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Biomedical ontologies are envisioned to be useable in a range of research and clinical applications. The
requirements for such uses include formal consistency, adequacy of coverage, and possibly other domain
specific constraints. In this report we describe a case study that illustrates how application specific
requirements may be used to identify modeling problems as well as data entry errors in ontology build-
ing and evolution. We have begun a project to use the UW Foundational Model of Anatomy (FMA) in a
clinical application in radiation therapy planning. This application focuses mainly (but not exclusively)
on the representation of the lymphatic system in the FMA, in order to predict the spread of tumor cells
to regional metastatic sites. This application requires that the downstream relations associated with lym-
phatic system components must only be to other lymphatic chains or vessels, must be at the appropriate
level of granularity, and that every path through the lymphatic system must terminate at one of the two
well known trunks of the lymphatic system. It is possible through a programmable query interface to the
FMA to write small programs that systematically audit the FMA for compliance with these constraints.
We report on the design of some of these programs, and the results we obtained by applying them to
the lymphatic system. The algorithms and approach are generalizable to other network organ systems
in the FMA such as arteries and veins. In addition to illustrating exact constraint checking methods, this
work illustrates how the details of an application may reflect back a requirement to revise the design of
the ontology itself.

� 2009 Elsevier Inc. All rights reserved.
1. Introduction

At the University of Washington we have been engaged in
exploration of how anatomic knowledge can be formalized so that
automated reasoning about anatomy can be an aid in planning
radiation therapy for cancer [1–3], known as the Clinical Target
Volume (CTV) project. The motivation for the CTV project is the
use of the FMA to better inform the design of treatment target vol-
umes for radiation therapy. This problem remains a difficult one
despite efforts to define standard nodal regions [4,5]. A related ap-
proach to decision making for nodal treatment uses Bayesian mod-
eling [6]. However, the data for coverage at the level of detail for
radiation therapy is large. Modern radiation therapy techniques
such as Intensity Modulated Radiation Therapy (IMRT) demand
much higher precision in defining the target volume than in the
past. The variety of tumor sites, the sheer number of potentially in-
volved nodes and the difficulty of compiling clinical data to guide
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these decisions make it very reasonable to consider leveraging an
anatomy ontology and the power of reasoning that it supports.
Building a customised set of rules or guidelines for this application
has not been successful.

We have established the feasibility of modeling the spread of
tumor cells through the lymphatic system using the logical net-
work model of the lymphatics contained in the UW Foundational
Model of Anatomy (FMA). This modeling is possible because the
FMA is not just a terminology system or simple taxonomy; it con-
tains a rich set of assertions about relationships between anatomic
entities. The FMA also is designed to satisfy design principles
(which are sometimes referred to as ‘‘axioms”). These relationships
and principles are the key to clinical application of the FMA. We
believe other clinical applications will be possible as well as the
specific application to radiation therapy.

Since we are depending on assertions about the connectivity of
the lymphatic system in doing clinical reasoning, it is critical that
the system satisfies several requirements. First and foremost, it
must accurately represent the actual topology of the lymphatic
system of the human body. The curation of this knowledge must
be done by expert anatomists, but automated procedures can
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materially assist this process. The topology of the lymphatic sys-
tem must be traversable through the ‘‘upstream” and ‘‘down-
stream” relations. These relations must satisfy a closure
constraint, in which they are connected only to entities of the same
types. Moreover, at certain levels, the paths implied by these rela-
tions must terminate only at certain locations and no others. For-
tunately, the constraints that we have identified so far do in fact
lend themselves to automated auditing. The constraints we
checked are specific to networks connected by ‘‘upstream” and
‘‘downstream” relations, which we use in our tumor spread model.
They can be applied to other networks in the human body besides
the lymphatics, such as the arteries, veins and nerves. Some algo-
rithmic parts of our auditing process may be generalizable, but
our most important conclusion is that the formal model itself
may need revision based on specific application needs, even with-
out adding any new content. Such insights will be difficult to gen-
eralize, but this case study illuminates their nature, and should
serve as an alert to people undertaking real clinical applications.

We describe here the constraints we needed to check, our meth-
ods and our results for the lymphatic system. We also discuss how
these methods would also be applied to other networks such as
arteries and veins. Our experience with formulating and applying
such domain specific auditing should provide useful insights for
others to formulate domain specific constraints for other large
scale ontologies. We include the actual code for the constraint
checking algorithms (all this work was done using Common Lisp),
to give precision and concreteness to the report. We did not build a
software tool with an elaborate user interface, but just used the
interactive Common Lisp environment to run queries, get the re-
sults and analyze them. If indeed these methods can be generalized
or suitably parametrized it may be worth engineering such a soft-
ware tool. The goal of this article is not to advertise such a tool, but
to provide enough detail that anyone could reproduce our results
and use the algorithms with little or no modification. The code is
altogether only a few pages, so this is very practical.

We begin by describing the most relevant aspects of the FMA,
and the specific constraints of interest for the lymphatic system,
followed by an outline of the methods, and actual code that imple-
ments the constraint checking algorithm. We report the results for
the lymphatic system, and discuss its implications for updating the
FMA, as well as indicating how the same methods can be applied to
other network organ systems in the FMA.
2. The UW Foundational Model of Anatomy (FMA)

The University of Washington Foundational Model of Anatomy
(FMA) is a formal model of human anatomy. According to its cre-
ators [7–9], the FMA is intended to be a sound, accurate and con-
sistent formal theory of human anatomy. The FMA had its
beginnings in the Digital Anatomist project at the University of
Washington, a project to create a large organized collection of ana-
tomical images and textual information to enhance the teaching of
anatomy to medical students. The idea was to link a hypertext
(originally implemented with Macintosh Hypercard) and an image
repository. The images included annotations, labeling, and overlays
of contours or other drawings delineating objects in the images. La-
ter, these facilities became network accessible, and many offshoot
projects developed. The Digital Anatomist terminology system, a
semantic network that expressed many different kinds of relation-
ships among the concepts named by the terms, gained an identity
independent of the Digital Anatomist image atlases as an effort to
enhance the anatomical content of the UMLS [7,10].

