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Abstract

This thesis is on the study of the mechanisms for the production of nonlinear photon-photon

interaction under the condition of Electromagnetically Induced Transparency (EIT), and on

the implementation of a Quantum Error Correction (QEC) scheme adopting a Cavity Quantum

Electrodynamics (CQED) set-up. The latter part of the thesis will be treated in the last chapter.

Large non linear effects are usually accompanied, by a large increase of the absorption. This

fact makes classical nonlinear devices not useful for the purposes of the rapid developing fields of

Quantum Computation and Information. Strong absorption process results in a complete loss of

the information represented by the state of the photons. EIT is a well known process of atomic

coherence, largely studied starting from the seventies together with the discovery of Coherent

Population Trapping (CPT), Lasing Without Inversion (LWI), slow light propagation.

After the recent experimental realization of slowed down light, EIT has experienced a revival

in recent years mainly due to the possible application to Quantum Computation and Quantum

Information (QC&QI). EIT is a process that makes transparent a previously opaque medium

thanks to the interaction with an electromagnetic field. It is a manifestation of the quantum

nature of atoms, that exploits a quantum interference process. In this thesis we will show how an

EIT medium permits to obtain giant non-linear Kerr interaction (up to eight order of magnitude

increase) even at low light level, by the study of several light-atoms scheme. The production

and control of giant cross phase modulation (XPM) is analysed and all sources of noise and loss

will be included in the treatment.

The main goal of this thesis is to study the photon-photon interaction at the level of single

photons in several multilevel schemes. In the full quantum limit we shall concentrate to a specific

light-atoms interaction scheme, the symmetric M scheme (SMS) under the condition of EIT. We

shall study how to implement a Quantum Phase Gate (QPG). Such a gate has been already

experimentally realized for a cavity, but here we want to find the optimal condition to implement

the QPG between flying qubits. To this end we adopt EIT in order increase the photon-photon

interaction: in a cavity such an increase is provided by the small volume of the cavity, while in

EIT it is based on the strong dispersion dn/dω at the center of the transparency window.

Photons represent the best candidates for the implementation of transmission lines for carrying

quantum information, and this is why strong nonlinear photon-photon interaction is particularly

interesting from the point of view of quantum information.

In this scenario the principal goal of this thesis is to analyze the potentiality of a EIT based

device in full quantum regime, for the implementation of the QPG. The quantities that define the

performance of the gate are calculated in detail including decoherence mechanisms and finding

a possible set-up for the experimental realization.

The thesis is organized as follows. In first chapter we review some notions of atom-light

interaction in multilevel atoms, and we introduce the most interesting features of the EIT pro-
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cess. In the second and in the third chapter, we study three different multilevel atomic schemes

in the semiclassical regime. The aim of this chapter is to show how multilevel schemes can be

tailored for the generation of Cross Phase Modulation (XPM). In chapter four we concentrate

on the SMS for the full quantum analisys of the cross Kerr interaction. Conditions for the

implementation of a cross Kerr interaction that gives a conditional phase shift of order π are

individuated and for the first time a rigorous evaluation of the fidelity of the gate is performed.

In chapter five we approached the problem of the implementation of a QEC protocol based on

an experimental set-up composed of Rydberg atoms and cavities. We will describe the various

step of the protocol, and we will evaluate the fidelity in the presence of the main decoherence

mechanisms.



Chapter 1

Interaction of Atoms with

Electromagnetic Fields

In this chapter we introduce the atom-field interaction in the semiclassical approach.
After a review of the interaction of a two level atom with an electromagnetic field, we
describe the main properties of Electromagnetically Induced Transparency (EIT) in a
multilevel atomic system, taking into account in a particular the three level Λ config-
uration. We will describe the linear, nonlinear, as well as the slow light propagation
properties of this three level system. We then introduce the Cross Kerr interaction
in four level system and review the main schemes for the production of Cross Phase
Modulation (XPM). We then give a short introduction to the potential applications of
EIT in this field.

1.1 Interaction of an electromagnetic field with two level

Atoms

The study of the interaction of atoms with electromagnetic fields plays a crucial role in the

analysis of many topics in modern physics. In general the atomic structure is a complicated

multilevel one, but for many applications this multilevel structure can be well modelled by a

much simpler system, as for example the two level approximation. In this paragraph we study the

two level system because, despite its simplicity, it gives a deep insight both for the mathematical

technics adopted as well as for the physical behaviour of multilevel systems.

The two level approximation can be adopted when the applied fields are weak and nearly in

resonance with the atomic transition. A sketch of an atom approximated by a two level system is

represented in Fig.1.1(a). In this situation, only the ground state and the near-resonant excited

levels will enter the dynamics of the system, i.e., only these two levels will be populated under

the action of the electromagnetic field.

Let us consider the two atomic levels |1〉 and |2〉 showed in Fig.1.1 and driven by a classical

electromagnetic field. Considering the applied field

E = Ee−ıωt + E⋆e−ıωt, (1.1)



4 Interaction of Atoms with Electromagnetic Fields

2Ω

| − 〉

| + 〉

Ω,ω

| 2 〉

| 1 〉

∆
Ε 2

Ε 1

(a) (b)

ε−

ε+

Figure 1.1: Two level scheme in the bare (a) and dressed basis (b).

where E is the field’s amplitude and ω the angular frequency. In the dipole approximation, the

strength of the atom-field interaction is proportional to the atomic dipole operato. Within the

two level approximation we truncate the infinite dimensional basis over which we evaluate the

dipole moment reducing the Hilbert space to the pair of levels included in the basis B = {|1〉, |2〉}.
The dipole moment of the single two level atom is

d̂ =
∑

n

|1〉n〈2|µ(n)
1,2 , (1.2)

where µ1,2 = 〈1|er̂|2〉. The total Hamiltonian is the sum of the two terms

H = Hatom +Hint, (1.3)

where Hatom represents the free Hamiltonian

Hatom = ~ω1|1〉〈1| + ~ω2|2〉〈2|, (1.4)

and Hint is the interaction Hamiltonian, i.e., the energy exchanged by the atoms with the field

Hint = ~
(
|1〉〈2|Ωe−ıωt + |2〉〈1|Ω⋆eıωt

)
(1.5)

where Ω = −µ12E/~ represents the Rabi frequency of the applied field, which will give the

time scale at which the atomic population of each atom will oscillate between level |1〉 and |2〉.
A standard way to proceed to simplify the mathematical description of multilevel system is to

pass to the Interaction Picture (IP) and Rotating Wave Approximation (RWA). Representing the

physical system in a suitable rotating frame permits to obtain the net effect of the interaction.

This is performed defining

H0 = ~ω1|1〉〈1| + ~(ω2 − ∆)|2〉〈2|, (1.6)
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where ∆ = ω2 + ω1 − ω is the detuning, and

U(t) = exp(−ıH0t/~), (1.7)

the associated unitary operator.

Applying U(t) to the Hamiltonian (1.3), we get the effective Hamiltonian in the IP

Heff = U(t)HU†(t) − ı~U†(t)U̇(t), (1.8)

which is exactely given by

Heff = ~∆σ22 + ~

(
Ωσ− + Ω⋆σ+

)
, (1.9)

where σ− = |1〉〈2|, and σ+ = |2〉〈1|, are the rising and lowering atomic operators.

1.1.1 Schrödinger Equation Treatment

In the two level approximation, we can write the most general state of the system as:

|ψ(t)〉 = C1(t)|1〉 + C2(t)|2〉, (1.10)

The two coefficients C1,2 give the probability amplitude to find the state in level |1〉 or |2〉
respectively, and the time evolution will be obtained solving the Schrödinger equation

ı~
d

dt
|ψ(t)〉 = Heff |ψ(t)〉, (1.11)

Which explicitly gives:

dC1

dt
= −ıΩ

2
C2(t)

dC2

dt
= −ı∆C2(t) − ı

Ω⋆

2
C1(t). (1.12)

These equations can be solved exactly but let us consider two special cases that will give an idea

of the general behaviour of the two level system.

When ∆ = 0 the field is in resonance with the atomic transition. In this case the solutions

corresponding to |ψ(0)〉 = |1〉 are

C1(t) = cos
|Ω|t
2

(1.13)

C2(t) = −ıΩ
⋆

|Ω| ı sin
|Ω|t
2
. (1.14)

These equations show that the atomic population oscillates between level |1〉 and |2〉, with a

period length determined by the Rabi frequency,

|ψ(t)〉 = cos
Ωt

2
|1〉 − ıe−ıargΩ sin

Ωt

2
|2〉. (1.15)
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The opposite situation is when the field is far-detuned from the atomic transition ∆ ≫ Ω. In this

case, although the field hardly excites the atomic system to the excited level, it will have some

effects on the energy of the ground state. If the detuning is much larger then the characteristic

Rabi frequency, we can adopt the adiabatic elimination Ċ2 ≃ 0 in the second of Eqs.(1.13) so to

get

C2(t) = −Ω⋆

∆
C1(t). (1.16)

Putting this condition into the first of eq.(1.12) we have the expression for the evolution of the

population in level |1〉,
C1(t) ∼ C1(0)e−ı|Ω|2t/∆. (1.17)

As a consequence, the final population won’t be to far from the initial condition. If for exam-

ple the system starts in the ground state |1〉 it will remain there, with a phase accumulation

depending on the ratio Ω/∆. The process that induces the phase accumulation can be seen as

a modification of the ground state energy of the atomic system. The energy is shifted by the

amount |Ω|2/∆, a process known as the ac-Stark shift that will be of great importance in the

next chapters.

An elegant way to describe multilevel systems is based on the dressed atomic states. This

kind of picture of multilevel systems is particularly useful in the cases where the atomic structure

coupled to the fields is particularly complicated. Diagonalizing the time independent Hamilto-

nian (1.9) we can easily find a basis Bdressed whose elements are the eigenvectors |±〉. Expressed

in terms of the bare atomic states |1〉 and |2〉 the eigenvectors are

|±〉 =
Ω√

|Ω|2 + ǫ2±

|1〉 +
ǫ±√

|Ω|2 + ǫ2±

|2〉, (1.18)

where ǫ± = ∆
2 ±
√

∆2

4 + |Ω|2. When ∆ = 0 the system is in resonance with the atomic transition,

the two dressed states will be |±〉 = (|1〉 ± |2〉)/
√

2 and the separation in energy of these two

states will be twice the applied Rabi frequency 2Ω as showed by Fig.1.1.b.
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1.1.2 Master Equation for a two level system

A powerful approach for the description of the time evolution of a quantum system is the Master

Equation (ME). The ME describes open quantum systems, including in the treatment the effect

of the interaction of the system with the environment. The steps to obtain the ME are given in

Appendix A.1.Here we give the general expression of the ME for a two level system.

Taking into account the Hamiltonian in IP given by eq.(1.9), the ME for a two level atomic

system interacting with an electromagnetic field is given by the following expression

dρ

dt
= −ı1

2
∆
[
σ22, σ

]
− ı

Ω

2

[
σ+ + σ−, σ

]
+
γ

2

(
2σ−σσ+ − σ+σ−σ − σσ+σ−

)
+
γdeph

2
(2σzσσz − σ),

(1.19)

where with σij = |i〉〈j| we have indicated the projection operators.

The first two terms describe the deterministic evolution given by Heff , the other terms describe

the various effects of decays and losses due to the interaction with the environment. The first

one is determined by the spontaneous decay from level |2〉 → |1〉, the last last term describe

the phase destroying process, that do not affect in general the population of the atomic level

but modify the phase of the quantum states describing the atomic levels. This terms are not

important in the dynamics of the two level system as they affect only the coherence whose time

scale is dominated by the spontaneous emission rate, since γdeph ≪ γ. Anyway we include the

dephasing rate γdeph from now on, as it will be useful in the following.

From the Master Equation (see AppendixA.1), it is possible to obtain the evolution of the

elements of the density matrix. This can be done starting from the ME and evaluating the

matrix element of ρ on the basis B = {|i〉, |j〉},

ρ̇ij = 〈i|dρ
dt

|j〉.

We obtain a set of equations that describes the time evolution of populations and atomic coher-

ences. These equations take the name of Optical Bloch Equations (OBE), and for the two level

system are

ρ̇11 = −ıΩ
2

(
ρ12 − ρ21

)
+ Γρ22 (1.20)

ρ̇22 = ı
Ω

2

(
ρ12 − ρ21

)
− Γρ22 (1.21)

ρ̇12 = −ı∆ρ12 + ı
Ω

2

(
ρ22 − ρ11

)
+

Γ + γdeph

2
ρ12. (1.22)

The first two describe the evolution in time of the atomic populations, while the third gives

the evolution of the atomic coherence. Atomic coherence is a peculiar feature of the quantum

nature of the atoms. With atomic coherence we mean the property of an atomic state to exist

in a coherent superposition of two or more atomic configuration.

1.2 Absorption and Dispersion Properties.

Absorption and dispersion properties of the medium, that interact with the field, are determined

by the off-diagonal elements of the density matrix ρ12. In fact these terms describe the induced
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dipole moment on the atom by the field. The dipole moment of the atom will oscillates with a

frequency proportional to the Rabi frequency of the applied field, and the rapidity in the change

of the orientation of the atomic dipole will determines the dispersion and absorption properties

of the atom. When the dipole is parallel to the electromagnetic field there is no absorption,

on the other hand when the dipole is orthogonal to the electromagnetic field the atom absorb

energy from it to orient with the field.

The quantity that describes the absorption and dispersion properties is the polarization P
of the medium which is equal to the atomic dipole moment per unit volume and therefore it is

given by,

P =
Na

V
〈p(t)〉, (1.23)

where 〈p(t)〉 = Tr
{
ρp̂
}

is the mean dipole moment over the atomic state, Na is the number of

atoms in the medium, and V is its volume. The Fourier component of the polarization at the

frequency ω is given by the following expression

P (r, ω) = ǫ0χ(r, ω)E(r, ω) + ǫ0χ(r, ω)(2)|E(r, ω)|2 + ǫ0χ(r, ω)(3)|E(r, ω)|3 + . . . , (1.24)

here P(ω) =
∫
dteıωtP(t). The term proportional to the square of the applied field describes

the second order nonlinear effects, while that proportional to |E(r, ω)|3 is associated with third

order nonlinear Kerr effect1.

Expressing the dipole moment as a function of the density matrix we have that it is proportional

to the off diagonal term ρ12, then the susceptibility χ(1) can be expressed in terms of the off

this diagonal

P =
Na

V
µ12ρ12 = ε0χE1, (1.25)

then from eq(1.20,1.25) we have the single atom polarization

χ =
Na

V

µ12ρ12

E1ε0
, (1.26)

The susceptibility is in general a complex number,

χ = χ′ + ıχ′′, (1.27)

where χ′ is the real part of the susceptibility, and χ′′ describe the imaginary part of the suscep-

tibility. The real part of the susceptibility gives information on the dispersion properties of the

atom while the imaginary part will describe the absorption properties of the medium. Solving

eqns.(1.20) at the steady state, we can obtain a simple analytical expression that describe the

absorption dispersion profile,

χ = −Na

V

Ω

2(∆ − ıγ)
. (1.28)

1In what follow, we shall consider a homogeneous medium and the dependence of the fields and susceptibility

upon the position ~r will not be explicitly written.
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Figure 1.2: This plot shows the profiles of the absorption (continuous line) from the imaginary

part of eq.(1.26), and dispersion (dashed) determined by the real part, for a two level system

interacting with an electromagnetic field. At resonance (∆ = 0) the field experiences a rapid

increase of the absorption.

In Fig.1.2 we see the behavior of the two level medium as described of eq.(1.28). When the

electromagnetic field is in resonance with the atomic transition the absorption increases, and at

the perfect resonance it reaches its maximum value.

From this picture we see how an interacting light field can modulate the optical properties

of the atomic medium. The profile of the imaginary part of the linear susceptibility depicted

in Fig.1.2 by the continuous line, suggests that when the field is in resonance with the atomic

transition (∆ = 0), its energy is absorbed to promote the atomic system to the excited level |2〉.
At resonance the atom evolves in an anomalous dispersion regime, where the optical properties

are radically changed, and group velocity of the light pulses can be radically modified.

In recent years the advent of Quantum Information has induced much more attention to the

mechanisms of atom-light interaction. Because of their nature, photons have been individuated

as a promising vector of quantum information. The weakness of the decoherence process even for

reasonably long distances, the relatively simple transmission and generation have made photons

ideal particle to store and process quantum information. Unfortunately this weak decoherence

is accompanied by a weak photon-photon interaction, meanly due to the fact that photons are

fast, and the interaction time in an typical photon-photon interaction device, is too short to

have an efficient processing of photon properties. Moreover, in the quantum limit, light pulses

are extremely weak, and even a moderate absorption is an obstacle in their use as carriers

of quantum information. Therefore one has to look for particular configurations able to give

significant photon-photon interaction not accompanied by a large absorption.
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Probe
   Ωp

| 2 〉

Coupling

| 1 〉

| 3 〉

δ 1

Ωc

δ 2

Figure 1.3: Typical atomic configuration for EIT generation.

1.3 The EIT interaction

EIT is a phenomenon based on the generation of atomic coherence to modify the optical proper-

ties of an atomic medium, in particular EIT-based systems permit the storage and absorption-

free propagation of light pulses, even at very low light level, i.e., in the limit of single or quasi-

single photon pulses.

To produce EIT we need electromagnetic fields and a multilevel atomic system, i.e., an atomic

system that interacts with the light with more than two levels. The prototype of atomic config-

uration to produce EIT is given by Fig1.3. Two electromagnetic fields, whose Rabi frequency

are Ωp and Ωc are coupled with the atomic transitions |1〉 → |2〉 and |3〉 → |2〉, respectively. We

will show how this interaction scheme will leads to the propagation of light without absorption.

Let us consider a system of Fig.1.3 with an initial population in the two ground states |1〉 and

|3〉. We want to induce a loss-free propagation of the probe field. For this reason the first field

to turn on is the coupling field with frequency ωc, and Rabi frequency Ωc. This process will

pump the largest part of population in level |1〉, and only a small amount of population will

remain in level |3〉. At this stage the atomic system evolves into a coherent superposition of the

two ground state |1〉 and |3〉.
If we now turn on also the second field, the probe with frequency ωp, the atomic system will

have two possible paths to be promoted to the common excited level |2〉: directly from |1〉 → |2〉
or from the indirect way |3〉 → |2〉 → |1〉 → |2〉. Both of these paths have an of probability that

is proportional to the coupling field’s Rabi frequency Ωc, but with opposite sign. The result is

a mutual cancellation of the total amplitude probability of find an atom in the level |2〉. This is

a quantum interference process. The results is that the atomic system is trapped in a pure state

that is a coherent superposition of the two level |1〉 and |3〉.
Let us obtain a more detailed description of the process: we have a three level atomic system

in the Λ configuration. The two applied electromagnetic fields, are applied to the transition

|1〉 → |2〉 and |3〉 → |2〉 respectively. We consider the most general case, both fields are slightly

detuned from resonance. The probe detuning is δ1 = ω21 − ωp where ω21 is the frequency dif-

ference between the level |2〉 and |1〉, while the coupling field’s detuning is δ2 = ω23 − ωc.
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Since we are working in the semiclassical approximation, the Hamiltonian will be of the form,

Htot = Hatom +Hint

=

3∑

i=0

Ei|i〉〈i| +
~

2

[
Ωpe

−ıωpt|2〉〈1| + Ω⋆
pe

ıωpt|1〉〈2|
]
+

~

2

[
Ωce

−ıωct|2〉〈3| + Ω⋆
ce

ıωct|3〉〈2|
]
,(1.29)

where Ei for i = 1, 2, 3 are the energies of the atomic levels. Now we fix the zero of the energy

in correspondence of the ground state |1〉, and we define the detunings so that

E1 = 0

E2 = ~δ1 + ~ωp

E3 = E2 − ~δ2 − ~ωc. (1.30)

Adopting the IP with respect to the following free Hamiltonian

H0 = ~ωp|2〉〈2| + ~(ωp − ωc)|3〉〈3|,
we can write the effective Hamiltonian Heff in the IP, in the following form without any explicit

time dependence,

Heff = ~δ1|2〉〈2| + ~(δ1 − δ2)|3〉〈3| +
~

2

[
Ωp|2〉〈1| + Ω⋆

p|1〉〈2|
]
+

~

2

[
Ωc|2〉〈3| + Ω⋆

c |3〉〈2|
]
. (1.31)

To fulfill the two photon Raman condition, we have to impose that the two detunings have to

be equal (δ1 = δ2), or equivalently we have to set the frequency of the field so that the difference

of the two detuning is equal to the frequency difference between the two ground levels |1〉 and

|2〉. When Raman conditions are satisfied we obtain the best transparency.

On the basis of the three bare atomic states B =
{
|1〉, |2〉, |3〉

}
, the matrix form of Heff is

Heff =
~

2




0 Ω⋆
p 0

Ωp δ1 Ω⋆
c

0 Ωc δ1 − δ2


 . (1.32)

Let us describe the dynamics of the system within the dressed state picture, i.e., let us evaluate

the eigenvalues and eigenvectors of this Hamiltonian. Under the Raman condition δ1 = δ2 we

can easily do this and in the limit of small probe detuning, as showed by [4,6,12], we obtain the

following energies

λ+ =
Ω

2
, (1.33)

λ0 = 0, (1.34)

λ− = −Ω

2
, (1.35)

corresponding to the three eigenvectors

|BS〉+ =
1√
2

[Ωp

Ω
|1〉 + |2〉 +

Ωc

Ω
|3〉
]
, (1.36)

|DS〉 =
1

Ω

[
Ωc|1〉 − Ωp|3〉

]
, (1.37)

|BS〉− =
1√
2

[Ωp

Ω
|1〉 − |2〉 +

Ωc

Ω
|3〉
]
, (1.38)
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|BS〉

|DS〉

λ

λ |BS〉

0

+

−

+

−

Figure 1.4: Dressed State picture of a three level Λ scheme.

where Ω =
√
|Ωp|2 + |Ωc|2. The dressed state picture for the Λ scheme is in Fig.1.3. The

three eigenvectors are named bright-state |BS〉±, and Dark-state |DS〉. The reason of the name

relies on their structure: |BS〉± have a component from the excited level |2〉, while |DS〉 has

no contribution from |2〉. This implies that spontaneous emission affects only |BS±〉 and not

|DS〉. For this reason if the atom is initially prepared in |DS〉 (for example with the procedure

described at the beginning of this section), or if we wait for a sufficient long time, the system

relaxes to the dark state after an initial passage through the bright-states. We can notice, in

fact, that |DS〉 is in fact an eigenstate of the the effective Hamiltonian Heff with eigenvalue

λ0 = 0, i.e., it does not evolves in time, it is decoupled from the effective Hamiltonian (1.32)

. As much as we approach the zero detuning condition the atomic system becomes more and

transparent to the propagation of the probe field. This is clear from the fact that the state

to which the system evolves has no |2〉 components. The general expression for the dark state

when the two photon resonance is not fulfilled δ12 = δ1 − δ2 6= 0 is given by

|DS〉 =

[
Ωc|1〉 + δ12|2〉 − Ωp|3〉

]
√

Ω2 + δ212
, (1.39)

and is evident as the dark state decouples from the Hamiltonian function at the Raman condi-

tion.

The early days of EIT start with the first experimental and analytical analysis of the Λ

scheme that was performed in the 1976 [4]. In this experiment the Coherent Population Trapping

(CPT) [4] was realized. In a spectroscopic analysis of the Na atoms they recorded the absence

of fluorescence spectrum in correspondence of some precise frequencies as the consequence of

the application of two coherent field to the atomic transition of a Λ scheme. The theoretical

description In subsequent theoretical works [3,5], developed the description in terms of the dark

state configuration of the evolution of a three level atomic system. The pumping of the atoms

into the uncoupled |DS〉 determine the absence of absorption, and of the consequent emission.
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1.4 Optical Response Under EIT Conditions

The EIT process can be implemented in a number of schemes with more than two effective

levels. During the years, the analysis of other three level configurations alternative to the Λ

scheme, have shown that although EIT is possible also in other atomic schemes, e.g. see Fig.1.7,

the efficiency of the process of absorption suppression and resonant nonlinear enhancement that

we will discuss in the next sections are smaller in the scheme designed in Fig.1.7. This is mainly

due to the fact that only the Λ configuration evolves to a dark state that has zero contribution

from the excited level.

1.5 Linear Susceptibility and Group Velocity Slow Down

When two photon resonance conditions are fulfilled, both real and imaginary parts of the suscep-

tibility are radically modified by the two two possible paths absorption. In a two level system,

see Fig.1.2, the profile of the imaginary part χ′′, is a Lorentzian with a width depending on

the spontaneous decay γ21. In the three level Λ scheme, this profile is radically modified as

represented in Fig.1.5. Here the linear part of the probe susceptibility is plotted for resonant

coupling field, and as a function of the probe detuning δ1. In correspondence of the two photon

resonance (δ1 = δ2 = 0), the eigenstate of the Hamiltonian (1.31) is the |DS〉 state,i.e., the

system is pumped to the dark state. No contribution from the excited level |2〉 are involved in

the steady state, and no absorption take place.
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Figure 1.5: Linear susceptibility profiles of the real part of and of the imaginary part in the

Λ scheme for the probe field Ω1. At the two photon resonance conditions δ1 = δ2 the EIT is

established and a steep variation of the dispersion properties are accompanied by the dramatic

reduction in the probe field absorption.

The range of frequency for which perfect transmission is possible is named transparency window

∆ω ∝ |Ω|2/Γ21, and corresponds to the range of frequencies for which the two-photon absorption

condition is fulfilled.
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The fact that region of frequency exists for which we can obtain a perfect transmission of

a probe pulse, is not particularly new. For example a two level system is perfectly transparent

to light propagation, provided that the light pulse is sufficiently far from the resonant condi-

tion. What is new in EIT are two aspects. First of all the fact that the condition of perfect

transparency is accompanied by a steep variation of the refractive index that determines the

slow down of light pulse,i.e., the true novelty of the EIT process is the bandwidth at which the

transparency take place.

The reduction of group velocity in EIT media can be evaluated analytically by solving the

Bloch equation and obtaining analytical expression of the linear susceptibility. Let us consider

a collection of Na identical atoms in the Λ configuration. We can start from the effective

Hamiltonian (1.31) to evaluate the OBE following the scheme we have adopted for the two level

procedure given in the previous sections,

ρ̇11 = iΩ1ρ21 − ıΩ⋆
1ρ12 + Γ21ρ22,

ρ̇22 = −iΩpρ21 + iΩ⋆
pρ12 − iΩcρ23 + iΩ⋆

cρ32 − Γ2ρ22,

ρ̇33 = iΩcρ23 − iΩ⋆
cρ32 + Γ23ρ22,

ρ̇12 = −iδ1ρ12 + iΩp(ρ22 − ρ11) − iΩcρ13 −
Γ2 + γ12

2
ρ12,

ρ̇13 = −iδ12ρ13 + iΩpρ23 − iΩ⋆
cρ12 −

γ13

2
ρ13,

ρ̇23 = iδ2ρ23 + iΩ⋆
pρ13 + iΩ⋆

c(ρ33 − ρ22) −
Γ2 + γ23

2
ρ23, (1.40)

where the terms Γ2 = Γ21 + Γ23 are global decay terms from the excited level, and γij with

i, j = 1, 2, 3 we mean the decay of coherence induced by random dephasing process, caused for

exemple by the collision of atoms inside an atomic cloud.

We assume the the atom is initially prepared in the ground date |1〉, so that applying a strong

coupling field (Ωc) the dark state will coincide with the ground state |DS〉 ≃ |1〉. Solving this

set of equation at the steady state and perturbatively developping the obtained expression at

first order in the probe field Rabi frequency Ωp we obtain the following expression for the probe

susceptibility

χ
(1)
P =

|µ12|2
~ε0

δ12 − iγ13/2

(δ1 − iΓ2/2) (δ12 − iγ13/2) − |Ωc|2
. (1.41)

We see that in this expression both the real and imaginary part go to zero for two photon

absorption δ12 = δ1 − δ2 = 0 and for no spontaneous decay Γ2 = 0. In fact without the

spontaneous emission we cannot produce the interference between absorption paths explained

at the beginning of the section 1.3. Eq.(1.41) is almost general, in fact it can straightforwardly

generalized in the case of an EIT interaction produced in an atomic cloud with an atomic density

Na/V instead of a single atom, simply by multiplying the previous expression for the atomic

density.

Together with the transparency, the steep variation of the real part of the linear susceptibility

produces the group velocity slow down. The group velocity represent the velocity at which

propagate the in-phase front of an optical pulse [7], in term of polarization, i.e., susceptibility it

is defined as

vg =
c

1 + ng
, (1.42)
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where ng is the group index and is defined as

ng = Re
[
χ(1)

]
+
ωp

2

∂Re
[
χ(1)

]

∂ωp
. (1.43)

For the three level system the group index ng is

ng =
Na|Ωp|2
V |Ωc|2

, (1.44)

This expression shows how the reduction of the group velocity takes place. The group index

depends upon the density of the medium and on the coupling field. Increasing the density, i.e.,

increasing the number of atoms or reducing the coupling field, the denominator of eq.(1.42) can

be increased to be much larger than unity, giving the reduction of vg.

1.6 Kerr Nonlinearity based on EIT.

The second typical feature of EIT is that the dramatic reduction of the group velocity is ac-

companied by an increase of the optical nonlinearities. In fact a profile analogous to that of

the linear susceptibility can be obtained for the nonlinear one. This means that in an EIT

medium together with the slow down of a light pulse, we are able to produce strong nonlinear

interaction, i.e., we can produce efficient third order nonlinear optical (Kerr) effects. The Kerr

effect is proportional to the intensity of the light beam, and for this reason the effect that is

possible to appreciate after a photon has passed through a Kerr medium, is a phase accumula-

tion proportional to the intensity of the field.

Solving the set of OBE, for Ωp ≪ Ωc, we can see in Fig.1.6 the nonlinear susceptibility. It is

evident that as soon as the system goes out of resonance from the two photon transition, the real

part grows up much more rapidly then the imaginary one. This reflects in a large increase of the

self-phase modulation with very small absorption. This situation is largely different from the

two level system where all resonant effects are affected by the linear absorption that determines

a complete lost of the pulse.

1.7 Amplitude Variables Method: Inclusion of loss mech-

anisms in the Schrödinger formalisms

In a realistic model of the atom-field interaction, together with the unitary evolution given by

the Hamiltonian, we are faced with various loss mechanisms. These loss mechanisms can be

seen as the results of the interaction of the quantum system with a system or environment that

possesses many more degrees of freedom.

In our case the system is the three level atom of Fig.1.7(a), in the so-called cascade system. The

ground level |1〉 is a stable or meta-stable state, so there is no radiative decay from |1〉 to other

states. A probe field, with frequency ωp, is applied to the atomic transition |1〉 → |2〉 with a

detuning δ1 from the resonance, while a coupling field, whose frequency is ωc, is applied to the

|1〉 → |2〉 transition with the detuning δ2. The Rabi frequencies are Ω1 for the probe field and
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Figure 1.6: Nonlinear susceptibility in a three level λ. A small perturbation from the two photon

absorption condition produces large nonlinear effects, and a large nonlinear phase accumulation

Ω2 for the coupling field. The Hamiltonian of the system

Hcascade =

3∑

i=1

~ωi +~

(
Ω1e

ıωpt|2〉〈1|+Ω⋆
1e

ıωpt|1〉〈2|
)

+~

(
Ω3e

ıωtt|3〉〈2|+Ω⋆
3e

ıωtt|2〉〈3|
)
. (1.45)

With respect to the following H0 we can pass to the IP

H0 = ~ωp|2〉〈2| + ~(ωp + ωt)|3〉〈3|, (1.46)

we arrive at the effective Hamiltonian in the time independent form

Hcascade
eff = ~δ1|2〉〈2|+~(δ1+δ2)|3〉〈3|+~

(
Ω1|2〉〈1|+Ω⋆

1|1〉〈2|
)

+~

(
Ω3|3〉〈2|+Ω⋆

3|2〉〈3|
)
, (1.47)

where the detunings and the energy level have been defined

~δ1 = E2 − ~ωp (1.48)

~δ3 = E3 − E2 − ~ωt. (1.49)

The loss terms can be included in the Schrödinger description by a phenomenological theory.

From the Schrödinger equation, and from the effective Hamiltonian of eq.(1.47), defining the

quantum state of the atomic system as

|ψ(t)〉 = c1(t)|1〉 + c2(t)|2〉 + c3(t)|3〉
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Figure 1.7: Three level schemes in two different configurations, the cascade (A), and the V (B).

Both of these configuration permit to have EIT but with limited efficiency compared to the Λ

scheme.

we obtain the the time evolution of the amplitudes ci for i = 1, 2, 3

ċ1(t) = −ıΩ⋆
1c2(t) (1.50)

ċ2(t) = −ıδ1c2(t) − ıΩ1c1(t) − ıΩ⋆
3c3(t) (1.51)

ċ3(t) = −ı(δ1 − δ3)c3(t) − ıΩ3c2(t) (1.52)

The noise terms can be added phenomenologically by adding terms that give an exponential

decay of each amplitude, so to get

ċ1(t) = ıΩ⋆
1c2(t) −

Γ1

2
c1(t) (1.53)

ċ2(t) = ıδ1c2(t) −
Γ2

2
c2(t) + ıΩ1c1(t) + ıΩ⋆

3c3(t) (1.54)

ċ3(t) = ı(δ1 + δ3)c3(t) −
Γ3

2
c3(t) + ıΩ3c2(t), (1.55)

where Γ1 has the to be seen as a dephasing process A.1, while the two terms Γ2,3 are spontaneous

decay rates from level |2〉 and from level |3〉 respectively.

