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 6 
Abstract: 7 
The different compartments of the gastrointestinal tract are inhabited by populations of 8 
microorganisms. By far the most important predominant populations are in the colon where a true 9 
symbiosis with the host exists that is key for well-being and health. For such a microbiota, 10 
‘normobiosis’ characterizes a composition of the gut “ecosystem” in which microorganisms with 11 
potential health benefits predominate in number over potentially harmful ones, in contrast to 12 
‘dysbiosis’, in which one or a few potentially harmful microorganisms are dominant, thus creating a 13 
disease-prone situation.  14 

The present document has been written by a group of both academic and industry experts (in the ILSI 15 
Europe Prebiotic Expert Group and Prebiotic Task force respectively). It does not aim to propose a 16 
new definition of a prebiotic nor to identify which food products are classified as prebiotic but rather to 17 
validate and expand the original idea of the prebiotic concept (that can be translated in ‘prebiotic 18 
effects’), defined as:  19 

“The selective stimulation of growth and/or activity(ies) of one or a limited number of microbial 20 
genus(era)/species in the gut microbiota that confer(s) health benefits to the host”.  21 

Thanks to the methodological and fundamental research) of microbiologists, immense progress has 22 
very recently been made in our understanding of the gut microbiota. A large number of human 23 
intervention studies have been performed that have demonstrated that dietary consumption of certain 24 
food products can result in statistically significant changes in the composition of the gut microbiota in 25 
line with the prebiotic concept. Thus the prebiotic effect is now a well established scientific fact. The 26 
more data are accumulating, the more it will be recognized that such changes in the microbiota’s 27 
composition, especially increase in bifidobacteria, can be regarded as a marker of intestinal health.  28 
The review is divided in chapters that cover the major areas of nutrition research where a prebiotic 29 
effect has tentatively been investigated for potential health benefits. 30 
The prebiotic effect has been shown to associate with modulation of biomarkers and activity(ies) of 31 
the immune system. Confirming the studies in adults, it has been demonstrated that, in infant 32 
nutrition, the prebiotic effect includes a significant change of gut microbiota composition, especially an 33 
increase of faecal concentrations of bifidobacteria. This concomitantly, improves stool quality (pH, 34 
short chain fatty acids, frequency and consistency), reduces the risk of gastroenteritis and infections, 35 
improves general well-being, and reduces the incidence of allergic symptoms such as atopic eczema. 36 
Changes in the gut microbiota composition are classically considered as one of the many factors 37 
involved in the pathogenesis of either inflammatory bowel disease or irritable bowel syndrome. The 38 
use of particular food products with a prebiotic effect has thus been tested in clinical trials with the 39 



 4

objective to improve the clinical activity and well-being of patients with such disorders. Promising 1 
beneficial effects have been demonstrated in some preliminary studies, including changes in gut 2 
microbiota composition (especially increase in bifidobacteria concentration). Often associated with 3 
toxic load and/or miscellaneous risk factors, colon cancer is another pathology for which a possible 4 
role of gut microbiota composition has been hypothesized. Numerous experimental studies have 5 
reported reduction in incidence of tumors and cancers after feeding specific food products with a 6 
prebiotic effect. Some of these studies (including one human trial) have also reported that, in such 7 
conditions, gut microbiota composition was modified (especially due to increased concentration of 8 
bifidobacteria). Dietary intake of particular food products with a prebiotic effect has been shown, 9 
especially in adolescents, but also tentatively in postmenopausal women, to increase calcium 10 
absorption as well as bone calcium accretion and bone mineral density. Recent data, both from 11 
experimental models and human studies, support the beneficial effects of particular food products 12 
with prebiotic properties on energy homeostasis, satiety regulation and body weight gain. Together 13 
with data in obese animals and patients, these studies support the hypothesis that gut microbiota 14 
composition (especially the number of bifidobacteria) may contribute to modulate metabolic processes 15 
associated with syndrome X, especially obesity and diabetes type II. It is plausible, even though not 16 
exclusive, that these effects are linked to the microbiota-induced changes and it is feasible to 17 
conclude that their mechanisms fit into the prebiotic effect. However, the role of such changes in 18 
these health benefits remains to be definitively proven.  19 
 20 
As a result of the research activity that followed the publication of the prebiotic concept 15 years ago, 21 
it has become clear that products that cause a selective modification in the gut microbiota’s 22 
composition and/or activity(ies) and thus strengthens normobiosis, could either induce beneficial 23 
physiological effects in the colon and also in extra-intestinal compartments and/or contribute towards 24 
reducing the risk of dysbiosis and associated intestinal and systemic pathologies. 25 

26 
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Introduction1 1 
 2 

In the 1980s, Japanese researchers (1; 2) had already demonstrated that specific non-digestible 3 

oligosaccharides (especially fructo-oligosaccharides) were selectively fermented by bifidobacteria and 4 

had the capacity, upon feeding, stimulating their growth in human faeces. These observartions were 5 

confirmed and further expanded by Gibson & Roberfroid who introduced the concept of prebiotics in 6 

1995 (3) and have recently published a review of the  research which includes the most recent 7 

development (4) (Table 1). During the last fifteen years, this concept has attracted the interest of many 8 

academic as well as industrial scientists and it has become a popular research topic in nutrition and, 9 

more recently, in the biomedical fields.  10 

Early research in the mid 1990s on prebiotics has contributed towards the development and validation 11 

of new molecular biology-based methods resulting in of easy-to-handle, sensitive, and highly specific 12 

methods to identify and quantify the large variety of microorganisms composing the gut microbiota (5-13 
16). The application of such methods has improved our knowledge of the gut microbiota composition in 14 

terms of variety, classification, identity and relative concentrations of genera or species of 15 

microorganisms, as well as in terms of their properties and interactions/cooperations with each other 16 

and with intestinal epithelial cells. This has led the International Scientific Association for Probiotics 17 

and Prebiotics (ISAPP) (6th meeting in Ontario, USA, November 2008) to propose the concept of 18 

‘normobiosis’ to characterize a normal gut microbiota in which genera/species of microorganisms with 19 

potential health benefits predominate in number over potentially harmful ones as opposed to 20 

‘dysbiosis’ which characterizes a gut microbiota in which one or a few potentially harmful 21 

genus(era)/species of microorganisms are dominant, thus creating a disease-prone situation.  22 

A large part of the research activity has concentrated, and still does focus on the in vitro and in vivo 23 

ability of selective modification in the composition of the complex gut microbiota, in particular research 24 

has focused on the selective stimulation of growth of mainly bifidobacteria, but also lactobacilli. In the 25 

future, it is likely this may be expanded towards other genera eg Eubacterium, Faecalibacterium and 26 

