect detectors is another source of
loss of fidelity.

The parameters adopted, as said, are realistic. On the other hand, in what follows, we want
to show the performance of the protocol for different values of the initial encoding, i.e. different
« and (3, and for larger values of the decay rate of the cavities. In Fig.5.4 we have plotted the
fidelity averaged over 1000 trajectories for different values of the cavity’s decay rate with the
same initial encoding of a ~ /0.6 and # ~ v/0.4. From left to right in clockwise, we see the
fidelity for k = 27 0.1 KHz, kK = 27 0.3 KHz, £ = 27 0.4 KHz . Up to this value of the decay
rate, it is possible to fight against the deterioration of the information induced by the noisy
channel. Moreover large loss from the cavities and the effect of the noisy channel determine the
failure of the QECC protocol. This means that, as expected, the QECC is able to correct for
the phase errors added in Rs, but it is not able to correct the errors due to cavity damping.
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Figure 5.3: Fidelity of the QECC scheme based on the CQED. Parameters are those of the
experiment performed in [106]. Cavity’s decay rate is k = 27 0.1 KHz, that means a photon’s
storage time of 10 msec. The electric field inside the cavity is Q = 27 47 KHz, and the
spontaneous decay time 77, is fixed at 7', = 30 msec
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Figure 5.4: Fidelity of the QECC scheme based on the CQED. Parameters are the same of
previous plot. The only change is the cavity’s decay rate that is from left to right in clockwise
direction, k = 27 0.2 KHz, k = 27 0.3 KHz, k = 27 0.4 KHz.



Conclusions and perspectives

This thesis has been devoted primarily to the evaluation of the performance of a QPG based on
the giant non-linear effect that the phenomenon of Electromagnetically Induced Transparency
permits. In particular we have addressed our work to the determination if at the single photon
level the performances for he production of conditional photon-photon dynamics is strong enough
to permit the implementation of an all-optical quantum phase gate. To this end, the efficiency
of the process has been evaluated rigorously, calculating numerically and analytically for the
first time the fidelity and the conditional phase shift of the device, in presence of noises and
losses. To this end a perturbation theory at order higher then the second has been developed.

To reach the final goal of the study of EIT in the full quantum regime, we have preliminarly

analyzed other configuration schemes for the atoms-field interaction.
In the second chapter we have studied the nonlinear response of a four-level atomic sample
in a tripod configuration for an incident probe and trigger field. The resulting large cross-Kerr
modulation between probe and trigger enables one to implement a phase gate with a conditional
phase shift of the order of . This feature has been shown to be valid for both, semiclassical and
quantum adiabatic case. The main advantage of this scheme lies in its experimental feasibility
which has been assessed through a detailed study of the requirements needed to observe such a
large shift in a realistic sample of magnetically trapped ultracold 87Rb atoms.

Then we have studied a five-level atomic system in two different but related M-configurations.
We focused on the nonlinear properties of the system and specifically on the conditions for the
optimization of the cross-phase modulation between two weak fields of interest, which we have
named probe and trigger fields. Both systems have been studied from a semiclassical point of
view, i.e., by describing all the fields in terms of their Rabi frequencies. We have seen that
both linear and nonlinear properties are well described by an approach based on amplitude
variables, which has been shown to reproduce well the numerical solution of the exact optical
Bloch equations describing the system.

We have showed that both the asymmetric and the symmetric M scheme are able to provide
a giant cross-Kerr modulation, which may be useful for many applications. Both M schemes can
be seen as a “duplication” of the usual three-level A scheme at the basis of EIT, one for the probe
and one for the trigger fields. In the asymmetric scheme, only the probe drives a significantly
populated transition and a large cross-Kerr effect is obtained when either the probe or the trigger
is slightly detuned from the two-photon resonance condition. The corresponding nonlinear phase
shift, yielding for example the conditional phase shift of Eq. (4.3) of a quantum phase gate for
photonic qubits, can become very large, especially when the probe and trigger group velocities,
slowed down by EIT, become equal. In the asymmetric scheme, this group velocity matching can
be achieved by properly adjusting the detuning and the intensity of the control field of the trigger
A system. In the symmetric M scheme, the atomic population is equally shared by the probe
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and trigger transitions. Adjusting the corresponding parameters (Rabi frequencies, detunings)
so that the two A systems become identical, probe and trigger experience the same interaction
with the atomic medium and group velocity matching is achieved automatically. In this case a
significant nonlinear cross-phase modulation is achieved only if both A schemes are slightly and
equally detuned from two-photon resonance, so to remain still within the transparency window.