This equation can be easily solved, at the steady state. However, in order to acquire a

real physical meaning, the equation of the AV approach has to be solved not finding the exact

solution of the system at the steady state (which would be Cj = 0 ∀j), but adjusting “by hand”

the normalization condition. Usually we assume that at the steady state the population will be

concentrated in one of the level involved in the dynamics. By imposing that almost the totality

of the atomic population is in one of the states |i〉 for i = 1, 2, 3, we can obtain an approximated

solution for the amplitude coefficients c1,2,3 at the steady state, while the relation

ρij = c⋆i cj , (1.56)
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gives the steady state values of the density matrix elements.

1.8 Cross-Phase Modulation

The generation of a phase accumulation on the quantum state of a field, proportional to the

intensity of a second field is named Cross Phase Modulation (XPM) and is realized by the

nonlinear Kerr interaction.

Let us assume that a couple of weak light pulses, i.e., ideally two single photon pulses, probe and

trigger, interact simultaneously with an atomic medium, composed by Na identical atoms in a

suitable configuration that for the moment we do not specify for the moment. If the interaction

between the two pulses is of Kerr type, the dynamics of the two pulses can be described by the

following Hamiltonian

Hkerr = ~χâ†pâpâ
†
t ât, (1.57)

where âp and ât are the annihilation operators of the probe and trigger field respectively.

The evolution of the field’s operators âp,t and â†p,t is then given by

âp,(t)(t) = âp,(t)(0)e−ıχâ†
t,(p)

ât,(p)tint , (1.58)

where tint represent the interaction time, χ the parameter containing the Kerr interaction. It is

evident that a modulation in the amplitude of the field produces phase variation at the output.

In the case of the XPM this phase accumulation is induced on the probe (trigger) by the intensity

of the trigger (probe) with the consequent production of a conditional dynamics.

1.8.1 Cross Phase Modulation with cascade system

Let us now consider the XPM for a more specific atomic configuration. We have an ensemble

of Na atoms in the cascade configuration interacting with two EM fields. The cascade scheme

permits to induce XPM. In the cascade scheme we obtain the modification of the nonlinear

interaction on the probe field (Ω1) by the presence of the trigger field (Ω3) on the transition

|2〉 → |3〉, and vice versa.

The atomic system starts in the ground level |1〉. Solving the system (1.53) at the steady state,

and developing in series of power of Ω3, which is assumed to be smaller than the detuning ad

the decay rates, we obtain the following expression for the ρ21 = c2c
⋆
1 coherence

χ(1) = − Ω1

d12
− Ω1|Ω3|2

d2
12d13

, (1.59)

where the “complex detunings” have been introduced d12 = δ1−ıΓ2/2, and d13 = δ1+δ3−ıΓ4/2.

From eq.(1.59) we obtain the following expression for the real part of the cross-Kerr nonlinear

effect

Re
{
χ(3)

}
= −Na

V

|µ12|2|µ23|2
~3ε0

1

δ21δ13
, (1.60)

If we want to increase the XPM we have to reduce the single photon detuning δ1, putting the
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probe field close to resonance. But when the XPM increases, the linear absorption increases

even faster, because

Im
{
χ(1)

}
= −Na

V

|µ12|2
~ε0

Γ2/2

δ21
. (1.61)

This relation shows the intrinsic limitation of the cascade scheme for the generation of a large

XPM. If we want to increase the XPM effect we have to decrease the detuning, increasing at

the same time the absorption.

1.9 Cross Nonlinear Interaction in EIT Medium

Recently Schmidt and Imamoğlu [13] have showed how to use an EIT medium to modulate the

phase of a weak field proportional to the intensity of another weak field. Schmidt and Imamoğlu

based their analysis on a four-level atomic system in the N configuration (see Fig.1.9).

In this scheme we put at resonance a standard three level atomic system in the Λ configuration,

Probe
   Ωp

| 2 〉

Coupling

| 1 〉

| 3 〉

Ωc

| 4〉
δ 3

trigger
   Ωt

Figure 1.8: N multilevel scheme for giant cross Kerr effect between weak pulse proposed by

Schmidt and Imamoğlu [13]. The atomic system is prepared on level |1〉.The presence of the

trigger field Ω3 coupled to the level |4〉 induce an AC-Stark shift of level |3〉. This put out of

resonance the first lambda composed by level |1〉, |2〉, |3〉 shifting the resonance condition of an

amount proportional to the intensity of the trigger field.

and complete the scheme by adding a third weak field Ω3 coupled to a fourth atomic level |4〉.
This field, that we shall call trigger, is put out of resonance with the |3〉 → |4〉 transition by an

amount δ3, . The trigger field induces an ac-Stark shift on level |3〉 proportional to |Ω3|2/δ3,
perturbing in this way the EIT resonance and generating a non-linear interaction proportional

to the intensity of the trigger field. If compared to previous XPM obtained from the cascade

three level scheme of Fig.1.7, this EIT based set-up has a cross Kerr interaction which can be

as much as 6-7 order of magnitude larger for the same field and density. This is because due to

EIT, the phase accumulation is in practice loss-free, so that we can approach resonance without

inducing absorption.
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This result has given a great impulse in the search for the optimal conditions for an efficient

XPM even at very low-light level and ideally at the single photon level.

On the other hand, we have to stress that limitations occur for the N scheme.

In fact, the weak probe field is subject to EIT, and the Λ structure and the atomic population

on level |1〉 permits to have a strong reduction of its group velocity. This does not take place

for the trigger pulse, which can be considered to be involved in a V atomic configuration and

it is largely detuned. Hence the trigger field does not experience a significant slowing down as

the probe does, resulting in an short effective interaction time during which the weak pulse can

accumulate the phase. It is evident that in order to obtain a joint and large XPM between the

probe and trigger field, their group velocity has to be comparable, i.e. of the same order. If this

condition is not fulfilled, instead of a XPM that increase linearly with the interaction length,

we will have a saturation of the accumulated phase.

The problem of group velocity matching was first solved by Lukin and Imamoglu [77]. They

propose to use a medium composed of an atomic cloud of Na atoms appropriately distributed

between two different isotopes of Rb, Rb87 and Rb85. The first kind of atoms will induce

the XPM due to the four level N scheme of Schmidt - Imamoǧlu, while the Rb85 atoms, that

experience a standard three-level Λ interaction between trigger and Ωt and coupling Ωc fields,

have the role of reducing the trigger group velocity. In this way the interaction time is increased.

With such a scheme, ideally it should be possible to obtain very large XPM between few photon

with a simultaneous and comparable reduction of the group velocity for both the probe and the

trigger fields. In fact the density of the two isotopes could be carefully balanced do to have

perfect group velocity matchig.

Recently Kurizki et al. [73] have proposed a scheme based on only one atomic species involving six

atomic levels, while others authors [74,75] have studied the possibility of resonant enhancement

of high order nonlinearity in chains of lambda schemes.

1.10 Quantum Information with EIT: Quantum Gates and

Quantum Memory

EIT has attracted much attention for its potential application to high sensitivity magnetome-

ters [19], or for four wave mixing and sum frequency generation [20–23], as well as for the design

of single photon detectors and single photon devices as single photons guns [36] and quantum

memories [26–30]. The XPM properties of EIT have been used to verify experimentally proto-

cols for Quantum Non Demolition Measurement (QND) [16], and finally, all optical Quantum

Phase Gate (QPG) for single photon flying qubits. In this thesis we will concentrate on the po-

tential application of EIT in the implementation of devices for the Quantum Information where

information is encoded in the quantum states of photons.

Several works [41–45], have shown how, on hypothetical Quantum computers, i.e., a com-

puting device able to take advantage of some properties of quantum system, have the ability to

solve problem exponentially faster than a classical computer. Moreover it has been shown that

Quantum Mechanical properties could be usefully adopted to perform Quantum Communica-

tions that permits novel and much more secure way s of transferring information [46].

Quantum Information developed rapidly during last years. The growing in the interest in both

theoretical and experimental aspects of this field, rely on the need of finding novel physical ar-

chitecture for the implementation of automatized calculations [24]. Moreover the need for secure
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communication against eavesdroppers attacks has attracted much interest as the increase of the

request for secure communications.

In Quantum Information science the minimal amount of information that can be sent or

processed is the qubit (quantum bit),i.e., the state living in a Hilbert space of dimension two,

which can be written as,

|ψ〉 = α|1〉 + β|0〉, (1.62)

where |α|2 + |β|2 = 1, and where with the logical basis |1〉, |0〉 we have indicated two orthogonal

states of a quantum system, like for example the polarization states of a photon, or the state of

an electron around the nucleus, or any other observable property of a quantum system.

The main properties that make quantum systems so attractive for quantum information, is that

the qubits can occupy generic linear superpositions and not only the two states |0〉 and |1〉 as its

classical counterpart. The fact that a quantum state can be in an arbitrary superposition of two

or more possible states, is at the basis of the massive quantum parallelism [41,42,44] achievable

by quantum computation. Moreover it has been shown how a number of novel possibilities in

quantum communication are possible taking advantage of the entaglement properties of inter-

acting quantum particles. Entanglement based technologies are ,e.g., Quantum Teleportation,

secure Quantum Key Distribution (QKD), Quantum Cloning.

In this domain EIT has attracted much attention for its ability to permit the propagation of

weak light pulses through dense media, accompanied by strong slow down group velocity and

giant enhancement of Kerr nonlinearties. The group velocity reduction have been studied for

the possibility of store single photon to build quantum memories, while the giant nonlinearities

achievable in EIT media are interesting for the tailoring of devices able to perform conditional

photon-photon operations on single flying qubit states.

A medium able to realize a significant cross-phase modulation is the key ingredient for the

implementation of a quantum gate between two optical qubits. In fact such a gate implies the

existence of conditional quantum dynamics, which is, in fact, realized in the cross-Kerr effect

where an optical field acquires a phase shift conditioned to the state of another optical field.

Using cross phase modulation one can implement a QPG, which is a device able to process, in

a deterministic, and ideally reversible way, the quantum state of a qubit.

The Conditional phase shift Several authors [79,80] have showed that almost any quantum

logic gate, involving two qubits, is universal, and how these quantum gates could be implemented.

The statement of the universality of a quantum gate is important because this conclusion permits

to wire together copies of the same gate to compose more complex operation. It has pointed out

that the conditional dynamics between qubit, could be realized whenever a nonlinear interaction

between qubit, is implemented. Nonlinear XPM can then be adopted for such a scope, in

particular for the implementation of the Quantum Phase Gate (QPG) universal gate.

Let us consider a two-qubit state at the input of a black box that performs a certain operation

on the two input qubits. The operation that a QPG (see Fig.1.9) has to performs is a two-qubit

unitary operation that induces a phase shift on the state of a qubit conditioned to the state of

another qubit. In general each input state on the basis BL = {|00〉, |10〉, |01〉, |11〉} can acquire

a phase depending on its state according to

|i〉1|j〉2 → exp {iφij} |i〉1|j〉2 i, j = 0, 1.
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Figure 1.9: Quantum phase gate for a two qubit system. At the input we have two qubits the

target qubit (|ψ〉), and the control qubit (α|0〉 + β|1〉). At the output, the state of the target

qubit is modified depending on the state of the controller. In a QPG, the phase of |ψ〉 is changed

by an amount φ conditioned to the quantum state of the control qubit (|0〉, or |1〉).

For example, if we adopt a pair of photons to encode information, the orthogonal quantum states

could correspond to two orthogonal polarizations. In this case one can implement a universal

QPG by means of a nontrivial cross-phase modulation effect between probe and trigger fields

that arises for only one of the four possible input configurations of their polarization.

In matrix representation in the logical basis BL, the QPG is defined as

UQPG =




eiφ00 0 0 0

0 eiφ10 0 0

0 0 eiφ01 0

0 0 0 eiφ11


 . (1.63)

The Conditional Phase Shift φ is defined as

φ = φ11 + φ00 − φ10 − φ01, (1.64)

It represents the net effect of a nonlinear interaction that takes place between two qubits. When

this quantity is non zero, φ 6= 0, the quantum phase gate is an entangling gate, i.e. an input

state of two qubits, initially in a factorized state, will evolve to an entangled one after the action

of the QPG. Moreover the QPG is equivalent, up to single qubit unitary operations, to a CNOT



1.10 Quantum Information with EIT: Quantum Gates and Quantum Memory 23

gate when φ = π [24, 79, 97]

UCNOT =




1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0


 . (1.65)

Travelling optical pulses are the natural candidates for the realization of quantum commu-

nication schemes and many experimental demonstrations of quantum key distribution [47, 48]

and quantum teleportation schemes [49–53] have been already performed. Optical systems have

been also proposed for the implementation of quantum computing, even though the absence

of significant photon-photon interactions is an obstacle for the realization of efficient two-qubit

quantum gates, which are needed for implementing universal quantum computation [24].Various

schemes have been proposed to circumvent this problem. Knill and co-workers have proposed

to adopt linear optics for quantum computation. Recently liner optics quantum computation

has demonstrated in the work of [55, 56]. Other schemes, like ours, explicitly exploit optical

nonlinearities for quantum gate implementations.

The strong nonlinear properties of the EIT media have all the characteristic to permits

the implementation of strong nonlinear photon-photon interaction. In fact they increase the

interaction time, they induce Giant Kerr interaction, and permits perfect transparency.

The key point is to find an atom-field interaction scheme that produce large nonlinear interaction

in a conditional way at single photon level and for a sufficiently long interaction time.

The first experimental realization of a conditional dynamics between photons, and the first

analysis of the truth table of a QPG, has been realized by the Kimble’s group [97]. The Caltech’s

group found a conditional phase shift φ ≃ 16◦ between two frequency-distinct high-Q cavity

modes, due to the effective cross modulation mediated by a beam of Cs atoms. However, the

complete truth table of the gate has not been determined in this experiment. A conditional

phase shift φ ≃ 8◦ has been instead obtained between weak coherent pulses, using a second-

order nonlinear crystal [58]. However, this experiment did not demonstrate a standard two-qubit

gate. In such a gate in fact, φ depends on the input states, and the gate can be defined only for

a restricted class of inputs (weak coherent states). In practice this is not a bona fide QPG. A π

conditional phase shift has been realized in the domain of CQED [67], where a quantum phase

gate has been realized adopting a mixed atom-cavity field two-qubit system. Here we will try

to do something different being our purpose to study a quantum phase gate for flying optical

qubits.

In the next chapters we will show how to design several schemes able to produce strong

nonlinear interaction between photons for long interaction time, by taking advantage of EIT

properties.
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Chapter 2

The Tripod Scheme for

Giant-Kerr Interaction

In this chapter we will analyze the nonlinear optical response of a specific four-level
atomic system driven into a Tripod configuration for XPM. We will discuss the atomic
structure and the population distribution to fulfill the need of large cross-Kerr nonlin-
earities and group velocity reduction. The Cross-Kerr interaction is calculated in the
semiclassical and in quantum regime adopting the Lukin and Imamoǧlu few photon
approach [77]. The experimental feasibility of such a gate is here examined in detail.

2.1 Non linear interaction in a Tripod System

In this chapter we propose an alternative scheme for phase gating that can greatly reduce, when

compared with other schemes, the experimental effort for its realizability. The mechanism relies

on an enhanced cross-phase modulation effect which occurs in a relatively simple and robust

four atomic level tripod configuration. Our scheme only requires good control over frequencies

and intensities of the laser beams. We consider a QPG for qubits in which binary information is

encoded in the polarization of an optical field. The four level tripod configuration that we adopt

here has been extensively studied in the past few years. For example, Unanyan et al. [60] used

a tripod configuration to achieve stimulated Raman adiabatic passage (STIRAP) for creating

an arbitrary coherent superposition of two atomic states in a controlled way. Paspalakis and

et al. [61–63], in particular, developed the interesting possibility of using a tripod scheme for

efficient nonlinear frequency generation. Moreover, it was shown that the group velocity of

a probe pulse may be significantly reduced, as in conventional Λ system [61]. The work of

Malakyan [64] was the first to hint that the tripod scheme may be used to entangle a pair of

very weak optical fields in an atomic sample. This work has been recently extended to the case

of quantum probe and trigger fields in [65], where an adiabatic treatment similar to that of [77]

is adopted.



26 The Tripod Scheme for Giant-Kerr Interaction

The purpose of this chapter is thus twofold. First, we adopt a standard density matrix

approach, including spontaneous emission and dephasings, to analyse the nonlinear optical re-

sponse of a four-level tripod configuration. In particular, we examine the conditions under which

large cross-Kerr nonlinearities may occur in a cold atomic sample. Second, we study the possibil-

ity of employing such an enhanced cross-phase modulation to devise a polarization phase-gating

mechanism which turns out to be rather robust and apt to actual experimental investigations.

The chapter is organized as follows. In Sec. 2.2, dressed states of the atomic tripod are

analyzed and their significance emphasized. In Sec. 2.3, we solve the set of Bloch equations and

derive expressions for linear and nonlinear susceptibilities. In Sec. 2.4 group velocity matching

is discussed in detail, while Sec. 2.5 discusses the operation of a polarization phase gate.

2.2 Dressed States of the Tripod System

The energy level scheme of a tripod system is given in Fig. 2.1. Transitions |1〉 → |0〉 and

|3〉 → |0〉 are driven by a probe and trigger fields of respective Rabi frequencies ΩP and ΩT ,

while the transition |2〉 → |0〉 is driven by a control (or pump) field of Rabi frequency Ω. The

system Hamiltonian is

H = ~

3∑

i=0

ωi|i〉〈i| + ~
(
Ω⋆

P e
ıωpt|1〉〈0| + ΩP e

−ıωpt|0〉〈1|
)

+ ~
(
Ω∗eıωt|2〉〈0| + Ωeıωt|0〉〈2|

)

+~
(
Ω∗

T e
ıωtt|3〉〈0| + ΩT e

−ıωtt|0〉〈3|
)
. (2.1)

Defining δj = ω0−ωj −ω(L)
j the laser (frequency ω

(L)
j ) detunings from the respective transitions

|j〉 ↔ |0〉, and adopting the IP with respect to the Hamiltonian

H0 = ~ω0|0〉〈0| + ~ω2|2〉〈2| + ~ω3|3〉〈3|, (2.2)

and in the dipole and rotating wave approximations, we have the following time-independent

Hamiltonian

Hint = ~δ1|0〉〈0| + ~(δ1 − δ2)|2〉〈2| + ~(δ1 − δ3)|3〉〈3| + ~ (Ω∗
P |1〉〈0| + ΩP |0〉〈1|) +

+~ (Ω∗|2〉〈0| + Ω|0〉〈2|) + ~ (Ω∗
T |3〉〈0| + ΩT |0〉〈3|) , (2.3)

Spontaneous emission and dephasing are included below [see Eqs. 2.6] as done in the previous

chapter, by means of the Master Equation and the optical Bloch equations.

There are four eigenstates of Hamiltonian (2.3) [60]. When the three detunings are equal,

δi = δ, i = 1, 2, 3, two of them are degenerate with energy equal to δ and assume the following

form:

|e1〉 =
ΩT |1〉 − ΩP |3〉√

Ω2
P + Ω2

T

, (2.4a)

|e2〉 =
ΩT ΩP |1〉 + ΩΩP |3〉 −

(
Ω2

P + Ω2
T

)
|2〉√

(Ω2
P + Ω2

T ) (Ω2
P + Ω2 + Ω2

T )
. (2.4b)

Since these states do not contain any contribution of the excited states |0〉, they belong to the

class of dark states. The other two eigenstates have energies δ ±
√

Ω2
P + Ω2 + Ω2

T and are

|e±〉 =
ΩP |1〉 ± |0〉 + ΩT |3〉 + Ω|2〉√

Ω2
P + Ω2 + Ω2

T

. (2.5)
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Figure 2.1: Energy level scheme for a tripod. Probe and trigger fields have Rabi frequencies ΩP

and ΩT and polarizations σ+ and σ−. The pump Rabi frequency is Ω while δj = ω0 −ωj −ω
(L)
j

denote the laser (frequency ω
(L)
j ) detunings from the respective transitions |j〉 ↔ |0〉.

In the case of different detunings, the expression of the eigenstates becomes more complicated,

and the degeneracy of the two dark states is removed because their energies shift from δ to δ2
and δ3 respectively.

To achieve a giant Cross-Kerr interaction with the interaction scheme of Fig. 2.1 by EIT, we

have to verify some conditions:

1. probe and trigger must be tuned to dark states,

2. the transparency frequency window for each of these dark states has to be narrow and

with a steep dispersion to enable significant group velocity reduction,

3. there must be a degree of symmetry between the two transparency windows so that trigger

and probe group velocities can be made to be equal [59, 66, 77].

These conditions can be satisfied by taking all three detunings nearly equal, in this way the

two dark states are degenerate, and they will have an identical transparency window for both

fields. However, as we seen in previous chapter, the three detunings cannot be exactly equal.

In fact in such conditions the Tripod scheme is linear, i.e., the dispersive part of the nonlinear

susceptibility vanishes [see Eqs. (2.11)]. Hence, the exact resonance condition will have to be

violated. We will show that if the frequency mismatch is small (within the transparency window

width), then strong, cross-Kerr modulation with group velocity matching can still be achieved

and phase gate operation realized.

2.3 Bloch Equations and Susceptibilities

We will write down the OBE for the tripod system. From the eqns.(2.3,A.21) and eq.(A.22), we

can calculate the Bloch equations for the density matrix elements (including atomic spontaneous
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emission and dephasing) and obtain

iσ̇00 = −i(γ11 + γ22 + γ33)σ00 + Ω∗
Pσ10 − ΩPσ01

+Ω∗σ20 − Ωσ02 + Ω∗
Tσ30 − ΩTσ03, (2.6a)

iσ̇11 = iγ11σ00 + iγ12σ22 + iγ13σ33 + ΩPσ01 − Ω∗
Pσ10, (2.6b)

iσ̇22 = iγ22σ00 − iγ12σ22 + iγ23σ33 + Ωσ02 − Ω∗σ20, (2.6c)

iσ̇33 = iγ33σ00 − i(γ13 + γ23)σ33 + ΩTσ03 − Ω∗
Tσ30, (2.6d)

iσ̇10 = −d10σ10 + ΩPσ00 − ΩPσ11 − Ωσ12 − ΩTσ13, (2.6e)

iσ̇20 = −d20σ20 + Ωσ00 − Ωσ22 − ΩPσ21 − ΩTσ23, (2.6f)

iσ̇30 = −d30σ30 + ΩTσ00 − ΩPσ33 − ΩPσ31 − Ωσ32, (2.6g)

iσ̇12 = −d12σ12 + ΩPσ02 − Ω∗σ10, (2.6h)

iσ̇13 = −d13σ13 + ΩPσ03 − Ω∗
Tσ10, (2.6i)

iσ̇23 = −d23σ23 + Ωσ03 − Ω∗
Tσ20, (2.6j)

where decay rates γij describe decay of populations and coherences, and we have defined complex

“effective” global detunings as dj0 = δj + iγj0 and dij = δj − δi − iγij , with i, j = 1, 2, 3.

We consider the steady state solutions of the Bloch equations. As we did in the previous

chapter for the simpler two and three level system, we put to zero the time derivatives, and

assume that the final population distribution will be symmetric with respect to the 1 ↔ 3

exchange, i.e., σ11 ≈ σ33 ≈ 1/2, with the population of the other two levels vanishing. This

condition is fulfilled provided the intensity of the pump field is stronger than the intensity of

both probe and trigger |Ω|2 ≫ |ΩP,T |2, and the detunings and decay rates are of the same

order of magnitude. This allows to decouple the equations for the populations from those of the

coherences. This simplifies the problem, and permits to obtain the steady state solution for the

latter, yielding the probe and trigger susceptibilities according to

χP = − lim
t→∞

Na|µP|2
~ǫ0

× σ10(t)

ΩP
, (2.7a)

χT = − lim
t→∞

Na|µT|2
~ǫ0

× σ30(t)

ΩT
, (2.7b)

where Na is the atomic density and µP,T the electric dipole matrix elements for probe and
trigger transitions respectively. Rabi frequencies are defined in terms of electric field amplitudes
EP,T as ΩP,T = − (µP,T · εP,T)EP,T /~, with εP,T being the polarization unit vector of probe
and trigger beams. The resulting general expression for the steady-state (ss) probe and trigger
susceptibilities are

(σ10)ss

ΩP

=

 

1 +
1

4

`

d12d23/d2

13

´

|ΩP |2|ΩT |
2

(d10d12 − |Ω|2) (d∗

30
d23 − |Ω|2)

!

−1


−
1

2

d12d13

d10d12d13 − d13|Ω|2 − d12|ΩT |2

−
1

2

d12d13d23|ΩT |
2

d∗

30
d13d23 − d13|Ω|2 − d23|ΩP |2

ff

, (2.8a)

(σ30)ss

ΩT

=

 

1 +
1

4

`

d∗

23d
∗

12/d∗2

13

´

|ΩP |2|ΩT |
2

(d30d∗

23
− |Ω|2) (d∗

10
d∗

12
− |Ω|2)

!

−1


−
1

2

d∗

23d
∗

13

d30d∗

23
d∗

13
− d∗

13
|Ω|2 − d∗

23
|ΩP |2

−
1

2

d∗

23d
∗

13d
∗

12|ΩP |2

d∗

10
d∗

13
d∗

12
− d∗

13
|Ω|2 − d∗

12
|ΩT |2

ff

. (2.8b)
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We are interested in the XPM between probe and trigger fields. Therefore, we keep the two

lowest order contributions: linear and third-order nonlinear susceptibilities, neglecting the higher

orders in the expansion. This yields

χP = χ
(1)
P + χ

(3)
P |ET |2, (2.9a)

χT = χ
(1)
T + χ

(3)
T |EP |2 (2.9b)

that is, each susceptibility has a linear and a cross–Kerr nonlinear term, while self-phase modu-

lation terms are of higher order. Both susceptibilities have a linear contribution because of the

nonzero stationary population in levels 1 and 3. Linear susceptibilities are given by

χ
(1)
P =

Na|µP|2
~ǫ0

× 1

2

d12

d10d12 − |Ω|2 , (2.10a)

χ
(1)
T =

Na|µT|2
~ǫ0

× 1

2

d∗23
d30d∗23 − |Ω|2 , (2.10b)

where the factor 1/2 in each equation comes from the symmetric steady state population distri-

bution. The cross-Kerr susceptibilities are instead given by

χ
(3)
P = Na

|µP|2|µT|2
~3ǫ0

× 1

2

d12/d13

d10d12 − |Ω|2
(

d12

d10d12 − |Ω|2 +
d23

d∗30d23 − |Ω|2
)
, (2.11a)

χ
(3)
T = Na

|µT|2|µP|2
~3ǫ0

× 1

2

d∗23/d
∗
13

d30d∗23 − |Ω|2
(

d∗12
d∗10d

∗
12 − |Ω|2 +

d∗23
d30d∗23 − |Ω|2

)
. (2.11b)

Note that Eqs. (2.10) and (2.11) are completely symmetric with respect to the 1 ↔ 3 ex-

change. This exchange symmetry is ensured by the complex conjugate terms in (2.10b) and it is

expected because of the symmetry of the system and of the population distribution. Note also

that in the absence of dephasing, the nonlinear susceptibility has a singularity at δ1 = δ3. The

necessary regularization is provided by the nonzero dephasing term iγ13.

Paspalakis and Knight [61] have recently analyzed the properties of the tripod system in a

somewhat different setup. It is nevertheless instructive to compare the results of this Section

with theirs. In the scheme of [61], population is assumed to be initially in the ground state |1〉.
Provided that |ΩP |2 ≪ |Ω|2, |ΩT |2 population remains in |1〉 in the steady state. Paspalakis and

Knight calculate the expression for probe susceptibility to the first order in ΩP . It is easy to

see that their expression is consistent (up to a factor 1/2 determined by the different population

distribution) to our result in Eq. (2.8a): considering only terms to the first order in ΩP leaves

only the first term in the curly brackets of (2.8a). Additional terms in Eqs. (2.8) arise because

we are looking for a cross-Kerr nonlinearity in both probe and trigger, so that all the terms of

third order have to be included.
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2.4 Group Velocity Matching

The linear and nonlinear susceptibilities of Eqs. (2.10) and (2.11) have all the properties required

for a large cross-phase modulation. In fact, our tripod system can be seen as formed by two

adjacent Λ systems, one involving the probe field and one involving the trigger field, sharing the

same control field. Therefore both fields exhibit EIT, which here manifests itself through the

presence of two generally distinct transparency windows, corresponding to the two dark states

of Eq. (2.4). Perfect simultaneous EIT for both fields takes place when the two transparency

windows coincide, i.e., when the two dark states are degenerate, which is achieved when the

three detunings δi are all equal. In this case all physical effects related to standard EIT are

present and in particular the steep dispersion responsible for the reduction of the group velocity

which is at the basis of the giant cross-Kerr nonlinearity (see Fig. 2.2). The condition of equal

detunings (exact double EIT-resonance condition) is important also for another reason. In fact,

together with the symmetry of Eqs. (2.10) and (2.11) with respect to the 1 ↔ 3 exchange, it also

guarantees identical dispersive properties for probe and trigger and therefore the same group

velocity. As first underlined by Lukin and Imamoğlu [77], group velocity matching is another

fundamental condition for achieving a large nonlinear mutual phase shift because only in this

way the two optical pulses interact in a transparent nonlinear medium for a sufficiently long

time.

The group velocity of a light pulse is given in general by eq.(1.42), where c is the speed of

light in vacuum and ng, is given by equation (1.43)

ng =
1

2
Re[χ] +

ω0

2

(
∂Re[χ]

∂ω

)

ω0

is the group index, ω0 being the laser frequency. In the tripod configuration the group index

of previous equation and of eq. (1.43) is essentially determined by the linear susceptibility χ(1),

because contributions from the nonlinear terms are orders of magnitude smaller and can be

neglected. Using Eqs. (2.10), it is possible to get a simple expression for the two group velocities

in the case of equal detunings. This condition corresponds to the center of the transparency

window for each field, where Re[χ(1)] vanishes, and the group velocity is reduced due to a large

dispersion gradient. One has

(vg)P ≈ 4~cǫ0
ωPNa|µP|2

(
|Ω|2 + |ΩT |2

)
, (2.12a)

(vg)T ≈ 4~cǫ0
ωTNa|µT|2

(
|ΩP |2 + |Ω|2

)
, (2.12b)

so that, as expected from the 1 ↔ 3 symmetry, group velocity matching is achieved for |ΩP | =

|ΩT |.
In the previous expression for the group velocity the nonlinear contribution are different

from zero. The presence of the cross-Kerr for both the weak fields, gives a group velocity that

depends upon the non-linear interaction. This fact can give bad propagation dynamics of the

light pulse. The presence of nonlinear dynamics determines the splitting of the original pulse in

several components, each with a different amplitude and propagating with its own group velocity.

The consequent destruction of the group velocity matching condition is straightforward. Our

tripod-scheme set-up is not affected by such a problem, because choosing probe and trigger field

much weaker than the coupling field (ΩP,T ≪ Ω). The group index is dominated by the coupling

field and there is no appreciable nonlinear effect on the propagation dynamics.
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Figure 2.2: Plots (a) represent absorption and dispersion for probe and trigger, plotted versus

their respective frequencies (in arbitrary units). Parameters are: ΩP = ΩT = 0.1γ, Ω = γ,

δ2 = 0.1γ. For probe plot δ3 = 0.1γ, and for trigger plot δ1 = 0.1γ. Plots (b) shows absorption

and dispersion for probe and trigger, plotted versus their respective frequencies (in arbitrary

units), for the set of parameters that permits to have the symmetric group velocity slow down

and the symmetric cross kerr interaction on the two weak fields (see eq.(A.14)). Parameters are:

ΩP = ΩT = γ, Ω = 4.5γ, δ2 = 10γ. For probe plot δ3 = 10.02γ, and for trigger plot δ1 = 10.01γ.

Unfortunately, it is possible to check from Eqs. (2.11) that when δi = δ, ∀i exactly, the system

becomes linear, i.e., the real part of the nonlinear susceptibilities vanish and there is no cross-

phase modulation. This means that we have to “disturb” the exact EIT resonance conditions, by

taking slightly different detunings. This is a general conclusion, valid for any atomic level scheme

resembling multiple Λ systems [59, 74, 75]. If the double EIT-resonance condition is disturbed

by a small amount, one remains within the common transparency window and the absorption

is still negligible. Moreover, the two group velocities can be matched also in the non-resonant

case. In fact, from the symmetry of Eqs. (2.10), one has that the gradients - and hence the

group velocities - can be kept symmetric and all the conclusions for the exact resonance remain

valid in the vicinity of resonance as well.
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2.5 Phase Gate Operation in the Tripod System

Experimentally during last years there have been a lot of work on the EIT realization on Rb

atoms. The typically adopted transition lines are the D1 and D2. In the case of the tripod a

possible experimental configuration employing the giant Kerr nonlinear phase shift achievable

in the tripod scheme discussed above is provided by a 87Rb cell in a magnetic field, in which

states are in the D1 line, and more precisely |1〉, |2〉 and |3〉 correspond to the ground state

Zeeman sublevels |5S1/2, F = 1,m = {−1, 0, 1}〉, and state |0〉 corresponds to the excited state

|5P3/2, F = 0〉. One realizes the tripod scheme of Fig. 1 (and therefore a significant nonlinear

phase shift) only when the probe has σ+ polarization and the trigger has σ− polarization. When

either the probe or the trigger polarizations (or both) are changed, the phase shifts acquired

by the two pulses do not involve the nonlinear susceptibilities and are different, so that the

resulting conditional phase shift is nonzero. In fact, when they have the “wrong” polarization

(probe σ− polarized or trigger σ+ polarized) there is no sufficiently close level which the atoms

can be driven to and the fields acquire the trivial vacuum phase shift φj
0 = kj l, j = P, T , where

l in the length of the gas cell. Instead, when only one of them has the right polarization, it

acquires a linear phase shift φj
lin, j = P, T , where

φj
lin = kj l

(
1 + 2πχ

(1)
j

)
. (2.13)

Denoting with φP,T
nlin the corresponding probe and trigger nonlinear phase shift when the tripod

configuration is realized, we can write the following truth table for the polarization QPG

|σ−〉P |σ−〉T → e−i(φP
0 +φT

lin)|σ−〉P |σ−〉T , (2.14a)

|σ−〉P |σ+〉T → e−i(φP
0 +φT

0 )|σ−〉P |σ+〉T , (2.14b)

|σ+〉P |σ+〉T → e−i(φP
lin+φT

0 )|σ+〉P |σ+〉T , (2.14c)

|σ+〉P |σ−〉T → e−i(φP
++φT

−)|σ+〉P |σ−〉T , (2.14d)

with the conditional phase shift being

φ = φP
+ + φT

− − φP
lin − φT

lin, (2.15)

with φP
+ = φP

lin + φP
nlin and φT

− = φT
lin + φT

nlin.