Roseburia. It has become clear that products, causing such a selective modification in gut 27 

microbiota’s composition and/or activity(ies), could, in addition, either induce beneficial physiological 28 

effects not only in the colon but also within the whole body and/or contribute towards reducing the risk 29 

of miscellaneous intestinal and systemic pathologies. These effects are summarised in Table 2 and 30 
                                                 
1 The main author of this section is Prof. Marcel B. Roberfroid. 
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have been discussed, on a regular basis, at international conferences (17-19) and were, more recently, 1 

reviewed in a handbook (20). They are also topics for the present document.   2 

 3 

The intensiver research of the past 15 years has contributed towards an improved understanding of 4 

the complexity of the gut microbiota. This includes the discovery of new phyla/genera, their relative 5 

concentration in the gut microbiota, the key role of diet in modulating its composition, the changes 6 

associated with ageing or chronic diseases and the individual character of gut microbiota composition. 7 

In addition, past research has given us insights into its roles in human physiology and miscellaneous 8 

pathophysiological conditions. The gut microbiota is thus now perceived as a key player in health and 9 

well-being with, as a principal condition, a composition in which potentially health promoting dominant 10 

microorganisms (especially the saccharolytic genera/species e.g. bifidobacteria) are elevated and/or 11 

more active than the potentially harmful ones (especially the proteolytic/putrefactive genera/species) 12 

(3; 21) a situation known as ‘normobiotic' or ‘eubiotic’. It is now well recognized that, within such a 13 

potentially health beneficial dominant microbiota, the genus Bifidobacterium, plays an important role 14 

although future research may show different genera/species to also be important. Indeed, it has been 15 

hypothesized that increasing bifidobacteria in gut microbiota, might improve health status and reduce 16 

disease risk.  17 

As a result of discussions with both academic and industry experts (in the ILSI Europe Prebiotic 18 

Expert Group and Prebiotic Task force respectively), the present document does not aim at proposing 19 

a new definition of a prebiotic nor at identifying which food components/ingredients/supplements 20 

classify as prebiotic but rather to validate and expand the original idea of the prebiotic concept, as:  21 

“The selective stimulation of growth and/or activity(ies) of  one or a limited number of 22 

microbial genus(era)/species in the gut microbiota that confer(s) health benefits to the host”, 23 

with  24 

“selectivity” being the key condition that needs to be demonstrated, in vivo, in the complex human 25 

(animal) gut microbiota by applying the most relevant and validated methodology(ies) to quantify a 26 

wide variety of genera/species composing the gut microbiota;  27 
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“activity(ies)” meaning  a metabolic profile(s), molecular signalling, prokaryote-eucaryote cell-cell 1 

interaction linked to one specific microbial genus/species or resulting from the coordinated activity of  a 2 

limited number of microbial genus(era);  3 

“confer(s)” referring to one or a limited number of selectively stimulated genus(era)/species in the gut 4 

microbiota. 5 

In this concept, the use of “gut microbiota” is limited to the application to food/feed components. 6 

Moreover it is implicit that “health benefit(s)” must be linked/correlated, directly or indirectly, to the 7 

presence in relatively high concentrations and/or activity(ies) of one or a limited number of selectively 8 

stimulated microorganisms in the gut microbiota. Indeed, such a conceptual approach emphasizes the 9 

link between “selective stimulation of growth and/or activity(ies) of one or a limited number of specific 10 

bacteria genus/species” and “health benefit(s)”. Consequently, only food 11 

components/ingredients/supplements for which both such a selective stimulation has been scientifically 12 

substantiated and health benefits have been evaluated are included in the review process. The 13 

expression ‘prebiotic effect(s)’ will be used to identify or refer to selective changes in gut microbiota 14 

composition as well as specific (patho-) physiological effects both in experimental and human 15 

intervention studies. But it must be kept in mind that, to substantiate a ‘prebiotic’ effect, will require the 16 

demonstration that such an effect is likely to be ‘causally’ linked to or at least correlated with selective 17 

change(s) in gut microbiota composition.   18 

Currently and mostly for historical reasons, the majority of the scientific data (both experimental and 19 

human) on prebiotic effects have been obtained using food ingredients/supplements belonging to two 20 

chemical groups namely inulin-type fructans (ITF) and the galacto-oligosaccharides (GOS) (for more 21 

details on the chemistry, nomenclature and abbreviations used in the present review see Table 3). 22 

These have repeatedly demonstrated the capacity to selectively stimulate the growth of bifidobacteria 23 

and, in some cases, lactobacilli leading to a significant change in gut microbiota composition. 24 

Concurrently, most of the health benefits possibly associated with the prebiotic effects were discovered 25 

and demonstrated using the same food ingredients/supplements. This, by no means, precludes other 26 

products of demonstrating such prebiotic effects with the same or other health benefits. However, since 27 

the aim of the present review is, primarily, to expand and validate the prebiotic concept, it will neither 28 

emphasize nor identify which specific products can be classified as ‘prebiotic’. A precise list of potential 29 
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candidates for such a classification would require a detailed review of all published studies using each 1 

potential candidate as well as the evaluation of their validity and their relevance. This was not the 2 

mandate given to the group of experts who collectively wrote the manuscript. For such a discussion the 3 

reader should consult the different chapters in the recently published Handbook of Prebiotics (20). It is 4 

important to emphasize the fact that the prebiotic effect and the dietary fibre effect have two different 5 

attributes. Being resistant (partly or totally) to digestion and being fermented (at least the so-called 6 

soluble dietary fibres) both may concern gut microbiota composition and activity. What makes them 7 

different is the selectivity of the prebiotic effect as described above. 8 

In the concluding chapter, tentative answers to the above questions will be presented and discussed 9 

with the main objective to prospectively prioritise topics for further research in the field.  10 

 11 

1 Prebiotic effects in the gut2 12 

1.1 Microbiota of the gastro-intestinal tract 13 

 14 

The microbiota of the human gastro-intestinal (GI) tract inhabits a complex ecosystem (22). Factors 15 

such as pH, peristalsis, nutrient availability, oxidation–reduction potential within the tissue, age of 16 

host, host health, bacterial adhesion, bacterial co-operation, mucin secretions containing 17 

immunoglobulins, bacterial antagonism and transit time influence the numbers and diversity of 18 

bacteria present in the different regions of the GI tract (23). Until 20 years ago, our knowledge of the 19 

GI microbiota relied upon cultivation-based methods and recovery of bacteria from faecal samples. 20 