Then the full quantum analysis of EIT based system have been performed, individuating

in the symmetric M-scheme a very good candidate for the implementation of the conditional
dynamics between photons. The main result of our study is that the implementation of efficient
EIT-based nonlinear two-qubit gates for travelling single-photons is possible, even though ex-
perimentally challenging. The main limitation is due to the existence of a trade-off between the
size of the CPS and the fidelity of the gate, limiting the achievable gate fidelity in the stationary
regime, but which can be partially bypassed in the transient regime. In the transient regime a
pair of parameters set-up has been studied to fit with the single photon pulse recently realized
at Orsay by the Grangier Group.
Another important conclusion of our work is that since the trade-off in the stationary regime is
a general consequence of the coherent interaction between the atomic medium and the single-
photon wave-packets, we expect that these considerations apply to all EIT-based crossed-Kerr
schemes [59,77], regardless the specific level scheme considered. Instead, this consideration does
not apply to situations where the nonlinearity comes from independent processes (e.g. colli-
sions of dipole-dipole interactions) [91-93], nor the similar solid-state based processes [94-96].
Moreover the experimental set up of the last section, shows how with present technology the
implementation of conditional dynamics between flying qubit could be realized.

Finally in the last chapter we have turned our attention to the study of the controlled
interaction in cavity QED set up. We have studied analytically and simulated numerically
the performance of a Quantum Error Correction Scheme for the protection of the quantum
information during the transmission through a noisy channel. The scheme is based upon the
high degree of control of the coherent interaction between atoms and cavity. The results obtained
has showed that the experimental realization of the quantum correction code protocol is within
contemporary technological possibilities.

Perspectives for this work are numerous. With this work, we have demonstrated that, al-
though difficult, the realization of a conditional dynamics between photon is possible. This
would permit to apply this work to open problems of fundamental research interest like the gen-
eration of macroscopical quantum object [114], or could find application in the field of quantum
communication, in particular in quantum cryptography. The work on the QECC has its main
application in quantum information science. The main result of the work is that our analysis has
showed promising results for the realistic experimental realization. The only loss mechanisms
that has not been taken into account is the efficiency of the detectors. This could reduce the
performance of the QECC, but the general validity and the experimental feasibility could be
demonstrated experimentally.



Appendix A

Open quantum systems
description

In the following pages we describe some technical tools that permit the analysis of an open
quantum system S interacting with the environment R. Here we review two formalisms usually
adopted to describe the influence of the environment in the dynamic of quantum system, the
Master Equation (ME) approach, and the Quantum Trajectories (QT) formalism.

A.1 DMaster equation

Let us consider a quantum system S. The most general form to describe its state, is assuming
that it is in a mixed states, i.e. its state is composed by a statistical mixture of different quantum
state, each occurring with a probability p;

ps = Zpiliﬂil- (A.1)

The system is open, and interacts with a reservoir R The dynamics of the whole system can
be described by the time evolution of the density matrix, ps4r, of the total system & + R. Its
time evolution is determined by the Hamiltonian of the system and the environment, given by
Hs and Hpg respectively. The Hamiltonian that describes the whole system also includes their
mutual interaction and is given by

H=Hs+ Hr + Hs x, (A.2)

where Hs_g describes the system-reservoir interaction.
The time evolution is given by the Von Neumann equation of motion

7

PS+R = % [H, PS+R}- (A.3)

If we assume that the interaction between the system and the environment is weak, if compared
to the two other terms in eq.(A.2), it is useful to describe the dynamics of the system in the IP
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representation with respect to the Hamiltonian Hy = Hg + Hp. In this way we can take into
account only the effects of the HSR(t)e%H"tHSTe_%H"t on the dynamics of the system. The Von
Neumann equation in the IP can be written as

7

p=—=|Hsr().p]. (A.4)
This equation can be solved formally by integration giving
1

plt) = p(0) ~ 7 / dt' [Hsp(t'), p(t')]. (A5)

The previous formal solution can be repeated iteratively, finding the time evolution of the density
matrix, at all orders in the interaction Hamiltonian Hgg and at all times. Inserting the eq.(A.5)
into the eq.(A.4), we will obtain the general expression for the time evolved density matrix

p(t) = i(;jgk /Otdtl/otldtg...

k=0

| dntisnttn). Hsn(t)..... Hsn(t). pO)L) (A.6)

In the previous formal solution we can retain only terms of lower orders in the eq.(A.6). The
assumption, is in general well verified if the interaction Hamiltonian is smaler than all other
terms in the Hamiltonian. It is known as the Born approximation. Let stops the perturbative
development at the second order in eq.(A.6), we obtain

=~ Hsn(®).p0)] = 55 [ a¥sn (), Hsn(®). p(t)] (A7)

Assuming that no correlation exists between the system and the environment at t = 0 we can
write the density matrix of the whole system p in a factorized way,

p(0) = ps(0)pr(0). (A.8)

Now we have to note that the eq.(A.7) is not what we are looking for, because it contains much
more information than the required to describe the time evolution of the state of the system.
Tracing over the degrees of freedom of the environment we can obtain the evolution of the
density matrix of the quantum system only.