Our initial ideas for using the FMA to guide radiation therapy
planning [1] were focused on using the hyperlinked terminology
network as an index into the Digital Anatomist image atlases.
Information in a radiation treatment plan could be used to retrieve
relevant annotated images to help the radiation oncologist identify
lymph nodes and other structures difficult to see on typical patient
image sets. However, we determined that deeper automated rea-
soning was possible. We began a project to create a theory of tu-
mor dissemination [2,3] and evolved the image matching
problem into a separate project [11,12]. The auditing we describe
here supports the tumor dissemination theory development.

2.1. The components of the FMA

The FMA represents four distinct kinds of knowledge in relation
to anatomy. As is typical of most ontological modeling efforts, the
FMA includes a taxonomy of anatomical entities. This is imple-
mented as a class hierarchy, the Anatomical Taxonomy, or AT.
However, anatomy is not simply about classification of entity
types, but about relationships between entities. In the case of anat-
omy, these are structural relationships, so the second component of
the FMA is a large collection of structural relationships. These
structural relationships express such ideas as containment, constit-
uent parts, connectivity etc. The FMA describes canonical anatomy,
i.e., the relationships are generally true of human anatomic struc-
ture, not only a particular set of attributes of a particular human
being. This part of the FMA is called the Anatomical Structural
Abstraction, or ASA. Together with the AT, these relationships pro-
vide the basis for anatomical reasoning in support of applications.
The FMA also is designed to accommodate things that change with
time, in order to describe embryological development. This part of
the FMA, called the Anatomical Transformation Abstraction, or
ATA, is much more a work in progress than the AT and the ASA.

A fourth component of the FMA is the metaknowledge that con-
sists of the rules and principles that the other components are re-
quired to follow. These are anatomical axioms.

The FMA is realized as a collection of frames. It is built and
maintained using the Protégé ontology (frame) editor [13,14].
The FMA can also be translated into a description logic language
[15]. It is therefore a computable representation, i.e., we can write
programs to search for frames, and trace the various relationships,
such subclass and part-of relationships. Even more important
are the relations that implement the notion of connectivity, i.e.,
the downstream relations for the vessels of the various networks
in the human body.

2.2. Representing anatomical relations in the FMA

The FMA includes entries for every element of human anatomy
from the body, progressing in levels of detail down to the cellular
and subcellular levels. Most important, the FMA represents rela-
tions between entities, not only in terms of a superclasses, or
subsumption, hierarchy (class–subclass relationships), but also
other relationships such as composition (various part-of rela-
tions), spatial relations and connectivity (e.g., for the blood vessels
and the lymphatic systems, upstream and downstream connectiv-
ity). In addition to the general relationships already mentioned,
there are specialized relationships that apply only to certain sub-
classes of anatomical entities. The upstream and downstream rela-
tions hold between entities of the same type, but there are also
relations between different types. For example, arterial supply, ve-
nous drainage, and lymphatic drainage are relationships between
types of vessels and types of organs. In all, there are nearly 200
relationship types in the FMA.

Because the FMA is intended to be an artifact embodying a the-
ory of anatomy, it is designed to conform to some key principles.
One of these is that the type hierarchy as well as the other relation-
ships must accurately represent the actual experimentally verifi-
able structure of the human body and its parts. Another is to
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distinguish, consistent with more general ontology projects such as
the Basic Formal Ontology (BFO) [16], between continuants, things
that exist at particular moments in time, are bounded in space, and
continue to exist indefinitely, and occurrents, which may not be
localised in space but are bounded in time. The latter are the things
we call ‘‘processes,” ‘‘events” or ‘‘changes.” The references cited at
the beginning of this section provide a formal description of the
organizing ideas of the FMA.
Fig. 1. A Protégé class browser display showing the regional parts of a lymphatic
tree, a subdivision of the lymphatic system.
3. Specifying and auditing relations and paths

Because of the sheer size of biomedical ontologies, there is con-
siderable motivation to find ways to do automated auditing. Sev-
eral kinds of auditing are possible. First and foremost, for an
ontology built on a formal logic framework, e.g., a description logic,
it may be possible to test for formal contradictions [15]. Insofar as a
given ontology is intended to satisfy some set of axioms, it may be
possible to check for consistency with those axioms. The axioms
may be relatively generic, or they may be very domain specific.

An example of a more generic axiom is the requirement that
part-whole relationships are transitive but not circular. A more
specific one might be the restriction of slot values to certain types.
This latter requirement can often be enforced by the frame system
itself, if the model supports it. Finally, some constraints are really
content-specific and cannot be checked or enforced by the frame
system, but can possibly be automated by writing suitable proce-
dures. An example in our project is the requirement that all paths
through the lymphatic drainage system must terminate at one of
two possible locations, and nowhere else. Another is that certain
anatomic entities should have values for the ‘‘lymphatic drainage”
property, but which entities these are is difficult to specify in gen-
eral. The FMA introduces this property at what was originally
thought to be an appropriate place. However, it is not simply a
matter of applicability to a single class subtree or a set of subtrees.
At some level of granularity the property should not be present.
This is an unsolved modeling problem.

In the FMA, we performed type checking on one of the relations,
the ‘‘efferent to” relation, specifically for the lymphatic system. We
also did some preliminary investigation of path termination and
circularity constraints for the lymphatic system. All these methods
are applicable to other networks in the FMA, notably the arteries,
veins and nerves.

3.1. The lymphatic system: an example

The human body has two lymphatic trees, which together pro-
vide a drainage system to bring interstitial body fluids into the
blood stream. Material contained in the lymph fluid can then be fil-
tered by the kidneys, processed by enzymes, or broken down by
the action of the immune system. The lymphatic system is distrib-
uted like the arterial and venous systems throughout the body, and
consists of tubes which join together to make larger vessels, and
which collects and conducts fluid to one of two trunks, the Tho-
racic duct or the Right lymphatic duct. These in turn connect
respectively to the left and right brachiocephalic veins. Fig. 1
shows a part of one such tree, as specified by the ‘‘regional part”
relation.