For a Gaussian trigger pulse of time duration τT , whose peak Rabi frequency is ΩT , moving

with group velocity vT
g through the atomic sample, the nonlinear probe phase shift can be

written as

φP
nlin = kP l

π3/2
~

2|ΩT |2
4|µT|2

erf[ζP]

ζP
Re[χ

(3)
P ], (2.16a)

where ζP = (1 − vP
g /v

T
g )

√
2l/vP

g τT . The trigger phase shift is simply obtained by changing

P ↔ T in the equation above

φT
nlin = kT l

π3/2
~

2|ΩP |2
4|µP|2

erf[ζT]

ζT
Re[χ

(3)
T ], (2.16b)

with the same appropriate changes in the definition of ζT .
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In the 87Rb level configuration chosen above, the decay rates are equal γj0 = γ, and we

choose equal dephasing rates γij = γd for simplicity. For ΩP ≈ ΩT = γ, Ω = 4.5γ, and

detunings δ1 = 10.01γ, δ2 = 10γ, δ3 = 10.02γ, by assuming a low dephasing rate γd = 10−2γ,

we obtain a conditional phase shift of π radians, in a gas cell of length l = 0.7 cm, density

Na = 3 × 1012 cm−3. With these parameters, group velocities are virtually the same, giving

erf[ζP]/ζP = erf[ζT]/ζT ≈ 2/
√
π. Probe and trigger susceptibilities corresponding to these

parameter values are shown in Fig. 2.2(b). Note that the absorption vanishes over a wide range

of frequencies due to the large size of atomic detunings. The values of the Rabi frequencies

correspond to classical probe and trigger fields. The above parameter choice shows that a

demonstration of a deterministic polarization QPG can be made using present technologies.

As discussed above, we had to move from the exact double EIT-resonance condition in order

to have a nonzero nonlinearity and in such a condition the linear susceptibilities do not vanish.

Actually, the linear contribution is predominant. In fact, the ratios of nonlinear to linear phase

shifts are given by

φnlin
P

φlin
P

=
|ΩT |2

4
Re

[
1

d13

(
d12

d10d12 − |Ω|2 +
d23

d∗30d23 − |Ω|2
)]

, (2.17a)

φnlin
T

φlin
T

=
|ΩP |2

4
Re

[
1

d∗13

(
d12

d∗10d
∗
12 − |Ω|2 +

d∗23
d∗30d

∗
23 − |Ω|2

)]
, (2.17b)

and for the above choice of parameters, they are of order ∼ 1/64. This means that under the

optimal conditions corresponding to a π conditional phase shift, the total phase shift in each

input–output transformation is very large, of the order of 65π. The experimental demonstration

of the QPG requires the measurement of the conditional phase shift, i.e., of a phase difference

and therefore it is important to keep the errors in the phase measurements small. These errors

are mainly due to the fluctuations of the laser intensities and of the detunings. In particular,

intensity fluctuations of 1% yield an error of about 4% in the phase measurement. It is more

important to minimize the effects of relative detuning fluctuations but this can be achieved by

taking all lasers tightly phase locked to each other.

Another important limitation is that due to dephasing of the ground state coherences, whose

main effect is to increase absorption. Absorption is a crucial issue in the case of single photon

polarization qubits. In fact a non negligible absorption implies a nonzero gate failure proba-

bility (one or both qubits missing at the output), making therefore the present QPG, which is

deterministic in principle, a probabilistic gate. In our scheme, it can be checked that, if the

dephasings do not become very large, i.e., γd = 2π × 10 kHz, or γd ∼ 10−2γ, this increase of

absorption is negligible, as shown in Fig. 2.3.

It should be mentioned that the conclusion above holds for strong control field strengths of

order Ω ∼ γ. If a weaker control is used, the dephasing must also be lower in order to keep

absorption negligible.

2.6 Quantized probe and trigger fields

We now consider the case when probe and trigger fields are quantized [72]. Pump field is still

considered much stronger than the probe and the trigger and therefore its quantum fluctuations

are neglected and is thus kept classical. We adopt the formalism developed by Lukin and

Imamoğlu [77] and Fleischhauer and Lukin [68] and apply it to the atoms in tripod configuration.

A similar approach has been followed in the recent work of Petrosyan and Malakyan [65].



34 The Tripod Scheme for Giant-Kerr Interaction

0 2 4 6 8 10
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

γ
d
/γ

A
bs

or
pt

io
n 

Im
[χ

]

Figure 2.3: Probe absorption (scaled) at the center of probe transparency window, plotted

against the dephasing rate, for ΩP = ΩT = γ, Ω = 4.5γ, δj = 0.

The interaction Hamiltonian is

Hint = −
∫
dz

L
N [~δ1σ00 + ~(δ1 − δ2)σ22 + ~(δ1 − δ3)σ33]

+~gP (ÊPσ01 + Ê†
Pσ10) + ~gT

(
ÊTσ03 + Ê†

Tσ30

)
+ ~Ω(σ02 + σ20)], (2.18)

where L is the interaction length along the propagation axis z, gP,T denotes coupling strengths

of probe and trigger fields ÊP,T to the respective atomic transitions, and σij = 1
N

∑
k σ

(k)
ij are

the collective operators for the atomic populations and transitions for N atoms in a medium.

The equations for probe and trigger pulses propagating along z−axis through the tripod-

media are given by

(
∂

∂t
+ c

∂

∂z

)
ÊP (z, t) = −igPNσ10, (2.19a)

(
∂

∂t
+ c

∂

∂z

)
ÊT (z, t) = −igTNσ30, (2.19b)
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while the equations for the atomic coherences operators

σ̇10 = −id10σ10 − igP ÊP (σ11 − σ00) − igT ÊTσ13 − iΩσ12, (2.19c)

σ̇20 = −id20σ20 − igP ÊPσ21 − igT ÊTσ23 − iΩ(σ22 − σ00), (2.19d)

σ̇30 = −id30σ30 − igP ÊPσ31 − igT ÊT (σ33 − σ00) − iΩσ32, (2.19e)

σ̇12 = −id12σ12 + igP ÊPσ02 − iΩσ10, (2.19f)

σ̇13 = −id13σ13 + igP ÊPσ03 − iÊ†
Tσ10, (2.19g)

σ̇23 = −id23σ23 − igT Ê
†
Tσ20 + iΩσ03, (2.19h)

where the generalized detunings dij for i, j = 0, . . . , 3 have been previously defined.

We proceed by assuming low intensity for probe and trigger fields, gj〈Êj〉 ≪ Ω and strong

pump |Ω|2/γ0jγij ≫ 1. The latter condition also implies that the EIT resonances for both,

probe and trigger fields are strongly saturated. Furthermore, if gP ∼ gT , for a probe and trigger

fields of equal mean amplitudes 〈Êj〉, we can assume 〈σ00〉 ≈ 〈σ22〉 ≈ 0 and 〈σ11〉 ≈ 〈σ33〉 ≈ 1
2 ,

as in the semiclassical case. Solving the equations (2.19c) for weak probe and trigger field, we

can write σ10 in function of σ12, and in the same way, the σ30 in function of σ32. This gives the

following equations for the pulse propagation,

σ10 = −
( ∂
∂t

+ ıd12

)σ12

Ω
(2.20)

σ10 = −
( ∂
∂t

− ıd23

)σ32

Ω
. (2.21)

This equations permits to obtain the following relations

(
∂

∂t
+ c

∂

∂z

)
ÊP (z, t) ∼= gPN

Ω

(
∂

∂t
+ id12

)
σ12, (2.22a)

(
∂

∂t
+ c

∂

∂z

)
ÊT (z, t) ∼= gTN

Ω

(
∂

∂t
− id23

)
σ32. (2.22b)

The symmetry of these equations with respect to the exchange of the probe and trigger, with

respect to the related density matrix elements, shows full symmetry between the probe and the

trigger dynamics. Note also that the symmetry is intimately linked to the atomic population

being equally distributed between |1〉 and |3〉 atomic states.

If, furthermore, a slow change in the pump - or a constant, coherent - Ω is assumed, we can

perform an adiabatic elimination of the atomic variables. From the equation for σ̇12 and σ̇32 we

have

σ10 =
ı

Ω

( ∂
∂t

+ ıd12

)
σ12 +

gP

Ω
ÊPσ02 (2.23)

σ30 =
ı

Ω

( ∂
∂t

− ıd23

)
σ32 +

gT

Ω
ÊTσ02. (2.24)

From eq.(2.19c) we have

( ∂
∂t

+ ıd10

)
σ10 + ı

gP

2
ÊP + ıgT ÊTσ13 = −ıΩσ12, (2.25)
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and from here we can obtain an expression for the σ12 as a function of eq.(2.23)

σ12 =
ı

Ω

( ∂
∂t

+ ıd10

) ı
Ω

( ∂
∂t

+ ıd12

)
σ12 +

gP

Ω2

( ∂
∂t

+ ıd12

)
ÊPσ02

− g

2Ω
ÊP − g

Ω
ÊTσ13. (2.26)

This equation will give us an approximate expression of the σ12 coherence, where the small terms

proportional to the product between the weak probe field gP ÊP terms and the small coherence

σ02 have been dropped out,

σ12 ≃ 1

2|Ω|2
gPd10

d10d12 − |Ω|2
∂

∂t
ÊP +

1

2

gP Ω

d10d12 − |Ω|2 ÊTσ13. (2.27)

Now we have to eliminate the dependency on σ13 in the previous expression. From eqns.(2.19c)

at the steady state we have

σ13 =
gp

d13
ÊPσ03 −

gT

d13
ÊTσ10,

−gP gT

2d13

( d23

d30d23 − |Ω|2 +
d12

d10d12 − |Ω|2
)
Ê†

T ÊP = σ†
31. (2.28)

Adopting the same steps to the trigger field gT ÊT we can evaluate the atomic coherence and

perform the adiabatic elimination also for the trigger field. Inserting the previous relations in

the eq.(2.22a) we arrive at the following expression:
(
∂

∂z
+

1

v
(P )
g

∂

∂t

)
ÊP = −κP ÊP + βP

∂2

∂t2
ÊP + iηP Ê

†
T ÊT ÊP , (2.29a)

(
∂

∂z
+

1

v
(T )
g

∂

∂t

)
ÊT = −κT ÊT + βT

∂2

∂t2
ÊT + iηT ÊT Ê

†
P ÊP , (2.29b)

where group velocities of probe and trigger pulses, v
(P )
g , v

(T )
g are given by the usual definition

(see eq.(1.43)) in terms of the respective group indices n
(i)
g

n(P )
g =

1

2

g2
PN

d10d12 − |Ω|2 , (2.30a)

n(T )
g =

1

2

g2
TN

d30d∗23 − |Ω|2 , (2.30b)

These expressions are consistent with the semiclassical case for the case of equal couplings gj ,

equal detunings and low intensity probe and trigger. The low intensity condition gj〈Êj〉 ≪ Ω

has its semiclassical analogue in |ΩP,T | ≪ |Ω|.
The terms −κPEP and −κTET describe single-photon loss due to dephasing and the corre-

sponding rates are

κP = i
d12n

(P )
g

c
, (2.30c)

κT = i
d∗23n

(T )
g

c
. (2.30d)
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The last terms in eqs.(2.29) are associated with the cross-Kerr interaction between the two

pulses, and their coupling coefficients are given by

ηP =
lg2

Pg
2
TN

2πc2
× 1

2

d12/d13

d10d12 − |Ω|2 ×
(

d12

d10d12 − |Ω|2 +
d23

d∗30d23 − |Ω|2
)
, (2.30e)

ηT =
lg2

Pg
2
TN

2πc2
× 1

2

d∗23/d
∗
13

d30d∗23 − |Ω|2 ×
(

d∗12
d∗10d

∗
12 − |Ω|2 +

d∗23
d30d∗23 − |Ω|2

)
. (2.30f)

Finally the second order derivative terms describe the dispersion of the pulses, with coefficients

βP =
d∗10n

(P )
g

c|Ω|2 , (2.30g)

βT =
d30n

(T )
g

c|Ω|2 . (2.30h)

The transparency window widths are

dω
(P,T )
tr =

√
c

γl

|Ω|2
n

(P,T )
g

, (2.31)

where we assumed γj0 = γ. In general case, γ → γ10 for probe and γ → γ30 for trigger.

When single photon loss κP,T and wave dispersion βP,T are negligible, the solution of these

coupled equations can be written as

ÊP (z, t) = ÊP (t′) exp
[
iηP Ê

†
T (t′)ÊT (t′)

]
, (2.32a)

ÊT (z, t) = ÊT (t′) exp
[
iηT Ê

†
P (t′)ÊP (t′)

]
, (2.32b)

where we adopted a reference moving at the group velocity vg, i.e. the new time is defined as

t′ = t − z/vg. Following the approach of Lukin and Imamoğlu [77], we conclude that for an

initial multimode coherent states |αP , αT 〉 (see Appendix C), the probe and trigger fields after

propagation through the medium of length l become

〈ÊP (z, t)〉 = αP (t′) × exp

{[
−2 sin2 (ΦP /2) + i sinΦP

] |αT (t′)|2
dω

}
, (2.33a)

〈ÊT (z, t)〉 = αT (t′) × exp

{[
−2 sin2 (ΦT /2) + i sinΦT

] |αP (t′)|2
dω

}
. (2.33b)

where ΦP,T =
( cηP,T

l

)
l∆ω = cηP,T ∆ω (∆ω being pulse spread) is the quantum phase shift

obtained due to the nonlinear interaction between probe and trigger.

It can be shown further that a pair of single photon wave packets, one being probe and the

other trigger, acquire respective phase shifts ΦP,T as a result of the nonlinear interaction. This

is a general property of a solutions for field operators given by Eqs. (2.32), and has been proven

by Lukin and Imamoğlu [77]. As shown by Petrosyan and Malakyan [65], these large nonlinear

phase shifts can be used to create quantum entanglement.

However, we have to stress that the validity of the previous quantum description of the tripod

system, is limited by the validity of the adiabatic elimination, and within the approximation
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that the probe and trigger quantum fields are well described by weak coherent states. Therefore,

even though quantum, this treatment is not fully satisfactory.

In chapter four we will develop an analytical and numerical approach to treat the multilevel

system dynamics in the full quantum limit, without any adiabatic elimination of the atomic

dynamics.



Chapter 3

Five level M scheme for Giant

Kerr interaction: Semiclassical

treatment

In this section we take into account the five level M-scheme configuration. Like n the

previous chapter, the aim is to give an analytical description of the system, and to find

the optimal conditions to obtain a giant Cross-Kerr interaction between optical pulses.

Moreover we perform a detailed study of the group velocity of the involved fields. We

find the conditions under which it is possible to match the group velocities, and we

give an estimate of the possible use of such a scheme for a QPG implementation. The

analysis we have performed is at a semiclassical level, adopting an AV and an OBE

description.

3.1 Atom-field interaction

In a standard three-level cascade scheme, shown in Fig. 1.7a, nonlinear effects are obtained

alongside absorption, which increase as the fields are tuned closer to the atomic transition [13].

To reduce the absorption to an acceptable level, light fields need to be strongly detuned from

the intermediate atomic level |2〉, simultaneously reducing however the size of the nonlinearity,

since both are inversely proportional to the square of the detuning.

The double Λ nature of a five level M configuration offers the opportunity to have a strong

and stable EIT process that reflects in cross Kerr interaction and a simultaneous group velocity

reduction for pulses propagating inside the atomic sample.

In this chapter we perform a semiclassical analysis of the interaction of light with atoms in

the M configuration, in which the amplitude of the four fields involved is described in terms of

the corresponding Rabi frequency. The aim is to estimate the effects of noise sources, such as
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dephasing and spontaneous emission, both on the nonlinear interaction and on group velocity

matching. The semiclassical regime offers a clear picture of the physical aspects involved in

EIT-based nonlinear optics, and well describes a number of recent experiments [37, 89, 90]. To

this end we consider two different configurations of atom-field interactions, which we will call

the asymmetric (see Fig. 3.1) and the symmetric (see Fig. 3.9) M scheme. The chapter is thus

composed of two main parts. In Sec. 3.2 we describe the physics of the asymmetric M -scheme.

We start by defining the system and calculating the susceptibilities using an approximate treat-

ment employing amplitude equations. These analytical calculations are then compared with the

results of the numerical solution of the full system of Bloch equations. Finally, the conditions

for group velocity matching are analyzed. In Sec. 3.3 the physics of the symmetric M -scheme is

described by following the same order as in Sec. 3.2. Conclusions are drawn in Sec. 3.4.1.

3.2 The Asymmetric M Scheme

The M -system under consideration has a double adjacent Λ structure as shown in Fig. 3.1, where

atoms with five levels (three ground states |1〉, |3〉, |5〉, and two excited states |2〉, |4〉) interact

with four electromagnetic fields [84]. This configuration can be realized in Zeeman-splitted alkali

atoms, such as 87Rb atoms.

On transitions |3〉 ↔ |2〉 and |5〉 ↔ |4〉 we apply two strong fields, the coupler Ω2 and the tuner

Ω4 respectively. On the transition |1〉 ↔ |2〉 a probe field is applied (with Ω1), while on the

transition |3〉 ↔ |4〉 a trigger field (with Ω3) is applied. In this chapter, we will analyze the XPM

and the group velocity matching between the probe and the trigger fields. We call the scheme

of Fig. 2 the asymmetric M scheme due to the asymmetric distribution of the initial atomic

population. All the atoms are in fact assumed to be initially in state |1〉 so that they directly

feel the effect of the probe field only, while the effect of the trigger field is only indirect. Due

to this inherent asymmetry, the dynamics experienced by probe and trigger fields are always

different, even when the corresponding parameters (Rabi frequencies, decay rates, detunings)

are equal. The symmetric version of this scheme will be analyzed in Sec. 3.3.

The detunings δi (see Fig. 3.1) are defined as follows

E2 − E1 = ~ω1 + ~δ1 (3.1a)

E2 − E3 = ~ω2 + ~δ2 (3.1b)

E4 − E3 = ~ω3 + ~δ3 (3.1c)

E4 − E5 = ~ω4 + ~δ4, (3.1d)

where Ei, (i = 1, . . . , 5) is the energy of level |i〉, and ωi is the frequency of the field with Rabi

frequency Ωi.

The Hamiltonian of the system is

HA =

5∑

i

Ei|i〉〈i| + ~
(
Ω1e

−iω1t|2〉〈1| + Ω2e
−iω2t|2〉〈3|

+ Ω3e
−iω3t|4〉〈3| + Ω4e

−iω4t|4〉〈5| + h.c.
)
, (3.2)

where h.c. denotes the hermitian conjugate. Moving to the interaction picture with respect to

the following free Hamiltonian

H0 = E1|1〉〈1| + (E2 − ~δ1)|2〉〈2| + (E3 − ~δ12)|3〉〈3| + (E4 − ~δ13)|4〉〈4| + (E5 − ~δ14)|5〉〈5|,(3.3)
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Figure 3.1: Asymmetric M scheme. The probe and the trigger fields, with Rabi frequencies Ω1

and Ω3 respectively, together with the stronger pump fields, the coupler and the tuner (with

Rabi frequencies Ω2 and Ω4, respectively) drive the corresponding transitions. All the atoms

are assumed to be in state |1〉 and the detunings are defined in Eqs. (3.1).

where

δ12 = δ1 − δ2, (3.4a)

δ13 = δ1 − δ2 + δ3, (3.4b)

δ14 = δ1 − δ2 + δ3 − δ4, (3.4c)

we get the following effective time-independent Hamiltonian

HAS
eff = ~δ1|2〉〈2| + ~δ12|3〉〈3| + ~δ13|4〉〈4| + ~δ14|5〉〈5|

+~Ω1|2〉〈1| + ~Ω2|2〉〈3| + ~Ω3|4〉〈3| + ~Ω4|4〉〈5| + h.c. (3.5)

3.2.1 Amplitude variables approach

We now study the dynamics driven by Eq. (3.5). As we saw in first chapter, we can include

the spontaneous emission and dephasing process in the description of the system, first in a

phenomenological manner by including decay rates ΓAV
i for each atomic level |i〉 in the equations

for the amplitude variables (AV) of the atomic wave-function. From an intuitive point of view,

for the excited levels |2〉 and |4〉 these rates describe the total spontaneous decay rates, while

for the ground states the associated decay rates describe dephasing processes [6]. Therefore, the

evolution equations for the amplitudes bi(t) of the atomic state

|ψ(t)〉 =

5∑

i=1

bi(t)|i〉 (3.6)
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become

ḃ1 = −ΓAV
1

2
b1 − iΩ⋆

1b2, (3.7a)

ḃ2 = −
(

ΓAV
2

2
+ iδ1

)
b2 − iΩ1b1 − iΩ2b3, (3.7b)

ḃ3 = −
(

ΓAV
3

2
+ iδ12

)
b3 − iΩ⋆

2b2 − iΩ⋆
3b4, (3.7c)

ḃ4 = −
(

ΓAV
4

2
+ iδ13

)
b4 − iΩ3b3 − iΩ4b5, (3.7d)

ḃ5 = −
(

ΓAV
5

2
+ iδ14

)
b5 − iΩ⋆

4b4. (3.7e)

The system’s initial state is assumed to be the ground state |1〉. Since an efficient XPM requires

a dispersive interaction, we tailor the dynamics in such a way that this initial condition on the

populations remains essentially unaltered, even when the system reaches the steady-state, i.e.,

bss
1 ≃ 1. (3.8)

To this end we assume that the control field Ω2 is stronger then the probe field Ω1, with the

system being approximately on Raman resonance for the first and the second Λ subsystems

(δ1 ∼ δ2 and δ3 ∼ δ4). Equations (3.7) are then solved in the steady-state. In order to

get a consistent expression for the nonlinear susceptibilities one has to consider higher order

contributions to Eq. (3.8), which is obtained by imposing the normalization of the atomic wave-

function of Eq. (3.6) at second order in |Ω1/Ω2|. One gets the following expression for the steady

state amplitudes

bss
1 = 1 −

|Ω1|2
[
|d3|2 + |Ω2|2

]

2 |d2d3 − |Ω2|2|2
, (3.9a)

bss
2 = Ω1

d3

[
|Ω4|2 − d4d5

]
+ |Ω3|2d5

Da
bss
1 (3.9b)

bss
3 = −Ω1Ω

⋆
2

|Ω4|2 − d4d5

Da
bss
1 (3.9c)

bss
4 = −Ω1Ω

⋆
2Ω3d5

Da
bss
1 (3.9d)

bss
5 =

Ω1Ω
⋆
2Ω3Ω

⋆
4

Da
bss
1 , (3.9e)

where we have defined

d2 = δ1 − ıΓAV
2 /2, (3.10a)

d3 = δ12 − ıΓAV
3 /2, (3.10b)

d4 = δ13 − ıΓAV
4 /2, (3.10c)

d5 = δ14 − ıΓAV
5 /2, (3.10d)
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Da =
[
d2d3 − |Ω2|2

] [
d4d5 − |Ω4|2

]
− d2d5|Ω3|2. (3.11)

These results can be used to determine the probe and trigger susceptibilities, which are defined

as

χP =
Nµ12

V ε0E1
bss
2 b

ss,⋆
1 = −N |µ12|2

V ~ε0Ω1
bss
2 b

ss,⋆
1 , (3.12a)

χT =
Nµ34

V ε0E3
bss
4 b

ss,⋆
3 = −N |µ34|2

V ~ε0Ω3
bss
4 b

ss,⋆
3 , (3.12b)

where N is the number of atoms interacting with the electromagnetic field, V is the volume

occupied by the gas, and ε0 is the vacuum dielectric constant. Doppler broadening is neglected

here. It is well known that first order Doppler effect can be cancelled by using co-propagating

laser fields [4]. In particular we emphasize that this is valid for cold atomic media in a magneto-

optical trap as well as for a standard gas cell.

Inserting Eqs. (3.9) into Eqs. (3.12) and expanding in series at the lowest orders in the probe

and trigger electric fields, E1 and E3 respectively, one gets

χP ≃ χ
(1)
P + χ

(3,sk)
P |E1|2 + χ

(3,ck)
P |E3|2 (3.13a)

χT ≃ χ
(3,ck)
T |E1|2, (3.13b)

where we have introduced the linear susceptibility χ
(1)
P , the third-order self-Kerr susceptibility

χ
(3,sk)
P and the third-order cross-Kerr susceptibilities χ

(3,ck)
P,T . Eqs. (3.13) clearly show the asym-

metry of the scheme between the probe and trigger fields, with the latter possessing a nonzero

cross-Kerr susceptibility only. This is a consequence of the asymmetry of the population distri-

bution, which essentially remains in the ground state |1〉 all the time. This means that the trigger

field drives a virtually empty transition, hence the contribution to the susceptibility comes only

from higher order (see [71] for discussion on the link between the population distribution and a

linear contribution to susceptibility). It will be shown in Sec. 3.3 that the symmetric M -scheme

brings about both a linear and a self-Kerr contribution to the trigger susceptibility.

By using Eqs. (3.9) and the definitions of Eqs. (3.10) into Eqs. (3.12), and comparing with

Eqs. (3.13) at the corresponding order in the electric fields, one gets the explicit dependence of

the linear and nonlinear susceptibilities as a function of the system parameters, i.e.,

χ
(1)
P =

N |µ12|2
V ~ε0

δ12 − iΓAV
3 /2(

δ1 − iΓAV
2 /2

) (
δ12 − iΓAV

3 /2
)
− |Ω2|2

(3.14)

for the probe linear susceptibility, and
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χ
(3,sk)
P =

N |µ12|4
V ~3ε0

−das
12

[
|das

12|2 + |Ω2|2
]

[das
1 d

as
12 − |Ω2|2] |das

1 d
as
12 − |Ω2|2|2

, (3.15)

χ
(3,ck)
P =

N |µ12|2|µ34|2
V ~3ε0

|Ω2|2das
14

[das
1 d

as
12 − |Ω2|2]2

[
das
13d

as
14 − |Ω4|2

] , (3.16)

χ
(3,ck)
T =

N |µ12|2|µ34|2
V ~3ε0

|Ω2|2das
14

|das
1 d

as
12 − |Ω2|2|2

[
das
13d

as
14 − |Ω4|2

] , (3.17)

for the third-order nonlinear susceptibilities. The complex detunings das
1 , d

as
12, d

as
13, d

as
14 have been

defines as

das
1 = δ1 − iΓAV

2 /2 (3.18)

das
12 = δ12 − iΓAV

3 /2 (3.19)

das
13 = δ13 − iΓAV

4 /2 (3.20)

das
14 = δ14 − iΓAV

5 /2. (3.21)

The two cross-Kerr susceptibilities are identical whenever the quantity

(
δ1 − iΓAV

2 /2
) (
δ12 − iΓAV

3 /2
)
− |Ω2|2,

is (at least approximately) real. This happens in the typical EIT situation we are considering in

which |Ω2| is large enough. In fact, when |Ω2|2 ≫
∣∣(δ1 − iΓAV

2 /2
) (
δ12 − iΓAV

3 /2
)∣∣, one has [59]

χ
(3,ck)
P = χ

(3,ck)
T =

N |µ12|2|µ34|2
V ~3ε0

δ14 − iΓAV
5 /2

|Ω2|2
[(
δ13 − iΓAV

4 /2
) (
δ14 − iΓAV

5 /2
)
− |Ω4|2

] . (3.22)

We shall see in the next section that these approximate expressions for the nonlinear suscepti-

bilities fit very well with the numerical solution of the exact dynamics of the system.

The asymmetric M -scheme can be seen as an extension of the four level N -scheme introduced

in Ref. [13], with the addition of the coupling to an additional level |5〉 provided by the tuner field

with Rabi frequency Ω4. In fact, it easy to check that upon setting Ω4 = 0 in Eq. (3.15b), one

recovers the third-order nonlinear susceptibility of the four-level N -scheme derived in Refs. [13,

37]). As we will see below, the role of the tuner field is to enable a fine tuning of the group

velocities, in order to achieve group velocity matching between probe and trigger [59, 73, 77].

3.2.2 Comparison with the Optical Bloch Equations

We now study the dynamics of the asymmetric M scheme of Fig. 3.1 by means of the optical

Bloch equations (OBE) (see Appendix A), which allow to describe spontaneous emission and

dephasing rigorously and no more phenomenologically as in the AV treatment presented in the

preceding section. We consider six spontaneous decay channels, i.e., the decay of the excited

state |2〉 onto the three ground state sublevels |1〉, |3〉, and |5〉 with rates Γ21, Γ23 and Γ25

respectively, and the corresponding decay of the excited state |4〉 onto the three sublevels |1〉,
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|3〉, and |5〉 with rates Γ41, Γ43 and Γ45 respectively. Moreover we consider dephasing of the each

level |i〉 with dephasing rate γii, so that the master equation for the atomic density operator σ

is given by

σ̇ = − i

~

[
HAS

eff , σ
]
+
∑

l=2,4

∑

k=1,3,5

Γlk

2

(
2σ̂klσσ̂

†
kl − σ̂†

klσ̂klσ − σσ̂†
klσ̂kl

)

+

5∑

k=1

γkk

2
(2σ̂kkσσ̂kk − σ̂kkσ − σσ̂kk) , (3.23)

where HAS
eff is given by Eq. (3.5) and σ̂kl = |k〉〈l|. The corresponding system of OBE’s for the

mean values σij(t) ≡ 〈σ̂ij(t)〉 ≡ σji(t) is displayed in Appendix A.2.1 as Eqs. (A.23) and (A.24),

where we have defined for convenience the total decay rates

Γ2 = Γ21 + Γ23 + Γ25, (3.24)

Γ4 = Γ41 + Γ43 + Γ45, (3.25)

and the composite dephasing rates

γij = γii + γjj , i = 1 . . . 5. (3.26)

The OBE for the M scheme are quite involved and less suited for an approximate analytical

treatment with respect to the AV equations of the preceding section. In fact, if we consider

again the condition |Ω1/Ω2| ≪ 1 and, consistently with Eq. (3.8), we assume that

σ11 ≈ 1, (3.27a)

σjj ≈ 0, j = 2, . . . , 5, (3.27b)

at the steady state, it is possible to see that by inserting Eqs. (3.27) into Eqs. (A.24) for the

coherences, one gets a satisfactory expression for the probe linear susceptibility only. To be

more specific, only the approximate linear susceptibility fits well with the numerical solution

of the OBE, while it turns out to be extremely difficult to derive analytical expressions from

Eqs. (A.23) and (A.24) for the nonlinear susceptibilities, as simple as those of Eqs. (3.15), and

which reproduce in the same way the exact numerical solution in the EIT regime we are studying.

Obviously, one can exactly solve analytically the OBE, but the resulting expressions are very

cumbersome and not physically transparent such as those of Eqs. (3.15). For this reason we will

analytically derive from the OBE the probe linear susceptibility only, and we will then use the

OBE only for the numerical determination of the atomic steady state. Additionally, deriving

this result will enable us to draw a formal analogy between the AV and OBE treatments (see

Eqs. (3.30) below).

The probe susceptibility is defined in terms of the atomic coherence σ12 as (see also

Eq. (3.12a))

χP =
Nµ12

V ε0E1
σ12 = −N |µ12|2

V ~ε0Ω1
σ12. (3.28)

Using Eqs. (3.27) and performing a series expansion at the lowest order in the probe and trigger

fields, we arrive at an approximate solution for σ12, which, inserted into Eq. (4.27), gives the

following expression for the probe linear susceptibility

χ
(1)
P =

N |µ12|2
V ~ε0

δ12 − iγ13/2

[δ12 − iγ13/2] [δ1 − i (Γ2 + γ12) /2]− |Ω2|2
. (3.29)
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By comparing Eq. (3.29) with Eq. (3.14), one can immediately see that the AV and OBE

predictions for the probe linear susceptibility coincide provided that the phenomenological decay

rates ΓAV
i are appropriately interpreted, i.e.,

ΓAV
2 ↔ Γ2 + γ12, (3.30a)

ΓAV
3 ↔ γ13. (3.30b)

This comparison shows therefore that the AV approach provides a treatment of the atomic

dynamics simpler than the OBE’s approach, but roughly equivalent, and that the intuitive

interpretation of its phenomenological decay rates ΓAV
i as spontaneous emission total decay

rates for the excited states, and as dephasing rates in the case of ground state sublevels, is

essentially correct, especially in the typical case in which dephasing rates are much smaller than

spontaneous emission decay rates (see Eqs. (3.30)).

We then consider the numerical solution of the OBE and we compare it with the analytical

treatment based on the AV approach presented above. The numerical calculations are performed

in the range of parameters corresponding to EIT, i.e., |Ω1|, |Ω2| ≪ |Ω3|, |Ω4| and we stay near

two-photon resonance for both the probe and the trigger field. In Figs. 3.2-3.5 we compare the

analytical solutions of Eq. (3.14) and Eqs. (3.15) with the numerical solution of the complete set

of Bloch equations given in the Appendix A. From these plots it is evident that our analytical

treatment works satisfactorily well, except for a small interval of values of the detuning, corre-

sponding to the maximum probe (or trigger) absorption. In such a case, the detunings match

the Rabi frequencies of the two pumps, and the probe (or trigger) field is in resonance with

a single atomic transition. The atoms are significantly pumped to the excited levels and the

population assumption of Eq. (3.8) is not fulfilled. In fact, the discrepancy between the exact

numerical solution of the OBE and the AV approach is strictly related to the atomic population

out of level |1〉 which, in the case of Fig. 3.2, is about 14% of the total population.