However, with the advent of molecular techniques and their application to biopsy and faecal samples, 21 

our knowledge of the GI microbiota has increased dramatically (5-16). An understanding of the bacteria 22 

making up the GI microbiota is important due to its involvement in the development of the GI mucosal 23 

immune system, maintenance of a normal physiological environment and for providing essential 24 

nutrients (24). 25 

 26 

                                                 
2 The main authors of this section are Prof. Gibson, Dr. Hoyles and Dr. McCartney and specifically 
Prof. Robert Rastall for the in vitro subsection. 
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1.1.1 The stomach 1 

Although the bacterial load in the stomach is low in healthy adults [~102 Colony Forming Unit (CFU) 2 

(ml contents)−1 (25)], the walls of the stomach are colonized with bacteria. In the healthy adult 3 

stomach, the predominant organisms isolated include lactobacilli, enterococci, ‘catenabacteria’ and 4 

bacilli (26). Of the bacteria that inhabit the stomach, Helicobacter species have been studied most 5 

intensively due to their association with various gastric complaints. Helicobacter pylori is present in 6 

the stomach of a subset of the population (10 % of those between 18 and 30 years of age; 50 % of 7 

those age 60 and over), where it resides in the mucous layer next to the gastric epithelium (23). 8 

Infection with Helicobacter pylori can be asymptomatic, but the organism is known to cause 9 

symptoms such as acute gastritis (i.e. pain, bloating, nausea and vomiting) and/or chronic gastritis; it 10 

has also been associated with peptic ulcers and gastric carcinomas (23).  11 

1.1.2 The small intestine (duodenum, jejunum and ileum) 12 

 13 

The environment of the duodenum is acidic (pH 4–5) with lactobacilli and streptococci predominating, 14 

and numbers of bacteria are higher than those found in the stomach [102–104 CFU (ml contents)−1; 15 

(27)].  16 

Cultivation studies have shown lactobacilli, streptococci, veillonellae, staphylococci, actinobacilli and 17 

yeasts to be most prominent in the duodenum and jejunum (23). However, due to limitations in 18 

cultivation techniques and the ethical issues surrounding the obtention of biopsy samples from 19 

humans, our knowledge of the microbiota of the small intestine was poor until recently. Table 4 gives 20 

details of the results of recent molecular studies that have provided additional understanding of the 21 

microbiota of the small intestine. But these studies are only informative, because only one or a few 22 

donors have been used in each study, and their ages have not been representative of the general 23 

population. However, the results of the molecular studies appear to confirm those of cultivation-based 24 

work. 25 

The microbiota changes markedly from the duodenum to the ileum, as the velocity of the intraluminal 26 

content decreases, pH increases and oxidation–reduction potentials lower, with bacterial loads 27 

increasing to 106–108 CFU (ml contents)−1 (23). As transit time in the small intestine is rather rapid (2-28 

4h) and the bacterial density relatively low, its impact in terms of overall fermentation is low 29 
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comparedto the large intestine (see below). The small intestine is also the site of many bacterial 1 

infections, such as salmonella and some E. coli. For this reason, the small intestine is also a target for 2 

probiotics known to compete with pathogens. 3 

 4 

1.1.3 The large intestine  5 

 6 

The combination of increased transit time of the large intestine, increased nutrient availability (i.e. 7 

undigested food material from the upper GI tract, sloughed-off bacterial cells, microbial cell debris and 8 

by-products of microbial metabolism) and a more-neutral pH ensure that the large intestine is a highly 9 

favourable environment for microbial colonisation. As the environment is strictly anaerobic (>100mV), 10 

in particular obligate anaerobes prevail. Table 5 gives details of some bacteria that have been 11 

isolated from the GI microbiota. Table 6 gives details of molecular studies on biopsies from different 12 

regions of the large intestine. In addition to characterizing the mucosa-associated microbiota, 13 

Zoetendal et al. (11) demonstrated that the faecal microbiota differs from that inhabiting the GI 14 

mucosa. 15 

Even today, due to the difficulty of obtaining samples from the different regions of the intestine, much 16 

of the work done in relation to the ecology and activity of bacteria within the GI tract is carried out 17 

using faecal samples. However, the faecal microbiota is not representative of that of the GI tract as a 18 

whole (11; 14), and inferences made from in vitro studies in relation to specific GI diseases, particularly 19 

those involving the more-proximal regions of the intestine, should always be made with this in mind. 20 

However, a study examining the GI microbiota of sudden-death victims has shown that the faecal 21 

microbiota reflects that of the luminal contents of the descending colon in terms of the culturable 22 

component (28). Molecular based methods have been used to examine the faecal microbiota in recent 23 

years. Identification of specific strains isolated from faecal samples has become more accurate due to 24 

the use of 16S rRNA gene sequence analysis, and has improved taxonomic schemes and our 25 

understanding of the bacteria involved in specific metabolic processes (e.g. the role of Roseburia spp. 26 

in butyrate production (29), and the identification of the mucin-degrading bacterium Akkermansia 27 

muciniphila (30)). This improved characterization of viable bacteria has also aided in the design of 28 

probes for use in fluorescence in situ hybridization (FISH) analysis (e.g. Rrec584 for Roseburia spp. 29 

(31)). 30 
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Early cloning studies examined relatively small numbers of clones to generate a phylogenetic 1 

inventory of the faecal microbiota of healthy adults. Wilson & Blitchington (22) generated two clone 2 

libraries [one from a 9-cycle polymerase chain reaction (PCR) (50 clones, 27 operational taxonomic 3 

units (OTUs)), the other from a 35-cycle PCR (39 clones, 13 OTUs)] from a faecal sample from a 4 

healthy 40-year-old male. Of the clones they analysed, 35 % were related to the Bacteroides group, 5 

10 % to the Clostridium coccoides group (Clostridium cluster XIVa) and 50 % to the Clostridium 6 

leptum group (Clostridium cluster IV). Less than a quarter of the sequences analysed were derived 7 

from known bacteria. Suau et al. (5) found that, of the 284 clones they generated from a faecal sample 8 

from a 40-year-old male, the majority of the sequences fell into three phylogenetic groups: 9 

Bacteroides (31 %), Clostridium coccoides (44 %) and Clostridium leptum (20 %). The remaining 10 

clones were derived from Streptococcus salivarius and Streptococcus parasanguinis and bacteria 11 

related to Mycoplasma spp., clostridia, the Atopobium group, Verrucomicrobium spinosum and the 12 