A lymphatic chain is a subdivision of a lymphatic tree. The tree
consists of a trunk and a subtree. The subtree in turn has segments,
which form branches, and is also described in terms of smaller sub-
trees. The segments may be lymphatic chains (with lymph nodes)
or lymphatic vessels. Although Fig. 1 correctly shows the tree
structure, it is not easy to discern or derive paths from it.

For many anatomical entities it makes sense to define their lym-
phatic drainage, i.e., the ends of the lymphatic system that are
embedded in these entities and thus collect fluid from that area.
Not all anatomical structures have a lymphatic drainage, so this
slot is not introduced in the class, ‘‘Anatomical structure.” Instead,
the ‘‘lymphatic drainage” slot is introduced in each of several sub-
classes, including ‘‘Organ,” ‘‘Organ system subdivision,” ‘‘Cardinal
organ part,” and some others. On the other hand, cells and biolog-
ical macromolecules are also anatomical structures but clearly
they do not have lymphatic drainage properties.

Two relationships will be particularly central to our consistency
checking in the lymphatic system. They are the efferent to and affer-
ent to relationships. These relations only apply to components of
the lymphatic system. If entity X is efferent to entity Y, that means
that Y is (in the lymphatic system) downstream from X. Fig. 2 illus-
trates these relations in a schematic drawing of head and neck
anatomy. The arrows show the direction of flow of lymphatic fluid.
In this diagram, A is efferent to D, while B and C are efferent to A. In
the FMA, where applicable, for each lymphatic chain or lymphatic
vessel, the ones that are next to it going downstream, are listed in
the efferent to slot, so A will be listed in the efferent to slot of B, and
also in the efferent to slot of C. Node D will be listed in the efferent
to slot of A. Thus, a particular chain has in its efferent to slot all
those nodes and chains which it is efferent to. These are the down-
stream nodes and chains. The afferent to relationship is just the
opposite, so that if A is afferent to B, that means B is upstream from
A, or closer to the organ from which the lymphatics are draining.
This means that B will appear in the afferent to slot of A.

For those entities that have a lymphatic drainage, those lym-
phatic chains or networks are starting points for path tracing.
Starting with an organ or organ part that has some element of
the lymphatic system as its drainage, asking what is each element
efferent to will produce the next downstream links in the path-
ways through the lymphatic system. If the representation of the
lymphatic system is complete and consistent, following the ‘‘effer-
ent to” relation from any instance of a lymphatic drainage should
eventually end with either the Thoracic duct or the Right lymphatic
duct. An automatic path generating function should be able to
identify lymphatic paths that are consistent with this requirement,
and ones that are not. Several kinds of problems could occur. One is
that a path reaches a dead end, because a lymphatic chain has not



Fig. 2. A diagram showing some of the lymphatic chains and nodes in the head and
neck region, illustrating the ‘‘efferent to” and ‘‘afferent to” relations. In this diagram,
node A is efferent to node D, and is afferent to nodes B and C. The arrows just show
the direction of flow of lymphatic fluid.

1
http://sig.biostr.washington.edu/projects/fm/FME/index.html.

2 SparQL is a query language for RDF, which in turn is the underlying framework for
OIL. It is described in documents at the W3C web site, for example, URL: http://
www.w3.org/TR/rdf-sparql-query/.
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had an ‘‘efferent to” relation entered for it. Another is that a loop is
found, i.e., an ‘‘efferent to” relation leads to a lymphatic chain that
is upstream in the same path. A third possibility is that the type of
entity that appears in the ‘‘efferent to” slot is not a lymphatic chain
or lymphatic vessel. This third constraint should be enforceable by
the frame system at the time of data entry, but in fact in the FMA
there are several different partitionings of the lymphatic system,
with some overlap. Moreover, the model (including the constraints
on slots) has evolved over time. Therefore periodic auditing has va-
lue in identifying changes needed due to these modeling decisions.

We focused on the lymphatic system because it is needed for
the radiation oncology application mentioned earlier. Two specific
requirements for consistency and completeness in the lymphatic
system are:

(1) Every lymphatic chain should have ‘‘efferent to” relations
only to other lymphatic chains or to lymphatic vessels such
as the Thoracic duct or the Right lymphatic duct.

(2) Starting with any lymphatic drainage from an organ or organ
part, all paths using the ‘‘efferent to” relation should end up
at either the Thoracic duct or the Right lymphatic duct.

In Section 4 we describe the methods, algorithms and actual
code to perform these audits. The results, described in Section 5,
were surprising in that we uncovered modeling problems in addi-
tion to data entry errors.

3.2. Generalization to other hierarchies

Arteries and veins form branching networks similar to the lym-
phatic system. In terms of flow of fluid (blood), the arteries start
with a main trunk, the aorta, which subdivides into branches, with
further subdivisions, until finally the arterioles (small arteries)
branch into capillaries that serve particular organs or organ parts.
The veins begin with the capillaries, where the blood flows into lar-
ger vessels, the venules, and these tributaries combine into yet lar-
ger vessels, the veins, much like the tributaries of a river, until
finally all the flow converges into the vena cava, and then into
the heart (right atrium). This describes the circulation throughout
the body, but does not include the pulmonary circulation, which is
separate. The blood leaves the heart via the right ventricle, travels
through the pulmonary arteries and veins, returning to the heart at
the left atrium, and then is pumped out again to the rest of the
body through the left ventricle, into the aorta.

For veins, the flow downstream connects similarly to the
lymphatics. For our purposes the only difference is the set of ana-
tomic entities we are examining (the class ‘‘Vein” and its subclass-
es), and the name of the downstream relation. The relation for
veins corresponding to the ‘‘efferent to” relation for lymphatics is
the ‘‘tributary of” relation. If vein A is a tributary of vein B, that
means that vein B is downstream from vein A. So whatever logic
we apply to lymphatics should carry over to the veins.

For arteries, the constraints apply to the upstream relation, since
the branching is outward rather than inward. So, starting from a
capillary bed, tracing backward (upstream) we should only find
other arteries (or subclasses), and eventually all upstream paths
should terminate at the aorta. For arteries, the upstream relation
we need is the ‘‘branch of” relation. If artery A is a branch of artery
B, then B is upstream from A.