Figs. 3.2-3.5 refer to a situation with small dephasing rates (∀ i,j, γij = ΓAV
3 = ΓAV

5 =

10−4Γ4 ∼ few kHz) which are typical for not too dense gases. For larger values of the dephasing

rates (some tens of kHz), we have seen that the analytical prediction of the AV approach of the

preceding section starts to depart from the exact solution of the OBE.

3.2.3 Group velocity matching

The propagation equation for the slowly varying electric field amplitudes εi(z, t), i = P, T ,

defined as

Ei(z, t) = εi(z, t) exp {ikiz − iωit} + c.c. i = P, T,

is given by (
∂

∂z
+

1

vi
g

∂

∂t

)
εi(z, t) = i

ki

2
χi(z, t)εi(z, t), i = P, T, (3.31)

where vi
g is the group velocity, generally defined as vi

g = c/(1 + ni
g), with c the speed of light in

vacuum and

ni
g =

1

2
Re[χi] +

ωi

2

(
∂Re[χi]

∂ω

)

ωi

(3.32)

the group index, ωi being the central frequency of pulse i. The solution of Eq. (3.31) is

εi(z, t) = εi(0, t−
z

vi
g

) exp

{
i
ki

2

∫ z

0

dz′χi(z
′, t)

}
, (3.33)
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Figure 3.2: Comparison of the numerical solution (dotted line) of the OBE with the analytical

prediction of Eq. (3.14) (full line) for the real part (above) and imaginary part (below) of the

linear probe susceptibility versus the normalized probe detuning δ1/Γ4. The parameter used

are the following: ΓAV
2 = Γ2 = 36 MHz, ΓAV

4 = Γ4 = 38 MHz, δ2 = δ3 = δ4 = 0, ∀ i,j

γij = ΓAV
3 = ΓAV

5 = 10−4Γ4, Ω1 = 0.08Γ4, Ω2 = 2Γ4, Ω3 = 0.04Γ4, Ω4 = Γ4.

so that, using Eqs. (3.13), the nonlinear cross-phase shift for the two fields of interest is given

by

φck
P =

ω1

2c

∫ l

0

dzRe[χ3,ck
P ] |εT (z, t)|2 , (3.34a)

φck
T =

ω3

2c

∫ l

0

dzRe[χ3,ck
T ] |εP (z, t)|2 , (3.34b)

where l is the length of the atomic medium. These nonlinear cross-phase shifts are of fundamental

importance also for quantum information processing applications. In fact, the CPS of Eq. (4.3)

is determined only by these cross-Kerr contributions to the total phase shift, because the linear

and self-Kerr contributions cancel out, as shown in Refs. [59, 71].

For Gaussian probe and trigger pulses of time durations τP and τT , and with peak Rabi

frequencies Ωpeak
P and Ωpeak

T respectively, the nonlinear cross-phase shifts can be written as (see

also Refs. [59, 71])

φck
P =

ω1l

4c

√
π~

2|Ωpeak
T |2

|µ34|2
erf[ζP]

ζP
Re[χ3,ck

P ], (3.35a)

φck
T =

ω3l

4c

√
π~

2|Ωpeak
P |2

|µ12|2
erf[ζT]

ζT
Re[χ3,ck

T ], (3.35b)
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Figure 3.3: Comparison of the numerical solution (dotted line) of the OBE with the analytical

prediction of Eq. (3.15b) (full line) for the real part (above) and imaginary part (below) of

the probe cross-Kerr susceptibility versus the normalized probe detuning δ1/Γ4. To reduce as

much as possible the influence of the self-Kerr susceptibility we have considered a probe Rabi

frequency Ω1 much smaller than that of the trigger field. Parameters are: ΓAV
2 = Γ2 = 36 MHz,

ΓAV
4 = Γ4 = 38 MHz, δ2 = δ3 = δ4 = 0, ∀ i,j γij = ΓAV

3 = ΓAV
5 = 10−4Γ4, Ω1 = 0.004Γ4,

Ω2 = 2Γ4, Ω3 = 0.04Γ4, Ω4 = Γ4.

where ζP = (1 − vP
g /v

T
g )

√
2l/vP

g τT and ζT is obtained from ζP upon interchanging the indices

P ↔ T . Large nonlinear cross-phase shifts take place for appreciably large values of the two

cross-Kerr susceptibilities real parts, and especially when probe and trigger velocities become

equal, i.e., when ζP,T → 0, in which case the erf[ζ]/ζ reaches the maximum value 2/
√
π. In

this limit the cross-phase phase shifts linearly increase with the length of the atomic medium l.

This explains why achieving group velocity matching, vP
g = vT

g , is of fundamental importance.

Moreover group velocities become small for large group indices and this condition can be achieved

within the EIT transparency window, where Re[χ] vanishes, and the group velocity is strongly

reduced due to a large dispersion gradient ∂Re[χ]/∂ω.

Let us see how small and equal probe and trigger group velocities can be obtained. We

consider the approximate analytical expressions for the susceptibilities of Eqs. (3.13)-(3.15)

derived above within the AV approach, and which we have seen to work very well in the EIT

regime. Assuming to stay at the center of the transparency window for the probe (δ12 = 0)

where the dispersion gradient is maximum, and neglecting dephasing rates ΓAV
3 and ΓAV

5 , which
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Figure 3.4: Comparison of the numerical solution (dotted line) of the OBE with the analytical

prediction of Eq. (3.15a) (full line) for the real part (above) and imaginary part (below) of

the probe self-Kerr susceptibility versus the normalized probe detuning δ1/Γ4. To reduce as

much as possible the influence of the cross-Kerr susceptibility we have considered a trigger Rabi

frequency Ω3 much smaller than that of the probe field. Parameters are: ΓAV
2 = Γ2 = 36 MHz,

ΓAV
4 = Γ4 = 38 MHz, δ2 = δ3 = δ4 = 0, ∀ i,j γij = ΓAV

3 = ΓAV
5 = 10−4Γ4, Ω1 = 0.5Γ4,

Ω2 = 2Γ4, Ω3 = 0.005Γ4, Ω4 = Γ4.

are typically much smaller than all the other parameters, one gets

nP
g ≃ N

V

|µ12|2ω1

2~ǫ0|Ω2|2
(1 + |Ω3|2β), (3.36a)

nT
g ≃ N

V

|µ34|2ω3

2~ǫ0|Ω2|2
|Ω1|2β, (3.36b)

where [59]

β =

(
δ214 + |Ω4|2

) [(
δ13δ14 − |Ω4|2

)2 − δ214
(
ΓAV

4 /2
)2]

[
(δ13δ14 − |Ω4|2)2 + δ214

(
ΓAV

4 /2
)2]2 . (3.37)

In the EIT situation we are considering it is nP
g , n

T
g ≫ 1, so that, using Eqs. (3.36),

vP
g ≃ c

nP
g

≃ 2~ǫ0c|Ω2|2
(N/V )|µ12|2ω1(1 + |Ω3|2β)

, (3.38a)

vT
g ≃ c

nT
g

≃ 2~ǫ0c|Ω2|2
(N/V )|µ34|2ω3|Ω1|2β

. (3.38b)
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Figure 3.5: Comparison of the numerical solution (dotted line) of the OBE with the analytical

prediction of Eq. (3.15c) (full line) for the real part (above) and imaginary part (below) of

the trigger cross-Kerr susceptibility as a function of the normalized trigger’s detuning δ3/Γ4.

Parameters are similar to those of Fig. 3.2, ΓAV
2 = Γ2 = 36 MHz, ΓAV

4 = Γ4 = 38 MHz,

δ1 = δ2 = δ4 = 0, ∀ i,j γij = ΓAV
3 = ΓAV

5 = 10−4Γ4, Ω1 = 0.08Γ4, Ω2 = 2Γ4, Ω3 = 0.04Γ4,

Ω4 = Γ4.

As expected, the asymmetric M -scheme does not yield equal slow down of both trigger and

probe pulse automatically as, for example, the scheme of Petrosyan and Kurizki [73] does. In

fact, the two expressions of the group velocities are generally different. Nonetheless, Eqs. (3.38)

show that group velocity matching is always achievable by properly adjusting the parameter β,

which means adjusting the tuner intensity |Ω4|2 and the composite detuning δ14. This shows

that the present asymmetric M -scheme can be seen as a modified version of the N -scheme of

Ref. [13], in which the tuner pump field is added just in order to “tune” the group velocity of

the trigger pulse so to make it equal to that of the probe. The possibility to achieve group

velocity matching is shown in Fig. 3.6, where both the numerical result derived form the OBE

and the approximate analytical expressions of Eqs. (3.38) are plotted versus the trigger detuning

δ3. Two different values of δ3 exist for which vP
g = vT

g ≃ 1000 m/s (see Fig. 3.6). Parameter

values here correspond to typical values for a cell of 87Rb atoms, i.e., ΓAV
2 = Γ2 ≃ 36 MHz,

ΓAV
4 = Γ4 ≃ 38 MHz, N/V ≃ 3 × 1013 cm−3, δ1 = δ2 = 0, δ4 ≃ δ3 ≃ 20Γ4, Ω1 = 0.08Γ4,

Ω2 = 2Γ4, Ω3 = 0.04Γ4, Ω4 = Γ4, ∀ i,j, γij = ΓAV
3 = ΓAV

5 = 10−4Γ4. Moreover Fig. 3.6 clearly

shows that the simple expressions of Eqs. (3.38) well reproduce the exact numerical solution of

the OBE.
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Figure 3.6: Group velocity of the probe and trigger pulses versus the normalized trigger detuning

δ3/Γ4. Full lines denote the analytical predictions of Eqs. (3.38) (the thick line refers to the probe

and the thin line to the trigger). Circles and dots refer to the numerical solution of the OBE for

the probe and trigger group velocity, respectively. This figure shows how it is possible to obtain

group velocity matching in the asymmetric M -scheme: two different values of δ3 exist for which

vP
g = vT

g ≃ 1000 m/s. The parameters are those of the D1 and D2 line in the 87Rb spectrum:

ΓAV
2 = Γ2 ≃ 36 MHz, ΓAV

4 = Γ4 ≃ 38 MHz, δ1 = δ2 = 0, δ4 ≃ δ3 ≃ 20Γ4, Ω1 = 0.08Γ4,

Ω2 = 2Γ4, Ω3 = 0.04Γ4, Ω4 = Γ4, ∀ i,j, γij = ΓAV
3 = ΓAV

5 = 10−4Γ4, N/V = 3.0 · 1013 cm−3.

3.2.4 Pulse propagation

In previous Section, we have addressed the problem of group velocity matching between probe

and trigger fields in the asymmetric M-scheme. It should be emphasized that the analysis and

the results presented there are strictly valid for the continuous-wave (cw) fields. We would

now address that same problem but with the pulsed probe and trigger fields in mind. At first

look, Eqs. (34) appear to suggest that the group velocity matching would not be possible in

the pulsed regime. As the group velocity of the trigger pulse is inversely proportional to the

square of the probe pulse, trigger suffers anomalous nonlinear dispersion, i.e. in the presence

of a pulsed probe, the trigger pulse will get distorted, splitting into several components, each

having a different group velocity.

It will be shown in this Section that the above conclusion is an artifact of the usual approxi-

mations made to obtain a closed and compact expression for group velocities. In particular, the

pulse propagation in this approximation is described by Eqs. (3.31), with group velocities vi
g

given by Eqs. (3.38) and nonlinear susceptibilities χi being those of Eqs. (3.15). This is equiv-

alent to the adiabatic elimination of the atomic degrees of freedom. Such adiabatic elimination,

strictly speaking, is not valid in the parameter regime explored in this paper: strong nonlin-
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Figure 3.7: Pulse propagation in the AMS, in regime of long pulses in time.

Figure 3.8: Pulse propagation in the AMS in regime of short pulses in time.

ear interaction between probe and trigger pulses suggests that the contribution of the atomic

medium is far from being adiabatic. Also, it should be noted that the dephasing processes have

been neglected in the derivation of vi
g. For the adiabatic case, the above conclusion is correct:

the trigger pulse suffers anomalous dispersion and its group velocity becomes singular towards

the edges of a probe pulse. However, pulse propagation through the asymmetric M-system do

not follow such a simple approximate evolution. Full propagation problem must then be solved

which includes adding the time-dependent equations for the pulses to the OBEs A.23, and nu-

merically solving the resulting system of equations. In the above equation, it is understood that

σP = σ12 and σT = σ34.

( ∂
∂z

+
1

c

∂

∂t

)
Ei(z, t) = ı

ki

2

Nµi

V ǫ0
σi(z, t), i = P, T, (3.39)

results are shown in Fig.3.7 and in Fig.3.8, for the same set of parameters that give group

velocity matching in previous sections. Vertical axes are scaled with the spontaneous emission
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parameters. We can see the emergence of two different regimes, a long-pulse regime, and a

short-pulse regime. Here with long and short we mean in time. The inverse of this “length”

is compared with the transparency window. Long pulse (narrow frequency bandwidth) fit well

in the transparency window, while long pulse (wide frequency band) do not. In the case of

long pulses propagate troughs the medium with untouched amplitude, only a small reduction

of the amplitude is due to the presence of not perfect EIT condition and then to the non-zero

imaginary part of susceptibility. For the short pulses the situation is completely different. It is

clear from Fig.3.8, that the pulses are distorted, because they spread outside the transparency

window. Trigger, as the probe, shows a reduction of the amplitude, moreover it also split into

several components which then continue to propagate with a different group velocity each.

It is also noted that in the long-pulse regime, both of the pulses propagate virtually undis-

torted, with a group velocity uniform across each of the pulses. Our simulations suggest that

the approximate Eqs. (34) are valid, as long as the Rabi frequencies there are considered to be

taken at the peak of the pulse, i.e. Ωi → Ωpeak.

3.3 The Symmetric M–scheme

In this section we analyze the symmetric M–scheme [84], schematically shown in Fig. 3.9. The

initial conditions and the configuration of the fields are slightly different from those of the

asymmetric case of Sec. 3.2. The same five levels could be used, but all the atoms are now initially

prepared in level |3〉 (see Fig. 3.9). Moreover, the role of the probe and of the coupler fields

are exchanged, i.e., now the probe field (still with Rabi frequency Ω1 and central frequency ω1)

couples levels |2〉 and |3〉, while the coupler (still with Rabi frequency Ω2 and central frequency

ω2) induces transitions between levels |1〉 and |2〉. The role of trigger and tuner fields remains

unchanged. In such a way, the scheme becomes symmetric for probe and trigger, and the two

fields experience exactly the same dynamics whenever the corresponding parameters are made

equal, i.e., when the Rabi frequencies are correspondingly equal (Ω1 = Ω3, Ω2 = Ω4), as well as

the detunings, (δ1 = δ3, δ2 = δ4), which are now defined similarly to those of the asymmetric M

scheme (see Eqs. (3.1)) except for probe-coupler exchange, i.e.,

E2 − E1 = ~ω2 + ~δ2, (3.40a)

E2 − E3 = ~ω1 + ~δ1, (3.40b)

E4 − E3 = ~ω3 + ~δ3, (3.40c)

E4 − E5 = ~ω4 + ~δ4. (3.40d)

In this way, the scheme can be seen again as formed by two adjacent Λ, one for the probe

and one for the trigger, now however symmetrically placed with respect to state |3〉. As we

have done for the asymmetric M scheme, we assume to stay close to the two-photon resonance

conditions, δ1 ≃ δ2 and δ3 ≃ δ4, and moreover that |Ω1| ≪ |Ω2|, and |Ω3| ≪ |Ω4|, so that both

probe and trigger will experience EIT. As we have seen above, a large XPM is obtained when

the group velocities are equal [31,59,71,73,77,83], and the advantage of the present symmetric

M–scheme is that group velocity matching is automatically achieved once that the scheme is

exactly symmetric between probe and trigger.
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Figure 3.9: Symmetric M scheme. The probe and the trigger fields, with Rabi frequencies Ω1

and Ω3 respectively, together with the stronger pump fields, the coupler and the tuner (with

Rabi frequencies Ω2 and Ω4, respectively) drive the corresponding transitions. All the atoms

are assumed to be in state |3〉 and the detunings are defined in Eqs. (4.2).

The Hamiltonian of the system is

HS =

5∑

i

Ei|i〉〈i| + ~
(
Ω1e

−iω1t|2〉〈3| + Ω2e
−iω2t|2〉〈1|

+ Ω3e
−iω3t|4〉〈3| + Ω4e

−iω4t|4〉〈5| + h.c.
)
. (3.41)

Moving to the interaction picture with respect to the following free Hamiltonian

H ′
0 = E3|3〉〈3| + (E2 − ~δ1)|2〉〈2| + (E1 − ~δ12)|1〉〈1|

+(E4 − ~δ3)|4〉〈4| + (E5 − ~δ34)|5〉〈5|, (3.42)

where

δ12 = δ1 − δ2, (3.43a)

δ34 = δ3 − δ4, (3.43b)

we get the following effective Hamiltonian

HS
eff = ~δ1|2〉〈2| + ~δ12|1〉〈1| + ~δ3|4〉〈4| + ~δ34|5〉〈5|

+~Ω1|2〉〈3| + ~Ω2|2〉〈1| + ~Ω3|4〉〈3| + ~Ω4|4〉〈5|
+~Ω⋆

1|3〉〈2| + ~Ω⋆
2|1〉〈2| + ~Ω⋆

3|3〉〈4| + ~Ω⋆
4|5〉〈4|. (3.44)

3.3.1 Amplitude Variables Approach

We first study the system dynamics by means of the AV approach, in which the state of the

atom is described by the wave-function of Eq. (3.6), whose time evolution is determined by
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the Hamiltonian of Eq. (3.44), supplemented with phenomenological decay rates ΓAV
i for each

atomic level |i〉. The corresponding evolution equations for the amplitudes bi(t) are

ḃ1(t) = −ıd1b1(t) − ıΩ⋆
2b2(t), (3.45a)

ḃ2(t) = −ıd2b2(t) − ıΩ2b1(t) − ıΩ1b3(t), (3.45b)

ḃ3(t) = −ıd3b3 − ıΩ⋆
1b2(t) − ıΩ⋆

3b4(t), (3.45c)

ḃ4(t) = −ıd4b4(t) − ıΩ3b3(t) − ıΩ4b5(t), (3.45d)

ḃ5(t) = −ıd5b5(t) − ıΩ⋆
4b4(t), (3.45e)

where, similarly to what we have done for the asymmetric case, we have defined

d1 = δ12 − ıΓAV
1 /2, (3.46a)

d2 = δ1 − ıΓAV
2 /2, (3.46b)

d3 = −ıΓAV
3 /2, (3.46c)

d4 = δ3 − ıΓAV
4 /2, (3.46d)

d5 = δ34 − ıΓAV
5 /2. (3.46e)

Since we choose again |Ω1/Ω2| ≪ 1 and |Ω3/Ω4| ≪ 1, it is reasonable to assume that the atomic

population remains in the initial state |3〉 to a good approximation

bss
3 ∼ 1. (3.47)

The set of equations (3.45) is then solved in the steady-state. In order to get a consistent

expression for the nonlinear susceptibilities one has to consider higher order contributions to

Eq. (3.47), which is obtained by imposing the normalization of the atomic wave-function of

Eq. (3.6) at second order in |Ω1/Ω2| and |Ω3/Ω4|. One gets the following expression for the

steady state amplitudes

bss
3 = 1 −

|Ω1|2
[
|d1|2 + |Ω2|2

]

2 |d1d2 − |Ω2|2|2
−

|Ω3|2
[
|d5|2 + |Ω4|2

]

2 |d4d5 − |Ω4|2|2
, (3.48a)

bss
2 = − Ω1d1

d1d2 − |Ω2|2
bss
3 , (3.48b)

bss
4 = − Ω3d5

d5d4 − |Ω4|2
bss
3 , (3.48c)

bss
1 =

Ω1Ω
⋆
2

d1d2 − |Ω2|2
bss
3 , (3.48d)

bss
5 =

Ω3Ω
⋆
4

d5d4 − |Ω4|2
bss
3 . (3.48e)

These results can be used to determine the probe and trigger susceptibilities, which are now

defined as (see Eqs. (3.12))

χP =
Nµ32

V ε0E1
bss
2 b

ss,⋆
3 = −N |µ32|2

V ~ε0Ω1
bss
2 b

ss,⋆
3 , (3.49a)

χT =
Nµ34

V ε0E3
bss
4 b

ss,⋆
3 = −N |µ34|2

V ~ε0Ω3
bss
4 b

ss,⋆
3 . (3.49b)
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Inserting Eqs. (3.48) into Eqs. (3.49) and expanding in series at the lowest orders in the probe

and trigger electric fields, E1 and E3 respectively, one gets

χP ≃ χ
(1)
P + χ

(3,sk)
P |E1|2 + χ

(3,ck)
P |E3|2, (3.50a)

χT ≃ χ
(1)
T + χ

(3,sk)
T |E3|2 + χ

(3,ck)
T |E1|2, (3.50b)

where we have again distinguished the third-order self-Kerr susceptibilities χ
(3,sk)
P,T from the third-

order cross-Kerr susceptibilities χ
(3,ck)
P,T . Using Eqs. (3.48) and the definitions of Eqs. (3.46), we

get the following expressions for the linear susceptibilities,

χ
(1)
P =

N |µ32|2
V ~ε0

δ12 − iΓAV
1 /2(

δ1 − iΓAV
2 /2

) (
δ12 − iΓAV

1 /2
)
− |Ω2|2

(3.51a)

χ
(1)
T =

N |µ34|2
V ~ε0

δ34 − iΓAV
5 /2(

δ3 − iΓAV
4 /2

) (
δ34 − iΓAV

5 /2
)
− |Ω4|2

(3.51b)

and the following ones for the nonlinear susceptibilities,

χ
(3,sk)
P =

N |µ32|4
V ~3ε0

−dsym
12

[
|dsym

12 |2 + |Ω2|2
]

[dsym
1 dsym

12 − |Ω2|2] |dsym
1 dsym

12 − |Ω2|2|2
, (3.52a)

χ
(3,sk)
T =

N |µ34|4
V ~3ε0

−dsym
34

[
|dsym

34 |2 + |Ω4|2
]

[dsym
3 dsym

34 − |Ω4|2] |dsym
3 dsym

34 − |Ω4|2|2
, (3.52b)

χ
(3,ck)
P =

N |µ32|2|µ34|2
V ~3ε0

−dsym
12

[
|dsym

34 |2 + |Ω4|2
]

[dsym
1 dsym

12 − |Ω2|2] |dsym
3 dsym

34 − |Ω4|2|2
, (3.52c)

χ
(3,ck)
T =

N |µ32|2|µ34|2
V ~3ε0

−dsym
34

[
|dsym

12 |2 + |Ω2|2
]

[dsym
3 dsym

34 − |Ω4|2] |dsym
1 dsym

12 − |Ω2|2|2
, (3.52d)

where the complex detuning dsym
1 , dsym

3 , and dsym
12 , dsym

34 have been defined as

dsym
1 = δ1 − iΓAV

2 /2 (3.53)

dsym
12 = δ12 − iΓAV

1 /2 (3.54)

dsym
3 = δ3 − iΓAV

4 /2 (3.55)

dsym
34 = δ34 − iΓAV

5 /2. (3.56)

From previous equations, first of all, we note that the expressions of the probe and trigger

susceptibilities above are completely symmetric. This means that probe and trigger experience

the same linear and Kerr susceptibilities, as soon as the corresponding parameters correspond,

i.e., µ32 = µ34, Ω1 = Ω3, Ω2 = Ω4, δ1 = δ3, δ2 = δ4, ΓAV
1 = ΓAV

5 , ΓAV
2 = ΓAV

4 . More-

over, the probe linear susceptibility of Eq. (3.51a) and the self-Kerr susceptibility of Eq. (3.52a)

coincide with the corresponding ones of the asymmetric case, Eq. (3.14) and Eq. (3.15a) re-

spectively, because the phenomenological decay rate ΓAV
1 here plays just the same role of the

phenomenological decay rate ΓAV
3 of the asymmetric scheme. This is not surprising, since the

probe response in the absence of the trigger field is the same in the two M scheme studied
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here. Finally the cross-Kerr susceptibilities of the two schemes are generally different, both for

the probe and the trigger, even though they possess a similar structure. The main relevant

difference between the two cross-Kerr susceptibilities is in the dependence of their real parts

upon the detunings. In fact, in the asymmetric case both real parts are proportional to the

composite detuning δ14 = δ12 + δ34 (see Eqs. (3.4) and (3.43)), so that one has a nonzero XPM

as soon as one of the two Λ subsystem is shifted from the two-photon resonance condition. In

the symmetric case instead, Re{χ(3,ck)
P } is proportional to δ12 and Re{χ(3,ck)

T } is proportional

to δ34, and the two-photon resonance condition has to be violated by both Λ subsystems if each

field has to experience a nonzero XPM.

3.3.2 Comparison with the Optical Bloch Equations

We now study the dynamics of the symmetric M scheme of Fig. 3.9 by means of the OBE, which

allows to describe spontaneous emission and dephasing more rigorously. Due to the similarity

of the symmetric and asymmetric M schemes, we consider the same spontaneous emission and

dephasing processes described in section 3.2.2. As a consequence, the master equation for

the atomic density operator σ is again given by Eq. (3.23), with the only difference that the

Hamiltonian HAS
eff is replaced by the corresponding Hamiltonian HS

eff of the symmetric scheme,

given by Eq. (3.44). The corresponding system of OBE’s is displayed in Appendix A.2.2 as

Eqs. (A.25) and (A.26), where we have used the definitions of Eqs. (3.24)-(3.26).

Also in this symmetric case, the OBE are less suited for an approximate analytical treatment

with respect to the AV equations of the preceding section. In fact, if we consider the conditions

|Ω1/Ω2| ≪ 1 and |Ω3/Ω4| ≪ 1 and, consistently with Eq. (3.47), we assume that

σ33 ≈ 1, (3.57a)

σjj ≈ 0, j = 1, 2, 4, 5, (3.57b)

at the steady state, it is possible to see that by inserting Eqs. (3.27) into Eqs. (A.26) for the

coherences, one gets a satisfactory expression for the probe linear susceptibility only. To be more

specific, only the approximate linear susceptibility fits well with the numerical solution of the

OBE. It is not easy to derive analytical expressions from Eqs. (A.25) and (A.26) for the nonlinear

susceptibilities which would be as simple as those of Eqs. (3.52) and which would reproduce in

the same way the exact numerical solution of the OBE within the EIT regime. Again, one

could exactly solve analytically the OBE, but the resulting expressions are very cumbersome

and not physically transparent as those of Eqs. (3.52). For this reason we will analytically derive

from the OBE the probe linear susceptibility only, and we will then use the OBE only for the

numerical determination of the atomic steady state. In addition, deriving this result will enable

us to draw a formal analogy between the AV and OBE treatments (see Eqs. (3.60) below).

The probe and trigger susceptibilities are now defined as

χP =
Nµ32

V ε0E1
σ32 = −N |µ32|2

V ~ε0Ω1
σ32, (3.58a)

χT =
Nµ34

V ε0E3
σ34 = −N |µ34|2

V ~ε0Ω3
σ34. (3.58b)

Using Eqs. (3.57) and performing a series expansion at the lowest order in the probe and trigger
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fields, we arrive at the following expressions for the probe and trigger linear susceptibilities

χ
(1)
P =

N |µ32|2
V ~ε0

δ12 − iγ13/2

[δ12 − iγ13/2] [δ1 − i (Γ2 + γ12) /2]− |Ω2|2
, (3.59a)

χ
(1)
T =

N |µ34|2
V ~ε0

δ34 − iγ53/2

[δ34 − iγ53/2] [δ3 − i (Γ4 + γ54) /2]− |Ω4|2
. (3.59b)

The probe linear susceptibility of Eq. (3.59a) coincides with that of the asymmetric M scheme

of Eq. (3.29), as it must be, since the linear properties of the probe in the two M schemes

are identical. Moreover, as noted before, due to the symmetry of the scheme, this probe linear

susceptibility coincides with that of the trigger of Eq. (3.59b) when the corresponding parameters

coincide, i.e., µ32 = µ34, δ1 = δ3, δ2 = δ4, Ω2 = Ω4, Γ2 = Γ4, γ54 = γ12 and γ53 = γ13. By

comparing Eqs. (3.59) with Eqs. (3.51), one can also see that the AV and OBE predictions for

the linear susceptibilities again coincide provided that the phenomenological decay rates ΓAV
i

are appropriately interpreted, i.e.,

ΓAV
2 ↔ Γ2 + γ12, (3.60a)

ΓAV
1 ↔ γ13, (3.60b)

ΓAV
4 ↔ Γ4 + γ54, (3.60c)

ΓAV
5 ↔ γ53. (3.60d)

This shows again that the intuitive interpretation of the phenomenological decay rates ΓAV
i as

spontaneous emission total decay rates for the excited states, and as dephasing rates in the case

of ground state sublevels, is essentially correct.

We then consider the numerical solution of the OBE and we compare it with the analytical

treatment based on the AV approach. The numerical calculations are again performed in the

limits discussed above, i.e., |Ω1|, |Ω2| ≪ |Ω3|, |Ω4| and we stay near the Raman resonance for both

the probe and the trigger. In Figs. 3.10-3.12 we compare the analytical solutions of Eqs. (3.51)

and Eqs. (3.52) with the numerical solution of the complete set of Bloch equations given in

the Appendix B. Fig. 3.10 shows the linear susceptibilities and refers to a perfectly symmetric

situation between probe and trigger, i.e., ΓAV
2 = Γ2 = ΓAV

4 = Γ4 = Γ = 2π × 6 MHz, Ω1 =

Ω3 = 0.08Γ, Ω2 = Ω4 = Γ, δ2 = δ4 = 0, ∀ i,j γij = ΓAV
1 = ΓAV

5 = 10−4Γ. As a consequence,

the probe and trigger linear susceptibilities as a function of the respective detunings δ1 and

δ3 are two indistinguishable curves. In such a case, group velocity matching is automatically

guaranteed whenever µ32 = µ34. Fig. 3.10 shows that Eqs. (3.51) work very well, except when

the detunings correspond to the maximum probe (or trigger) absorption. In such a case, the

detunings match the Rabi frequencies of the two pumps, and the probe (or trigger) field is in

resonance with a single atomic transition. The atoms are significantly pumped to the excited

levels and the population assumption of Eq. (3.47) is no more fulfilled.

Fig. 3.11 shows the cross-Kerr susceptibilities again in a perfectly symmetric situation be-

tween probe and trigger so that their plots as a function of the respective detunings δ1 and

δ3 exactly coincide. However, in order to reduce as much as possible the influence due to the

simultaneous presence of the self-Kerr susceptibility, we have considered a probe Rabi frequency

Ω1 much smaller than that of the trigger in the χ
(3,ck)
P plot and viceversa a trigger Rabi fre-

quency Ω3 much smaller than that of the probe in the χ
(3,ck)
T plot. To be more precise, Fig. 3.11

refers to ΓAV
2 = Γ2 = ΓAV

4 = Γ4 = Γ = 2π × 6 MHz, Ω2 = Ω4 = Γ, δ2 = δ4 = 0, ∀ i,j

γij = ΓAV
1 = ΓAV

5 = 10−4Γ, and Ω1 = 0.002Γ, Ω3 = 0.08Γ in the case of the χ
(3,ck)
P plot, and
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Figure 3.10: Comparison of the numerical solution (dotted line) of the OBE with the analytical

prediction of Eqs. (3.51) (full line) for the real part (above) and imaginary part (below) of both

probe and trigger linear susceptibilities versus their respective normalized probe detunings δ1/Γ

and δ3/Γ. Probe and trigger susceptibilities exactly overlap because we consider the perfectly

symmetric situation ΓAV
2 = Γ2 = ΓAV

4 = Γ4 = Γ = 2π×6 MHz, Ω1 = Ω3 = 0.08Γ, Ω2 = Ω4 = Γ,

δ2 = δ4 = 0, ∀ i,j γij = ΓAV
1 = ΓAV

5 = 10−4Γ, µ32 = µ34, which guarantees perfect group velocity

matching.

to Ω3 = 0.002Γ, Ω1 = 0.08Γ in the case of the χ
(3,ck)
T plot. We can see from Fig. 3.11 that the

AV approach gives a satisfactory description also for the cross-Kerr susceptibility, except when

probe or trigger absorption is maximum, as it happens for the linear case.

Finally Fig. 3.12 shows the self-Kerr susceptibilities again in a perfectly symmetric situation

between probe and trigger. As a consequence their plots versus the respective detunings δ1 and

δ3 exactly coincide. Here, in order to reduce the influence due to the simultaneous presence of

the cross-Kerr susceptibility, we have considered a trigger Rabi frequency Ω3 much smaller than

that of the probe in the χ
(3,sk)
P plot and viceversa a probe Rabi frequency Ω1 much smaller than

that of the trigger in the χ
(3,sk)
T plot. The parameters are the same as in Fig. 3.11, except that

here we have chosen Ω2 = Ω4 = 2Γ, Ω1 = 0.4Γ, Ω3 = 0.004Γ in the case of the χ
(3,sk)
P plot,

and Ω3 = 0.4Γ, Ω1 = 0.004Γ in the case of the χ
(3,sk)
T plot. The agreement between the AV

prediction and the numerical solution of the OBE is satisfactory.