The first commutator on the rhs of eq.(A.7) can be eliminated by assuming that the operators
of the environment have zero mean on the state of the reservoir itself. Moreover while it is
reasonable to assume that, starting from the initial state given by eq.(A.7), the environment
will be much more less affected by the weak interaction Hgpg, the system-environment whole
state can be written as follows

p(t) = ps(t)pr, (A.9)

this equation describe how the time evolution of the S — R system is largely due only to the S
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evolution, leaving the environment , in practice, unchanged during time.
After tracing over the degrees of freedom of the environment, we obtain

ps(t) = —=5 / at'Tri{ [Hs(t). [Hsa (). o) @ pi]]}. (A.10)

where we have assumed that the the reservoir’s operators have zero mean in the state pr. This
permits to eliminate the first commutator in the eq.(A.7).

This equation is still hard solve, because it is not Markovian,i.e. it states how the future
evolution of the system at time ¢, depends upon its past history at time ¢’. This difficulty
can be avoided adopting an additional assumption on the physical nature of the interaction,
i.e applying the Markov approzimation. The Markov approximation consists in assuming that
the future evolution of a system depends only on its present history. This holds if the S — R
system possess two much different time scales, i.e. if the time scale over which R changes is
faster then the time scale over which S changes. This permits us to neglect the change of the
system induced by the back-action of the reservoir.

If this condition is verified we can substitute the p(t') with p(¢) in eq.(A.10). The equation that

we obtain
ps() = —3 [ atTraflHsnle). (Hsn(®). o) © prl} (A1)

is the Master equation in the Morn-Markov approximation.

A.1.1 Two level atom’s Master Equation

Now we calculate the ME (A.11) for a more specific model of the system-environment interaction.
Let us consider a two level atomic system left free to interact with the environment, formed by the
vacuum electromagnetic field, with creation and annihilation operators defined by the operators
FL and I'y respectively. The interaction with the electromagnetic field of the environment
will determine the radiative decay of the density matrix elements. The system-environment
interaction energy can be written as

Hsn =0 gu [Ty (127690 4 |, 21Tge )], (A12)
k

The label k describes the interaction of the atom with the k—mode of the environment, defined
by the frequency wyg, detuned from the atomic transition by w — wg. The coefficient g gives
the coupling of the mode k£ with the atomic transition. Inserting this interaction energy in the
eq.(A.11), we obtain eight terms given by the following relation

t
ps = */ dt’ nggk/
0 k,k!
{ |:O'120'120'(t/) - 20’120’(15/)0'12 + O'S(t/)0'120'12:| X efl(wfwk)tfi(wfwk/)t/ <FLFL>

+[O’120’210’(t/) — 0210'(t/)012] X e—l(w—wk)t-i-i(w—wk/)t’ <F]T€Fk/>

+[o210120(t") — o120 (t)o21] X elw—wr)t—i(w—wy)t’ <1"k1"2,>} + h.c., (A.13)

where o;; = |9)(j| for i,j =1, 2.
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The correlation functions, represented in the previous relation by the expressions of the form
(...), depend strictly on the nature of the reservoir. If we consider a reservoir at thermal
equilibrium at temperature 7', the mean photon number is given by the relation

1

f, (A.14)
exp (7) — 1

ng =

where kp is the Boltzmann constant, and the calculation of the correlation functions gives the
following expression for the ME

t*tpTim'e

t
Ps = 7/ dt’ Zgﬁ{[(flzamg(t/) — og10(t")o12] X e (@@
0 k

Ho210120(1) — 0120 (t )21 x @70 (7 4 1)} + h.c., (A.15)

we have dropped out those terms with correlation functions equal to zero, (I'yI'y/) = (I‘LFL,) =0,
and where the relations (FLF;@ = 0k, & and (1";J‘L,> = (147 )0k, k, for the reservoir’s photon
numbers, hold.

If the mode of the reservoir’s field are closely spaced in frequency, we can transform the sum-
mation over k in an integral. Adopting the definition of the delta function

o0

27T5(t o t/) _ / dwkez(wfwk)(tft/)
—infty

, we arrive at the following expression for the decay process of an atomic two level system

ps(t) = ﬁ%pogla(t)au — O'120'210'(t) — O'(t>0'120'21]

+(1 + ﬁ)%[QO’uO‘(t)O'Ql — 0’210‘120‘(t) — O’(t)0’210’12]. (A16)

Where 7 represents the mean number of photons at the resonance frequency w. If the system
is also under the influence of an applied field, we have to add the effective Hamiltonian given
by the eq.(1.9) in the calculation of the master equation. For an applied field detuned by an
amount A from the atomic resonance, we obtain an additional part to previous relation that
describes the deterministic dynamic

1 Q
p = 15A[022,0]+Z§[021 +01230]+

+%[20’120‘(t>0‘21 — 0’210‘120‘(t) — O’(t)0’210’12], (Al?)

where we have assumed zero mean photon number, n = 0.