We have not yet applied our audit algorithms to the arteries and
veins. There are many more arteries and veins than there are lym-
phatic chains and vessels, and we expect that there are also many
more incomplete entries. Future work will include this extension
of our code.

4. Methods

In this section we describe the algorithms and actual code we
used to perform the audits described previously. This should serve
to illustrate how one might do semantic consistency checking in an
ontology like the FMA.

Most people interact with a biomedical ontology through some
kind of editor or browser software. For the FMA, since it was created
and is maintained as a Protégé project, it is reasonable to use Proté-
gé itself to examine entries manually. Another option is a web inter-
face called the Foundational Model Explorer.1 Similarly, the Gene
Ontology [17] has web based browser interface tools, as do the Kyoto
Encyclopedia of Genes and Genomes (KEGG) [18], and many others.

For our purposes, an application programming interface (API) is
needed, since we want to automate the process of examining frames
and their contents. There have been some efforts toward creating
standard APIs for knowledge bases, such as the Open Knowledge Base
Connectivity (OKBC) project [19]. However, OKBC never really caught
on. Other approaches include being able to export and import ontol-
ogies in an XML format, which requires considerable agreement on an
actual ontology description language. At present, there are several
successful versions of this, including the Web Ontology Language
(OWL) [20], and the Ontology Inference Layer (OIL) language [21],
which originated from the DARPA Knowledge Sharing Project. The
UW Structural Informatics Group has developed several query inter-
faces for the FMA. One is an XML based query language, OQAFMA, tai-
lored specifically to the FMA [22]. More recently, the FMA project has
developed a SparQL2 web service interface to an OWL version of the

http://sig.biostr.washington.edu/projects/fm/FME/index.html
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http://www.w3.org/TR/rdf-sparql-query/
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FMA [23]. Of particular use to this project is a network socket based API,
called the Foundational Model Server, or FMS [24].
4.1. A Simple Network Interface—the FMS

The FMS API resembles OKBC, in that it provides simple and
direct Lisp-like syntax and semantics for retrieving the value of
a slot in a frame, a list of available slots, and a number of other
useful functions. A query is expressed as a list (in parentheses)
containing a command symbol and zero or more parameters, typ-
ically strings naming entities and/or relationships. The result re-
turned by the FMS is also a string in a Lisp-like format. This
cycle repeats until the client program sends a ‘‘quit” request. This
API has been functional for over 10 years, and is unsurpassed in
its simplicity, so it is really easy to write a client program to
query the FMS. Here we describe how it looks. Chapter 6 of
[25] provides the entire code to for accessing the FMS from a
Common Lisp program.

An FMS query may have parameters that are strings, numbers,
t, or nil. Here is an example query, asking for the constituent
parts of the heart (constitutional parts are those that make up an
anatomical entity, while regional parts are spatial subdivisions),

(fms-get-children ‘‘Heart" ‘‘constitutional part")

and here is the response from the FMS:

(‘‘Coronary sinus” ‘‘Interatrial septum” ‘‘Interven-
tricular septum”
‘‘Atrioventricular septum” ‘‘Tricuspid valve” ‘‘Mitral
valve”
‘‘Aortic valve” ‘‘Pulmonary valve” ‘‘Wall of heart”
‘‘Cavity of right ventricle” ‘‘Cavity of left atrium”
‘‘Cavity of left ventricle” ‘‘Fibrous skeleton of

heart”
‘‘Cavity of right atrium” ‘‘Cardiac vein” ‘‘Right coro-

nary artery”
‘‘Left coronary artery” ‘‘Systemic capillary bed of

heart”
‘‘Lymphatic capillary bed of heart” ‘‘Neural network of
heart”)

The query above is not a function call in a Lisp program. It is a
string of characters sent to the FMS through a network connection.
Similarly, the return value is a long string (without newline char-
acters) that is read back from the socket. However, it is easy to con-
struct strings like this in a Lisp program, and even easier to parse
the result string (the Lisp built-in function, read, does this). In or-
der to perform this operation we need a way to make a connection
to a remote server like the FMS. We use standard network socket
library code to do this. The details are described in Section 6.2 of
[25].

The kinds of relations in the FMA that will be needed for the
audits we described are ‘‘lymphatic drainage,” and ‘‘efferent to.”
Section 6.2 of [25] describes how to encapsulate the FMS protocol
in a Lisp function, get-children, so that we can query about any
relation from the many hierarchies in the FMA. The input to this
function will be the term naming the entity of interest and the
name of the relation. For example, to obtain a list of the names
of the lymphatic chains that drain the Soft palate, we would per-
form the following query in a Lisp environment either interactively
or from within another function:

>(get-children ‘‘Soft palate” ‘‘lymphatic drainage”)
(‘‘Superior deep lateral cervical lymphatic chain”
‘‘Right retropharyngeal lymphatic chain”
‘‘Left retropharyngeal lymphatic chain”)
The result is a list of strings that are the names of the entities
satisfying the query. With this interface one can also write a query
that obtains implementation details of the Protégé built-in rela-
tions as well. So, for example, one can get a list of all the FMA enti-
ties whose direct type is lymphatic chain, by querying as follows:

>(get-children ‘‘Lymphatic chain”:DIRECT-INSTANCES”)
(‘‘Pulmonary lymphatic chain”
‘‘Subdivision of pulmonary lymphatic chain”
‘‘Axillary lymphatic chain”
‘‘Subdivision of axillary lymphatic tree”
‘‘Posterior mediastinal lymphatic chain”
‘‘Tracheobronchial lymphatic chain”
‘‘Tributary of tracheobronchial lymphatic chain”
‘‘Left cardiac tributary of tracheobronchial lympha-

tic chain”
. . .)