3.4 Group velocity matching

As we have seen in section 3.2.3, the condition of group velocity matching is of fundamental

importance for achieving a large cross-phase modulation between probe and trigger fields. It is
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Figure 3.11: Comparison of the numerical solution (dotted line) of the OBE with the analytical

prediction of Eqs. (3.52c,d) (full line) for the real part (above) and imaginary part (below)

of both probe and trigger cross-Kerr susceptibilities versus their respective normalized probe

detunings δ1/Γ and δ3/Γ. Probe and trigger susceptibilities exactly overlap because we consider

a perfectly symmetric situation: ΓAV
2 = Γ2 = ΓAV

4 = Γ4 = Γ = 2π × 6 MHz, Ω2 = Ω4 = Γ,

δ2 = δ4 = 0, ∀ i,j γij = ΓAV
1 = ΓAV

5 = 10−4Γ; moreover we have chosen Ω1 = 0.002Γ, Ω3 = 0.08Γ

in the case of the χ
(3,ck)
P plot, and viceversa Ω3 = 0.002Γ, Ω1 = 0.08Γ in the case of the χ

(3,ck)
T

plot, in order to reduce as much as possible the influence of the self-Kerr susceptibilities.

evident from the inherent symmetry of the present scheme that the condition of equal probe and

trigger group velocities is automatically achieved when the corresponding parameters are equal

i.e., µ32 = µ34, δ1 = δ3, δ2 = δ4, Ω2 = Ω4, Γ2 = Γ4, γ54 = γ12 and γ53 = γ13, ω1 ≃ ω3. This

is the main advantage of the symmetric M scheme over the asymmetric one. The contribution

of the nonlinear susceptibilities to vg is negligible with respect to that of the linear one, which

is nonzero for both probe and trigger in this case (see Eqs. (3.50)). Therefore, approximating

χ with the linear contribution χ(1) and inserting Eqs. (3.51) into the definition (1.43), one gets

the following expressions for the two group indices

nP
g =

N |µ32|2
2V ~ε0

Re

{
d1

d1d2 − |Ω2|2
+
ω1

(
d2
1 + |Ω2|2

)

(d1d2 − |Ω2|2)2

}
, (3.61a)

nT
g =

N |µ34|2
2V ~ε0

Re

{
d5

d5d4 − |Ω4|2
+
ω3

(
d2
5 + |Ω4|2

)

(d5d4 − |Ω4|2)2

}
, (3.61b)

where we have used the definitions of Eqs. (3.46) for dj , j = 1, 2, 4, 5. The symmetry between

probe and trigger discussed above is evident also in these expressions. Eqs. (1.42) and (3.61)



3.4 Group velocity matching 61

−5 −4 −3 −2 −1 0 1 2 3 4 5
−1

−0.8
−0.6
−0.4
−0.2

0
0.2
0.4
0.6
0.8

1
x 10

−5

δ
1,3

/Γ
4

R
e{

χ(3
)

S
−

K
} 

(a
rb

itr
ar

y 
un

its
)

Numerical
Analytical

−5 −4 −3 −2 −1 0 1 2 3 4 5
0

0.5

1

1.5

2

2.5
x 10

−5

δ
1,3

/Γ
4

Im
{χ

(3
)

S
−

K
} 

(a
rb

itr
ar

y 
un

its
)

Numerical
Analytical

Figure 3.12: Comparison of the numerical solution (dotted line) of the OBE with the analytical

prediction of Eqs. (3.52a,b) (full line) for the real part (above) and imaginary part (below)

of both probe and trigger self-Kerr susceptibilities versus their respective normalized probe

detunings δ1/Γ and δ3/Γ. Probe and trigger susceptibilities exactly overlap because we consider

a perfectly symmetric situation: ΓAV
2 = Γ2 = ΓAV

4 = Γ4 = Γ = 2π × 6 MHz, Ω2 = Ω4 = 2Γ,

δ2 = δ4 = 0, ∀ i,j γij = ΓAV
1 = ΓAV

5 = 10−4Γ; moreover we have chosen Ω1 = 0.4Γ, Ω3 = 0.004Γ

in the case of the χ
(3,sk)
P plot, and viceversa Ω3 = 0.4Γ, Ω1 = 0.004Γ in the case of the χ

(3,sk)
T

plot, in order to reduce as much as possible the influence of the cross-Kerr susceptibilities.

are now compared with the corresponding ones obtained from the integration of the full set of

Bloch equations of Appendix A.2.2. The comparison is shown in Fig. 3.13, which refers to the

completely symmetric situation between probe and trigger defined above and therefore shows

exact group velocity matching for all values of the detunings δ1 = δ3. Fig. 3.13 shows an excellent

agreement between analytical and numerical results. The only points in which the two curves

do not coincide exactly are when the detunings match the Rabi frequencies of the two pumping

field. In fact in this conditions the fields are in resonance with a single atomic transition and

the atoms are pumped to the excited levels. The other points that determine the disagreement

are in the vicinity of the peaks. In fact in these regions the derivatives are small, because of the

change in slope of the real part of the susceptibilities. Hence, the group index of Eqs. (3.61) is

small, and the group velocity jumps near c.

In some cases, the perfectly symmetric conditions guaranteeing group velocity matching, i.e.,

µ32 = µ34, δ1 = δ3, δ2 = δ4, Ω2 = Ω4, Γ2 = Γ4, γ54 = γ12 and γ53 = γ13, are difficult to realize

in practice. In fact, sometimes it may be convenient to use transitions with different Clebsch-

Gordan coefficients, yielding therefore a significant discrepancy between µ32 and µ34. The other

symmetry conditions above are less problematic because detunings and Rabi frequencies can
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Figure 3.13: Group velocity of the probe and trigger pulses versus the normalized detunings

δ1/Γ = δ3/Γ. Lines denote the analytical predictions of Eqs. (1.42) and (3.61) (the full line refers

to the probe and the dashed line to the trigger). Circles and dots refer to the numerical solution

of the OBE for the probe and trigger group velocity, respectively. Parameters correspond to the

perfectly symmetric situation considered in Fig. 3.10, that is, ΓAV
2 = Γ2 = ΓAV

4 = Γ4 = Γ =

2π× 6 MHz, Ω1 = Ω3 = 0.08Γ, Ω2 = Ω4 = Γ, δ2 = δ4 = 0, ∀ i,j γij = ΓAV
1 = ΓAV

5 = 10−4Γ, and

we have chosen µ32 = µ34 = 10−29 C ·m, and N/V = 3.0 × 1013 cm−3. Due to symmetry, one

has perfect group velocity matching within a large interval of values for the detunings.

always be made equal by the experimenter, and moreover decay and dephasing rates, even

though not perfectly equal, are often comparable to each other. Just to give an example, one

could implement the symmetric M scheme of Fig. 3.9 by using the D1 and D2 line of the
87Rb spectrum.The Zeeman sublevels |5P1/2F = 1,m = 0〉 and |5P3/2F = 1,m = 0〉 could be

chosen as levels |2〉 and |4〉, respectively, while the Zeeman sublevels |5S1/2F = 1,m = −1〉,
|5S1/2F = 2,m = 1〉 and |5P1/2F = 1,m = 1〉 could chosen as levels |1〉, |3〉 and |5〉, respectively

(see also Ref. [59] for a similar choice). For these levels the atomic transitions related to the probe

and trigger have dipole moment matrix elements µ32, µ34 differing by a factor
√

10, violating

therefore the symmetry condition.

It is evident however that this slight asymmetry can be compensated (so that group velocity

matching can be still achieved in a restricted but still useful range of detunings) by properly

adjusting the Rabi frequencies of the tuner field Ω4 and of the coupling field Ω2, which will be

no more equal. In fact, by imposing group velocity matching at the center of the transparency

window, i.e., for δ12 = δ34 = 0, we derive the condition

Ω2 = αΩ4, (3.62)



3.4 Group velocity matching 63

−4 −3 −2 −1 0 1 2 3 4
−5000

−4000

−3000

−2000

−1000

0

1000

2000

3000

4000

5000

δ
1,3

/Γ

V
gp,

t  (
m

/s
)

probe numerical
probe analytical
trigger numerical
trigger analytical

Figure 3.14: Group velocity of the probe and trigger pulses versus the normalized detunings

δ1/Γ = δ3/Γ. Full lines denote the analytical predictions of Eqs. (1.42) and (3.61) (the thick

line refers to the probe and the thin line to the trigger). Circles and dots refer to the numerical

solution of the OBE for the probe and trigger group velocity, respectively. Parameters correspond

to the five–level scheme derived from the D1 and D2 lines of the 87Rb spectrum described in the

text, ΓAV
2 = Γ2 ≃ 36 MHz, ΓAV

4 = Γ4 ≃ 38 MHz, µ32 = 1.27 × 10−29 C·m, µ34 = 5.7 × 10−30

C·m, Ω4 = Γ, Ω2 = 2.22Γ, Ω1 = Ω3 = 0.08Γ, δ2 = δ4 = 0, ∀ i,j γij = ΓAV
1 = ΓAV

5 = 10−4Γ,

N/V = 3.0 × 1013 cm−3. The asymmetry between the two dipole moment matrix elements has

been compensated by adjusting the value of Ω2. In this way group velocity matching is achieved

within the entire EIT window.

where the correction factor α is given by

α =

√
|µ32|2
|µ34|2

ω1

ω3
. (3.63)

As shown in Fig. 3.14, if the adjustment condition of Eqs. (3.62) and (3.63) is taken into account,

one still gets equal probe and trigger group velocities in the case of the 87Rb five–level scheme

specified above, at least within the entire EIT window.

3.4.1 Role of the dephasings on absorption and group velocity match-

ing.

The studied M-scheme show good performances for the nonlinear interactions and for the group

velocity reduction even in presence of realistically dephasing process. Here we want to illustrate

how destructive are the dephasing process, in particular for the group velocities matching.

Group velocity matching is a crucial condition for the realization of a strong XPM. In previous
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Figure 3.15: Numerical estimation of the effects of the ground states dephasings on the probe

group velocity and on the linear absorption for the probe field. Parameters are Ω1 ≃ 0.08Γ4,

Ω2 ≃ 2Γ4, Ω3 ≃ 0.04Γ4 ,Ω4 ≃ Γ4 and δ1 = δ2 = 0 , and δ4 ≃ δ3 ≃ 20Γ4, with Γ4 ∼ 38Mhz, all

the dephasings of the ground state are assumed to be equal.

section we have taken dephasing process three order of magnitude smaller then the spontaneous

decay rate. Here we want to illustrate the effect of dephasing process on the matching of the

two group velocity for the two M-schemes studied in the previous sections, and the effect on

the imaginary part of linear susceptibility, i.e., on the absorption process. We have solved

numerically the master equation of both the M-schemes and we have plotted the group velocity

and the absorption in function of dephasing process γd. An improvement of the absorption in

the middle of the transparency window of an EIT profile take place, and the steep variation of

the real part of the linear susceptibility is reduced inducing on the pulse a larger group velocity.

This situation is depicted in Fig.3.15(a).

From Fig.3.15(b) we can see how the probe is more sensitive to the introduction of dephasing.

The result is that as we increase the dephasing, the absorption of the probe pulse grows, and

becomes several orders of magnitude larger, while the dispersion is less sensitive. The largest

effect of the increase of the dephasing on the trigger pulse is on its group velocity, which rapidly

increases (see Fig.3.15) and group velocity matching could be compromised.

The symmetry of the M-scheme, implies a better tolerance of group velocity matching against

dephasing (Fig.3.16). Fig.3.16 shows that increasing the dephasing, the absorption increases

and analytical prediction starts to fails. In fact absorption of the fields means that the system

start to have a non negligible probability of being in the excited level |2〉 and |4〉.
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Figure 3.16: Probe and trigger group velocity, Fig.3.16a, and the absorption at the center of

the transparency window Fig.3.16b, for the SMS scheme. The numeric calculation of the group

velocity (continuous line in Fig.3.16a) is compared with the analytical expression for the group

velocity provided by eq(3.61). It is evident how the group velocity matching starts to disagree

when absorption mechanisms become important and the population assumption b33 ≃ 1 is no

more well fulfilled. Parmeters are the same of Fig.(3.13).
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Chapter 4

Cross-phase modulation at the

single-photon level: Full quantum

calculation

Adopting a non degenerate perturbation theory, we analyze the performance, for QPG

implementation based on the symmetric M-scheme described semiclassically in the

previous chapter. The adoption of the perturbative treatment permits us to develop a

full quantum treatment of the system dynamics.

The performance, i.e. the conditional phase shift φ and fidelity F , of this two-qubit

quantum phase gate for travelling single-photon qubits is thoroughly examined in the

steady-state and transient regimes. In the steady-state regime, we find a general trade-

off between the size of the conditional phase shift and the fidelity of the gate operation.

However, this trade-off can be bypassed in the transient regime, where a satisfactory

gate operation is found to be possible, significantly reducing the gate operation time.

4.1 Introduction

In this chapter we perform a full quantum description of the interaction of two quantum probe

and trigger fields with Na in the five-level symmetric M-scheme, studied in the previous chapter

from the semiclassical point of view. The two quantum fields undergo cross-phase modulation

induced by EIT. The performance of this two-qubit quantum phase gate for travelling single-

photon qubits is thoroughly examined in the steady-state and transient regimes, by means

of a full quantum treatment of the system dynamics. In the steady-state regime, we find a

general trade-off between the size of the conditional phase shift and the fidelity of the gate

operation. However, this trade-off can be bypassed in the transient regime, where a satisfactory

gate operation is found to be possible, significantly reducing the gate operation time.

The scope of this chapter is to assess the performance of a two-qubit quantum phase gate

(QPG) for travelling single photon qubits [59, 66, 71, 77, 91–93], based on the cross-Kerr nonlin-

earity which is generated in a five-level atomic medium.
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Figure 4.1: Energy levels of the “M”-scheme. Ωj are the Rabi frequencies of classical fields, while

gp,t denote couplings of the quantized probe and trigger fields to their respective transitions. δj
are the detuning of the fields from resonance.

Most of the literature focused only on the evaluation of the CPS and on the best conditions

for achieving φ = π [59, 66, 71, 77, 91–93], while the gate fidelity, which is the main quantity

for estimating the efficiency of a gate, has been evaluated in the full quantum limit in Ref. [83]

for the first time. Here we provide the details of the calculation of the fidelity and the CPS

of Ref. [83], which showed the presence of a general trade–off between a large CPS and a gate

fidelity close to one, hindering the QPG operation, in the stationary state. However, we shall

see that this trade-off can be partially bypassed in the transient regime, which has never been

considered before in EIT situations, still allowing a satisfactory gate performance.

The qubits are given by polarized single-photon wave packets with different frequencies, and

the phase shifts φij are generated when these two pulses cross an atomic ensemble in a five-level

“M” configuration (see Fig. 4.1). The population is assumed to be initially in the ground state

|3〉. From this ground state, it could be excited by either the single-photon probe field, with

central frequency ωp and coupling to transition |3〉 ↔ |2〉, or by the single-photon trigger field,

with central frequency ωt and coupling to transition |3〉 ↔ |4〉. We assume that the five levels are

Zeeman sub-levels of an alkali atom, and that both pulses have a sufficiently narrow bandwidth.

In this way, the Zeeman splittings can be chosen so that the atomic medium is coupled only

to a given circular polarization of either the probe or trigger field, while it is transparent for

the orthogonally polarized mode, which crosses the gas undisturbed [59]. As a consequence, the

logical basis for each qubit practically coincides with the two lowest Fock states of the mode

with the “right” polarization, |0j〉 and |1j〉 (j = p, t), while the “wrong” polarization modes will

be neglected from now on.

A classical pump field, with frequency ω1 and Rabi frequency Ω1, couples to the transition

|1〉 ↔ |2〉, while a second classical pump field, with frequency ω4 and Rabi frequency Ω4, couples

to the transition |4〉 ↔ |5〉 (see Fig. 4.1). We consider a cylindrical, quasi-1D, atomic medium

with the two classical pump beams propagating along its axis, collinear with the two quantum

fields in order to avoid Doppler broadening. When the probe field is on two-photon resonance

with the pump field with Rabi frequency Ω1, and the trigger field is on two-photon resonance

with the pump field with Rabi frequency Ω4, the system exhibits EIT for probe and trigger
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simultaneously. As in the semiclassical SMS scheme this simultaneous EIT condition is achieved

when

δ1 = δ2, δ3 = δ4, (4.1)

where the detunings δj are defined by

E2 − E1 = ~ω1 + ~δ1, (4.2a)

E2 − E3 = ~ωp + ~δ2, (4.2b)

E4 − E3 = ~ωt + ~δ3, (4.2c)

E4 − E5 = ~ω4 + ~δ4. (4.2d)

A nonzero CPS occurs whenever a nonlinear cross-phase modulation (XPM) between probe and

trigger is present. For small frequency mismatch ǫ12 = δ1−δ2 and ǫ34 = δ3−δ4 (both chosen to be

within the EIT window), absorption remains negligible and the cross-Kerr interaction between

probe and trigger photons may be strong. The consequent CPS may become large, of the order

of π, if the probe and trigger pulse interact for a sufficiently long time. If the two single photon

pulses enter simultaneously the atomic medium, their interaction time tint is optimized when the

group velocities of the two pulses are equal, so that tint = L/vg, where vg is the common group

velocity of the pulses and L is the length of the gas cell. The inherent symmetry of the scheme

guarantees perfect group velocity matching for probe and trigger whenever δ1 = δ4, δ2 = δ3
and gp/Ω1 = gt/Ω4, where gj = µj

√
ωj/2~ǫ0Vj (j = p, t) is the coupling constant between the

quantum mode with frequency ωj and mode volume Vj , and the corresponding transition with

electric dipole moment µj .

The chapter is organized as follows. In Sec. 4.2 we describe the model used in the remainder

of the chapter. Sec. 4.3 shows the results of a perturbative calculation for the CPS. These are

used as a motivation to pass to a density matrix based calculations in Sec. 4.4, describing a

QPG operation in a steady-state. Then, the transient regime in explored in Sec. 4.5, while in

Sec. 4.7 a scheme for the experimental verification of the QPG operation is discussed in detail.

4.2 Model

In this Section, we present the model we have adopted for a full quantum description of the

interaction of the two single-photon wave-packets with the atomic medium possessing the level

structure outlined in Fig. 4.1. To this end, we make the following two assumptions which, even

though not simple to realize experimentally, are more technical than physical in nature:

1. We assume perfect spatial mode matching between the input single-photon pulses enter-

ing the gas cell and the optical modes naturally excited by the driven atomic medium,

and which are determined by the geometrical configuration of the gas cell and of the

pump beams [85]. This allows us to describe the probe and trigger fields with the right

polarization in terms of single travelling optical modes, with annihilation operators âp,t.

2. We assume that the pulses are tailored in such a way that they simultaneously enter gas

cell and completely overlap with it during the interaction (see Fig. 4.2). This means that

their length (compressed inside a medium due to group velocity reduction) is of the order
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L

d

Figure 4.2: A schematic plot of the assumed single-photon pulse propagation through the gas

cell of length L and diameter d (color online). The pulse length is assumed to coincide with the

cell length L, and the pulse waist w is assumed to be of order of cell diameter d.

of the cell length L and their beam waist is of the order of the cell radius. In this way, the

two pulses interact with all Na atoms in the cell at once, and moreover, one can ignore

spatial aspects of pulse propagation.

With these assumptions, and neglecting dipole-dipole interactions, the interaction picture Hamil-

tonian may be written as

H = ~ǫ12Ŝ11 + ~δ2Ŝ22 + ~δ3Ŝ44 + ~ǫ34Ŝ55 (4.3)

+~Ω1

√
Na

(
Ŝ21 + Ŝ12

)
+ ~gp

√
Na

(
âpŜ23 + Ŝ32â

†
p

)

+~gt

√
Na

(
âtŜ43 + Ŝ34â

†
t

)
+ ~Ω4

√
Na

(
Ŝ45 + Ŝ54

)
,

where we have defined the collective atomic operators

Ŝkl =
1√
Na

Na∑

i=1

σi
kl, k 6= l = 1, . . . , 5, (4.4)

Ŝkk =

Na∑

i

σi
kk, (4.5)

with σi
kl ≡ |k〉i〈l| being the operator switching between states k and l of the ith atom. The

initial state of the system corresponds to a probe and a trigger single-photon pulse with generic

polarization, simultaneously entering the medium in which all the atoms are initially in state

|3〉. Since we consider only the polarization mode interacting with the medium, both for the

probe and the trigger, the initial state can be written as

|ψin〉 =

Na⊗

i=1

|3〉i ⊗ (c00|0p〉 ⊗ |0t〉 + c01|0p〉 ⊗ |1t〉

+c10|1p〉 ⊗ |0t〉 + c11|1p〉 ⊗ |1t〉) . (4.6)

Due to the above assumptions, the passage of the two pulses through the atomic medium of

length L corresponds to the time evolution of this state, for a time tint = L/vg, according to
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the master equation [6]

σ̇ = − i

~
[H, σ] +

∑

k

γkk

2

Na∑

j=1

(
2σj

kkσσ
j
kk − σj

kkσ − σσj
kk

)
,

+
∑

kl

γkl

2

Na∑

j=1

(
2σj

klσσ
j†
kl − σj†

klσ
j
klσ − σσj†

klσ
j
kl

)
, (4.7)

including not only the coherent interaction described by the Hamiltonian of Eq. (4.3), but

also the spontaneous emission from the excited states l = 2, 4 to the ground states k = 1, 3, 5

(γkl denotes the corresponding decay rate) and the dephasing of levels |k〉, k = 1, 2, 4, 5, with

dephasing rate γkk. Typically the dephasing rates are much smaller than the decay rates,

γkl ≫ γkk, ∀ k, l.
Since the initial state of Eq. (4.6) contains at most two excitations, the coherent time evolu-

tion driven by Eq. (4.3) is simple and restricted to a finite-dimensional Hilbert space involving

few symmetric collective atomic states. In fact, each component of the initial state of Eq. (4.6)

evolves independently in a different subspace. The component with no photon is an eigenstate

of H and does not evolve. The
⊗Na

i=1 |3〉i|0p〉 ⊗ |1t〉 component evolves in a three-dimensional

Hilbert space which it spans together with the two states |e(0,0)
4 〉 and |e(0,0)

5 〉. Here, we have

defined the symmetric collective states

|e(np,nt)
r 〉 =

1√
Na

Na∑

i=1

|31, 32, . . . , ri, . . . , 3Na
〉 ⊗ |np〉 ⊗ |nt〉, (4.8)

where r = 1, 2, 4, 5. In a similar fashion, the component with only one probe photon evolves in

a three-dimensional Hilbert space spanned by the three states
⊗Na

i=1 |3〉i|1p〉 ⊗ |0t〉, |e(0,0)
1 〉 and

|e(0,0)
2 〉. The component with one probe and one trigger photon evolves in the five dimensional

subspace spanned by the four collective states |e(0,1)
1 〉, |e(0,1)

2 〉, |e(1,0)
4 〉, and |e(1,0)

5 〉 and the state⊗Na

i=1 |3〉i|1p〉 ⊗ |1t〉.

4.2.1 Decoherence Effects

Decoherence effects, and more specifically spontaneous emission from each atom complicates

this dynamics. However, we are in the weak excitation limit where, for l 6= 3, 〈σj
ll〉 ≃ N−1

a ≪ 1,

as shown by the fact that the Hamiltonian dynamics involve only the symmetric atomic states

of the form of Eq. (4.8). This limit allows a drastic simplification of the effective time evolution.

Following Duan et al. [86], we can introduce Fourier transforms of the individual atomic operators

sµ
kl =

∑Na−1
j=0 σj

kle
ijµ/Na/

√
Na, where s0kl = Ŝkl are the collective operators defined in Eq. (4.4).

The sum over the atoms in Eq. (4.7) then transforms to the sum over the collective atomic

modes with index µ. In the weak excitation limit, the operators sµ
kl approximately commute

with each other. This means that they represent independent collective atomic modes, and one

can trace over the µ 6= 0 modes, so that the spontaneous emission term in the master equation

becomes ∑

kl

γkl

2

(
2ŜklσŜ

†
kl − Ŝ†

klŜklσ − σŜ†
klŜkl

)
, (4.9)

where the sum is now over the six “collective” spontaneous decay channels only, each character-

ized by the single-atom decay rate γkl. A similar argument applies to the dephasing term in the
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master equation (4.7). In fact, if we restrict to the subspace of the symmetric collective states of

Eq. (4.8) involving only single atomic excitations, we can approximate in the dephasing terms

of the master equation,
∑

k

γkk

Na∑

j=1

σj
kkσσ

j
kk ≃

∑

k

γkkŜkkσŜkk, (4.10)

where Ŝkk is given by Eq. (4.5). Using Eqs. (4.9) and (4.10), the master equation of Eq. (4.7)

in the weak excitation limit becomes

σ̇ = − i

~
[H, σ] +

∑

k

γkk

2

(
2ŜkkσŜkk − Ŝkkσ − σŜkk

)

+
∑

kl

γkl

2

(
2ŜklσŜ

†
kl − Ŝ†

klŜklσ − σŜ†
klŜkl

)
, (4.11)

that is, it involves only the operators of the collective atomic mode with index µ = 0. This

actually means that the single photon probe and trigger pulses excite only a restricted number

of collective atomic states, so that the atomic medium behaves as an effective single 5-level atom,

with a collectively enhanced coupling with the optical modes gj

√
Na, but with single-atom decay

rates γkl, dephasing rates γkk, Rabi frequencies Ωi, and detunings δi.

Spontaneous emission causes the four independent Hilbert subspaces corresponding to the

four initial state components to become coupled. Moreover, the “cross” decay channels |4〉 →
|1〉 and |2〉 → |5〉 couple the above-mentioned collective states with six new states, |e(1,0)

1 〉,
|e(1,0)

2 〉, |e(2,0)
3 〉 (populated if γ41 6= 0), and |e(0,1)

5 〉, |e(0,1)
4 〉, |e(0,2)

3 〉 (populated if γ25 6= 0).

Therefore Eq. (4.11) actually describes dynamics in a Hilbert space of dimension 18, which we

have numerically solved in order to establish the performance of the QPG. Notice that, due to

the combined action of the cross-decay channels and of the Hamiltonian (4.3), the states |e(1,0)
1 〉,

|e(1,0)
2 〉, |e(0,1)

5 〉 and |e(0,1)
4 〉 are coupled also to doubly excited atomic collective states without

photons which are neglected by our treatment. However, as we shall see below in the chapter, a

good QPG performance is possible only when spontaneous emission events are rare. Under this

condition, the probability to populate these doubly excited atomic collective states during the

atom-field interaction is completely negligible, and therefore our model based on the effective

single five-level atom description provided by Eq. (4.11) is essentially correct.

4.2.2 Definition of the Fidelity

The main objective of this work is the determination of the performance of the full optical

quantum phase gate. The quantity to be evaluated is the fidelity, that in general is a measure of

how much an output state overlap the state of an ideal device. Evaluate the Fidelity is of crucial

importance to realize if an all optical quantum phase gate can be used in realistic technological

devices.

Here to characterize the QPG operation, we calculate both the CPS φ of Eq. (1.64) and

the fidelity of the gate. The accumulated CPS φ as a function of the interaction time tint is

obtained by using the fact that the phase shifts φij of Eq. (1.64) are given by combinations of

the phases of the off-diagonal matrix elements (in the Fock basis) of the reduced density matrix

of the probe and trigger modes, σf (t) = Tratoms{σ(t)}.
The gate fidelity is given by [24]

F(t) =

√
〈ψid(t) |σf (t)|ψid(t)〉, (4.12)
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where

|ψid(t)〉 = c00 exp{iφ00(tint)}|0p, 0t〉 + c01 exp{iφ01(t)}|0p, 1t〉 + c10 exp{iφ10(t)}|1p, 0t〉 +

+c11 exp{iφ11(t)}|1p, 1t〉 (4.13)

is the ideally evolved state from the initial condition (4.6), with phases φij(t) evaluated from

σf (t) as discussed above. The overbar denotes the average over all initial states (i.e., over the

cij , see Poyatos et al. [87]). The above fidelity characterizes the performance of the QPG as

a deterministic gate. However, one could also consider the QPG as a probabilistic gate, whose

operation is considered only when the number of output photons is equal to the number of input

photons. This analysis will be performed by means of the quantum trajectories analysis (A.3).

The performance of this probabilistic QPG could be experimentally studied by performing a

conditional detection of the phase shifts, and it is characterized by the conditional fidelity

Fc(t), which will be discussed in Sec. 4.4.

4.3 Perturbative Regime

Now that we have clarified how we will evaluate the two quantities that characterize the QPG

we analyze the system in the perturbative regime. The conditional fidelity is always larger

than the unconditional one, but they become equal (and both approach 1) for an ideal QPG

in which the number of photons is conserved and all the atoms remain in state |3〉. This ideal

condition is verified in the limit of large detunings δj ≫ γkj so that spontaneous emission is

significantly suppressed and can be neglected, and very small couplings gj

√
Na ≪ Ωj . In this

limit, each component of the initial state of Eq. (4.6) practically coincides with the dark state of

the four independent Hamiltonian dynamics discussed in Sec. 4.2. The system with the initial

state containing zero probe and trigger photons does not evolve, i.e. stays in the initial state⊗Na

i=1 |3〉i|0p〉 ⊗ |0t〉 all the time. The subsystem containing one probe and zero trigger photons

as the initial state evolves according to a reduced three-dimensional Hamiltonian, which in the

basis formed by the states
⊗Na

i=1 |3〉i|1p〉 ⊗ |0t〉, |e(0,0)
2 〉 and |e(0,0)

1 〉, is given by

Hp =




0 gp

√
Na 0

gp

√
Na δ1 Ω1

0 Ω1 ǫ1



 . (4.14a)

Similarly, the subsystem containing one trigger and zero probe photons as the initial state evolves

according to a reduced three-dimensional Hamiltonian, which in the basis formed by the states⊗Na

i=1 |3〉i|0p〉 ⊗ |1t〉, |e(0,0)
4 〉 and |e(0,0)

5 〉, is given by

Ht =




0 gt

√
Na 0

gt

√
Na δ3 Ω4

0 Ω4 ǫ2



 . (4.14b)

Finally, the subsystem containing initially one photon each in probe and trigger modes evolves

according to a reduced five-dimensional Hamiltonian, which in the basis formed by the states
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|e(0,1)
1 〉, |e(0,1)

2 〉, ⊗Na

i=1 |3〉i|1p〉 ⊗ |1t〉, |e(1,0)
4 〉, and |e(1,0)

5 〉, is given by

Hpt =




δ1 Ω1 gp

√
Na 0 0

Ω1 ǫ1 0 0 0

gp

√
Na 0 0 gt

√
Na 0

0 0 0 δ3 Ω4

0 0 gt

√
Na Ω4 ǫ2



. (4.14c)

The phase accumulation experienced by the various components of the quantum state of the

fields will be proportional to the eigenvalues of these matrices. The four phase shifts φij can be

evaluated as a fourth-order perturbation expansion of the eigenvalue corresponding to the dark

state in each subspace, multiplied by the interaction time tint. The CPS is then calculated as

φ = (λHpt
− λHp

− λHt
)tint, (4.15)

where the λ’s denote the eigenvalues of the corresponding reduced Hamiltonian, with λpt ↔ φ11,

λp ↔ φ10, λt ↔ φ01 and φ00 = 0, in agreement the with general definition of Eq. (1.64)

φ = φ11 + φ00 − φ10 − φ01.

Then the conditional phase shift have to be evaluated calculating the eigenvalues of the previ-

ous hamiltonian. This has been done adopting a fourth order perturbation theory, where the

perturbation parameters are the small single photon coupling gp and gt (see Appendix B). The

order of perturbation, the fourth, is needed to take into account the effects that depends on

the square of the probe and trigger coupling gp and gt to which the cross Kerr interaction is

proportional.

Following the procedure described in the Appendix B, the zeros order eigenvalues are

λt
± =

δ3 − ǫ2
2

±
√(δ3 − ǫ2

2

)2

+ Ω2
4, (4.16)

λp
± =

δ1 − ǫ1
2

±
√(δ1 − ǫ1

2

)2

+ Ω2
2. (4.17)

At second order we get (see Appendix B)

δλ
(2)
trigger = −g2

t Ω
2
4

[ 1

λt
+(Ω2

4 + d2
+,t)

+
1

λt
−(Ω2

4 + d2
−,t)

]
, (4.18)

where with d±,t = λt
± − δ3. The correction of the eigenvalues at the fourth order is

δλ
(4)
trigger = g4

t Ω4
4

[ 1

λt
+(Ω2

2 + d2
+,t)

+
1

λt
−(Ω2

4 + d2
−,t)

]
×
[ 1

(λt
+)2(Ω2

2 + d2
+,t)

+
1

(λt
−)2(Ω2

4 + d2
−,t)

]
.

(4.19)

In the case of the probe field, it is sufficient replace λt
± → λp

±, gt → gp, and Ω4 → Ω2.

The phases φ10 and φ01 of the QPG are defined by

φ01 = (λt
± + δλ

(2)
trigger + δλ

(4)
trigger)tint, (4.20)

φ10 = (λp
± + δλ

(2)
probe + δλ

(4)
probe)tint. (4.21)
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We have illustrated the solution for the trigger field, the same results holds for the probe up to

a suitable redefinition of d±,p = λp
± − δ1. Now we calculate the eigenvalues of the Hpt matrix,

that will include a cross Kerr interaction term. We proceed as before for the Hamiltonian that

describes the single photon evolution. The unperturbed eigenvalues for matrix Hpt are the same

of the two separate cases Hp and Ht, the second and third order perturbative terms are

δλ
(2)
pt = −g2

t Ω
2
4

[ 1

λt
+(Ω2

4 + d2
+,t)

+
1

λt
−(Ω2

4 + d2
−,t)

]

−g2
pΩ

2
2

[ 1

λp
+(Ω2

2 + d2
+,p)

+
1

λp
−(Ω2

2 + d2
−,p)

]
. (4.22)

Adopting the Λt,p and Θt,p variables defined by eq(B.17) to simplify the expressions, we obtain

an expression that gives the fourth order term of the eigenvalue of the Hpt matrix that describe,

in practice, the conditional interaction

φ11 = δλ
(4)
pt =

[
g2

t Ω2
4Λt + g2

pΩ2
2Λp

][
g2

t Ω2
4Θt + g2

pΩ2
2Θt

]
tint. (4.23)

This term is the key term, responsible for the cross-phase modulation. In fact expanding the

product we obtain four terms. The two proportional to g4
pΩ4

2 and g4
t Ω4

4 cancel with the λ
(4)
Ht

and

λ
(4)
Hp

, and the residual terms give the conditional phase shift. In fact putting all these results

together and applying eq.(1.64) we have

φ = (λ
(4)
pt − δλ

(4)
probe − δλ

(4)
trigger)tint = g2

pg
2
t Ω2

2Ω
2
4tint

{
ΛtΘp + ΛpΘt

}
. (4.24)

After some algebra we arrive at the expression for the CPS

φ =
g2

pg
2
tN

2
a tint

(ǫ34δ3 − Ω2
4)(ǫ12δ1 − Ω2

1)
×
[
ǫ34(ǫ

2
12 + Ω2

1)

(ǫ12δ1 − Ω2
1)

+
ǫ12(ǫ

2
34 + Ω2

4)

(ǫ34δ3 − Ω2
4)

]
. (4.25)

This prediction is verified by the numerical solution of Eq. (4.11) in the limit of large detunings

and small couplings.