Inclusion of dephasing process

To complete the description of the interaction of a quantum system with the environment, we
have to include phase destroying processes. The interaction with the environment causes the
atomic systems a loss of energy from the atom, and damping of the atomic polarization. This
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latter damping results from a randomization of the phases of the atomic wavefunctions, causing
the overlap between different states to decay in time. Moreover it is often necessary to take
into account the additional dephasing interaction caused, for example, by elastic collisions in an
atomic vapor.

These processes do not affect the atomic population, but destroy the quantum coherence varying,
randomly, the relative phase in the wave function of the quantum system. To describe dephasing
processes we can phenomenologically add, to the interaction Hamiltonian of eq.(A.12), two
further reservoir interaction Hamiltonian

Hsp, = TI{""0y (A.18)
HSRQ - Fgephdll. (Alg)

The operators depend only on operators projectors on level |2) and |1), to take into account the
fact that the dephasing do not affect population. The complete reservoir seen by the system
is now composed by Rt = RE@ R1 @ Re. Within the Born - Markov approximation, we can
evaluate the correlation functions, that for dephasing process are of the form (I'y (£)['1(¢)) =
ot —1).

If the time scale of the dephasing process is fast, we arrive at an additional term in eq.(A.17).

In two level atoms,
Ydeph

2

(Uzpaz - p)a (AQO)

where o, = [2)(2] — |1)(1].

The generalization to multilevel systems is straightforwardly obtained from the previous
expression, including the deterministic part of the evolution and by considering a reservoir for
each radiative decay channel. What we obtain is an expression of the form

level level _|

. v ji Vdeph
p= *ﬁ[Heffa o]+ E {—7; [20i;005 — 0ji0i;0 — O'O'jiO'ij]} + E ;p (ouooy — oyo —ooyy),
] =1

(A.21)

where the index [ describes the numbers of level composing the atomic system. The Optical
Bloch Equation (OBE), are straightforwardly obtained by evaluating the matrix elements of the
time evolved density matrix

pi; = (ilplj)- (A.22)

A.2 Optical Bloch Equations for Five level M-schemes

Adopting the the receipt given by eq.(A.22) we have obtained the following density matrix
element for the five level atomic system. The capital I's describe the collective radiative decay
rate from the two excited level |2) and |4), while the 7;; = 74 +7;; for i, j = 1,2, 3,4, 5 describes
the dephasing process of levels |¢) with i = 1,2,3,4,5.
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A.2.1 Optical Bloch Equations - Asymmetric Case

From Egs. (3.5) and (3.23), and using the definitions of Eqgs. (3.24)-(3.26), one gets the following
set of equations for the atomic populations p;;

p11 = iQipar — i p12 + La1pag + T21p22, (A.23a)
P2 = —ipor + i p12 — iQapa3 + iQ5p32 — T'apaa, (A.23Db)
P33 = iQ3paz — iQ3p34 + iQ2p23 — iQ5p32 + Lazpaa + Tazpao, (A.23c)
paa = S03p3s — 1Q3p43 — 1 Qapas + i psa — Tapas, (A.23d)
pss = Qapas — iQpss + Taspaz + Taspas, (A.23e)
and the following set of equations for the atomic coherences p;;, i # j,
) . . ) Ty +
prz = —id1p12 +iQ1(p22 — p11) — iQ2p13 — 2 5 e P12, (A.24a)
P13 = —id12p13 + i1 paz — i p14 — Q5 p12 — %Pm, (A.24b)
. . . ) . + I
P14 = *1513P14 + ZQlP24 - ZQ3013 - 194015 - %Pm, (A-24C)
p15 = —ib1ap1s +iQ1p2s — i Qp1a — %Plsv (A.24d)
. . ) . . Ty +
P23 = 02pa3 + 1] p13 — 1524 + 125 (p33 — p22) — 27723/)23, (A.24e)
. . . . . . o +1y +
p2a = i023p24 — i3p23 — iQupas + 125 p34 + 1] p14 — %mpzzl, (A.24f)
. ) . ) . Ty +
p2s = i024p2s + i) p1s + iQ5p35 — iU pos — 27725/)257 (A.24g)
. . ) ) . I'y +
p3a = —i03p3s + 123(paa — pas) + iQ2p24 — 1 up3s — 47734/)237 (A.24h)
P35 = —i034p35 + i23pa5 + Qo5 — i34 — %PBS, (A.24i)
) . . . Iy + .
pas = 104pas + 1Q23p35 + i (ps5 — pasa) — 47%45%5’ (A.24j)

where we have also defined the composite detunings do3 = do — d3, 024 = 2 — I3 + 04, and
534 = 53 — 04.