Altogether there are currently 101 direct instances of the class,
‘‘Lymphatic chain.” However, this is not the entire collection of
everything that is a lymphatic chain, since there are more that are
classified under ‘‘Subdivision of lymphatic chain.” This was done to
help authors who are adding entries to the FMA to keep track of
things. In this case they wanted to keep the subchains (subdivisions,
or regional parts) of bigger chains in a class or category separate from
the long list of individual chains, some of whose subchains are not
yet identified and entered. In addition, many lymphatic chains
whose type is included in the direct types above, actually appear in
the body as a left variant and a right variant. These too are imple-
mented as subclasses. Therefore in order to retrieve all the lymphatic
chain entries, it is necessary to traverse the class hierarchy. To do
this, we used the Protégé :DIRECT-SUBCLASSES relation. This is a
straightforward recursive query, collecting all the subclasses below
a certain point in a class hierarchy. The direct subclasses can be ob-
tained by using get-children. To collect all, that list must be
merged with the results of a recursive call to obtain all the subclasses
of each subclass. Here is such a recursive query.

A glossary of the most important Common Lisp terms used in
this paper can be found in Appendix A.

(defun all-subclasses (entry)

(let ((subs (get-children entry

‘‘:DIRECT-SUBCLASSES")))

(if (null subs) nil

(append subs (apply #’append

(mapcar #’all-subclasses subs))))))

The recursive query terminates when there are no further sub-
classes. The recursive call is applied to each of the subclasses (using
mapcar), and the results are all combined into a single flat list using
append. The append function is used twice, once to combine all the
lists from the recursive call, and again to combine that list with the
direct subclasses. Applying this to the class ‘‘Lymphatic chain” shows
that there are 353 lymphatic chain entries altogether.

> (length (all-subclasses ‘‘Lymphatic chain”))
353

We also queried the FMA for lymphatic vessels, which are classi-
fied separately from lymphatic chains. The FMA currently contains
670 entries of type ‘‘Lymphatic vessel.” If there are any other chains
or vessels, they are misclassified. Auditing to discover such misclas-
sifications is yet another problem, which we did not investigate.

Although the term ‘‘instance” usually refers to an individual, an
entity in the real world, in the FMA extensive use is made of
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metaclasses, where a class technically functions as an instance of a
metaclass. Normally this relation is distinct from the ‘‘subclass”
relation. It may seem that we have mixed up ‘‘instance” and ‘‘sub-
class” relations. In the FMA, however, every entity is indeed both a
subclass and an instance of its parent class. This unconventional
modeling scheme is needed in order to be able to propagate the
presence of properties by inheritance, while also giving values to
properties at each level [8,26].

4.2. Methods for collecting and checking relations

The first requirement we stated is a slightly more stringent
requirement than the current FMA specifies in the ‘‘efferent to”
relation, but it is necessary in order to get meaningful pathways.
In the FMA specification of the ‘‘efferent to” relation, the following
are allowed classes:

� Lymphatic chain
� Lymphatic vessel
� Anodal lymphatic tree
� Lymphatic plexus
� Lymph node

The Thoracic duct and Right lymphatic duct are lymphatic
trunks, which are subclasses of Lymphatic vessel. They should
be allowed as ‘‘efferent to” contents, along with other trunks.
However, being the terminal entries of the lymphatic system,
they do not have any ‘‘efferent to” contents. Anodal lymphatic
trees are small networks of lymphatic vessels that directly drain
structures. There should be no lymphatic chains efferent to
these entities, as they are leaf nodes or beginning elements of
lymphatic pathways. Allowing for these exceptions, the essential
check is that the ‘‘efferent to” relation is closed over the set of
lymphatic chains and vessels. Once we have a complete set, the
check consists of iterating over the set, retrieving the ‘‘efferent
to” slot contents, and classifying each chain or vessel into one
of three categories. If the ‘‘efferent to” slot contents meet the
constraints, it is classified as ‘‘good,” if there are any invalid
contents, ‘‘bad,” and if no contents, ‘‘not done.” This can be
done in a single pass through the list, but unfortunately with
lots of lookups, depending on how many entries are in the
‘‘efferent to” slot.

We checked the contents of the ‘‘efferent to” relation for lym-
phatic vessels as well as lymphatic chains. For each of the items
in the two lists, we retrieved the values in the ‘‘efferent to” slot.
This can be easily done by writing a function to go through each
list, get the ‘‘efferent to” contents and pair it with its chain or ves-
sel. Here is a parametrized implementation that makes clear we
are performing the general check of closure of a set under some
mapping function.

(defun check-closure (entity-list map-fn compare-

fn)

(let (good bad not-done)

(dolist (entry entity-list (list good bad not-

done))

(let ((slotvalues (funcall map-fn entry)))

(cond ((null slotvalues) (push entry not-

done))

((every #’(lambda (x)

(find x entity-list :test

compare-fn))

slotvalues)

(push entry good))

(t (push entry bad)))))))
In this function, for our purposes, entity-list is a list of the
chains and vessels, map-fn is the efferent-to function (the
application of the ‘‘efferent to” relation using get-children),
and compare-fn is the string-equal function since the FMS re-
turns lists of strings as results of queries. The same function should
be useable for checking other networks in the FMA, such as arter-
ies, veins and nerves, which also have similar closure requirements
for upstream and downstream relations.

4.3. Checking lymphatic paths for proper termination

Another constraint we mentioned is that the result of tracing
paths through the lymphatic system should always be either the
Thoracic duct or the Right lymphatic duct. This is a case of the gen-
eral problem of checking a directed acyclic graph (DAG) to deter-
mine if all paths terminate in a small number of specified
endpoints. Since we have convenient functions for access and for
the downstream relation, we just need a way to generate paths.
This should be a straightforward application of a path-search

function.
Search functions and algorithms are well described in standard

Artificial Intelligence textbooks [27–30]. Path search is a simple
extension to these. We used path search code described in Section
2.5.4 of [25]. The path-search function takes as input a starting
location in the graph or network to be searched, a goal function
that returns true when the goal is reached, an indicator of whether
to stop at the first path, get some number of paths, or all the paths,
a successors function that generates the next adjacent nodes in the
network, an extender that takes a new node and puts it on the cur-
rent path, and a merge function that controls the search strategy.
Here is how we used path-search.