Phascolarctobacterium faecium subgroup. Seventy-six per cent of the clones analysed were derived 13 

from previously unknown bacteria. Blaut et al. (32) used a cloning approach to demonstrate that 14 

microbial diversity in faeces increases with age (32). It was found that the number of OTUs 15 

corresponding to known molecular species was highest in infants and lowest in the elderly, with 92 % 16 

of sequences from the elderly subjects corresponding to previously unknown bacteria. 17 

As molecular methods have become more widely available and less time-consuming and their relative 18 

costs have decreased, more-ambitious cloning studies in which thousands of sequences have been 19 

examined have been carried out (14; 33). The results of these studies in terms of the groups of bacteria 20 

represented by the largest number of clones and the identification of previously unknown bacteria are 21 

in accordance with those of Wilson & Blitchington (22) and Suau et al. (5), but are notable for the 22 

characterization of several actinobacterial and proteobacterial sequences from human faecal 23 

samples. 24 

Techniques such as Temperature Gradient Gel Electrophoresis (TGGE) and Denaturing Gradient Gel 25 

Electrophoresis (DGGE) allow higher numbers of samples from more donors to be examined than 26 

traditional cloning studies. TGGE was used by Zoetendal et al. (9) to examine the total bacterial 27 

communities of faecal samples from 16 adults. Host-specific fingerprints were generated, 28 

demonstrating interindividual variation in the composition of the faecal microbiota and confirming the 29 

results of cultivation studies. Some bands were seen in fingerprints from multiple donors, suggesting 30 
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that species of the predominant microbiota were common across individuals. In addition, by obtaining 1 

samples from two donors over a 6-month period, the authors showed that the profiles of these donors 2 

did not differ significantly over time, demonstrating that predominant microbial species were relatively 3 

stable without dietary intervention. Excision and sequencing of bands of interest allowed the authors 4 

to perform a phylogenetic analysis on their samples, the results of which demonstrated that the 5 

majority of bacteria represented in their fingerprints did not correspond to known bacterial species. Of 6 

the prominent bands identified in almost all samples, most belonged to different Clostridium clusters, 7 

with the remainder identified as Ruminococcus obeum, Eubacterium hallii and Faecalibacterium 8 

prausnitzii. Zoetendal et al. (10), using DGGE, demonstrated that host genotype affects the 9 

composition of the faecal microbiota. In that study, the authors examined faecal samples from 50 10 

donors of varying relatedness. A higher similarity was seen between fingerprints from monozygotic 11 

twins living apart than between those of married couples or pairs of twins. There was a significant 12 

difference between the fingerprints of unrelated people grouped by either gender or living 13 

arrangements, and no relationship between the fingerprints generated and the age difference of 14 

siblings. Temporal TGGE and DGGE studies examining the faecal microbiota of children and infants 15 

have confirmed the impact of host genotype on the composition of the faecal microbiota (34). Other 16 

studies employing DGGE have used primer sets that allow examination of the composition and 17 

dynamics of specific groups of bacteria (Table 7). The detection limit seems to be the main barrier to 18 

overcome in these studies, particularly when examining populations such as bifidobacteria and 19 

lactobacilli – the commonest prebiotic targets. 20 

With respect to the prebiotic concept it is important to understand that, apart from knowledge on the 21 

complexity of the gut microflora, it is also known that certain bacteria are associated with toxin 22 

formation and even pathogenicity when they become dominant. Others are associated with 23 

carcinogen generation and the metabolism of other xenobiotics. These potentially harmful bacteria 24 

belong to species within groups such as clostridia and bacteroides. Whereas knowledge on overt or 25 

latent pathogens has advanced markedly, due to the symptoms they can cause, there is less 26 

consensus on what characterises potentially harmful bacteria (without direct pathogenicity) and 27 

potentially healthy bacteria. Still potentially healthy bacterial groups are characterized by a beneficial 28 

metabolism to the host through their short chain fatty acids (SCFA) formation, absence of toxin 29 

production, formation of defensins or even vitamin synthesis. They may also inhibit pathogens 30 
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through a multiplicity of mechanisms. Their cell wall is devoid of lipoplysaccharides or other 1 

inflammatory mediators (i.e. mainly Gram positive). Some may also compete with receptor sites on 2 

the gut wall and inhibit pathogen persistence and thus reduce the potential risk of infection. They may 3 

also compete effectively for nutrients with pathogens. One subject of intensive research is their 4 

stimulation of immunological defence systems, as discussed in the section Prebiotic effects and 5 

immune system of this paper. Acknowledged examples are bifidobacteria and lactobacilli – known as 6 

useful probiotics. Intermediate genera like streptococci, enterococci, eubacteria and bacteroides can 7 

be classified as potentially beneficial to health or potentially harmful, depending on the species. With 8 

regard to some of the most recently identified genera in the major phylla (Firmicutes, Actinobacteria 9 

and Bacteroidetes), classification as potentially beneficial to health or potentially harmful still remains 10 

to be made. A scheme describing the hypothesis of a balanced microbiota has been proposed by 11 

Gibson and Roberfroid (3) and recently endorsed by ISAPP (2008) even though it is stillsubject of 12 

ongoing discussion. A revised version of that scheme including the most recent knowledge on gut 13 

microbiota composition is presented in Figure 1.   14 

The prebiotic concept is based on the selective stimulation of the host's own beneficial microflora by 15 

providing specific substrate for their growth and metabolism. Today, the effect is measured by using 16 

bifidobacteria or lactobacilli as markers, but may include others in the future, if their positive nature 17 

can be confirmed.  18 

It has been shown by several studies (see the section Human studies showing prebiotic effects in 19 

healthy persons of this paper) that dietary intervention can selectively modulate the indigenous 20 

composition of the gut microbiota. This is the basis of a prebiotic effect and this has been assessed 21 

through reliable molecular based analyses. 22 

 23 

1.2 Prebiotic effects and fermentation and physiology 24 

1.2.1 Bacterial fermentation in the large gut 25 

It is clear that a complex, resident gut microflora is present in humans. Whilst the transit of residual 26 

foodstuffs through the stomach and small intestine is probably too rapid for the microbiota to exert a 27 

significant impact, this slows markedly in the colon. Colonic microorganisms have ample opportunity 28 
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to degrade available substrates (35; 36). These may be derived from either the diet or by endogenous 1 

secretions (37).   2 

Due to the high residence time of colonic contents, as well as a diverse and profuse flora, the colonic 3 

microbiota plays a more important role in host health and well-being than is the case in the small 4 

intestine. Beneficial effects can be related to their metabolism (i.e. fermentation profiles and end 5 

products), capacity for producing vitamins, antioxidants (reduction equivalents), defensins against 6 

potentially harmful competitors, exchange of molecular signals between the different genera/species 7 

but also with the eukaryotic epithelial cells. Potentially beneficial bacteria are further characterized by 8 

the absence of secondary metabolic pathways leading to toxic metabolites of,for example  9 

xenobiotics, bile acids or phytochemicals. 10 

The prebiotic concept emphasizes the specific stimulation of such a microbiota leading to a reduction 11 

of the metabolic activity of potentially harmful bacterial. This section focusses essentially on primary 12 

metabolism whereas the following ones deal with adverse effects and their prevention.  13 