A.2.2 Optical Bloch Equations - Symmetric Case

From Egs. (3.44) and (3.23), and using the definitions of Eqs. (3.24)-(3.26), one gets the following
set of equations for the atomic populations p;;

pr1 = 8apa1 — 1% p12 + Ta1pag + La1p2z, (A.25a)
paa = 18ap12 — 1 pa1 — 121 pa3 + 1827 p32 — Lapaa, (A.25D)
P33 = 183paz — 15034 + 11 p23 — 17 pa2 + Lazpaa + Tagpa, (A.25¢)
pas = 1805p34 — 1803paz — 104pss + 12 pss — Dypas, (A.25d)
pss = 18pas — 1 psa + Taspaa + Laspaz, (A.25e)
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while the equations for the coherences are

prz2 = —2p12 +182(p22 — p11) — 1Q1p13 — Wﬁ’u, (A.26a)
p13 = (61 — 62)p13 + 1Q2p23 — 15 p14 — 10 p12 — %013, (A.26Db)
p1a = (01 — 02 — I3)p1a + 125 pag — 1Q3p13 — 1Qyp15 — wpm, (A.26¢)
p15 = (61 — d2 — 03+ 04)p15 + 1805 p25 — 1 p1a — %/)15, (A.26d)
P23 = 01pag + 125p13 — 125 p24 + 2127 (P33 — pa22) — %/)237 (A.26e)
pas = (01 — 3)pas — 1Q23p23 — 1Qupas + 1025014 + 107 p3g — me, (A.261)
pas = (01 + 04 — I3)pas + 1Qap15 + 127 p3s — 1 pas — %pgs, (A.26g)
p3a = —103p34 + 121 p21 — 1 p35 + 1Q23(paa — p33) — me, (A.26h)
P35 = —u(03 — da)p3s — 13pas + 1801 pas — 1 p3a — %p%, (A.261)
pas = 104pas + 1825 (ps5 — paa) + 125 p35 — %p%- (A.26))

From the solution of this set of equation we can obtain the population and coherence’ s infor-
mation on the five level atomic system.

A.3 Quantum Trajectories Approach

Quantum Trajectories (QT) approach [112,113] provides a tool to describe the dynamics of
quantum systems alternative to the ME description. While the Master Equation provides an
ensemble description of the evolution of quantum system, the QT approach is based upon the
observation of a single sequence of events. This is possible, because we monitor the time evolution
of the wave equation rather than observe the evolution of the density matrix.

The interaction of quantum systems with the environment and the consequent possibility that
quantum jumps take place, poses the problem of how to describe any single realization of the
system’s evolution in the presence of quantum jumps. Quantum jumps occur randomly, and
their effect is to collapse the wave function.

Within the QT approach, once we have obtained the time evolution of the wave function from an
effective Stochastic the Schrédinger equation, we evaluate the expectation values by this single
wave function. Repeating this process a large number of time, we thus evaluate the mean values
over all possible stochastic evolutions.

The general expression of the time evolution of the density matrix can be written as

p= Lo, (A.27)

where Lis the a Louivillian super-operator. The formal solution of this equation gives

p(t) = e“p(0). (A.28)
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Adding and subtracting the superoperator O to the exponential function, and expanding the
exponential, we obtain

p(t) = eF79TD(0)
00t tn to
= Z/ dtn/ dtp—q.. / dt1e £ tt) 0 x (E=ONtn—tn-1) ) | .Oe(ﬁfo)tlp(o).
o 0 0 0
(A.29)
The quantity under the integral is the evolved, unormalized density matrix,
e(t) = eEOVEt) O 5 L= ta=tu-) ) | 0eE=ON1 (), (A.30)

conditioned to the presence of n quantum jumps events, described by the application of the
operator O at times t1,%2,...,tn.

The sum describes all possible physical preparations, determined by the number of jumps n, to
go from the initial time t = 0 to the final time ¢,. Each path can have an arbitrary number
of emissions, i.e. the jumps go from zero to co. The conditioned state can be defined as
pe(t) = [1e(t)) ® (¥e(t)|, where |[¢.(t)) represent the time evolved wave equation between a
jump determined collaps and an other. The normalized conditioned density matrix is then
obtained by dividing by its trace

ety = 22

= oD (A.31)

From a numerical point of view, the advantage, with respect to the ensemble-based descrip-
tion, relies on the fact that the problem involves the time evolution of an object of dimension
N rather than N x N.