However the resulting CPS is too small, even for very long interaction times (i.e., long gas

cells): for example, for gp,t

√
Na = 0.5 MHz, ǫ12,34 = 1.9 MHz, Ω1,4 = 65 MHz and δ1,3 = 1.9

GHz, we obtain a tiny CPS of only 3 × 10−4 radians when tint = 10−4 s, which corresponds to

L ≃ 30 Km. This is not surprising because this limit corresponds to a dispersive regime far from

EIT. In this regime, transparency is achieved by means of a strong coupling field, producing a

well-separated Autler-Townes doublet [6]. At the same time, the size of nonlinearity is small due

to the extremely weak coupling of the quantized fields to their respective transitions. The results

are, therefore, not different from those expected from XPM in a standard nonlinear optical fiber.

Therefore, one has to explore the non-perturbative regime of larger couplings in order to exploit

the low-noise, large-nonlinearity properties of EIT and achieve a satisfactory QPG operation.

4.4 Steady-State QPG Operation

A large amount of work exploring EIT-based nonlinear optical phenomena considers the steady-

state of a generic EIT-based system as being the natural state in which to predict and test
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Figure 4.3: Conditional phase shift as a function of the interaction time for Na = 108, δ1 =

δ3 = 7.5γ, ǫ12 = ǫ34 = 0.05γ,gp = gt = 0.0011γ, Ω1 = Ω4 = 1.875γ and γkk = γph = 10−3γ, ∀ k.
We have taken equal decay rates, γ21 = γ23 = γ25 = γ41 = γ43 = γ45 = γ/3, with γ = 2π × 6

MHz. Solid line represents the phase shift, as calculated from the full master equation, while

the dashed line gives the perturbative prediction of Eq. (4.25).

different phenomena [13,18,59,76]. We shall see in this Section that it is not possible to achieve

a satisfactory QPG performance in such a steady-state regime.

In this Section, we analyze the performance of the QPG at the steady state. To this end, we

consider two different parameter regimes:

(i) the regime of long interaction times, a natural extension of the perturbation analysis of

Sec. 4.3,

(ii) the regime of short interaction times, corresponding to a non-perturbative regime with

strong atom-field coupling.

4.4.1 Long Interaction Time

Naturally extending the perturbative analysis, we solve the master equation (4.11), and show

the results in Figs. 4.3 and 4.4. Fig. 4.3 shows the result for the conditional phase shift. Solid

line has been calculated from the solution of Eq. (4.11), as explained in Sec. 4.2. The dashed

line is the ‘benchmark’ solution, obtained from the eigenvalues of the associated Hamiltonian,

by using Eq. (4.15). The eigenvalues of the Hamiltonians of Eqs. (4.14) have been calculated

numerically for the set of parameters of Fig. 4.3.

It is evident that the ‘benchmark’ solutions offers a reasonably good estimate for the size

of the CPS. The exact dynamics driven by the master equation (4.11) presents an additional

oscillatory behavior both on a short time scale (transient processes), and on a long-time scale.

The longer time scale comes from the fact that to induce the cross-Kerr nonlinearity, one has

to detune the fields away from the dark resonance. This detuning is very small and is seen in
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Figure 4.4: Gate fidelity of Eq. (4.12) versus the interaction time, for the same set of parameters

as in Fig. 4.3. The solid line is the unconditional gate fidelity F(t), while the dot-dashed line is

the conditional one, Fc(t).

the oscillations on a long time-scale. As both probe and trigger fields are detuned by the same

amount, only one frequency of long-time oscillations is observed.

In Fig. 4.4, fidelities (averaged over all possible two-qubit initial states) are shown in two

cases. Both are calculated by using Eq. (4.12), but they differ in the way σf (t) is defined. The

solid line in Fig. 4.4 refers to the unconditional fidelity F(t), which is calculated from Eq. (4.12)

by taking σf (t) = Trat{σ(t)}, where σ(t) is the solution of the master equation (4.11). The

unconditional fidelity quantifies the performance of the QPG as a deterministic gate for single-

photon qubits.

The dot-dashed line in Fig. 4.4 refers to the conditional fidelity Fc(t), which is evaluated ac-

cording to Eq. (4.12), but with σf (t) replaced by σc
f (t) = Trat{|ψnj(t)〉〈ψnj(t)|}/〈ψnj(t)|ψnj(t)〉,

where |ψnj(t)〉 is the (non-normalized) evolved atom-field state conditioned to the detection of

no quantum jumps [112], i.e., of no photon loss by spontaneous emission. This fidelity can

be measured by post-selecting those measurement results that conserve photon number, i.e.,

discarding those data sets where at least a photon from the initial two-qubit state has been

lost to the environment. The conditional fidelity quantifies the performance of the QPG as a

probabilistic two-qubit gate.

In Figs. 4.3 and 4.4, we have found at best a CPS of ∼ π in correspondence with fidelities

F(tint) and Fc(tint) equal to 60% and 80%, respectively. This is due to the general presence

of a trade-off between the size of the CPS and of the gate fidelity, as well as to the atomic
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Figure 4.5: Conditional phase shift as a function of the interaction time for Na = 108, δ1 = δ3 =

9.5γ, ǫ12 = ǫ34 = 0.2γ, gp = gt = 0.018γ and Ω1 = Ω4 = 19γ and γkk = γph = 10−3γ, ∀ k. We

have taken equal decay rates, γ21 = γ23 = γ25 = γ41 = γ43 = γ45 = γ/3, with γ = 2π × 6 MHz.

Solid line represents the phase shift, as calculated from a density matrix, while the dashed line

gives the eigenvalue solution.

dephasing 1. This is an important result of our chapter, which actually holds true in any EIT-

based nonlinear optics systems. In fact, both the conditional and the unconditional gate fidelity

approach 1 in the limit of very small gj, but this limit yields a CPS which becomes appreciable

only for unrealistically long gas cells. Therefore a larger CPS requires a larger ratio gj

√
Na/Ωj .

This condition however increases the population of the collective atomic states |e(np,nt)
1 〉 and

|e(np,nt)
5 〉 at the expense of the initial atomic state |3〉, thus unavoidably decreasing the gate

fidelity. Similar conclusions hold for other options, such as increased detunings δj , or adjusting

two-photon detunings ǫij . Therefore, just the pure coherent unitary evolution of the system,

governed by the Hamiltonian of Eq. (4.3) causes this inherent trade-off.

4.4.2 Short Interaction Time

To further illustrate our findings, we calculate the CPS and the gate fidelities in the range of

parameters where the total interaction time is an order of magnitude smaller than in Sec. 4.4.1.

The CPS and the gate fidelities are calculated as described in Sec. 4.4.1, and the results are

shown in Figs. 4.5 and 4.6. To obtain a CPS of the order of π in a shorter interaction time

(tint ∼ 50/γ), we have assumed a larger ratio gj

√
Na/Ωj. The trade-off between the amount of

accumulated nonlinear phase shift and the gate fidelity is now even more pronounced: we find

at best a CPS of ∼ π in correspondence with fidelities F(tint) and Fc(tint) equal to 65% and

73%, respectively. As expected, having a stronger atom-field coupling enhances the processes

1Without the dephasing, steady-state fidelities reach the values of 77% and 83% for unconditional and condi-

tional cases, respectively
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Figure 4.6: Fidelity, averaged over the initial states of a two-qubit system, for the same set of

parameters as in Fig. 4.5. Solid line is the unconditional gate fidelity, while dot-dashed line is

the conditional one.

lowering the fidelity. The system ends up with a large CPS faster, but this is achieved with a final

state in which the probability of loosing the probe and trigger photons by spontaneous emission

or within the atomic medium is no more negligible. We notice that in this short interaction

time case dephasing does not have an appreciable effect, that is, the results without dephasing

are indistinguishable from those with dephasing shown in Figs. 4.5 and 4.6, due to fact that

dephasing rates in a dilute gas are typically much smaller than decay rates. The only possible

way to circumvent this trade-off is to explore the transient regime, which will be discussed in

the following Section.

4.5 QPG Operation in Transient Regime

In Sec. 4.4, we have found that the QPG operation of EIT-based nonlinear system in a steady-

state is plagued by the trade-off between the phase shift size and the gate fidelity. In an

attempt to find favorable conditions for the QPG operation, we consider the transient regime,

when γtint . 1. As discussed above, in order to accumulate a significant CPS in such a short

time one has to consider the strong coupling regime with a large ratio gj

√
Na/Ωj. Therefore,

the trade-off between fidelity and a large nonlinear interaction is present also in the transient

regime. However, when gj

√
Na/Ωj is large, the transient dynamics is characterized by Rabi-like

oscillations of the atomic populations and of the photon number, determining, as a consequence,

coherent oscillations of the gate fidelity. In such a case one cannot exclude the existence of special

values of the interaction time tint corresponding to a maximum of the gate fidelity close to one,

and at the same time, to a value of the CPS close to π.
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Figure 4.7: Fidelity of the QPG operation for Na = 108, δ1 = δ3 = 15γ, ǫ12 = ǫ34 = 0.01γ,

gp = gt = 0.0022γ, Ω1 = Ω4 = 4γ and γkk = γph = 10−3γ, ∀ k. We have taken equal decay

rates, γ21 = γ23 = γ25 = γ41 = γ43 = γ45 = γ/3, with γ = 2π × 6 MHz. The unconditional

fidelity (solid) and conditional fidelity (dashed) are shown. See text for details.

We show that this fact is actually possible in Figs. 4.7 and 4.8, where we see that a CPS of

∼ π radians is obtained in the transient regime for tint ≈ 0.4/γ ∼ 10 ns. At the same interaction

time, the unconditional gate fidelity (Fig. 4.7, full line) is about 94%, while the conditional gate

fidelity reaches the value of 99% (Fig. 4.7, dashed line). The conditional gate fidelity is obtained

in correspondence with a success probability of the gate equal to 0.94, calculated from the norm

of the Monte-Carlo wave function [112]. The probe and trigger group velocities are calculated

to be vg ≃ 3 × 106 ms−1, yielding a gas cell length L = vgtint ≃ 3.1 cm. The value of gj yields

an interaction volume V ≃ 2 · 10−3 cm3, corresponding to a gas cell diameter of about 330 µm

and to an atomic density Na/V ≃ 5 · 1010 cm−3.

It is interesting to note that the quantity that we calculate, the conditional phase shift φ,

effectively depends upon the mutual interaction that takes place between the probe and trigger

photons when the M type interaction take place. This can be argued from Fig4.9a. This figure

shows that for the interaction time for which we have the π conditional phase shift and the

maximum in fidelity, corresponds to a maximum of probability of finding the atoms in the level

|3〉. More important, when the probability of having the fields in the Fock states |0, 1〉, |1, 0〉,
and |1, 1〉 are in phase at their maximum, we get simultaneously the maximum fidelity F and

the maximum CPS.

The maximum value of the CPS is obtained when the nonlinear cross Kerr interaction takes place;

and this happens when the probability of being in states |0, 1〉, |1, 0〉, and |1, 1〉 is simultaneously

maximum. Moreover the fact that the oscillating collective atomic state returns to the level |3〉
(see Fig.4.9b), ensures the high fidelity of the transient process.

A comment about the calculation of the common group velocity of the two wave-packets, vg,

is in order. As mentioned earlier, EIT is stationary phenomenon, and in fact, the conventional
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Figure 4.8: Conditional phase shift φ versus the interaction time, for the parameters of Fig. 4.7.

See text for details.

vg is a steady-state quantity which it is obtained from the susceptibility χ according to eq.(4.26)

vg = c

[
1 +

1

2
Re[χ] +

ω0

2

(
∂Re[χ]

∂ω

)

ω0

]−1

(4.26)

(ω0 is the central frequency of wave-packet), where the susceptibility of the j-th field, χj (j =

p, t), is evaluated from the associated steady-state atomic coherence σss
j as

χj =
N |µj|2
V ~ε0Ωj

σss
j . (4.27)

Instead, the above results are obtained in the transient regime where γtint < 1, and for this

reason we have estimated the group velocity in a different way. We have evaluated the relevant

time-dependent atomic coherence σj(t) and the corresponding “instantaneous susceptibility”

χj(t) from the reduced atomic density matrix σred(t) = Trfields{σ(t)}, with σ(t) being the

solution of Eq. (4.11). The corresponding “instantaneous”group velocity vg(t) has been then

averaged over the time interval between 0 and tint, providing in this way our estimate of the

“transient” non-stationary group velocity of the single-photon wave-packets. For the parameters

of Figs. 4.7 and 4.8, this non-stationary vg is approximately equal to c/100 and it is about one or-

der of magnitude smaller than the conventional vg obtained from the steady-state susceptibility.

This appreciable slowing down of the group velocity is a signature of a sort of “non-stationary”

EIT process.

In order to verify that this non-stationary dynamics are really reminiscent of EIT, in the

next subsection we compare these results with a numerical study of the three-level ladder atomic

scheme (see Fig. 4.10), yielding XPM without EIT. Here we anticipate that we have found a

smaller gate fidelity (∼ 78%) for a corresponding set of parameters, providing therefore further
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Figure 4.9: Figure (a) shows the Rabi oscillations of the probability of finding the system in

level |0, 0〉, |1, 0〉, |0, 1〉, |1, 1〉, respectively, when the atom is on atomic level |3〉. Fgure (b)

shows the probability of finding the atoms in the atomic level |3〉.

support to the presence of a moderate, non-stationary EIT process in the transient dynamics of

our five-level M scheme.

4.5.1 The Conventional Three-Level Scheme

The atomic ladder scheme (see Fig. 4.10) is well-known to exhibit XPM of the two fields in-

volved [13]. In order to achieve a reasonable size of cross-phase shift, the detuning of the

intermediate state δp needs to be large. This minimizes spontaneous emission (∼ γ2/δ
2
p), but

also the size of XPM ∼ 1/δ2p.

In order to evaluate the XPM in a manner comparable to what we have done for the M-

scheme, we make similar assumptions and arrive at a description analogous to the one described

in Sec. 4.2. The Hamiltonian is now given by

H3 = ~δpŜ22 + ~(δp − δt)Ŝ33 + ~gp

√
Na

(
âpŜ21 + Ŝ12â

†
p

)

+~gt

√
Na

(
âtŜ23 + Ŝ32â

†
t

)
. (4.28)

Following the same reasoning as in Sec. 4.2, we arrive at the effective master equation (we neglect

here atomic dephasing)

σ̇ = L3σ = − i

~
[H3, σ] +

γ21

2

(
2Ŝ12σŜ21 − Ŝ21Ŝ12σ − σŜ21Ŝ12

)

+
γ32

2

(
2Ŝ23σŜ32 − Ŝ23Ŝ32σ − σŜ23Ŝ32

)
, (4.29)

where γ12 and γ23 denote the spontaneous emission rates from levels |2〉and|3〉 to levels |1〉and|2〉
respectively, and the operators Ŝij denote collective atomic operators, in the spirit of Eq. (4.4).

The results of the calculation of unconditional quantities are shown in Fig. 4.11, for a pa-

rameter regime comparable to that discussed above for the five-level M scheme. The atoms are

assumed to be in the collective state
⊗Na

i=1 |2〉i initially, as this is found to give better results.
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Figure 4.10: Energy levels of the ladder scheme. gp,t denote couplings of the quantized probe

and trigger fields to their respective transitions. δp,t are detunings of the probe and trigger fields

from resonance.

The reason is a more efficient photon-photon interaction since the initial state is symmetric with

respect to probe and trigger photons. At the interaction time tint ≈ 0.12/γ, the CPS reaches the

value ∼ π and at the same time the unconditional fidelity is found to be ∼ 78%. It is possible

to see that the conditional fidelity, even though higher, always remains significantly lower than

that obtained in the M -scheme.

Therefore, we conclude that the optimal results for the QPG operation can be found in the

“transient EIT-regime”. The general trade-off between the nonlinear phase shift and the fidelity

is still present, but it is compensated by the transient oscillations in the populations of atomic

levels. In fact, the numerical results show that, in the parameter regime under consideration, the

population of the excited states |e(np,nt)
2 〉 and |e(np,nt)

4 〉 is always negligible, and one has coherent

oscillations of the population between the states |e(np,nt)
1 〉, ⊗i |3〉i ⊗ |np, nt〉 and |e(np,nt)

5 〉. At

the interaction time tint corresponding to the maxima of the gate fidelity in Fig. 4.7, atoms

are largely found in state
⊗

i |3〉i ⊗ |np, nt〉, and the relative populations and phase relations

between the states of the two photonic qubits are consistent with the “ideal” state of Eq. (4.13).

4.6 QPG operation with longer pulses

In a recent experiment [98], performed in Paris by the group of Grangier, a single photon emitter

has been realized. This single photon source adopts a coherent adiabatic passage procedure on

a single multilevel Rubidium atom. The atomic transition involved in the experiments are the

same we have used to propose the experimental implementation of the all-optical quantum phase

gate. This experiment produces a single photon pulse of a duration determined by the lifetime

of the excited level and it is therefore ...... and approximately equal to 25 nsec.

In this section we recalculate numerically the conditional dynamics, and the expected group

velocity adopting the properties and the parameters of the pulses generated in the recent exper-

iment [98]. The pulses’ duration for the Grangier experiment is more or less the double of that

one we adopted in the section of the transient regime. Assuming that the probe and trigger

fields are single photon pulses of duration of 25 nanoseconds, compared to the previous set up
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Figure 4.11: Average fidelity (top figure) and conditional phase shift (bottom figure) as a func-

tion of time for the three-level ladder scheme of Fig. 4.10 and for Na = 108, δp = 10γ, δt = 0

and gp = gt = 0.0022γ. The spontaneous emission rate is γ21 = γ32 = γ = 2π × 6 MHz.

we have to adapt the dimensions of the atomic cloud and consequently all the other parameters,

like coupling gp,t and the density. Results for the new parameters are represented in Fig.(4.12).

The results of the numeric simulations are obtained, as in the preious sections, for all possible

initial states, and show that for a conditional phase shift of π, corresponds a fidelity of around

90%. The difference between the deterministic fidelity (continous-blue line) and that from the

post-selection scheme (dashed line) is smaller than in the transient regime transient regime of

the previous Section. This is because the larger interaction time of 25 ns determines a larger

probability for jumps to take place. The fidelity in the transient regime is maximum when

the probabilities of find the atomic-field system in the states |3, 1, 1〉, |3, 1, 0〉, |3, 0, 1〉 are at their

maximum and in phase. Here, the adoption of pulses longer than in the previous case determines

an exponential reduction of this probability resulting in a reduction of the best achievable fidelity.

Also the non stationary group velocity has been evaluated as in the previous Section: the results

gives a smaller group velocity of 1.5×106m/sec. Also in this new parameter regime the behaviour

of the group velocity is consistent with the presence of a weak EIT regime.
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Figure 4.12: Conditional phase shift (left) and the fidelity (right) of a QPG operation for

Na = 108, δ2 = δ3 = 6γ, ǫ12 = ǫ34 = 0.05γ, gp = gt = 0.0009γ and Ω1 = Ω4 = γ. For 87Rb,

γ = 2π×6 MHz, giving the interaction time (i.e. pulse length) of ≃ 25 ns for |φ| ≃ π. Dot-dashed

line denotes the deterministic fidelity, while solid line denotes the conditional fidelity.

4.7 Proposal for an experimental verification of a QPG

Occupation number logical basis – In this section we describe a Michelson-like interferometer (see

Fig 4.13) for two-photons product state |1R〉|1B〉 with the ‘right’ σ− circular polarization, where

R (red) refers to the probe field and B (blue) to the trigger. We show that the interferometer is

able to reveal and measure the QPG phase shift. The probe and trigger fields with a bandwidth

of 40 ÷ 100 MHz (corresponding to 25÷10 ns 1/e half width pulse duration) are separated in

frequency by ∼7 THz and are resonant with the 87Rb hyperfine transitions D1F = 2 → F ′ = 1

at 794.7 nm (377.228 THz), and D2F = 2 → F ′ = 1 at 780.2 nm (384.225 THz), respectively.

The interferometer is realized by a 50/50 beam splitter (BS) and using a Fabry-Perot cavities

(FP1,2) instead of mirrors. The FPs reflect back the probe field, which is then superimposed

on the BS and detected by an APD (DR), and transmit the trigger field detected by an APD

in each arm (DB1 e DB2). This implies that only the trigger frequency is resonant with the

FPs’ cavity, which has a cavity length of 2 mm corresponding to a FSR is 74.85 GHz, while

the probe frequency falls in the middle of the previous 93th and 94th FSRs. According to the

photon bandwidth a Finesse of 103 determines a reflectivity for the probe field of 99.9% (see the

spectra in the Right Inset of Fig. 4.13).

As the bandwidth of the two photons are well distinct in frequency and the FPs filter out the

trigger field, the apparatus determine an interferometer only for the probe field. The coincidence

probabilities P (R,B1), between DR and DB1, and P (R,B2), between DR and DB2, post-select

the events in which the trigger photon was either in the arm 1 or arm 2, with any informations

on the probe, which interferes. In this case the coincidence probabilities are equal and given by

P (R,B1) = P (R,B2) = [1 + cosΦ]/8 (4.30)

where Φ represents the phase difference due to the different optical paths of the two arms the

probe experiences. In arm 2 a delay line (DL) is added to compensate the difference in the

optical path and to scan for the interference pattern. In the Left Inset of Fig. 4.13 is shown a

Sagnac-like version of the interferometer, which allows for an auto-compensation of the optical

path delay as the two arms coincide.
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Figure 4.13: Scheme of the proposed experiment for a measurement of the non-linear phase shift

in a QPG. A Michelson-like interferometer with a two-photons input state |1R〉|1B〉, probe and

trigger, respectively, allows to measure the non-linear phase induced by the EIT on the logical

basis of the qubits, which coincide with the two lowest Fock states. Two intense classical fields

αt and αc, tuner and coupling respectively, are necessary to the 5-levels EIT process. L is a

lens for the mode matching in the EIT. BS a 50/50 beam splitter. DL a delay line. FP1,2

Fabry-Perot cavities. DR,B1,B2 are avalanche-photodiodes APDs. Left Inset – Scheme using a

Sagnac interferometer for avoiding the optical path difference. M is a mirror. Right Inset –

Frequency spectrum for a 2 mm FP cavity length and Finesse equal to 103. In the plots are also

reported the spectra of the probe and trigger photon.

When an EIT system is considered in one arm, let’s say the arm 1, a non-linear contribution

to the phase is added by the QPG, whether the trigger photon is present in the arm 1 or not. The

EIT requires two intense classical fields resonant to the D2F = 1 → F ′ = 1 (384.232 THz) and

D1F = 1 → F ′ = 1 (377.235 THz), σ− circularly polarized tuner field (αt), and σ+ circularly

polarized coupling field (αc), respectively. The coincidence probabilities P (R,B1), between DR

and DB1, and P (R,B2), between DR and DB2, post-select the events in which the trigger photon

is in the arm 2 and hence a non-linear phase is not added to the interference amplitude. Instead

a non-linear contribution to the phase is expected when detections on DR are post selected by

the detection on DB2. Fig. 4.14 represents the diagram of the four amplitude probabilities after

the action of the BS and the FPs on the two-photons state. The non-linear phase φ11 is added

only to the first diagram.

According to the true-table and the amplitudes of Fig. 4.14, the coincidence probabilities can
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Figure 4.14: True-table of the QPG for a logical basis of the qubits determined by the two lowest

Fock states. On the right the diagrams corresponding to the probability amplitudes after the

action of the BS and the FPs on the two-photons input state.

be evaluated to be

P (R,B1) = [1 + cos(Φ̃ + φ)]/8 (4.31)

P (R,B2) = [1 + cos Φ̃]/8 (4.32)

with Φ̃ = Φ+(φ10 −2φ00 +φ+0), φ+0 the phase due to the probe photon reflected in arm 1 with

‘wrong’ σ+ circular polarization. The phases φ10 and φ00 were introduced in Eqs. (4.15,1.64) as

the QPG phase φ = φ11 − φ01 − φ10 + φ00. The phase difference between the two interference

patters determined by the two coincidence probabilities determines univocally the value of φ.

In the case of an ideal QPG for which φ = π the two coincidence probabilities are in opposition

of phase.

Polarization logical basis – The previous proposal indirectly tests the QPG based on the

EIT detecting the non-linear phase shift by a Michelson interferometer and coincidence mea-

surements. A direct measurement of the true table or a test on a general qubit state requires a

control and measurement of a superposition of vacuum and one photon state. While the gener-

ation of a superposition of vacuum and single photon state has been already achieved [98], the

measurement of such a superposition requires a difficult homodyne measurement [99,100]. How-

ever a logical basis for the qubits can be chosen as the circular polarization basis of the probe

and trigger photons. A test of the QPG will then require the detection of both the photons

solving the problem of the detection of Fock states superposition.

The experimental setup is the same as in Fig. 4.13, but the qubits are now encoded in the

polarization of the input two-photon state. According to the true-table and the amplitudes in

Fig. 4.7 it is possible to derive the coincidence probabilities P (Ri,B1j) and P (Ri,B2j), with

i, j = {+,−}, as

P (Ri,B1j) = [1 + cos(Φ + φij)]/8 (4.33)

P (Ri,B2j) = [1 + cosΦ]/8 (4.34)
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Figure 4.15: True-table of the QPG for a logical basis of the qubits determined by orthogonal cir-

cular polarization basis. On the right the diagrams corresponding to the probability amplitudes

after the action of the BS and the FPs on the two-photons input state.

with Φ = Φ + (φi0 − 2φ00 + φ(i⊕1)0), where i⊕ 1 is the sum mod 2. The phase φ is now given

as φij = φij − φi0 − φ0j + φ00, where φi0 is the phase due to the EIT for the probe photon

with polarization i and no trigger photon present, and same meaning for the other phases. It is

notable that for i = j = ‘−′ ≡ 1 it is obtained the previous expression of the QPG phase for the

logical Fock states basis. Four possible choices of the probe and trigger polarizations determine

the phases

φ−− = φ−− − φ−0 − φ0− + φ00

φ−+ = φ−+ − φ−0 − φ0+ + φ00

φ+− = φ+− − φ+0 − φ0− + φ00

φ++ = φ++ − φ+0 − φ0+ + φ00 ,

(4.35)

which satisfies the relation φ−− − φ+− − φ−+ + φ++ = φ−− − φ+− − φ−+ + φ++ = φ. In

the case of an ideal EIT for which φ+0 = φ0+ = φ++ = φ00, φ−+ = φ−0 = φR and φ+− =

φ0− = φB , where φA,B are the phases acquired by the single photons, we have φ−− = φ, and

φ−+ = φ+− = φ++ = 0. In a way the phases between the two coincidence interference patterns

allows a measurement of the QPG phases in the diagonal basis, i.e. in the single qubit states

for which the only QPG phase non zero is the conditional phase shift φ.

General polarization qubit input states – The polarization logical basis allows for a direct

observation of coherence and production of entanglement as necessary conditions for a QPG.

Let assume to encode the information on the polarization state of a two photons, and then

send them into the EIT system for QPG, as shown in Fig. 4.7. The outpout photons, as shown

in Fig. 4.7, are split by a dichroic mirror (an angled FP cavity with the same parameters as

before) and then collected in two APDs (DR and DB) for coincidence counting. In front of

each detector a tomographic system constituted by a QWP, HWP and a PBS, is placed for the

complete reconstruction of the polarization state of the output state gaining information on the

coherence properties of the gate. It has also been shown [97] that an input state for the QPG
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Figure 4.16: Scheme of the proposed experiment for a complete characterization of the QPG.

Two photons in the σ+ polarization state (logical state |0R〉⊗ |0B〉) are transformed by a QWP,

corrisponding to two Hadamar single-qubit gates, and then to the EIT (QPG). A Fabry-Perot

cavitiy with the same parameter as before transmits the trigger photon and reflect the probe to

two tomographic measurement systems (TR,B) and detected by APDs.

given by [(|σ+
R〉 + |σ−

R 〉) ⊗ (|σ+
B〉 + |σ−

B)〉)]/2 can quantify the entanglement of the output state,

for which the CHSH inequality is 2
√

1 + sin2 φ where 2 is the upper classical limit.
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Chapter 5

A Quantum Error Correction

scheme by Atoms and Cavities

The correction of the errors has been of fundamental importance for the development
of contemporary computing devices and also in the advances in communications. In
this chapter we focus our attention to the possible realization of a Quantum Error
Correction Code (QECC). The goal of this chapter is to show how it is possible to
implement a QECC by adopting the interaction of circular Rydberg atoms with the
quantized mode of a cavity field.
We illustrate the basic ideas of error correction and we show the main difference
between classical and quantum error correction. A QECC protocol based on atoms-
cavity QED interaction is described. Then we give and describe the results of the
simulation of an experimental realization of the protocol under realistic experimental
conditions.

5.1 Basic Principles of Quantum Error Correction

Let us assume that we have two distant stations, Alice and Bob, that share a message. In general

the communication channel over which the information is sent is a noisy one, i.e. it is affected

by unknown errors of various type [24,101,103,104]. The origin of these errors is the coupling of

the system with the environment Fig.(5.1), and the degradation of the information encoded in

the quantum state is named decoherence. The ability to reveal the errors that have affected the

sent message, and finding a way to correct them constitute the central task of Quantum Error

Correction (QEC).

Any classical or quantum error correction scheme is based on the main steps:

• Encoding: Generating several copies of the original message we want to send.

• Decoding: The application of a measurement procedure for the encoded states permits to

reveal if errors have occurred.

• Correction: With the information obtained from the previous step we can decide which

kind of operation has to be applied (if needed).

The objects that are transferred from a station (Alice) to another (Bob) is a set of qubits

|ψs〉 = α|0〉 + β|1〉, (5.1)
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Figure 5.1: Sketch of a transmission’s channel affected by noise due to the interaction with the

environment

where |α|2 + |β|2 = 1. When we send a qubit through the noisy channel, it interacts with the

environment and its state evolves to a different state. The environment can be described in

terms of a collection of operators {Γ(i)
R }, that act on the quantum states of the system, and a

collection of states |ψ〉R. For each qubit sent from Alice to Bob we can apply the following

interaction scheme. At t = 0, we assume that the system and the environment are factorized

|ψ〉in = |ψ〉s ⊗ |ψ〉R. (5.2)

After the transmission of the state, due to the influence of the environment’s operators Γ
(i)
R we

have

|ψ〉out =
∑

i

|ψ〉RΓ
(i)
R |ψ〉s, (5.3)

The reduced state at Bob’s site is

ρBob = TrR(|ψ〉out〈ψ|), (5.4)

which is, in general, a mixed state because Bob does not have access to the environment variables

and he has to trace over all possible degrees of freedom of the environment. Moreover the state

will differ from the pure one sent by Alice.

In the transmission of quantum systems the errors that can affect the qubits are more numerous

than those in the classical counterpart. Together with bit-flip errors that cause a flip in the

quantum state of the system, also phase-flip errors can occur. These cause the flip of the relative

phase between the two components of a qubit.

To fight against decoherence, the key resource, in quantum as well as in classical error

correction, is redundancy. It is the simplest approach to correct errors, and it consists in the
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encoding of the information in a redundant way so that it is possible to identify the errors and

recover them. During the encoding procedure the first step is to prepare many copies of the

information to send. Moreover while making copies of a classical bit is easy, with qubits things

are different. In the quantum domain we have some additional considerations that have to be

taken into account. For qubits the following limitations hold

• The no cloning theorem states that it is not possible to make copies of a quantum state.

• Measurements typically destroy quantum information.

The resource that can be used in QEC to complete the encoding step is entanglement. By

enlarging the Hilbert space we can build a non separable state of two or more systems, starting

from the original one (5.1). The additional quantum systems “helping” the principal qubit are

named ancillas. The quantum state describing the composite system of the principal system S

and the ancillas a1, a2 will be part of a Hilbert space given by the tensor product of the Hilbert

space of the each system HS,a1,a2 = HS ⊗Ha1 ⊗Ha2.

Let consider our qubits in the state (5.1). It is possible to define the encoded basis

|0L〉 = |0〉 ⊗ |0〉 ⊗ |0〉 (5.5)

|1L〉 = |1〉 ⊗ |1〉 ⊗ |1〉, (5.6)

and the initial state (5.1) of the qubit that we are sending can be mapped, by applying a suitable

unitary evolution U , into the state

α|0〉 + β|1〉 → α|0L〉 + β|1L〉, (5.7)

which means the implementation of the logical state |ψL〉 (encoding).

The QEC protocol continues by the next three steps:

• To avoid the perturbation of the encoded qubit during the measurement of the ancillas

states, we have to decouple ancillas from the states of the encoded qubit before we measure

them. For that Bob applies an unitary operation to the qubits on the logical basis sent by

Alice in such a way the ancillas are decoupled from the principal qubit (decoding).

• We have to detect the two ancillas. From their state we can know which error occurred,

so that we can correct it.

• We can perform the recovery procedure, applying a unitary operation U† on the qubit

that, in practice, invert the effect of the environment.