 14 

1.2.2 Substrate utilisation in the colon 15 

The colonic microflora derive substrates for growth from the human diet (e.g. non-digestible 16 

oligosaccharides, dietary fibre and un-digested proteins reaching the colon) as well as from 17 

endogenous sources such as mucins, the main glycoprotein constituents of the mucus which lines the 18 

walls of the GI tract (38). The vast majority of the bacteria in the colon are strict anaerobes and thus 19 

derive energy from fermentation. The two main fermentative substrates of dietary origin are non-20 

digestible carbohydrates (resistant starch, non-starch polysaccharides, dietary fibres, non-digestible 21 

oligosaccharides of plant origin) and proteins which escape digestion in the small intestine (39; 40). Of 22 

these, carbohydrate fermentation is more energetically favourable, leading to a gradient of substrate 23 

utilization spatially through the colon (41). The proximal colon is a saccharolytic environment with the 24 

majority of carbohydrate entering the colon being fermented in this region. As digesta moves through 25 

to the distal colon, carbohydrate availability decreases, proteins and amino acids become increasingly 26 

important energy sources for bacteria (41).  27 

 28 

The main substrates for bacterial growth are dietary non-digestible carbohydrates (42) that evade 29 

upper intestinal hydrolysis and absorption. Non-digestible carbohydrates comprise resistant starch 30 
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and resistant dextrins, non-starch polysaccharides (e.g. pectins, arabinogalactans, gum Arabic, guar 1 

gum and hemicellulose), non-digestible oligosaccharides (e.g. raffinose, stachyose, ITF, galactans 2 

and mannans) as well as undigested portions of disaccharides(eg lactose) and sugar alcohols (e.g. 3 

lactitol and isomalt) (37; 43; 44). Resistant starch, non starch polysaccharides, most dietary fibres but 4 

also some non-digestible oligosaccharides (e.g. lactose) are fermented by a wide range of the colonic 5 

bacterial although the degree of their breaking down might vary (45). However, some non-digestible 6 

oligosaccharides entering the colon are rapidly and quantitatively but selectively fermented (e.g. 7 

raffinose, ITF and galactans) by a small number of bacteria (e.g. bifidobacteria and lactobacilli) (46). 8 

The overall intake of non-digestible carbohydrate in a Western diet is estimated between 20-30 g/day 9 

(47). Endogenous carbohydrates, chiefly from mucins and chondroitin sulphate, contribute about 2-3 10 

g/day of fermentable substrate (48). The main saccharolytic species in the colonic microflora belong to 11 

the genera Bacteroides, Bifidobacterium, Ruminococcus, Eubacterium, Lactobacillus and Clostridium. 12 

 13 

The second important group of substances for bacterial growth are proteins, peptides and amino 14 

acids: Approximately 25 g of protein enters the colon daily (49). Other sources of proteinsin the colon 15 

include non-digestible food components, bacterial secretions, sloughed off epithelial cells, bacterial 16 

lysis products and mucins. The main proteolytic species belong to the genera Bacteroides and 17 

Clostridium.  18 

 19 

1.2.3 Products of microbial fermentation in the colon and their effects on the host 20 

Carbohydrates in the colon are fermented to SCFAs, mainly, acetate, propionate and butyrate (50-52) 21 

and a number of other metabolites such as the electron sink products lactate, pyruvate, ethanol, 22 

succinate as well as the gases H2, CO2, CH4 and H2S (53). As a whole, SCFAs acidify the luminal pH 23 

which suppresses the growth of pathogens (54). They are rapidly absorbed by the colonic mucosa and 24 

contribute towards energy requirements of the host (50; 55; 56). Acetate is mainly metabolised in human 25 

muscle, kidney, heart and brain Propionate, that is cleared up by the liver, is a possible gluceogenic 26 

substrate and it might contribute to inhibition of cholesterol synthesis. It might also  play a role in the 27 

regulation of adipose tissue deposition (57; 58). 28 

Butyrate on the other hand is largely metabolised by the colonic epithelium where it serves as the 29 

major energy substrate as well as a regulator of cell growth and differentiation (51; 59). It is also 30 



 16

acknowledged that it may reduce the risk of colon cancer through stimulating apoptosis. Evidence for 1 

the role of butyrate in relation to the administration of ingredient showing a prebiotic effect is 2 

described later in this review. Rectally administered butyrate was also shown to relieve subjects from 3 

inflammatory bowel disease symptoms (60).  4 

 5 

Proteins reaching and/or produced in the colon are fermented to branched chain fatty acids such as 6 

isobutyrate, isovalerate and a range of nitrogenous and sulphur-containing compounds. Unlike 7 

carbohydrate fermentation products which are recognized as beneficial to health, some of the end 8 

products of amino acids metabolism may be toxic to the host e.g. ammonia, amines and phenolic 9 

compounds (49). Consequently, excessive fermentation of proteins, especially in the distal colon, has 10 

been linked with disease states such as colon cancer and inflammatory bowel diseases, which 11 

generally start in this region of the large intestine before affecting more proximal areas. Thus, it is 12 

favourable to shift the gut fermentation towards saccharolytic fermentation over a prolonged period of 13 

time into the distal parts.  14 

 15 

Conclusions 16 

● Overall, saccharolytic fermentation leads to the formation of end products (SCFAs) that are 17 

recognized as being beneficial to the host. 18 

● Protein degradation on the other hand is likely to give rise to toxic substances such as 19 

ammonia, and amines  20 

● Non-digestible carbohydrates with prebiotic effects selectively stimulate the growth of bacterial 21 

genera/species   characterized exclusively, or preferably, by saccharolytic fermentation. .Such 22 

a selective effect on gut microflora composition is likely to be more beneficial to host health 23 

than one which would favour the metabolism of both carbobohydrates and proteins. This is well 24 

established today for prebiotic effects favouring the growth of bifidobacteria and lactobacilli. 25 