(defun find-all-paths (start)

(labels ((successors (path)

(get-children (first path) ‘‘efferent to”)))
(path-search start

#’(lambda (current)

;; goal - stop when no more

(null (funcall successors

current)))

nil;; get all the paths

#’successors

#’cons

#’append)))

The goal function is a function that checks if there are any more
successor nodes, i.e., we keep going until the path simply ends. We
specified nil for the next parameter to indicate that we want all
the paths, not just one. The locally defined successors function
queries the FMA to find the chains that are efferent to the current
chain. The path extender is the Common Lisp cons function, so the
path will be built up with the last node as the first item in the path
list, going back to the start. Finally, the merge function will be ap-
pend, which implements depth-first search. We expect that all the
paths will terminate, but of course it is possible that the FMA mis-
takenly contains a path that is a cycle. In that case, the search will
not terminate. We have not systematically checked for such cyclic
paths, but so far have found none.

In order to apply this function to the lymphatic paths tracing
problem, we needed to provide starting paths, which we obtained
for a named anatomic entity by getting the contents of the ‘‘lympha-
tic drainage” slot. The following code applies the find-all-paths
function to each lymphatic drainage entry and produces a list of
paths for each. These lists all should be appended together to get
the complete list of paths, so the same idiom that we used in the



Table 1
Contents of ‘‘efferent to” slots of some lymphatic chains and lymphatic vessels.

Chain or vessel name Contents of ‘‘efferent to” slot

Pulmonary lymphatic chain Bronchopulmonary lymphatic
chain

Subdivision of pulmonary lymphatic chain NIL
Axillary lymphatic chain Subclavian lymphatic trunk

Subclavian lymphatic tree
Subdivision of axillary lymphatic tree NIL
Posterior mediastinal lymphatic chain Thoracic duct

Tracheobronchial lymphatic
chain

Tracheobronchial lymphatic chain Bronchomediastinal lymphatic
trunk
Bronchomediastinal lymphatic
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all-subclasses function, with append and mapcar, can be used
here.

(defun lymphatic-paths (site)

(apply #’append

(mapcar #’(lambda (start)

(find-all-paths start))

(get-children site ‘‘lymphatic
drainage”))))

We used this function to generate paths for a few interesting
locations in the head and neck. The complete auditing of paths is
a work in progress.
tree
Tributary of tracheobronchial lymphatic chain NIL
Left cardiac tributary of tracheobronchial

lymphatic chain
NIL

Brachiocephalic lymphatic chain Bronchomediastinal lymphatic
trunk
Bronchomediastinal lymphatic
tree

Right cardiac tributary of brachiocephalic
lymphatic chain

NIL

Lymphatic capillary NIL
Tributary of lymphatic trunk NIL
Superficial lymphatic vessel NIL
Deep lymphatic vessel NIL
Lymphatic trunk NIL

Table 2
Some chains that have valid ‘‘efferent to” slot values.

Chain name Slot contents

Left submental lymphatic chain Left submandibular lymphatic chain
Left jugulo-omohyoid lymphatic chain

Right submental lymphatic chain Right submandibular lymphatic chain
Right jugulo-omohyoid lymphatic chain

Table 3
Some chains that have invalid ‘‘efferent to” slot values.

Chain name Slot contents

Left parasternal lymphatic chain Left bronchomediastinal lymphatic tree
Right parasternal lymphatic chain Right bronchomediastinal lymphatic tree
5. Results

This section describes in detail the results we obtained for the
lymphatic system. We have not yet performed comprehensive
checks of the arteries, veins or nerves.

5.1. Auditing the downstream relation in the lymphatics

The tests were performed in a sequence of steps, so that we
could examine intermediate results. Of course for fully automated
checking these steps could easily be combined. First, for the lym-
phatic chains and vessels, we obtained all the entities for these
types and their subtypes, using the all-subclasses function
previously defined. We obtained lists of both the ‘‘lymphatic chain”
and the ‘‘lymphatic vessel” classes. Examples of lymphatic chain
subclasses include:

� Pulmonary lymphatic chain
� Subdivision of pulmonary lymphatic chain
� Axillary lymphatic chain
� Subdivision of axillary lymphatic tree
� Posterior mediastinal lymphatic chain
� Tracheobronchial lymphatic chain
� Tributary of tracheobronchial lymphatic chain
� Left cardiac tributary of tracheobronchial lymphatic chain
� Brachiocephalic lymphatic chain
� Right cardiac tributary of brachiocephalic lymphatic chain

A person knowledgeable about anatomy may notice that these
are all proper subclasses, but some refer to specific entities that are
found in an actual person, e.g., Left cardiac tributary of tracheobron-
chial lymphatic chain, while others represent aggregate classes. For
example, there are several subdivisions of the Pulmonary lymphatic
chain, so the class, Subdivision of pulmonary lymphatic chain, does
not refer to a specific entity. The Lymphatic vessel subclasses are
similarly mixed, that is, specific entities are at the same level of
description as aggregate classes. Here are some examples of those:

� Lymphatic capillary
� Tributary of lymphatic trunk
� Tributary of lymph node
� Superficial lymphatic vessel
� Deep lymphatic vessel
� Lymphatic trunk

Next, for each of the items in the two lists, we retrieved the val-
ues in the ‘‘efferent to” slot, giving the results shown in Table 1.
Each lymphatic chain or vessel in the left column may have entries
for chains or vessels that are downstream, shown in the right col-
umn. If the FMA contains nothing in the ‘‘efferent to” slot for that
chain or vessel, the table shows an entry of NIL.
We sorted these lists into three categories. The first category in-
cludes all the chains that have valid chains or vessels in the ‘‘effer-
ent to” slot. There are 140 chains in this category. A sample of these
is shown in Table 2. We found 11 chains with invalid data in the
‘‘efferent to” slot. A small sample is shown in Table 3. We found
202 chains with no data in the ‘‘efferent to” slot. Some of these
are evident in Table 1, where NIL is shown in the contents column.
Examining the 11 determined to be invalid, it is apparent that
these entries are ones where a lymphatic tree has been entered.
It is problematic that a chain could be efferent to a subtree of the
lymphatic system, although this is anatomically correct in some
sense. A chain that is part of a tree connects to the tree and the lym-
phatic fluid flows from the chain into that branch of the tree, but
that is not the same as saying that the entire tree is downstream.
For path tracing, it is misleading, because the flow from that chain
does not go through the whole tree, but only through a subset of
branches. So these need to be fixed in order to do sound path trac-
ing. As there are so few, it is relatively easy to fix this modeling
problem, and we are proceeding with these corrections.