Now if errors occur with probability p, we can calculate the probabilities that a bit-flip error

occurs on one of the three qubits that composes the encoded state of eq.(5.7) see Tab.5.1 The

final state, after the correction protocol, can be written as

ρfinal = [(1 − p)3 + 3p(1 − p)2]|ψ〉L〈ψ|L + . . . , (5.8)

and depends on the total probability that error can occur in one of this three qubits. The

additional terms, non showed here, depend upon the probability that a two-qubit flip occurs,
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Table 5.1: Probability of errors through a channel that affected by bit flip errors.

Input state Output state Probability

|ψL〉 = α|0L〉 + β|1L〉 α|000〉 + β|111〉 (1 − p)3

α|001〉 + β|110〉
|ψL〉 α|010〉 + β|101〉 p(1 − p)2

α|100〉 + β|011〉
α|011〉 + β|100〉

|ψL〉 α|101〉 + β|010〉 p2(1 − p)

α|110〉 + β|001〉
|ψL〉 α|111〉 + β|000〉 p3

they give a positive contribution to ρfinal but they are much smaller than the terms showed

when p < 1/2. This is an important assumption for the validity of the bit-flip error correction

schemes and in general is easily fulfilled.

The final goal of the QECC is to improve the fidelity F of the transfer of information. The

evaluation of the overlap between the sent qubit |ψL〉 and the transmitted final state given by

ρfinal gives

F =
√
〈ψL |ρfinal|ψL〉 >

√
1 − 3p2 + 2p3, (5.9)

The important point is that QEC cancels errors at first order in p, so that when p → 0, the

fidelity in the presence of QEC, converges to unity much faster than in the case of no QEC

5.1.1 Quantum Error Correction with Cavity-QED

We now describe a protocol for the correction of the bit flip errors that occurs on an encoded

qubit. The protocol is expected to work in the limit of p < 1/2 so that the probability that a two

bit flip occurs is exponentially small, as seen in the previous section. The reason for which we

focus on the use of a cavity-QED (C-QED) system to implement the error correction algorithm

is due to the high degree of control nowadays available on C-QED devices. In particular as

we cannot copy a qubit (5.1) we need the ability to entangle the encoded qubits with the two

ancillas, and C-QED permits to implement the gates needed for this operation. Moreover the

long decoherence time, available in C-QED based set up, permits to store quantum information

in the cavity modes. This storage is useful because the information recorded in the cavity mode

can be read-out by an appropriately prepared atom, and the detection of the atomic states

permits to recover the quantum information with a good fidelity.

5.2 The Interaction Hamiltonian

Here we describe the model we adopted to take into account the interaction of the atoms with the

quantized mode inside an cavity. We have already described the interaction of a two level system

with an electromagnetic field, where the field was treated semi-classically. Here we introduce
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the Jaynes-Cummings model [105], in which the field is treated quantum mechanically.

Let us consider a two level system as for example the one given in Fig.1.1. The atom are now

placed inside a cavity C. The atom will interact with the electromagnetic field associated with

a single cavity mode quasi-resonant with the atom. In the passage from a semiclassical to a

quantum description, the field is described [2,11,105] by the creation and destruction operators

of the field â and â†,

Ê(t) = E0(t)E(~r)
(
â+ â†

)
, (5.10)

where E(~r) is the mode function. The free evolution Hamiltonians are given by the Hamiltonian

of the field Hfield = ~ωC(â†â+ 1/2), and that of the atom Hatom = ~ω2|2〉〈2| + ~ω1|1〉〈1|.
These terms, together with the interaction Hamiltonian Hint = −µÊ(t) = ıg(r)~(|2〉〈1|â −
â†|1〉〈2|), in the RWA approximation give the total Hamiltonian

H = Hatom +Hcavity−field +Hint,

= ~ω2|2〉〈2| + ~ω1|1〉〈1|) + ~ωCâ
†â+ ıg(r)~(|2〉〈1|â− â†|1〉〈2|), (5.11)

where g(r) = g0E(r) = −E0E(r)µ/~ is the space dependent coupling of the atom with the cavity

mode depending upon the atomic dipole µ and on the quantization volume. E(r) is the mode

function, and E0 =
√

~ωC/2ǫ0V is the electric field of the vacuum where V is the quantization

volume defined as
∫
d3r|E(r)|2,i.e. the volume occupied by the field’s mode.

In what follows, we place the zero of energy between the two atomic levels, so that Hatom =

~ω21(|2〉〈2| − |1〉〈1|), and applying the IP with respect to it, we can write the Hamiltonian as

H = ∆â†â+ ı
g(r)

2
(â†|1〉〈2| − |2〉〈1|â), (5.12)

∆ is the detuning between the frequency of the cavity mode and the atomic transition.

This Hamiltonian describes the unitary time evolution of the atom-field system when an atom

is injected inside the cavity.

5.3 The QECC Protocols

For the realization of the protocol we need two cavities (see Fig.5.2) C1 and C2 placed one after

the other. Four different atoms A1, A2, A3, A4, are injected through the cavities interacting

sequentially with C1 and C2.

The atoms are three level atoms in the cascade configuration |i〉, |g〉, |e〉, where |i〉 is the ground

state, |g〉 is the intermediate state, and |e〉 is the excited state. The quantum information that

we want protect, is encoded in the first atom A1, while the second (A2) and the third atom

(A3) are the “ancillas” atoms, that have the role of revealing the syndrome. Finally the fourth

atom A4 is the detector. It is the atom on which the information, originally encoded in the the

quantum state of A1, has to be transferred and, if needed, corrected.

The zones indicated with Ri are usually named Ramsey zone, where the atoms interact with

a classical electromagnetic field.

In the First step, the first atom A1 is prepared in level |e〉 before entering the first cavity C1.
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Figure 5.2: Scheme for atom cavity interaction based QECC.

This can be done by applying a π-pulse in the first Ramsey zone R1, in resonance with the

atomic transition |g〉 → |e〉. In fact in the Ramsey zone the Hamiltonian is

HRamsey = ~∆|e〉〈e| + ~

2

(
ΩR1|e〉〈g| + Ω⋆

R1|g〉〈e|
)
. (5.13)

The consequent atomic evolution at resonance, ∆ = 0, starting from |g〉, is (see eq.(1.15))

|ψ(t)〉 = cos
ΩR1t

2
|g〉 − ıe−ıarg(ΩR1) sin

ΩR1t

2
|e〉. (5.14)

Therefore, the |e〉 state is prepared by applying a π pulse, i.e. if a the duration of the interaction

tint and Rabi frequency ΩR satisfy ΩRtint/2 = π.

Second step. The first atom enters cavity C1. The cavity has to be initially prepared in the

vacuum state and when A1 crosses it the Hamiltonian (5.12) determines the evolution

|e, 0C1〉 → cos
|ΩC1|t

2
|e, 0〉 − ıe−ıarg(ΩC1) sin

|ΩC1|t
2

|g, 1〉. (5.15)

By controlling the atom-cavity interaction time we can prepare an effective initial qubit, involv-

ing both A1 and C1 in the generic superposition

|ψ〉enc = α(t)|e, 0〉 + β(t)|g, 1〉, (5.16)

with |α(t)|2 + |β(t)|2 = 1.

At the third step we prepare the encoding of the principal qubit with the two ancillas to obtain

a state of the (5.5) type. The two ancillas A2, A3, are chosen to be atoms emitted in state |i〉.
When they pass through the first Ramsey zone R1 they resonantly interact with the EM field

and after a π/2-pulse they are prepared in the state

|+〉A1,A2 =
1√
2

(
|i〉 + |g〉

)
. (5.17)
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Crossing C1 they experience a 2π interaction resonant with the |g〉 → |e〉 transition. The 2π

interaction determines a controlled phase accumulation on the atomic state |g〉A2,A3 resulting in

|1〉C1 |g〉A2,3 → −|1〉C1|g〉A2,3 .

When both the ancillas have crossed C1, the final atoms-cavity state will be

α(t)|e, 0〉 + β(t)|g, 1〉 → α(t)|eA1 ,+A2 ,+A3 , 0C1〉 + β(t)|gA1,−A2−A3 , 1C1〉, (5.18)

where |±〉Aj
= 1√

2

(
|i〉Aj

± |g〉Aj

)
, with j = 1, 2, 3.

At the next step, the fourth, atoms are sent from Alice to Bob through the noisy channel, which

in the experimental proposal is represented by the second Ramsey zone R2.

Let us for the moment assume that no error has taken place during the passage through the

noisy channel. In what follows we describe the evolution of the global system’s state as all the

other steps of the protocols are realized in the three possible situation, no error, error on one

of the ancilla atom, error on the encoded qubit .

We are faced with three possible situations:

• Case 1: No bit-flip error.

At step five the A1 will interact with the cavity C2 by a π-pulse. The only part of the

state (5.26) that evolves, is |eA1 , 0C1〉. This interaction disentangles the first atom from

the other system giving

|ψ〉 =
[
α(t)|+A2 ,+A3 , 0C1 , 1C2〉 + β(t)| −A2 −A3 , 1C1 , 0C2〉

]
|g〉A1 . (5.19)

This transformation transfers the encoded qubit from the cavity-atom C1 − A1 given by

the relation (5.15) to the an encoded qubit that involves the two cavities C1 − C2. When

the two ancillas pass through the second cavity they experience the same transformation

than in C1, applying the 2π-pulse to atoms A2,3, so that the two ancillas are decoupled

from the encoded C1 − C2 state as it must be for a decoding process. The resulting state

will be an entangled state of the two cavities only,

|ψ〉 =
[
α(t)|0〉C1 |1〉C2 + β(t)|1〉C1 |0〉C2

]
|−〉A2 |−〉A3 . (5.20)

We arrive at the final sixth step of this error correction protocol. Here the detection of the

ancillas’ states is performed, and if an error is revealed the correction procedure is applied.

In this step the fourth atom A4 starts to play its role. The A4 has the function to reload

the information now encoded in the C1 − C2 entangled state and record the information

stored in the atomic state. The need for this fourth atom is in fact evident, the only

information that can be easy to read by the detector is that recorded in the atomic state.

Atoms A4 is prepared in the |g〉 state, it passes, without any interaction, through the first

cavity and the first two Ramsey zones. Assuming that no error takes place on this atom,

it arrives in the state |g〉 at C2. To A4 we apply a π-pulse resonant interaction as before,

the only part of the global state that evolves is |g〉A4 |1〉C2 → −|e〉A4 |0〉C2 . The evolution

of the whole cavities-atoms system, after the passage of the last atom, is

|ψ〉 =
[
− α(t)|0〉C1 |e〉A4 + β(t)|1〉C1 |g〉A4

]
|−〉A2 |−〉A3 . (5.21)
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Now we detect the two ancilla states. If we obtain the ancillary state |−〉A2 |−〉A3 , we can

argue that the qubit has not been affected by any bit-flip error. The state of eq.(5.21) and

(5.17) are not identical. Although the amplitude probabilities are exactly the same, they

differ by a difference of π in the relative phase. This is a consequence of the sequence of

pulses that permits the entanglement and disentanglement that constitute the protocol,

but there is a simple way to correct this “problem”. As it is a relative phase difference that

affect the final state with respect to the encoded one, it is sufficient to apply a classical

resonant 2π-pulse in the R4 zone to the final state. This will change the phase of the A4

state only, permitting to obtain a perfect matching of the final and of the initially encoded

state.

• Case 2: bit-flip error on the ancillas. The possible situation is that a single bit-flip

error on one of the ancilla atoms takes place. We have assumed that two bit-flip errors

are much less probable than single bit-flip errors. If such an error on one of the ancilla

takes place, the final state (5.21) will have one of the decoupled ancillary state flipped

|−〉A2 |−〉A3 → |+〉A2 , |−〉A3 , |−〉A2 , |+〉A3 . By detecting such a state on the ancillas, we

can distinguish that the error has not involved the qubit we are sending, and therefore no

correction is needed. As before the only thing we have to do is to apply a classical pulse

to correct the relative phase as in the previous case.

• Case 3: bit-flip error on the encoded qubit. If a bit-flip error occurs during the

passage of A1 in R2, the effect will be the exchange between |g〉A1 ↔ |e〉A1 . The state

after the first atom has interacted with C2 now becomes

|ψ〉 = α(t)|0〉C1 |g〉A1 | + +〉A2,3 + β(t)|1〉C1 |e〉A1 | − −〉A2,3 , (5.22)

and after the passage of A4 we have

|ψ〉 =
[
α(t)|0〉C1 |g〉A4 − β(t)|1〉C1 |e〉A4

]
| + +〉A2,3 . (5.23)

In this case we have to apply the error correction, that consists of a feedback π pulse in R3

that flip the |e〉 ↔ |g〉 in A4, followed by a 2π-pulse that change the phase of the |gA4 , 1C1〉
state. After the measurement of the two ancillas we obtain a final state

|ψ〉final = α(t)|0〉C1 |g〉A4 + β(t)|1〉C1 |e〉A4 , (5.24)

that is exactly the initial atom-cavity state provided the we make the exchange A1 ↔ A4.

The original encoded state is restored and quantum information has been safely transferred

from Alice to Bob.

5.4 Experimental set-up, Cavity and Rydberg states

The proposed QECC scheme gives the result of eq.(5.24) provided that all the evolutions at each

step, are unitary. In general this is not true due to the fact that cavities and atoms experience

their own interaction with the environment. This makes time evolution only approximately
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unitary. For what concerns the atoms spontaneous emission is present, and depends on the type

of atoms that we use in the experiment. For the cavity we have to take into account photon

leakage. The photons can remain inside a cavity only for a limited time, after which the photons

are lost mainly by scattering, but also transmission and absorption of the mirrors play a role.

For a realistic analysis of the performance of the QECC protocol we have to include these losses

in the treatment. This analysis shows us how the atoms and the cavities involved have to be

chosen so to reduce the effect of the environment. To this end the protocol has been tailored for

the experimental set-up involving microwave cavities and Rydberg atoms studied at the ENS in

Paris.

5.4.1 The Circular Rydberg States

Adopting atoms with the right properties, namely long decay time and right velocities, is of

crucial importance in the realization of the protocol. The circular Rydberg states [108] are

excellent candidates for the protocol’s implementation. They are atoms possessing large principal

quantum number n, i.e. of the order of 50, and maximum angular momentum l = n − 1. The

large principal quantum number and the large l permit to describe the orbital in a classical way,

and the electron orbital is a circular. The three level cascade structure can be found around

n = 50, more precisely we can choose n = 51, 50, 49 for |e〉, |g〉, |i〉 respectively. Circular Rydberg

states in this configuration represents a well studied experimental set-up [107,109–111] that has

been adopted by the Haroche’s group in a number of experiment during last years. Rydberg

atoms posses interesting properties because the radiative lifetime of the three levels |e〉, |g〉, |i〉
is of the order of Tatoms = 30ms. This long radiative time permits to have negligible effect on

the atomic coherence from the spontaneous decay rate. The dipole moment matrix elements are

very large, of the order of 1250 a.u for the |e〉 ↔ |g〉 transition.

The circular atoms can be prepared with a purity of ≥ 98% [106] and the velocity of the atoms

emitted by the atoms gun can be controlled with great precision (the precision is ∼ ±2 m/sec).

The position of each atoms inside the apparatus is known with a ±1-mm precision. The process

of optical pumping devoted to the preparation of the circular states has an efficiency of 0.2

“right” atoms for pulse, with a Poissonian statistics.

5.4.2 The Cavity

The cavity that is adopted in [106, 107, 110, 111] is an open Fabry-Perot resonator made with

two spherical superconducting niobium mirrors facing each other at a distance d = 27.6 mm,

the diameter D of the cavity is D = 50 mm, and the radius of the mirrors is R = 40 mm. The

resonator is in resonance with the e↔ g transition, with a photon storage of Tcavity = 1÷10ms,

this correspond to a very large quality factor of Q = 3× 108. To obtain an optimal atom-cavity

mode interaction we need that the cavity is as much as possible in the vacuum state at the

beginning of the various steps. To this end, the cavity is cooled down, to avoid the presence

of thermal photons. Moreover, as after the cooling the mean number of photons is still ∼ 0.7,

every experiment includes at the beginning a flux of resonant atoms in |g〉 that passing through

the cavity, have the role of absorbing the residual photons. Adopting this technique the cavity

can be prepared to contain 0.1 photons after a cooling sequence.

Passing through the cavity, the atoms are coupled with the field by the g factor which is a

Gaussian function due to the profile of the cavity field, that depends on the interaction time,

the time spent by the atom within the cavity, on the atoms’ velocity v, and on the parameter
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ω0 is the width of the Gaussian. ω0 depends on the specific parameters of the cavity, like the

distance d between the cavity’s mirrors and the radius R of the mirrors.

Therefore the resulting time dependent coupling is a Gaussian with the envelope given by the

relation

g(t) =
g0
2
E(vt) =

g0
2

exp
(
− (vt)2

ω2
0

)
. (5.25)

The control over the interaction time between the cavities and the atoms, can reach an high

degree of accuracy in the cavities we are thinking to adopt [106]. This control is based on Stark-

shift tuning [106,107] of the atoms injected inside the cavities. This approach to the control of

the interaction time is based on a rapid modification of the resonance condition under which

the atom interacts with the cavity mode. In practice, applying a tension at the end of the two

mirrors, we can rapidly modify the field inside the cavity. This induces a quadratic Stark-shift of

the atomic levels that for the Rydberg atoms is particularly strong [107], permitting to modulate

the interaction between the atoms and the cavity. In this way it is possible to build all possible

superposition of atom-cavity state generated by the Rabi angle Ωtint ∈ [0, 2π].

5.5 Numerical Simulation

The sequence of the operation needed by the protocol has been simulated adopting the pa-

rameters of the realistic devices adopted in a real experimental set-up as for example that of

references [106, 107, 110, 111]. The quantum trajectories approach [112], is adopted to perform

the numerical simulation of the protocol. Three different initial encoding configuration have

been adopted, i.e. different values of the α and β after the first atom has passed the first cavity.

The main source of decoherence, apart from the noisy channel is the cavity decay rate k. For

this reason the simulations have been performed to find out the role of such a decay process in

the efficiency of the algorithm.

5.5.1 Simulation of the Noisy Channel

The Rydberg states are affected by a strong quadratic Stark shift. Let us now see how the

quadratic Stak shift effect can be used to engineer a noisy channel.

In the second Ramsey zone R2 the atoms interact for a controllable time with a classical elec-

tromagnetic field. Appling a π/2 pulse to the A1 atom the state

|ψ〉 = α(t)|+A1 ,+A2 ,+A3 , 0C1〉 + β(t)|−A1,−A2−A3 , 1C1〉, (5.26)

is produced. On the basis of the |±〉 states a phase-flip error is equivalent to a bit-flip error on

the basis of the |e〉A1 and |gA1〉. The reason for which we have to rotate the A1 state before

applying the noise is due to the fact that from an experimental point of view the random effect

of the environment on the atomic states of A1, on which the qubit is encoded, can be modeled

as a random Stark shift on the atomic energy levels of the A1. This random fluctuation of the

energy levels will reflect as a random spin-flip on the |±〉 basis’s state. After the application

of the random noise, we can return back re-applying an inverse π/2 interaction. In this way, if

there have been no error, the A1 state at the entrance of the second cavity C2, when the qubits
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starts to be processed by Bob, it will be exactly the same than at the exit of C1.

The error induced by the noisy channel, in our experiment is then given by the application of

a random electric field in the Ramsey zone R2. What is random is the intensity of this electric

field. This random electric field induces a shift of the energies of the three levels of interest,

i, g, e, due to quadratic Stark effect. Therefore we have three energy shifts, ∆Ek, k = i, g, e on

each state,

ψk → ψk exp

{
−ıT

~
∆Ek

}
k = i, g, e, (5.27)

where T is the duration of the random electric field pulse in R2.

As a consequence, the density matrix elements of the whole system will acquire random phase

shifts. Each off-diagonal matrix element with respect to atomic indices, i ,e , g, will acquire a

random phase shift given by

ρk,l → ρk,l exp

{
−iT

~
(∆Ek − ∆El)

}
k, l = i, g, e (5.28)

Referring to real Rydberg atoms we need the knowledge of the shifts ∆Ek. This is provided by

the following relation [107]

∆E(2) = −1

8

[
7n2 − 6(|m|2 + n1)

2 + 6n1(|m| − 1) + 6n(|m| + 1) − 3

2
|m| + 8

]
n4|E|2, (5.29)

where n1 is the parabolic quantum number (zero for the circular Rydberg states), n is the

principal quantum number (n = 49, 50, 51 for |i〉, |g〉, |e〉 respectively), and |m| = n − 1 is the

magnetic quantum number. For circular Rydberg states we have

∆En = −1

8

[
7n2 +

21

2
n+

7

2

]
n4|E|2 ≡ αn|E|2, (5.30)

in appropriate atomic units, which however, we shall see, will be unimportant. In fact, thanks to

this formula, the change of the off-diagonal matrix element due to the application of the “error”,

i.e., of the random electric field, can be written as

ρk,l → ρk,l exp

{
−iT |E|2

~
(αk − αl)

}
= ρk,l exp {−iφ (αk − αl)} , (5.31)

where φ is a random phase proportional to the intensity of the Stark field and which becomes

the random variable with flat distribution. The knowledge of the atomic physics of circular

Rydberg states is important only for the determination of the n-dependent factors in the phase

shift, αn, which are needed in order to know the effect on each atomic level, |i〉, |g〉, |e〉.
The QT approach permits to manipulate the evolution of the wave function instead of a density

matrix, as it happens in master equation simulation. This means, from the numerical point

of view, manipulating smaller objects. In fact the evolution takes place in a Hilbert space of

dimension 324 × 324 (dims (Hatoms) = 81 = 34, while the state of the two cavities with one

photon has dimensions (Hcavi) = 22). With quantum trajectories we study the evolution of a

vector of 324 elements and only at the end of the time evolution we determine the density matrix
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by averaging over the trajectories. The result of a simulation of the QECC protocol over 1000

trajectories is showed in Fig.5.3. During each trajectory a flat-distributed random error between

[0, φmax] on the encoded qubit is induced, by applying a flat-distributed random electric field.

At the end of each evolution the overlap of the initial and final state is evaluated and the fidelity

5.9 calculated in both cases, when we apply correction and when we do not complete the final

correction step,i.e. we do not turn on the interaction on the R3 Ramsey zone for the fourth

atoms.

It is evident there is a great difference in the final fidelity if we do not apply the feedback

correction procedure. Both the corrected and uncorrected fidelity are oscillating function of the

error, that converges for large values of the error.

In the case of Fig.(5.3) the encoded qubit is obtained by applying a pulse of tailored duration

on C1 so that the final encoded state is
√

0.6|g〉A1 +
√

0.4|e〉A1 . If we do not apply the correction

the fidelity of the transmission is reduced down to 60 ÷ 65% of the initial value. The fact that

for a perfect channel, i.e. when the applied random error is zero (φMAX = 0), the fidelity with

and without the feedback, do not start from unity, depends on the fact that the evolution is

not unitary. In fact, also for a perfect channel, the losses that come from the cavity decay rate

(fixed at k = 100Hz that correspond to a time of storage of 10 milliseconds, a realistic value for

the current cavity technology), and the spontaneous emission rate γ, that is k/30, determine a

non zero probability of errors. On the other hand, we have to consider that the high quality

factor of the cavities and the adoption of the circular Rydberg states permits to maintain under

control these latter loss terms. In fact if compared to the time scale of the efficient interaction

inside the cavity, that is around 20µsec (for a Gaussian mode of 6 mm of width), they affect

only partially the time evolution of the system.

The mean fidelity represented in Fig.(5.3) shows how, for realistic parameters, the correction

of the error is possible. Moreover we have to stress the fact that, in the simulation, a perfect

efficiency of the detectors is assumed. The inclusion of imperfect detectors is another source of

loss of fidelity.

The parameters adopted, as said, are realistic. On the other hand, in what follows, we want

to show the performance of the protocol for different values of the initial encoding, i.e. different

α and β, and for larger values of the decay rate of the cavities. In Fig.5.4 we have plotted the

fidelity averaged over 1000 trajectories for different values of the cavity’s decay rate with the

same initial encoding of α ≃
√

0.6 and β ≃
√

0.4. From left to right in clockwise, we see the

fidelity for k = 2π 0.1 KHz, k = 2π 0.3 KHz, k = 2π 0.4 KHz . Up to this value of the decay

rate, it is possible to fight against the deterioration of the information induced by the noisy

channel. Moreover large loss from the cavities and the effect of the noisy channel determine the

failure of the QECC protocol. This means that, as expected, the QECC is able to correct for

the phase errors added in R2, but it is not able to correct the errors due to cavity damping.
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Figure 5.3: Fidelity of the QECC scheme based on the CQED. Parameters are those of the

experiment performed in [106]. Cavity’s decay rate is k = 2π 0.1 KHz, that means a photon’s

storage time of 10 msec. The electric field inside the cavity is Ω = 2π 47 KHz, and the

spontaneous decay time Tγ is fixed at Tγ = 30 msec
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Figure 5.4: Fidelity of the QECC scheme based on the CQED. Parameters are the same of

previous plot. The only change is the cavity’s decay rate that is from left to right in clockwise

direction, k = 2π 0.2 KHz, k = 2π 0.3 KHz, k = 2π 0.4 KHz.



Conclusions and perspectives

This thesis has been devoted primarily to the evaluation of the performance of a QPG based on

the giant non-linear effect that the phenomenon of Electromagnetically Induced Transparency

permits. In particular we have addressed our work to the determination if at the single photon

level the performances for he production of conditional photon-photon dynamics is strong enough

to permit the implementation of an all-optical quantum phase gate. To this end, the efficiency

of the process has been evaluated rigorously, calculating numerically and analytically for the

first time the fidelity and the conditional phase shift of the device, in presence of noises and

losses. To this end a perturbation theory at order higher then the second has been developed.

To reach the final goal of the study of EIT in the full quantum regime, we have preliminarly

analyzed other configuration schemes for the atoms-field interaction.

In the second chapter we have studied the nonlinear response of a four-level atomic sample

in a tripod configuration for an incident probe and trigger field. The resulting large cross-Kerr

modulation between probe and trigger enables one to implement a phase gate with a conditional

phase shift of the order of π. This feature has been shown to be valid for both, semiclassical and

quantum adiabatic case. The main advantage of this scheme lies in its experimental feasibility

which has been assessed through a detailed study of the requirements needed to observe such a

large shift in a realistic sample of magnetically trapped ultracold 87Rb atoms.

Then we have studied a five-level atomic system in two different but relatedM -configurations.

We focused on the nonlinear properties of the system and specifically on the conditions for the

optimization of the cross-phase modulation between two weak fields of interest, which we have

named probe and trigger fields. Both systems have been studied from a semiclassical point of

view, i.e., by describing all the fields in terms of their Rabi frequencies. We have seen that

both linear and nonlinear properties are well described by an approach based on amplitude

variables, which has been shown to reproduce well the numerical solution of the exact optical

Bloch equations describing the system.

We have showed that both the asymmetric and the symmetric M scheme are able to provide

a giant cross-Kerr modulation, which may be useful for many applications. Both M schemes can

be seen as a “duplication” of the usual three-level Λ scheme at the basis of EIT, one for the probe

and one for the trigger fields. In the asymmetric scheme, only the probe drives a significantly

populated transition and a large cross-Kerr effect is obtained when either the probe or the trigger

is slightly detuned from the two-photon resonance condition. The corresponding nonlinear phase

shift, yielding for example the conditional phase shift of Eq. (4.3) of a quantum phase gate for

photonic qubits, can become very large, especially when the probe and trigger group velocities,

slowed down by EIT, become equal. In the asymmetric scheme, this group velocity matching can

be achieved by properly adjusting the detuning and the intensity of the control field of the trigger

Λ system. In the symmetric M scheme, the atomic population is equally shared by the probe
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and trigger transitions. Adjusting the corresponding parameters (Rabi frequencies, detunings)

so that the two Λ systems become identical, probe and trigger experience the same interaction

with the atomic medium and group velocity matching is achieved automatically. In this case a

significant nonlinear cross-phase modulation is achieved only if both Λ schemes are slightly and

equally detuned from two-photon resonance, so to remain still within the transparency window.

Then the full quantum analysis of EIT based system have been performed, individuating

in the symmetric M-scheme a very good candidate for the implementation of the conditional

dynamics between photons. The main result of our study is that the implementation of efficient

EIT-based nonlinear two-qubit gates for travelling single-photons is possible, even though ex-

perimentally challenging. The main limitation is due to the existence of a trade-off between the

size of the CPS and the fidelity of the gate, limiting the achievable gate fidelity in the stationary

regime, but which can be partially bypassed in the transient regime. In the transient regime a

pair of parameters set-up has been studied to fit with the single photon pulse recently realized

at Orsay by the Grangier Group.

Another important conclusion of our work is that since the trade-off in the stationary regime is

a general consequence of the coherent interaction between the atomic medium and the single-

photon wave-packets, we expect that these considerations apply to all EIT-based crossed-Kerr

schemes [59,77], regardless the specific level scheme considered. Instead, this consideration does

not apply to situations where the nonlinearity comes from independent processes (e.g. colli-

sions of dipole-dipole interactions) [91–93], nor the similar solid-state based processes [94–96].

Moreover the experimental set up of the last section, shows how with present technology the

implementation of conditional dynamics between flying qubit could be realized.

Finally in the last chapter we have turned our attention to the study of the controlled

interaction in cavity QED set up. We have studied analytically and simulated numerically

the performance of a Quantum Error Correction Scheme for the protection of the quantum

information during the transmission through a noisy channel. The scheme is based upon the

high degree of control of the coherent interaction between atoms and cavity. The results obtained

has showed that the experimental realization of the quantum correction code protocol is within

contemporary technological possibilities.

Perspectives for this work are numerous. With this work, we have demonstrated that, al-

though difficult, the realization of a conditional dynamics between photon is possible. This

would permit to apply this work to open problems of fundamental research interest like the gen-

eration of macroscopical quantum object [114], or could find application in the field of quantum

communication, in particular in quantum cryptography. The work on the QECC has its main

application in quantum information science. The main result of the work is that our analysis has

showed promising results for the realistic experimental realization. The only loss mechanisms

that has not been taken into account is the efficiency of the detectors. This could reduce the

performance of the QECC, but the general validity and the experimental feasibility could be

demonstrated experimentally.



Appendix A

Open quantum systems

description

In the following pages we describe some technical tools that permit the analysis of an open

quantum system S interacting with the environment R. Here we review two formalisms usually

adopted to describe the influence of the environment in the dynamic of quantum system, the

Master Equation (ME) approach, and the Quantum Trajectories (QT) formalism.

A.1 Master equation

Let us consider a quantum system S. The most general form to describe its state, is assuming

that it is in a mixed states, i.e. its state is composed by a statistical mixture of different quantum

state, each occurring with a probability pi

ρ̂S =
∑

i

pi|i〉〈i|. (A.1)

The system is open, and interacts with a reservoir R The dynamics of the whole system can

be described by the time evolution of the density matrix, ρS+R, of the total system S + R. Its

time evolution is determined by the Hamiltonian of the system and the environment, given by

HS and HR respectively. The Hamiltonian that describes the whole system also includes their

mutual interaction and is given by

H = HS +HR +HS−R, (A.2)

where HS−R describes the system-reservoir interaction.

The time evolution is given by the Von Neumann equation of motion

ρ̇S+R = − ı

~

[
H, ρS+R

]
. (A.3)

If we assume that the interaction between the system and the environment is weak, if compared

to the two other terms in eq.(A.2), it is useful to describe the dynamics of the system in the IP
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representation with respect to the Hamiltonian H0 = HS +HR. In this way we can take into

account only the effects of the HSR(t)e
ı
~

H0tHsre
− ı

~
H0t on the dynamics of the system. The Von

Neumann equation in the IP can be written as

ρ̇ = − ı

~

[
HSR(t), ρ

]
. (A.4)

This equation can be solved formally by integration giving

ρ(t) = ρ(0) − ı

~

∫ t

0

dt′[HSR(t′), ρ(t′)]. (A.5)

The previous formal solution can be repeated iteratively, finding the time evolution of the density

matrix, at all orders in the interaction Hamiltonian HSR and at all times. Inserting the eq.(A.5)

into the eq.(A.4), we will obtain the general expression for the time evolved density matrix

ρ(t) =

∞∑

k=0

(−ı)k

~k

∫ t

0

dt1

∫ t1

0

dt2 . . .

∫ tk−1

0

dtk[HSR(t1), [HSR(t2), . . . [HSR(tk), ρ(0)]]]. (A.6)

In the previous formal solution we can retain only terms of lower orders in the eq.(A.6). The

assumption, is in general well verified if the interaction Hamiltonian is smaler than all other

terms in the Hamiltonian. It is known as the Born approximation. Let stops the perturbative

development at the second order in eq.(A.6), we obtain

ρ̇ = − ı

~
[HSR(t), ρ(0)] − 1

~2

∫ t

0

dt′[HSR(t), [HSR(t′), ρ(t′)]]. (A.7)

Assuming that no correlation exists between the system and the environment at t = 0 we can

write the density matrix of the whole system ρ in a factorized way,

ρ(0) = ρS(0)ρR(0). (A.8)

Now we have to note that the eq.(A.7) is not what we are looking for, because it contains much

more information than the required to describe the time evolution of the state of the system.

Tracing over the degrees of freedom of the environment we can obtain the evolution of the

density matrix of the quantum system only.

The first commutator on the rhs of eq.(A.7) can be eliminated by assuming that the operators

of the environment have zero mean on the state of the reservoir itself. Moreover while it is

reasonable to assume that, starting from the initial state given by eq.(A.7), the environment

will be much more less affected by the weak interaction HSR, the system-environment whole

state can be written as follows

ρ(t) = ρS(t)ρR, (A.9)

this equation describe how the time evolution of the S − R system is largely due only to the S
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evolution, leaving the environment , in practice, unchanged during time.

After tracing over the degrees of freedom of the environment, we obtain

ρ̇S(t) = − 1

~2

∫ t

0

dt′TrR
{

[HSR(t), [HSR(t′), ρ(t′) ⊗ ρR]]
}
, (A.10)

where we have assumed that the the reservoir’s operators have zero mean in the state ρR. This

permits to eliminate the first commutator in the eq.(A.7).