Emerging genera are Eubacterium, Faecalibacterium and Roseburia –although more evidence 26 

is needed on their physiological properties 27 

 28 

1.3 In vitro tests for prebiotic effect 29 

 30 
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In vitro models aim at studying prebiotic effects independently from their passage through the upper 1 

parts of the gastro-intestinal tracteven if digestion is sometimes partly simulated. These models are thus 2 

only indicative of a potential prebiotic effect however, they do not prove the prebiotic attribute of a 3 

particular product as in vivo studies need to be performed to definitively demonstrate that the compound 4 

under investigation selectively stimulates the growth and/or activity(ies) of one or a limited number of 5 

microbial genus(era)/species in the gut microbiota that confers health benefits to the host. Since, as 6 

discussed above (see the Introduction section), the aim of the present paper is not to provide a list of 7 

food ingredients/supplements that classify as prebiotics, the following sections will only refer to a few 8 

examples to illustrate the potentials and the limits of in vitro tests as well as the advantages and 9 

disadvantages of the different experimental models.  10 

 11 

Batch culture (pH or non-pH controlled) studies where different substrates are incubated with either 12 

pure culture of selected bacteria or faecal slurries subsequently analysed for microbial composition 13 

can be used: 14 

• to study the selectivity of fermentation (including possible mechanism of selectivity) by, for 15 

example, bifidobacteria, lactobacilli of different substrates (e.g. main oligosaccharides 16 

contained in soybeans are raffinose and stachyose which have been found to be good growth 17 

promoters of Bifidobacterium infantis but not Escherichia coli, Streptococcus faecalis or 18 

Lactobcaillus Lactobacillus acidophilus (61) or similar substrates differing in molecular weights 19 

(e.g. wheat arabinoxylans) showing e.g. that molecular weight can be an important factor in 20 

selectivity (62)..   21 

• to show changes in faecal microbiota (e.g. increase in bifidobacteria) but also to compare the 22 

efficacy of different substrates (e.g. ITF, starch, polydextrose, fructose and pectin, galactans, 23 

xylo-oligosaccharides, soybean oligosaccharides (63-65) 24 

• to measure and to compare the evolution of gas and SCFAs production as a result of the 25 

fermentation of different substrates (64). 26 

 27 

Single stage chemostat studies with ITF were used to compare differing techniques to analyze 28 

microbiota composition, demonstrating that discrepancies might exist between classical 29 

microbiological techniques and molecular approaches. Agar plate counts showed an increase in the 30 
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combined populations of bifidobacteria and lactobacilli reaching 98.7% of the total bacterial flora by 1 

steady state. However, 16S rRNA genus-specific probes indicated an initial increase in the 2 

bifidobacteria population which decreased after 6 days, whilst lactobacilli thrived in the low pH 3 

fermenter (pH 5.2-5.4) maintaining a high population at steady state. Changes observed in the SCFAs 4 

profile corresponded well with the population data obtained through probe methods (66). 5 

  6 

Continuous culture systems inoculated with faecal slurries can be used to investigate fermentation 7 

profiles showing for example that, in accordance with earlier studies, bifidobacteria, and to a lesser 8 

extent lactobacilli preferred ITF to glucose, whereas bacteroides could not grow on these substrates 9 

(67; 68). By varying parameters in the chemostat, the conditions for growth of bifidobacteria and 10 

inhibition of bacteroides, clostridia and coliforms can be further analyzed showing that low pH (pH 11 

5.5), high culture dilution rate (0.3h-1) and 1% (w/v) concentration of carbohydrate, (i.e. similar to the 12 

physicochemical environment of the proximal colon) are optimum.  13 

  14 

The three-stage gut model reproduces the three segments of the colon (proximal/ascending, 15 

transverse, distal/descending). It is used to confirm the effects observed in the previous models. 16 

Studies using this model show enhanced proliferation of bifidobacteria and/or lactobacilli by ITF and 17 

galactans in conditions resembling the proximal/ascending colon (67; 69; 70). Whereas studies using 18 

models of vessels two and three (modeling transverse and descending colon respectively) displayed 19 

very little change in microbiota when fermenting galactans (70). In the same model changes in enzyme 20 

activities (β-glycosidase, β-glucuronidase, azoreductase and arylsulphatase) can also be monitored 21 

showing their suppression after fermentation of galactans (70) or soybean-oligosaccharides (71). 22 

Investigating the effect of pH and substrate concentration on the fermentation selectivity of galactans 23 

alongside other products, Palframan et al (72) reported a strong bifidogenic effect at pH 6 and at 2% 24 

(w/v) and suggested that they may be well-fermented in the distal colon. In another study galactans of 25 

rather low molecular weight (1% w/v) had a strong bifidogenic effect which showed good persistence 26 

through the first two vessels, with a weaker response in the third (73). 27 

 28 

The Simulator of the Human Intestinal Microbial Ecosystem (SHIME) model consists of a series of five 29 

temperature and pH-controlled vessels that simulate the stomach, small intestine, ascending, 30 
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transverse and descending colons respectively. It can be fed with a complex growth medium 1 

containing selected substrates (e.g. ITF) to study their fermentation including the monitoring of 2 

metabolites and to analyze their effect on enzyme activities and composition of the microbiota by 3 

using a multiphase approach consisting of plate counting, quantitative PCR and DGGE (74). Results 4 

have shown a significant increase in lactobacilli in the transverse and descending colon vessels. Low 5 

levels of bifidobacteria were recorded in the colon vessels. DGGE analysis revealed that bacteria in 6 

the ascending colon vessel grouped together as did bacteria in the other colon vessels. Bifidobacteria 7 

clustered according to time point rather than vessel. Quantitative PCR, however, revealed a 8 

significant increase in bifidobacteria population in all three colon vessels. ITF feeding also resulted in 9 

an increase in the production of SCFAs, particularly propionate and butyrate, indicating a shift 10 

towards a more saccharolytic fermentation. The same model system and metabolic analysis can also 11 

be used to investigate the effect of different composition of the same substrates (e.g. of ITF with 12 

different molecular weight) on fermentation properties (75).  13 

 14 

A more sophisticated in vitro model of fermentation in the proximal large intestine is the TIM-2 model 15 

(76; 77). This consists of a series of linked glass vessels containing flexible walls. This arrangement 16 

allows simulation of peristalsis together with temperature regulation by means of pumping water 17 

through the space between the glass and flexible walls. The flow is controlled by computer to more 18 

accurately simulate peristalitc mixing. The vessels are further equipped with a hollow fibre membrane 19 

in the lumen to simulate absorption of water and short chain fatty acids. TIM-2 has been used to 20 

investigate the population changes on the fermentation of lactulose using culture-based methods 21 

coupled with DGGE (77). Increases in lactobacilli and enterococci were seen. 22 

 23 

Conclusions 24 

● In vitro models allow comparative studies on fermentation by and/or effects of ingredients 25 
showing a potential prebiotic effect on isolated or mixture of bacterial strains, including faecal 26 
flora, as well as identification and eventually quantification of the resulting fermentation products 27 
especially the SCFAs. They also allow comparative analysis of the different analytical methods 28 
available to identify and quantify the various genera/species. 29 