Let us now give an example of how an atomic system can be treated. The general approach
is based on considering a state vector [¢) evolved in time by means of the Schrodinger equation

2 % = Herp(t)[9), (A.32)

where the general expression for the effective non-Hermitian Hamiltonian is

Hogs(t) = Hine(£) — 2 32 CLOC (1), (A.33)

where the set {C),(t)} represent the family of collapse operators describing the dissipation. The
example above corresponds to a single kind of jump, with C; = O.

Eq.(A.33) determines the continuous evolution of the state |i)) punctuated by quantum jumps
at time 7 at which the wave function changes according to

Calt)(7)) e

) = e ORI

where 7 < ¢. Evaluating the evolution of the eq.(A.32) for a number of trajectories we can
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evaluate the expectation values over the number of trajectories obtaining the average quantities
that represent the expectation values of physical quantities.

The only difference from a quantum system to another is in the way we define the interaction
Hamiltonian H;,; and how we define the quantum jumps operators. For example if we apply the
above procedure to multilevel atomic systems, e.g. the five level symmetric M scheme system,
we adopt the Hamiltonian given by eq.(4.3) as H;,: and each collapse operator, related to each
decay channel, is defined as

Cij = ,/’le’i) <j| for i,j = 1,2,3,4, 5, (A35)
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Appendix B

Fourth order Wigner-Brillouin
Perturbation theory

In this section we give much details of the perturbative calculation of the quantum phase due
to a cross Kerr interaction expressed by the results of eq.(4.3). The aim of this Appendix is to
show how we can calculate the eigenvalues and eigenvectors of a multilevel system described in
the chapter I'V by means of the perturbation theory at fourth order. For simplicity we consider
only the non-degenerate case.

B.1 Formulas

Let us consider a quantum system under the influence of an Hamiltonian that can be separated
in a large term plus a perturbative term, much smaller than the other, i.e.

H=Hy+V. (Bl)

The general formula describing the perturbation of the energy of the unperturbed eigenstate |n)
of Hy is given by

_ (n|V]k) (k[V|n) (n|V[E) (k[V|K') (K'[V |n)
En B Eg N <n|V|n> * k;ézn En - Eg " k,;ﬁn (En - EIE))(En - Eg’)
S (n|V[k) (KIVIE) (K VIE") (K" [V |n)

(En — EQ)(En — ED)(E, — EY) (B.2)

kK k' #n

Now the form of the perturbation at the various orders depends on the perturbative treatment of
the E,, term. In fact, the expressions of the perturbation at all orders are obtained by developing
E,, in the denominators of the previous expression at the correct order. Taking into account
that

Vam| < |EQ = EQ), (B.3)

i.e, assuming that the matrix elements of the perturbation V' are much smaller than the absolute
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values of the difference between the unperturbed energies EI(CO).

To find the complete expression of the correction at the second order, we can take F, = E,SO) in

the second order term in the eq.(B.2) obtaining

|Vnk|2

(@) — O LTI
EP =EQ +Von + Y 50 g

k#n

(B.4)

In the same way the third order correction can be obtained by developing at first order E, in
the term of eq.(B.2) proportional to the V2 of the perturbative part of the Hamiltonian, and at
zeroth order in V3, we obtain

EY = BO v+ el oy s~ Wl
n n nn 0 0 nn 0 0
k;énE}l)iE() k#n (E7(1)7El(c))2
Voke Vi Viern
+ Z 0 0 0 0)\ (B.5)
iz, (BY — EOYEY - BY)

Now we can apply the same procedure to include the fourth order correction. We have to develop
at second order F, in the V? term, at first order in the V3 term, and at the zero order in the
V4 term. We give the final result

EW = = B0V + Y —ml oy s Vel
n nn 0 0 nn 0 0
2 g0 E( ) 250 E( )2
I L
0 0 0 0
2B g0 22 (50 _ g0
Vo View Vi Vo Vi Viern
Y [ .
0 0 0 0
Kok n E( ) E( ))(E( ) Eé/))? (Er(zO) _ E](CO))2(E7(10) _ E](f))
Vouk Vit Vigr i Vigrr
+ Z , (B.6)
e i ( E(O))(Ev(zo) - E£9))(E§LO) — E,i?))

where the summations labels refer to the eigenstates of the unperturbed part of the Hamiltonian.

B.2 Application to the symmetric M-scheme

We apply the previous results to the specific case of an atom in the symmetric M-scheme
configuration.