We performed the same checks on the vessels list. The counts
for the three categories were: 13 classified as valid, 2 as invalid
and 655 with no contents in the ‘‘efferent to” slot. On inspection
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of the two that are flagged as bad, the same problem appears. A
tree has been entered where we would expect a trunk, vessel, or
chain.

5.2. Results of pathway checking in the lymphatics

The second check, to determine whether all paths terminate at
the Thoracic duct or Right lymphatic duct, is more challenging. The
fact that many ‘‘efferent to” relationships are still not done makes
it highly likely that there are many incomplete paths, so this check
is premature, and we have only sampled the paths for termination.
Here we describe the results of these samples. There are two ways
to proceed. First, one could put together a list of all the organs and
organ parts whose lymphatic drainage should be traced. We would
apply the lymphatic-paths function to each and examine the re-
sults for incomplete paths, in a manner similar to the checking of
slot values for the ‘‘efferent to” relation. This is difficult because
there is no simple way to identify all the relevant organs and organ
parts that should be starting points.

Another possible approach would be to start with the list of
chains and vessels. Using the find-all-paths function, one
traces the paths, and examines their end points. This is difficult be-
cause there are many classes in this list for which such path tracing
is actually inappropriate. By applying the first check to a few sam-
ple organs, it will become apparent what is going on.

Fig. 3 shows the results of using the lymphatic-paths func-
tion for the Soft palate. Three lymphatic chains drain the Soft pal-
ate, the Superior deep lateral cervical lymphatic chain, the Right
retropharyngeal lymphatic chain, and the Left retropharyngeal
lymphatic chain. There are two paths from each of the three lym-
phatic chains. So the lymphatic system is multiply connected, but
at least so far, not cyclic. The paths from the Right retropharyngeal
lymphatic chain end at the Right lymphatic duct, as expected. Sim-
ilarly, the paths from the Left retropharyngeal lymphatic chain end
at the Thoracic duct. However, the paths from the Superior deep
Fig. 3. Lymphatic paths from the soft palate.
lateral cervical lymphatic chain end at the Jugular lymphatic trunk.
This is not useable for reasoning about the migration of tumor
cells, although it is anatomically valid.

There are actually two jugular lymphatic trunks, a Right jugular
lymphatic trunk and a Left jugular lymphatic trunk. One goes to
the Thoracic duct and one goes to the Right lymphatic duct. They
are each a subclass of the general class, ‘‘Jugular lymphatic trunk.”
So it is correct to have no entry at the higher level of generality. In
attempting to determine drainage paths for tumor cells, the rea-
soning system will have to somehow determine that the knowl-
edge needed is not at this level. This is yet another complication
in checking consistency and completeness, as well as in applying
the knowledge to clinical problem solving.

There are many such places where anatomical structures are
described as general classes, and then have more specific right
and left subclasses. This is very important, since geography is
important and (especially with radiation therapy) one must specify
on which side the entities of interest are. The presence of the gen-
eral classes and right/left subclasses makes reasoning difficult to
automate. There is room for some further innovation here.

6. Discussion and conclusions

We have corrected the errors that were turned up in these
audits. There were few enough that it was relatively easy to simply
edit the entries with Protégé. One question that naturally arises is:
did we find all the errors that we sought? A usual approach is to
establish a ‘‘gold standard” test environment, in which the ‘‘true”
errors are known, and then determine the true and false positive
rates, from which sensitivity and specificity can be reported. Thus,
one could envision comparing these search techniques to other
methods. However, such an evaluation does not apply here. For
the lymphatic system entities identified, the tests are pathogno-
monic, i.e., if an error is found, it is indeed an error, and further,
the check for these kinds of errors is definitive. There is no possibil-
ity of a false positive or of overlooking an incorrect entry in the
‘‘downstream” slot. Every such slot contains a small number of en-
tries, each with well defined type. Either the type is allowed or it is
not, according to the consistency requirements. The idea of an
independent ‘‘truth” simply does not apply. The main issue in re-
gard to performance is in the coverage. Have we checked every
lymphatic system object that needs to be checked? Here we de-
pend on the class structure. There is a possibility that a lymphatic
chain or vessel will not be checked because it is not specified to be
a subclass or instance of the ‘‘Lymphatic chain” or ‘‘Lymphatic ves-
sel” class. It is also possible that an entity is misclassified as such a
class when it actually is not. Identifying misclassified lymphatic
system entities is a check we did not undertake. That kind of
checking would require an independent way of determining
whether an entity was a lymphatic chain or not. One method might
be to lexically analyse names, which would raise yet more issues.

Our checks have identified some complexities in the model it-
self. Some of these results suggest making changes to the model,
e.g., removing lymphatic trees as allowed entries in the ‘‘efferent
to” slot. This is an example of how the restrictions on slot values
may be modified over time. Since restriction on slot values may
change with time, the ontology editor’s checking with data entry
is not sufficient. As decisions about the model evolve, the entries
should be retrospectively checked, so the methods we developed
have an ongoing role. Such restrictions are themselves data that
are entered, and also should be auditable, but it is not clear how
that could be automated, since they represent modeling decisions
that have no higher level formal representation in the system.

The problem of modeling classes like ‘‘Jugular lymphatic trunk”
for which there are more specific subclasses is more vexing. The
entries clearly satisfy the type constraints, but are problematic in
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that a tumor cell migration application that tries to trace the pos-
sible paths will fail at this point in the FMA. The cells certainly do
not stop at the Jugular lymphatic trunk, and it is not a terminus in
the actual human lymphatic network.