● They further allow the analysis of the potential/absence of toxin formation or change in enzyme 30 
activities potentially associated with beneficial or harmful effects. 31 
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 The multi-stage models that are designed to mimic the different segments of the intestine, 1 
especially the proximal/ascending, transverse and distal/descending colon are useful in localizing 2 
the site of the selective stimulation of bacterial growth 3 

● The results can be used to select potential candidate showing prebiotic effect(s) for in vivo 4 
studies especially in human volunteers, which remain the obligatory steps to definitively prove the 5 
prebiotic effect attribute. 6 

  7 

1.4 Human studies showing prebiotics effect in healthy persons 8 

By reference to the prebiotic concept as defined in the introduction, criteria for classification as a 9 

prebiotic are (4): 10 

• resistance to gastric acidity, hydrolysis by mammalian digestive enzymes and GI absorption 11 

• fermentation by intestinal microflora  12 

• selective stimulation of the growth and/or activity(ies) of of one or a limited number of 13 

intestinal bacteria beneficially associated with health and well-being. 14 

Any dietary component that reaches the colon intact (or partly so) is a potential candidate for prebiotic 15 

attribute, however it is the latter of the 3 above criteria which is crucial but still the most difficult to fulfil 16 

(and which is often ignored when citing ingredients as “prebiotics”). Even if in addition to ITF and 17 

GOS, several dietary carbohydrates (e.g polydextrose, soybean oligosaccharides, lactosucrose, 18 

isomalto-oligosaccharides, gluco-oligosaccharides, xylylo-oligosaccharides, gentio-oligosaccharides,  19 

mannan-oligosaccharides, lactose, hemicellulose, resistant starch, resistant dextrins, oat bran, 20 

oligosaccharides from melibiose, β-glucans, N-acetylchito-oligosaccharides, sugar alcohols such as 21 

lactitol, sorbitol and maltitol), show some fermentation selectivity when tested in laboratory systems 22 

(see section In vitro tests for prebiotic effect in this paper). However, the ultimate test for prebiotic 23 

activity (i.e. human volunteer trials) is lacking for the majority of these compounds. As for today ITF and 24 

GOS are the compounds the most extensively tested in human trials that have confirmed their 25 

prebiotic effects as evidence by their ability to change the gut flora composition after a short feeding 26 

period at reasonably low doses (20) (Table 8). ITF, the most extensively tested forms in the literature, 27 

occur naturally in several foods such as leek, asparagus, chicory, Jerusalem artichoke, garlic, 28 

artichoke, onion, wheat, banana and oats, as well as soybean. However, these foods contain only 29 

trace levels of ITF, so developments have taken the approach of removing the active ingredient from 30 

such sources (especially chicory roots) and adding them to more frequently consumed products in 31 
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order to attain levels whereby a prebiotic effect may occur, e.g. cereals, confectionery, biscuits, infant 1 

feeds, yoghurts, table spreads, bread, sauces, drinks, etc (4). Other food ingredients/additives with 2 

potential prebiotic effects are already under investigations and will certainly be further developed in 3 

the future from dietary fibres and other non-digestible food ingredients. Very preliminary data already 4 

exist for some but many more replicate human studies including the quantitative analysis of a wide 5 

variety of bacterial genera in faecal microbiota using the more recent methodologies (as described in 6 

the section Microbiota of the gastro-intestinal tract – The large intestine of this paper) are needed 7 

before this can be the case. Human trials may be carried out on volunteers who are on controlled 8 

diets, or are free living. To ensure consistency and exclude incidental findings, more than one human 9 

trial is needed and the totality of several human studies for a candidate prebiotic should be 10 

considered. 11 

When evaluating a potential prebiotic effect it must be kept in mind that a dose-effect relationship and 12 

consequently a minimum effective dose is difficult to establish. Indeed, the major determinant that 13 

quantitatively controls the prebiotic effect is the number of targeted bacteria genus/species per gram 14 

of feces the volunteers have before the supplementation with the compound presumed to show a 15 

prebiotic effect. This issue has been extensively discussed previously (78). 16 

 17 

1.5 Conclusion 18 

Apart from protein fermentation, harmful substances may arise from bacterial secondary metabolism. 19 

A prebiotic effect should not lead to stimulate the proteolytic microbiota and thereby reduce overall 20 

formation of bacterial metabolism. 21 

 22 

2 Prebiotic effects and immune system3 23 

2.1 Outline of benefit area  24 

To provide optimal resistance against a large variety of pathogenic encounters, the immune system 25 

has evolved to comprise multiple, functionally differing cell types enabling the development of an 26 

                                                 
3 The main authors of this section are Prof. Watzl and Dr. Wolvers. 



 22

immune response that is specifically tailored to clear the pathogen involved. Consequently, a large 1 

spectrum of immune parameters involved in various types of responses, exist, of which 2 

comprehensive descriptions can be found in many textbooks (e.g. Janeway's Immunobiology by 3 

Murphy et al. (79)). Some of these may be measurable in humans, and can be divided into innate vs 4 

adaptive, mucosal vs systemic, pro-inflammatory vs anti-inflammatory, etc. Modulating aspects of the 5 

immune system may, in theory, serve several clinical purposes. First, boosting or restoring the very 6 

purpose of immune function, i.e. the resistance against infections, may serve as a clinical tool to 7 

prevent or treat infectious diseases.  Second, preventing or treating consequences of an aberrant or 8 

undesired immune response, such as those occurring with an allergic response or during chronic 9 

inflammatory diseases, are other targets with high clinical relevance. 10 

Although there is no single immune marker that accurately reflects or predicts an individual’s 11 

resistance to infection, parameters can be identified that play a more prominent role in certain types of 12 

infections or conditions than others. For instance, if resistance against the common cold, i.e. a viral 13 

upper respiratory tract infection, is the topic of interest, it seems appropriate to investigate natural 14 

killer cell and CD8+ lymphocyte activity, whereas in case of inflammatory bowel disease the balance 15 

between pro-inflammatory and immuno-regulatory cytokines will be of interest (see section Prebiotic 16 

effects and IBD of this paper).  Moreover, in a previous ILSI Europe activity, the suitability of immune 17 

markers to measure immuno-modulation by dietary intervention in humans was assessed, leading to 18 

the identification of four high-suitability markers that are the result of an integrated immune reaction 19 