Let us consider a single five - level atom, interacting with an EM field, and described by the
following Hamiltonian (see chapter IV)

H = hez[1)(1] + hd2|2)(2] + hds|4) (4] + heaal5) (5] + 7d ([2)(1] + [1)(2]) +
gy (ap12)(3] + [3)(21a]) + hige (@l4)(3] + |3)(4laf ) + A4 (14)(5] + [5)(4)),

We assume that the terms proportional to g, ;, in the equation above, are much smaller than all
the others, so that they represent the perturbation V in the Hamiltonian in the form of eq.(B.1).
If the trigger field possesses only one photon, while the probe field is in the vacuum state, the
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Hilbert space within which the dynamics takes place can be represented by the following basis
B, ={e1 =13) ®10), @ |1)1,e2 = [4) @ |0), @ |0)¢, e3 = |5) ®]0), @ |0),}, we obtain (see chapter
V)

0 0 O 0 g O
Hi=10 03 Q |+ 9 0 0], (B.7)
0 Q4 €2 0 0 0
Similarly for the one probe photon, we have
0 0 O 0 g O
Hp = 0 0 D + dp 0 0 ) (B8)
0 QQ €1 0 0 0

in the basis B, = {e1 = [3) @ [1), ® |0)1, €2 = [2) @ [0)p @ |0)1, €3 = [1) @ |0)p ©[0)¢}-

If the probe and the trigger possess one photon each, we have the Hilbert space spanned by the
five states e; = [2)@[0),®| L), e2 = [1)@0)®[L)es €3 = [2)[1), 8 [1)1, €4 = [4)8[1), @[0)z, €5 =
|5) ®1), ®|0)¢. Writing the Hamiltonian in the perturbative representation of eq.(B.1), we have

55 Q% 0 0 0 0 0 g 0 0
Q ¢ 0 0 0 00 0 0 0
Hy=] 0 0 0 0 0 |+| g 0 0 g 0 (B.9)
0 0 0 86 0 0 g 0 0
0 0 0 QU e 00 0 0 0

We can immediately note how the odd terms in the perturbative expansion give zero contribu-
tion, as they depend on the diagonal matrix elements V,,,, or Vi of the perturbation Hamiltonian
that are identically zero. For eq.(B.7) and eq.(B.8), the Hamiltonians are the same, and it is
sufficient to study only one of the two cases and then modify the obtained results by switching
gt — Gp, . — Qa, 03 — 61 and ez — €.

Calculating the eigenvalues of eq.(B.9), together with the eigenvalues of the unperturbed eigen-
state e1, that is zero (as it has to be for a dark state), we obtain

53 — €2 53 — €2 2
N = Ti\/(T) + 03, (B.10)

corresponding to the eigenvectors

Ques + (N — d3)es
Vt,+ = .
VU (AL = 83)?

In this basis B = {v; 1, v _}, the term V{ that determines the perturbation to the state e; can
be calculated

(B.11)

Q49¢
/7 + (AL —d3)2

with this result we can calculate the second and fourth order correction to the unperturbed state

VL= {e|V]vs) = (B.12)
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in the case of one photon on the trigger field, or one photon on the probe field (switching the
label of the fields and of the detunings). We obtain

o v

trigger )\i >\t, (Blg)

Applying eq.(B.10) and eq.(B.12) we have the eq.(4.18) given in Chapter IV and at the fourth
order by adopting the following relation

@ _ Vil” Vil®
5Atrigge7‘ - Z )\t Z )\t ) (B14)
k=t+,— "k k=4, Tk

we obtain the eq.(4.19).
In the same way we can proceed for the 5 x 5 dynamics. The unperturbed eigenvectors are the
same of the previous lines, being the 5 x 5 unperturbed Hamiltonian a block matrix. We have
vy1,v—1 for the block belonging to the probe field, es is the unperturbed state, and v49,v_o for
the block related to the trigger field. The perturbative development give the cross interaction
between the two A dynamics, and then produces the cross Kerr photon-photon interaction. As
for the trigger case eq.(B.12), the perturbation term on level e; proportional to the probe field
is

v (8.15)

Q3+ (V] — 61)?

In the evaluation of the second order perturbative term, we can note that the structure of the
matrix H,; will give the same terms of each separated A eqns.(4.18)

A = 0D oA, (B.16)

while the fourth order terms give contributions from the cross interaction. Defining

mﬁméﬁﬁ+Mmiﬁg (B.17)
1 1
T @) T ) (B.18)
1 1
b NBTd,) N(BTdL,) (B.19)
1 1
6, = (Xi)2(Q% + d?i-,p) + ()\;D_)Q(Q% T d2—7p)’ (B.20)
we obtain the fourth order perturbation from terms of the form
N’ = 9PN +9§Q§Ap] [9393@ + 62020 | tin. (B.21)

In this equation we have four terms, the two terms proportional to g#Q} and ggQg are equal to

the fourth order term 5/\1()?0176 and 5)&2 ggeri NOWever there are two more terms that are produced

by the cross products that give the cross interaction.