This equation is still hard solve, because it is not Markovian,i.e. it states how the future

evolution of the system at time t, depends upon its past history at time t′. This difficulty

can be avoided adopting an additional assumption on the physical nature of the interaction,

i.e applying the Markov approximation. The Markov approximation consists in assuming that

the future evolution of a system depends only on its present history. This holds if the S − R

system possess two much different time scales, i.e. if the time scale over which R changes is

faster then the time scale over which S changes. This permits us to neglect the change of the

system induced by the back-action of the reservoir.

If this condition is verified we can substitute the ρ(t′) with ρ(t) in eq.(A.10). The equation that

we obtain

ρ̇S(t) = − 1

~2

∫ t

0

dt′TrR
{
[HSR(t), [HSR(t′), ρ(t) ⊗ ρR]]

}
, (A.11)

is the Master equation in the Morn-Markov approximation.

A.1.1 Two level atom’s Master Equation

Now we calculate the ME (A.11) for a more specific model of the system-environment interaction.

Let us consider a two level atomic system left free to interact with the environment, formed by the

vacuum electromagnetic field, with creation and annihilation operators defined by the operators

Γ†
k and Γk respectively. The interaction with the electromagnetic field of the environment

will determine the radiative decay of the density matrix elements. The system-environment

interaction energy can be written as

HSR = ~

∑

k

gk

[
Γ†

k|〉〈1|2e−i(ω−ωk) + |〉〈2|1Γke
−i(ω−ωk)

]
, (A.12)

The label k describes the interaction of the atom with the k−mode of the environment, defined

by the frequency ωk, detuned from the atomic transition by ω − ωk. The coefficient gk gives

the coupling of the mode k with the atomic transition. Inserting this interaction energy in the

eq.(A.11), we obtain eight terms given by the following relation

ρ̇S = −
∫ t

0

dt′
∑

k,k′

gkgk′

{[
σ12σ12σ(t′) − 2σ12σ(t′)σ12 + σS(t′)σ12σ12

]
× e−ı(ω−ωk)t−i(ω−ωk′ )t′〈Γ†

kΓ†
k′〉

+[σ12σ21σ(t′) − σ21σ(t′)σ12] × e−ı(ω−ωk)t+i(ω−ωk′ )t′〈Γ†
kΓk′〉

+[σ21σ12σ(t′) − σ12σ(t′)σ21] × eı(ω−ωk)t−i(ω−ωk′ )t′〈ΓkΓ†
k′〉
}

+ h.c., (A.13)

where σij = |i〉〈j| for i, j = 1, 2.
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The correlation functions, represented in the previous relation by the expressions of the form

〈. . . 〉, depend strictly on the nature of the reservoir. If we consider a reservoir at thermal

equilibrium at temperature T , the mean photon number is given by the relation

n̄k =
1

exp
(

~ωk

kBT

)
− 1

, (A.14)

where kB is the Boltzmann constant, and the calculation of the correlation functions gives the

following expression for the ME

ρ̇S = −
∫ t

0

dt′
∑

k

g2
k

{
[σ12σ21σ(t′) − σ21σ(t′)σ12] × n̄ke

−ı(ω−ωk)(t−tprime

+[σ21σ12σ(t′) − σ12σ(t′)σ21] × eı(ω−ωk)(t−t′)(n̄k + 1)
}

+ h.c., (A.15)

we have dropped out those terms with correlation functions equal to zero, 〈ΓkΓk′〉 = 〈Γ†
kΓ†

k′〉 = 0,

and where the relations 〈Γ†
kΓk′〉 = n̄kδk,k′ and 〈ΓkΓ†

k′ 〉 = (1+ n̄k)δk,k′ , for the reservoir’s photon

numbers, hold.

If the mode of the reservoir’s field are closely spaced in frequency, we can transform the sum-

mation over k in an integral. Adopting the definition of the delta function

2πδ(t− t′) =

∫ ∞

−infty

dωke
ı(ω−ωk)(t−t′)

, we arrive at the following expression for the decay process of an atomic two level system

ρ̇S(t) = n̄
γ21

2
[2σ21σ(t)σ12 − σ12σ21σ(t) − σ(t)σ12σ21]

+(1 + n̄)
γ21

2
[2σ12σ(t)σ21 − σ21σ12σ(t) − σ(t)σ21σ12]. (A.16)

Where n̄ represents the mean number of photons at the resonance frequency ω. If the system

is also under the influence of an applied field, we have to add the effective Hamiltonian given

by the eq.(1.9) in the calculation of the master equation. For an applied field detuned by an

amount ∆ from the atomic resonance, we obtain an additional part to previous relation that

describes the deterministic dynamic

ρ̇ = ı
1

2
∆
[
σ22, σ

]
+ ı

Ω

2

[
σ21 + σ12, σ

]
+

+
γ21

2
[2σ12σ(t)σ21 − σ21σ12σ(t) − σ(t)σ21σ12], (A.17)

where we have assumed zero mean photon number, n = 0.

Inclusion of dephasing process

To complete the description of the interaction of a quantum system with the environment, we

have to include phase destroying processes. The interaction with the environment causes the

atomic systems a loss of energy from the atom, and damping of the atomic polarization. This
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latter damping results from a randomization of the phases of the atomic wavefunctions, causing

the overlap between different states to decay in time. Moreover it is often necessary to take

into account the additional dephasing interaction caused, for example, by elastic collisions in an

atomic vapor.

These processes do not affect the atomic population, but destroy the quantum coherence varying,

randomly, the relative phase in the wave function of the quantum system. To describe dephasing

processes we can phenomenologically add, to the interaction Hamiltonian of eq.(A.12), two

further reservoir interaction Hamiltonian

HSR1 = Γdeph
1 σ22 (A.18)

HSR2 = Γdeph
2 σ11. (A.19)

The operators depend only on operators projectors on level |2〉 and |1〉, to take into account the

fact that the dephasing do not affect population. The complete reservoir seen by the system

is now composed by Rtot = R
⊕
R1

⊕
R2. Within the Born - Markov approximation, we can

evaluate the correlation functions, that for dephasing process are of the form 〈Γ1(t)Γ1(t
′)〉 =

δ(t− t′).

If the time scale of the dephasing process is fast, we arrive at an additional term in eq.(A.17).

In two level atoms,
γdeph

2
(σzρσz − ρ), (A.20)

where σz = |2〉〈2| − |1〉〈1|.
The generalization to multilevel systems is straightforwardly obtained from the previous

expression, including the deterministic part of the evolution and by considering a reservoir for

each radiative decay channel. What we obtain is an expression of the form

ρ̇ = − ı

~
[Heff , σ] +

level∑

i,j

{γji

2
[2σijσσji − σjiσijσ − σσjiσij ]

}
+

level∑

l=1

γl
deph

2
(σllσσll − σllσ − σσll),

(A.21)

where the index l describes the numbers of level composing the atomic system. The Optical

Bloch Equation (OBE), are straightforwardly obtained by evaluating the matrix elements of the

time evolved density matrix

ρij = 〈i|ρ|j〉. (A.22)

A.2 Optical Bloch Equations for Five level M-schemes

Adopting the the receipt given by eq.(A.22) we have obtained the following density matrix

element for the five level atomic system. The capital Γs describe the collective radiative decay

rate from the two excited level |2〉 and |4〉, while the γij = γii +γjj for i, j = 1, 2, 3, 4, 5 describes

the dephasing process of levels |i〉 with i = 1, 2, 3, 4, 5.
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A.2.1 Optical Bloch Equations - Asymmetric Case

From Eqs. (3.5) and (3.23), and using the definitions of Eqs. (3.24)-(3.26), one gets the following

set of equations for the atomic populations ρii

ρ̇11 = iΩ1ρ21 − iΩ⋆
1ρ12 + Γ41ρ44 + Γ21ρ22, (A.23a)

ρ̇22 = −iΩ1ρ21 + iΩ⋆
1ρ12 − iΩ2ρ23 + iΩ⋆

2ρ32 − Γ2ρ22, (A.23b)

ρ̇33 = iΩ3ρ43 − iΩ⋆
3ρ34 + iΩ2ρ23 − iΩ⋆

2ρ32 + Γ43ρ44 + Γ23ρ22, (A.23c)

ρ̇44 = iΩ⋆
3ρ34 − iΩ3ρ43 − iΩ4ρ45 + iΩ⋆

4ρ54 − Γ4ρ44, (A.23d)

ρ̇55 = iΩ4ρ45 − iΩ⋆
4ρ54 + Γ25ρ22 + Γ45ρ44, (A.23e)

and the following set of equations for the atomic coherences ρij , i 6= j,

ρ̇12 = −iδ1ρ12 + iΩ1(ρ22 − ρ11) − iΩ2ρ13 −
Γ2 + γ12

2
ρ12, (A.24a)

ρ̇13 = −iδ12ρ13 + iΩ1ρ23 − iΩ⋆
3ρ14 − iΩ⋆

2ρ12 −
γ13

2
ρ13, (A.24b)

ρ̇14 = −iδ13ρ14 + iΩ1ρ24 − iΩ3ρ13 − iΩ4ρ15 −
γ14 + Γ4

2
ρ14, (A.24c)

ρ̇15 = −iδ14ρ15 + iΩ1ρ25 − iΩ⋆
4ρ14 −

γ15

2
ρ15, (A.24d)

ρ̇23 = iδ2ρ23 + iΩ⋆
1ρ13 − iΩ⋆

3ρ24 + iΩ⋆
2(ρ33 − ρ22) −

Γ2 + γ23

2
ρ23, (A.24e)

ρ̇24 = iδ23ρ24 − iΩ3ρ23 − iΩ4ρ25 + iΩ⋆
2ρ34 + iΩ⋆

1ρ14 −
Γ2 + Γ4 + γ24

2
ρ24, (A.24f)

ρ̇25 = iδ24ρ25 + iΩ⋆
1ρ15 + iΩ⋆

2ρ35 − iΩ⋆
4ρ24 −

Γ2 + γ25

2
ρ25, (A.24g)

ρ̇34 = −iδ3ρ34 + iΩ3(ρ44 − ρ33) + iΩ2ρ24 − iΩ4ρ35 −
Γ4 + γ34

2
ρ23, (A.24h)

ρ̇35 = −iδ34ρ35 + iΩ3ρ45 + iΩ2ρ25 − iΩ⋆
4ρ34 −

γ35

2
ρ35, (A.24i)

ρ̇45 = iδ4ρ45 + iΩ⋆
3ρ35 + iΩ⋆

4(ρ55 − ρ44) −
Γ4 + γ45

2
ρ45, (A.24j)

where we have also defined the composite detunings δ23 = δ2 − δ3, δ24 = δ2 − δ3 + δ4, and

δ34 = δ3 − δ4.

A.2.2 Optical Bloch Equations - Symmetric Case

From Eqs. (3.44) and (3.23), and using the definitions of Eqs. (3.24)-(3.26), one gets the following

set of equations for the atomic populations ρii

ρ̇11 = ıΩ2ρ21 − ıΩ⋆
2ρ12 + Γ41ρ44 + Γ21ρ22, (A.25a)

ρ̇22 = ıΩ2ρ12 − ıΩ⋆
2ρ21 − ıΩ1ρ23 + ıΩ⋆

1ρ32 − Γ2ρ22, (A.25b)

ρ̇33 = ıΩ3ρ43 − ıΩ⋆
3ρ34 + ıΩ1ρ23 − ıΩ⋆

1ρ32 + Γ43ρ44 + Γ23ρ2, (A.25c)

ρ̇44 = ıΩ⋆
3ρ34 − ıΩ3ρ43 − ıΩ4ρ45 + ıΩ⋆

4ρ54 − Γ4ρ44, (A.25d)

ρ̇55 = ıΩ4ρ45 − ıΩ⋆
4ρ54 + Γ45ρ44 + Γ25ρ22, (A.25e)
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while the equations for the coherences are

ρ̇12 = −ıδ2ρ12 + ıΩ2(ρ22 − ρ11) − ıΩ1ρ13 −
Γ2 + γ12

2
ρ12, (A.26a)

ρ̇13 = ı(δ1 − δ2)ρ13 + ıΩ2ρ23 − ıΩ⋆
3ρ14 − ıΩ⋆

1ρ12 −
γ13

2
ρ13, (A.26b)

ρ̇14 = ı(δ1 − δ2 − δ3)ρ14 + ıΩ⋆
2ρ24 − ıΩ3ρ13 − ıΩ4ρ15 −

Γ4 + γ14

2
ρ14, (A.26c)

ρ̇15 = ı(δ1 − δ2 − δ3 + δ4)ρ15 + ıΩ⋆
2ρ25 − ıΩ⋆

4ρ14 −
γ15

2
ρ15, (A.26d)

ρ̇23 = ıδ1ρ23 + ıΩ⋆
2ρ13 − ıΩ⋆

3ρ24 + ıΩ⋆
1(ρ33 − ρ22) −

Γ2 + γ23

2
ρ23, (A.26e)

ρ̇24 = ı(δ1 − δ3)ρ24 − ıΩ3ρ23 − ıΩ4ρ25 + ıΩ⋆
2ρ14 + ıΩ⋆

1ρ34 −
Γ2 + Γ4 + γ24

2
ρ24, (A.26f)

ρ̇25 = ı(δ1 + δ4 − δ3)ρ25 + ıΩ2ρ15 + ıΩ⋆
1ρ35 − ıΩ⋆

4ρ24 −
Γ2 + γ25

2
ρ25, (A.26g)

ρ̇34 = −ıδ3ρ34 + ıΩ1ρ24 − ıΩ4ρ35 + ıΩ3(ρ44 − ρ33) −
Γ4 + γ34

2
ρ34, (A.26h)

ρ̇35 = −ı(δ3 − δ4)ρ35 − ıΩ3ρ45 + ıΩ1ρ25 − ıΩ⋆
4ρ34 −

γ35

2
ρ35, (A.26i)

ρ̇45 = ıδ4ρ45 + ıΩ⋆
4(ρ55 − ρ44) + ıΩ⋆

3ρ35 −
Γ4 + γ45

2
ρ45. (A.26j)

From the solution of this set of equation we can obtain the population and coherence’ s infor-

mation on the five level atomic system.

A.3 Quantum Trajectories Approach

Quantum Trajectories (QT) approach [112, 113] provides a tool to describe the dynamics of

quantum systems alternative to the ME description. While the Master Equation provides an

ensemble description of the evolution of quantum system, the QT approach is based upon the

observation of a single sequence of events. This is possible, because we monitor the time evolution

of the wave equation rather than observe the evolution of the density matrix.

The interaction of quantum systems with the environment and the consequent possibility that

quantum jumps take place, poses the problem of how to describe any single realization of the

system’s evolution in the presence of quantum jumps. Quantum jumps occur randomly, and

their effect is to collapse the wave function.

Within the QT approach, once we have obtained the time evolution of the wave function from an

effective Stochastic the Schrödinger equation, we evaluate the expectation values by this single

wave function. Repeating this process a large number of time, we thus evaluate the mean values

over all possible stochastic evolutions.

The general expression of the time evolution of the density matrix can be written as

ρ̇ = Lρ, (A.27)

where Lis the a Louivillian super-operator. The formal solution of this equation gives

ρ(t) = eLtρ(0). (A.28)
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Adding and subtracting the superoperator O to the exponential function, and expanding the

exponential, we obtain

ρ(t) = e(L−O+O)tρ(0)

=

∞∑

n0

∫ t

0

dtn

∫ tn

0

dtn−1 . . .

∫ t2

0

dt1e
(L−O)(t−tn)O × e(L−O)(tn−tn−1)O . . .Oe(L−O)t1ρ(0).

(A.29)

The quantity under the integral is the evolved, unormalized density matrix,

ρ̄c(t) = e(L−O)(t−tn)O × e(L−O)(tn−tn−1)O . . .Oe(L−O)t1ρ(0), (A.30)

conditioned to the presence of n quantum jumps events, described by the application of the

operator O at times t1, t2,, . . . , tn.

The sum describes all possible physical preparations, determined by the number of jumps n, to

go from the initial time t = 0 to the final time tn. Each path can have an arbitrary number

of emissions, i.e. the jumps go from zero to ∞. The conditioned state can be defined as

ρ̄c(t) = |ψc(t)〉 ⊗ 〈ψc(t)|, where |ψc(t)〉 represent the time evolved wave equation between a

jump determined collaps and an other. The normalized conditioned density matrix is then

obtained by dividing by its trace

ρc(t) =
ρ̄c(t)

Tr[ρ̄c(t)]
. (A.31)

From a numerical point of view, the advantage, with respect to the ensemble-based descrip-

tion, relies on the fact that the problem involves the time evolution of an object of dimension

N rather than N ×N .

Let us now give an example of how an atomic system can be treated. The general approach

is based on considering a state vector |ψ〉 evolved in time by means of the Schrödinger equation

ı~
d|ψ〉
dt

= Heff (t)|ψ〉, (A.32)

where the general expression for the effective non-Hermitian Hamiltonian is

Heff (t) = Hint(t) −
i~

2

∑

n

C†
n(t)Cn(t), (A.33)

where the set {Cn(t)} represent the family of collapse operators describing the dissipation. The

example above corresponds to a single kind of jump, with C1 = O.

Eq.(A.33) determines the continuous evolution of the state |ψ〉 punctuated by quantum jumps

at time τ at which the wave function changes according to

|ψ(t)〉 =
Cn(t)|ψ(τ)〉

||Cn(t)|ψ(τ)〉|| , (A.34)

where τ < t. Evaluating the evolution of the eq.(A.32) for a number of trajectories we can
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evaluate the expectation values over the number of trajectories obtaining the average quantities

that represent the expectation values of physical quantities.

The only difference from a quantum system to another is in the way we define the interaction

Hamiltonian Hint and how we define the quantum jumps operators. For example if we apply the

above procedure to multilevel atomic systems, e.g. the five level symmetric M scheme system,

we adopt the Hamiltonian given by eq.(4.3) as Hint and each collapse operator, related to each

decay channel, is defined as

Cij =
√
γij |i〉〈j| for i, j = 1, 2, 3, 4, 5, (A.35)
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Appendix B

Fourth order Wigner-Brillouin

Perturbation theory

In this section we give much details of the perturbative calculation of the quantum phase due

to a cross Kerr interaction expressed by the results of eq.(4.3). The aim of this Appendix is to

show how we can calculate the eigenvalues and eigenvectors of a multilevel system described in

the chapter IV by means of the perturbation theory at fourth order. For simplicity we consider

only the non-degenerate case.

B.1 Formulas

Let us consider a quantum system under the influence of an Hamiltonian that can be separated

in a large term plus a perturbative term, much smaller than the other, i.e.

H = H0 + V. (B.1)

The general formula describing the perturbation of the energy of the unperturbed eigenstate |n〉
of H0 is given by

En = E0
n + 〈n|V |n〉 +

∑

k 6=n

〈n|V |k〉〈k|V |n〉
En − E0

k

+
∑

k,k′ 6=n

〈n|V |k〉〈k|V |k′〉〈k′|V |n〉
(En − E0

k)(En − E0
k′ )

+
∑

k,k′,k′′ 6=n

〈n|V |k〉〈k|V |k′〉〈k′|V |k′′〉〈k′′|V |n〉
(En − E0

k)(En − E0
k′ )(En − E0

k′′ )
+ . . . . (B.2)

Now the form of the perturbation at the various orders depends on the perturbative treatment of

the En term. In fact, the expressions of the perturbation at all orders are obtained by developing

En in the denominators of the previous expression at the correct order. Taking into account

that

|Vnm| ≪ |E(0)
n − E(0)

m |, (B.3)

i.e, assuming that the matrix elements of the perturbation V are much smaller than the absolute
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values of the difference between the unperturbed energies E
(0)
k .

To find the complete expression of the correction at the second order, we can take En = E
(0)
n in

the second order term in the eq.(B.2) obtaining

E(2)
n = E(0)

n + Vnn +
∑

k 6=n

|Vnk|2

E
(0)
n − E

(0)
k

, (B.4)

In the same way the third order correction can be obtained by developing at first order En in

the term of eq.(B.2) proportional to the V 2 of the perturbative part of the Hamiltonian, and at

zeroth order in V 3, we obtain

E(3)
n = E(0)

n + Vnn +
∑

k 6=n

|Vnk|2

E
(0)
n − E

(0)
k

− Vnn

∑

k 6=n

|Vkn|2

(E
(0)
n − E

(0)
k )2

+
∑

k,k′, 6=n

VnkVkk′Vk′n

(E
(0)
n − E

(0)
k )(E

(0)
n − E

(0)
k′ )

. (B.5)

Now we can apply the same procedure to include the fourth order correction. We have to develop

at second order En in the V 2 term, at first order in the V 3 term, and at the zero order in the

V 4 term. We give the final result

E(4)
n = = E(0)

n + Vnn +
∑

k 6=n

|Vnk|2

E
(0)
n − E

(0)
k

− Vnn

∑

k 6=n

|Vkn|2

(E
(0)
n − E

(0)
k )2

−
∑

k 6=n

|Vkn|2

E
(0)
n − E

(0)
k

∑

k 6=n

|Vkn|2

(E
(0)
n − E

(0)
k )2

−Vnn

∑

k,k′ 6=n

[ VnkVkk′Vk′n

(E
(0)
n − E

(0)
k )(E

(0)
n − E

(0)
k′ )2

+
VnkVkk′Vk′n

(E
(0)
n − E

(0)
k )2(E

(0)
n − E

(0)
k′ )

]

+
∑

k,k′,k′′

VnkVkk′Vk′k′′Vk′′n

(E
(0)
n − E

(0)
k )(E

(0)
n − E

(0)
k′ )(E

(0)
n − E

(0)
k′′ )

, (B.6)

where the summations labels refer to the eigenstates of the unperturbed part of the Hamiltonian.

B.2 Application to the symmetric M-scheme

We apply the previous results to the specific case of an atom in the symmetric M-scheme

configuration.

Let us consider a single five - level atom, interacting with an EM field, and described by the

following Hamiltonian (see chapter IV)

H = ~ǫ12|1〉〈1| + ~δ2|2〉〈2| + ~δ3|4〉〈4| + ~ǫ34|5〉〈5| + ~Ω1 (|2〉〈1| + |1〉〈2|) +

+~gp

(
âp|2〉〈3| + |3〉〈2|â†p

)
+ ~gt

(
ât|4〉〈3| + |3〉〈4|â†t

)
+ ~Ω4 (|4〉〈5| + |5〉〈4|) ,

We assume that the terms proportional to gp,t, in the equation above, are much smaller than all

the others, so that they represent the perturbation V in the Hamiltonian in the form of eq.(B.1).

If the trigger field possesses only one photon, while the probe field is in the vacuum state, the
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Hilbert space within which the dynamics takes place can be represented by the following basis

Bt = {e1 = |3〉 ⊗ |0〉p ⊗ |1〉t, e2 = |4〉 ⊗ |0〉p ⊗ |0〉t, e3 = |5〉 ⊗ |0〉p ⊗ |0〉t}, we obtain (see chapter

IV)

Ht =




0 0 0

0 δ3 Ω4

0 Ω4 ǫ2


+




0 gt 0

gt 0 0

0 0 0


 , (B.7)

Similarly for the one probe photon, we have

Hp =




0 0 0

0 δ1 Ω2

0 Ω2 ǫ1


+




0 gp 0

gp 0 0

0 0 0


 , (B.8)

in the basis Bp = {e1 = |3〉 ⊗ |1〉p ⊗ |0〉t, e2 = |2〉 ⊗ |0〉p ⊗ |0〉t, e3 = |1〉 ⊗ |0〉p ⊗ |0〉t}.
If the probe and the trigger possess one photon each, we have the Hilbert space spanned by the

five states e1 = |2〉⊗|0〉p⊗|1〉t, e2 = |1〉⊗|0〉p⊗|1〉t, e3 = |2〉⊗|1〉p⊗|1〉t, e4 = |4〉⊗|1〉p⊗|0〉t, e5 =

|5〉⊗|1〉p⊗|0〉t. Writing the Hamiltonian in the perturbative representation of eq.(B.1), we have

Hpt =




δ1 Ω2 0 0 0

Ω2 ǫ1 0 0 0

0 0 0 0 0

0 0 0 δ3 Ω4

0 0 0 Ω4 ǫ2




+




0 0 gp 0 0

0 0 0 0 0

gp 0 0 gt 0

0 0 gt 0 0

0 0 0 0 0



. (B.9)

We can immediately note how the odd terms in the perturbative expansion give zero contribu-

tion, as they depend on the diagonal matrix elements Vnn or Vkk′ of the perturbation Hamiltonian

that are identically zero. For eq.(B.7) and eq.(B.8), the Hamiltonians are the same, and it is

sufficient to study only one of the two cases and then modify the obtained results by switching

gt → gp, Ω4 → Ω2, δ3 → δ1 and ǫ2 → ǫ1.

Calculating the eigenvalues of eq.(B.9), together with the eigenvalues of the unperturbed eigen-

state e1, that is zero (as it has to be for a dark state), we obtain

λt
± =

δ3 − ǫ2
2

±
√(δ3 − ǫ2

2

)2

+ Ω2
4, (B.10)

corresponding to the eigenvectors

vt,± =
Ω4e2 + (λt

± − δ3)e3√
Ω2

4 + (λt
± − δ3)2

. (B.11)

In this basis B = {vt,+, vt,−}, the term V t
± that determines the perturbation to the state e1 can

be calculated

V t
± = 〈e1|V |vt,±〉 =

Ω4gt√
Ω2

4 + (λt
± − δ3)2

, (B.12)

with this result we can calculate the second and fourth order correction to the unperturbed state
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in the case of one photon on the trigger field, or one photon on the probe field (switching the

label of the fields and of the detunings). We obtain

δλ
(2)
trigger = −|V t

+|2
λt

+

− |V t
−|2
λt
−

. (B.13)

Applying eq.(B.10) and eq.(B.12) we have the eq.(4.18) given in Chapter IV and at the fourth

order by adopting the following relation

δλ
(4)
trigger = −

∑

k=+,−

|V t
k |2
λt

k

∑

k=+,−

|V t
k |2
λt

k

, (B.14)

we obtain the eq.(4.19).

In the same way we can proceed for the 5 × 5 dynamics. The unperturbed eigenvectors are the

same of the previous lines, being the 5 × 5 unperturbed Hamiltonian a block matrix. We have

v+1, v−1 for the block belonging to the probe field, e3 is the unperturbed state, and v+2, v−2 for

the block related to the trigger field. The perturbative development give the cross interaction

between the two Λ dynamics, and then produces the cross Kerr photon-photon interaction. As

for the trigger case eq.(B.12), the perturbation term on level e1 proportional to the probe field

is

V p
± =

Ω2gp√
Ω2

2 + (λp
± − δ1)2

. (B.15)

In the evaluation of the second order perturbative term, we can note that the structure of the

matrix Hpt will give the same terms of each separated Λ eqns.(4.18)

δλ
(2)
pt = δλ(2)

p + δλ
(2)
t , (B.16)

while the fourth order terms give contributions from the cross interaction. Defining

Λt =
1

λt
+(Ω2

4 + d2
+,t)

+
1

λt
−(Ω2

4 + d2
−,t)

(B.17)

Θt =
1

(λt
+)2(Ω2

4 + d2
+,t)

+
1

(λt
−)2(Ω2

4 + d2
−,t)

(B.18)

Λp =
1

λp
+(Ω2

2 + d2
+,p)

+
1

λp
−(Ω2

2 + d2
−,p)

(B.19)

Θp =
1

(λp
+)2(Ω2

2 + d2
+,p)

+
1

(λp
−)2(Ω2

2 + d2
−,p)

, (B.20)

we obtain the fourth order perturbation from terms of the form

δλ
(4)
pt =

[
g2

t Ω2
4Λt + g2

pΩ2
2Λp

][
g2

t Ω
2
4Θt + g2

pΩ2
2Θt

]
tint. (B.21)

In this equation we have four terms, the two terms proportional to g4
t Ω4

4 and g2
pΩ4

2 are equal to

the fourth order term δλ
(4)
probe and δλ

(4)
trigger ; however there are two more terms that are produced

by the cross products that give the cross interaction.
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Multimode Coherent States

In section 2.6 we have described the Tripod system in the quantum limits when probe and

trigger fields are represented by two weak coherent fields. Here we give the basic definition and

properties of coherent states and multimode coherent state.

The coherent state formalism provides a powerful approach to find solution to many problems

in quantum optics. They have an indefinite number of photons, which allows them to have a

more precisely defined phase than a number state for which the uncertainty principle states that

the phase is completely random. They describe the closest field to the classical one. This states

can be seen as generated by the unitary displacement operator D̂ defined as follows

D(α) = e(αâ†−α⋆â), (C.1)

where α is an arbitrary complex number, and â and â† are destruction and creation operators

of the field. The coherent states are eigenstates of the destruction operator â, they can be

expressed in terms of the Fock states and they are not orthogonal. For different α, moreover

it can be proved that the set of all coherent states is overcomplete. Let us prove some of these

assertions.

By the Baker-Hausdorff formula for operators A and B, one has

eA+B = eAeBe−[A,B]/2, (C.2)

when

[A, [A,B]] = [B, [A,B]] = 0. (C.3)

The operator D̂ can be written as

D(α) = e|α|2/2eαa†

e−α⋆a, (C.4)

and it has the following properties

D†(α)âD(α) = â† + α, (C.5)
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The coherent state id obtained by applying D̂ to the vacuum state

|α〉 = D(α)|0〉. (C.6)

Adopting the relations (C.5, and C.6) we see that the coherent states are eigenstates of the

annihilation operator â,

D†(α)a|α〉 = D†(α)aD(α)|0〉 = (â+ α)|0〉, (C.7)

applying the D operator on the left of both side of the previous equation we have

a|α〉 = α|α〉. (C.8)

The expression of the coherent states on the Fock basis is

|α〉 = e|α|2/2
∞∑

n=0

αn

√
n!
|n〉. (C.9)

Coherent states of more than one field modes are simply formed as products of single-mode

coherent states. For two modes P, T with annihilation operators aP and aT , the two-mode

coherent state |αP , αT 〉 is generated by the action of two displacement operators D̂P (αP ) and

D̂T (αT ) on the two-mode vacuum state |0P , 0T 〉 so that

|αP , αT 〉 = D̂P (αP )D̂T (αT )|0P , 0T 〉 (C.10)

= e(αP a†
P
−α⋆

P aP )e(αT a†
T
−α⋆

T aT )|0P , 0T 〉. (C.11)

The properties of this state follow from those described above of the single-mode state. In partic-

ular, |αP , αT 〉 is a right eigenstate of both âP and âT with eigenvalues αP and αT , respectively,

and therefore expectation values of normal ordered products of âP , â
†
P , and âT , â

†
T can be found

simply by replacing these operators by αP , α
⋆
P and αT , α

⋆
T . For example to evaluate the normal

ordered operators’ â†kP â
†l
T â

l
T â

m
P expectation value, we have

〈αP , αT |â†kP â
†l
T â

l
T â

m
P |αP , αT 〉 = α⋆k

P α⋆l
T α

m
P α

n
T . (C.12)

C.1 Nonlinear phase in Tripod system by weak multimode

coherent field

Here we give the detail of the calculation of the non linear phase accumulation for a weak coherent

field, interacting in the Tripod configuration, expressed by eq.(2.33). When the equations (2.29)
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are dominated by the nonlinear terms, after the interaction of a multimode field |αP (t), αT (t)〉
where the coherent state amplitudes αP,T are defined

αP,T (t) =

√
2πc

l

∑

k

αk
P,T e

ıkct. (C.13)

The evolved operators after the passage throgh an interaction region of length l will be

ÊP,T (z, t) = ÊP,T (t′)eıηÊ†
T,P

(t′)ÊT,P (t′)l, (C.14)

where t′ = t− z/vg, with vg the pulse’s group velocity. Evaluating the mean field operator over

the evolved coherent states, we have

〈ÊT,P (z, t)〉 = 〈βP , βT |ÊP,T (t′)eıηÊ†
T,P

(t′)ÊT,P (t′)|αP , αT 〉,
= 〈αP , αT |Ô|αP , αT 〉, (C.15)

where we have defined Ô = e−ıηÊ†
T,P

(t′)ÊT,P (t′)ÊP,T (t′)eıηÊ†
T,P

(t′)ÊT,P (t′). Rewriting the operator

Ô by the Baker-Hausdorff formula we have

Ô = −ıηl∆ωÊP,T − (ηl∆ω)2

2!
ÊP,T − ı

(ηl∆ω)3

3!
ÊP,T + . . .

(C.16)

where we have defined the commutators of the field operators as

−∆ωÊP,T =
[
Ê†

T,P (t′)ÊT,P (t′), ÊT,P (t′)
]

∆ω2ÊP,T =
[
Ê†

T,P (t′)ÊT,P (t′),
[
Ê†

T,P (t′)ÊT,P (t′), ÊT,P (t′)
]]
,

−∆ω3ÊP,T =
[
Ê†

T,P (t′)ÊT,P (t′),
[
Ê†

T,P (t′)ÊT,P (t′),
[
Ê†

T,P (t′)ÊT,P (t′), ÊT,P (t′)
]]]

.

Applying the previous sequence of the operators in the evaluation of the expectation value of

the applied field, grouping the odd terms and even terms, and defining Φ = cη∆ω, we have

〈ÊP,T (z, t)〉 = αP,T (t′)e[−2sin2(Φ/2)+ısin(Φ)]
|αT,P (t′)|2

∆ω , (C.17)

that gives the eq.(2.33).
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[71] S. Rebić, D. Vitali, C. Ottaviani, P. Tombesi, M. Artoni, F. Cataliotti and R. Corbalàn,
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[91] M. Mašalas and M. Fleischhauer, Phys.Rev. A, 69, 061801(R) (2004);

[92] I. Friedler, G. Kurizki and D. Petrosyan, Phys. Rev. A, 71, 023803 (2005);
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