In regard to the ‘‘efferent to” relation, one might think that the
lymphatic system consists entirely of two directed acyclic graphs
and that standard algorithms for analysis apply here. But the lym-
phatic system entities in the FMA form many disjoint graphs, not
just two. In terms of a description of anatomy, this reflects multiple
levels of abstraction that have been mixed together. Such mixing
makes precise reasoning ineffective or inaccurate. In terms of
application to a model of tumor cell migration, what really needs
to be verified is that all paths from any instantiable organ, organ
part or tissue connect to and terminate in one of the two end-
points, the Thoracic duct and the Right lymphatic duct. The diffi-
culty in implementing this constraint is that this is not a
requirement on every entry in the lymphatic system representa-
tion, but only on the ones that drain tissues. We have no way at
present to identify this subset.

A solution to consider is to add a requirement to the FMA that
relations such as ‘‘efferent to” need to be applied only to the most
specific members of a class hierarchy. This recognizes that we have
abstract classes and instantiable subclasses, in some cases. Solving
this problem is a topic for further discussion, but at least the con-
nectivity checks were able to identify instances of the problem. In
general, the FMA models every entity as a class, because it is in-
tended to model canonical anatomy, rather than the anatomy of a
particular individual. However, we have demonstrated that rea-
soning applications require that we distinguish between classes
that are directly instantiated in individuals, such as Left lung or
Right lung, from classes that are abstract, never directly instanti-
ated, such as Lung. Complicating this problem, we fully expect that
some knowledge that is appropriately modeled at the more ab-
stract level will also be needed for applications, so it does not ap-
pear that there is a simple solution to this problem.

In the few path checks that we have run, we have found that
every path terminates, though as the results show, not always
where it should. Another possibility is that the path check may re-
veal circularities. The path tracing code described previously
would not terminate in this case, and a different kind of check is
needed, where one keeps track of nodes already visited and flags
returns to such nodes. Simply doing breadth first search would
not be sufficient. A breadth first search will not terminate because
our termination condition is that there are no more successor
nodes. The function that generates successors must have access
to and keep track of nodes already previously generated. In that
case, even depth first search will terminate since there are a finite
number of entries to consider. A systematic search is planned for
the near future.

The implications for radiation therapy planning and our Clinical
Target Volume project are that our model for the predictions of
migration of tumor cells will be based on an incorrect or incom-
plete rendering of the lymphatics. If some chains or vessels are
incorrectly represented as end points of paths, the model will pre-
dict no tumor cell migration beyond them. This will tend to suggest
an inappropriately smaller radiation target volume, and the patient
would be undertreated if such a plan were actually used.

At present the veins and arteries are modeled in an even more
complex fashion than the lymphatics. For example, there is a class
named ‘‘Vein,” but it does not include such well known entities as
the Superior vena cava or Inferior vena cava. These are subclasses
(instances) of another class, ‘‘Venous trunk.” So the collection of in-
stances and checking of the contents of the downstream relation
must take this into account. So, again it can be seen that complex-
ities arise from a focus on class–subclass modeling. Again it is
important to note that the assertions which these entries represent
are true, but they may not facilitate correct reasoning because of
the mixing of levels of abstraction. For applications that need
structural information about veins and arteries, an additional com-
plication is that variations among individuals may be significant,
and will limit the accuracy of inference based on canonical
structure.

The algorithm for actually performing the checks on slot con-
tents appears to be independent of these contextual problems.
Some of the code could be further elaborated and engineered into
a suite of algorithms with suitable parametrization, that could be
the basis for a useful tool. If enough applications exist, we will con-
sider this for future work. However, the main conclusion from our
investigations is not that the algorithms or code are generalizable.
It is that applications may expose modeling issues that were not
anticipated when constructing the ontology purely from a general
knowledge representation viewpoint. We expected to find a few
data entry errors, but we did not expect to find that there are mod-
eling challenges as well. The modeling challenges are beyond the
formal requirements of consistency and completeness that can
be expressed generally. They are concerned with the content itself.

The main point here is not that the FMA needs to be adjusted to
make it more suitable for a particular application, but that auditing
to meet application requirements uncovered some real modeling
issues. It is not sufficient to claim that an ontology expresses in a
humanly understandable way what its authors know. To really ap-
ply an ontology to problem solving sets a higher standard, one to
which the FMA aspires. To put yet another perspective to this
work, similar modeling issues have been identified in the UMLS
[31]. It is not too soon for those involved in ontology building pro-
jects to seek applications and delve deeply enough to discover
what the implications may be for the ontology itself.
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Appendix A. Common lisp

For those readers not familiar with the Lisp programming lan-
guage, we include here a brief glossary. Several readily available
books provide an introduction to Lisp programming [32–34]. Nor-
vig’s book on artificial intelligence programming [30] also includes
in the first few chapters a very readable introduction.

All expressions in Lisp are of the form (operator arg1 arg2

. . .). The various operators, as in any programming language, each
have their own details about what the required and other argu-
ments should be. Here are short descriptions of some of the ones
used in this work.

defun defines a named function that can then be used else-
where in a program; its first argument is the name to be used,
the second is a list of formal parameters, and the remainder is
the code body.
let gives variables (symbols) a local context, similar to other
languages in which variables can be given local scope inside a
function or procedure.
append combines several lists into one list.
labels creates local function definitions, usable within a func-
tion or procedure without affecting the surrounding code.
dolist iterates over a list, executing a body of code for each ele-
ment of the list.
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cond is a conditional operator like if but it allows for many
clauses instead of just two, each with its own test.
mapcar applies a function to each element of a list, producing a
new list. Each element of the new list is the result of applying
the function to the corresponding element of the original list.

The symbol sequence (lambda . . .) is an expression that de-
fines an anonymous (unnamed) function, that is usually used right
where it is defined.

The sequence #’ is a syntactic abbreviation for a call to the
function operator, which returns the function associated with
the following name or description. Thus, #’append means, ‘‘the
function named append,” and #’(lambda . . .) means, ‘‘the anon-
ymous function defined by the given expression.”

Semicolons (;) introduce comments.
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