Appendix C

Multimode Coherent States

In section 2.6 we have described the Tripod system in the quantum limits when probe and
trigger fields are represented by two weak coherent fields. Here we give the basic definition and
properties of coherent states and multimode coherent state.

The coherent state formalism provides a powerful approach to find solution to many problems
in quantum optics. They have an indefinite number of photons, which allows them to have a
more precisely defined phase than a number state for which the uncertainty principle states that
the phase is completely random. They describe the closest field to the classical one. This states
can be seen as generated by the unitary displacement operator D defined as follows

D(a) = ele®'—a"d), (C.1)

where « is an arbitrary complex number, and @ and a' are destruction and creation operators
of the field. The coherent states are eigenstates of the destruction operator a, they can be
expressed in terms of the Fock states and they are not orthogonal. For different o, moreover
it can be proved that the set of all coherent states is overcomplete. Let us prove some of these
assertions.

By the Baker-Hausdorff formula for operators A and B, one has

eATB = gAeBemIABI/2 (C.2)
when
(A, [, B]] = [B,[A, B]] = 0. (C.3)
The operator D can be written as
D(a) = e‘o‘|2/260‘atefo‘*a, (C4)

and it has the following properties

Df(a)aD(a) = a' + a, (C.5)
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The coherent state id obtained by applying D to the vacuum state

@) = D()|0). (C.6)

Adopting the relations (C.5, and C.6) we see that the coherent states are eigenstates of the
annihilation operator a,

D' (a)ala) = DT(a)aD(oz)|0> = (a + «)|0), (C.7)

applying the D operator on the left of both side of the previous equation we have

ala) = ala). (C.8)

The expression of the coherent states on the Fock basis is
) = elol*/2 i 2. (C.9)
n=0 m

Coherent states of more than one field modes are simply formed as products of single-mode
coherent states. For two modes P,T with annihilation operators ap and ar, the two-mode
coherent state |ap, ar) is generated by the action of two displacement operators bp(a p) and
Dr(ar) on the two-mode vacuum state [0p,07) so that

|04P,OéT> = ﬁp(ap)DT(OéT)|0p,0T> (ClO)

= elarap—abar)g(aral—atar)|g, o). (C.11)

The properties of this state follow from those described above of the single-mode state. In partic-
ular, |ap, ar) is a right eigenstate of both ap and ar with eigenvalues ap and ap, respectively,
and therefore expectation values of normal ordered products of ap, dTP, and ar, &TT can be found
simply by replacing these operators by ap, a} and ar, af.. For example to evaluate the normal

Stkatlal - .
ordered operators’ aTP aTT al-am expectation value, we have

(ap,aT|d¥€dTTlled}§|ap,aT> = afastaBal. (C.12)

C.1 Nonlinear phase in Tripod system by weak multimode
coherent field

Here we give the detail of the calculation of the non linear phase accumulation for a weak coherent
field, interacting in the Tripod configuration, expressed by eq.(2.33). When the equations (2.29)
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are dominated by the nonlinear terms, after the interaction of a multimode field |ap(t), ar(t))
where the coherent state amplitudes ap r are defined

2me .
apr(t) =4/ e Z a%Telk‘t. (C.13)
k

The evolved operators after the passage throgh an interaction region of length [ will be

Epr(z,t) = EApyT(t’)emE;vP(t/)ET’P(t/)l, (C.14)

where t' =t — z /vy, with v, the pulse’s group velocity. Evaluating the mean field operator over
the evolved coherent states, we have

A ~ il N\ /
(Br,.p(z,1)) = <ﬁPaﬁT|EP,T(tI)€mET’P(t Er.r(®) | 0p, ar),

= (ap,ar|Olap,ar), (C.15)

~ il N AN ol AN 5 ’
where we have defined O = e~ ""Fr.p(Err () B, 1 (47)e1Er p ()BT P (F) - Rewriting the operator

O by the Baker-Hausdorff formula we have

O = —znlApr,T - (nlﬁilw)QEAp,T - z(nl?i'w)gEAp,T + ...
' ' (C.16)
where we have defined the commutators of the field operators as
~AwEpr = [} p()Erp(t), Brp(t)]
ABpr = B} p()Erp(t), [ p () Erp ), Brpt)]].
~AFBpr = |BLp()Ere @), B o) Brp(t), [EL o) Erp (), Bre)] ]|

Applying the previous sequence of the operators in the evaluation of the expectation value of
the applied field, grouping the odd terms and even terms, and defining ® = ¢nAw, we have

lag, p(t)?

(Bpr(z,t)) = apr(t)el=2m (P/2Tsin(®] =2a (C.17)

that gives the eq.(2.33).
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