(vaccine-specific serum antibody production, delayed-type hypersensitivity response, vaccine-specific 20 

or total secretory IgA in saliva, the response to attenuated pathogens). In addition, a range of medium 21 

and low-suitability markers, such as functional activity of cells of the innate immune system (NK cell 22 

activity, phagocytosis, T cell proliferation and various cytokines) were identified (80). Although the 23 

combined measurement of high- and medium-suitability markers may be a way to address aspects of 24 

immune status, the ultimate proof of accurate or even improved immune function in practice is a 25 

change in the incidence, severity or duration of infectious episodes or conditions with a prominent 26 

immune component such as allergies and chronic inflammation. 27 

 28 

That modulation of certain aspects of the immune system may result from prebiotic effects and is 29 

based on the pivotal interaction between the intestinal microbiota and the host immune system. From 30 
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several studies in germ-free and gnotobiotic animals, it is clear that the microbiota is essential for an 1 

optimal structural and functional development of the immune system (81-84). The interactive co-2 

existence of the immune system and the microbiota is especially apparent in the intestinal tract where 3 

the gut-associated lymphoid tissue (GALT) has evolved to provide optimal defense against intestinal 4 

pathogens, while at the same time tolerating dietary and self-antigens, as well as large populations of 5 

commensal non-pathogenic microbes. 6 

Although specialized cells such as the M-cells and, as discovered more recently, also dendritic cells 7 

sample material directly from the intestinal lumen (85), enterocytes are key intermediates that convey 8 

signals from the intestinal lumen to the mucosal immune system (86; 87) and are thus a target for a 9 

prebiotic effect on the immune system.  10 

Prebiotic effects may influence the immune system directly or indirectly as a result of intestinal 11 

fermentation and promotion of growth of certain members of the gut microbiota. Firstly, the mere 12 

presence of increased numbers of a particular microbial genus or species, or a related decrease of 13 

other microbes, may change the collective immuno-interactive profile of the microbiota. Through 14 

pattern-recognition receptors such as the toll-like receptors, both immune cells and enterocytes 15 

interact with so-called pathogen-associated molecular patterns (PAMPs), such as lipopolysaccharides 16 

(LPS, a membrane component of Gram negative bacteria), lipoteichoic acids and unmethylated CpG 17 

DNA that are in fact present on all microorganisms surface regardless of pathogenicity. These 18 

interactions, possibly in combination with contextual cues of pathogenicity, result in a variety of 19 

downstream events eventually leading to cytokine production steering towards an appropriate 20 

immune response for the microbial event (88-90). 21 

 22 

Secondly, microbial products such as SCFAs may interact with immune cells and enterocytes and 23 

modify their activity. G-protein coupled receptors (GPR) 41 and GPR 43 are identified as receptors for 24 

SCFA and are expressed on leukocytes, especially polymorphonuclear cells, (91; 92) as well as on 25 

enterocytes and enteroendocrine cells in the human colon (93; 94). SCFAs modulate chemokine 26 

expression in intestinal epithelial cells (86), differentially affect pro-inflammatory IL-2 and IFNγ  and 27 

immuno-regulatory IL-10  production by rat lymphocytes in vitro (95) and a recent publication shows 28 

the importance of ligation to GPR43 in mice to maintain intestinal homeostasis (96). 29 

 30 
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Thirdly, the potential direct ligation of pattern recognition receptors on immune cells by prebiotic 1 

carbohydrate structures may result in immunomodulation, although there is currently very little 2 

evidence for the presence of, for example, a fructose-receptor on immune cells. 3 

 4 
In summary, there are plausible mechanisms by which prebiotic effects can modulate immune 5 

function parameters. The inaccessibility of the human GI immune system complicates the 6 

investigation in this area and most human studies rely on the measurement of ex vivo systemic 7 

immune markers, of which the predictive value for overall resistance to infections or outcome of 8 

immune-related disorders is limited. 9 

  10 

2.2 Summary of key studies 11 

 12 

Several comprehensive reviews have summarized the current knowledge of the immunomodulatory 13 

potential of prebiotic effects (especially ITF) (97-101). A limited number of human studies have been 14 

performed but most have limitations as they investigated prebiotic effects in combination with the 15 

administration of other ingredients or did not included an appropriate control group. 16 

The prebiotic effects on immune markers that represent a more or less integrated immune response, 17 

such as response to vaccination, was investigated in only a few studies (see Table 9). Bunout et al. 18 

(102) supplemented healthy elderly with an oligofructose/inulin mix (6 g per day) in combination with a 19 

nutrient supplement, while the control group received maltodextrin with the nutrient supplement. No 20 

significant differences were observed in antibody titers after vaccination or on secretory IgA levels 21 

(102). In a second study the same authors investigated the effect of a supplement with oligofructose on 22 

various immune markers including delayed type hypersensitivity (DTH) and vaccination. Elderly 23 

subjects attending a clinic received oligofructose as part of a complex nutritional supplement including 24 

Lactobacillus paracasei. Elderly subjects attending another clinic not receiving this supplement served 25 

as controls. DTH response and antibody titers after vaccination did not differ between groups (103). 26 

 27 

In infants aged 6-12 months (87 % breast-fed) the intake of oligofructose as part of an infant cereal 28 

had no effect on diarrhea prevalence (see section Use of prebiotic effects for pediatric disorders – 29 

Diarrheal diseases of this paper) and on vaccination-induced antibody titers to H. influenza when 30 
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compared to the infant cereal alone (104). Besides the fact that a rather low dose of oligofructose was 1 

supplemented, breast-feeding may already have provided adequate amounts of human milk 2 

oligosaccharides in this study. Also in infants at high risk for allergies, supplementation witha 3 

GOS/FOS mixtures did not change antibody levels after a standard vaccination (105). In contrast, early 4 

life exposure of non-breast fed infants to oligosaccharides had an effect on natural immunoglobulin 5 

production, as a mixture of GOS/FOS was shown to result in significantly higher faecal SIgA 6 

concentrations as a consequence of the prebiotic effect (106; 107). Overall, there are currently no data 7 

that support beneficial prebiotic effects on the response to vaccination, but data on faecal secretory 8 

IgA in infants are promising when supplemented with a specific combination of compounds showing 9 

prebiotic effects. 10 

 11 

In addition to effects on integrated immune responses, the prebiotic effect on specific immune 12 

markers has been tested in a few studies of varying quality with differential outcomes (see Table 9). In 13 

healthy elderly people receiving ITF-DPav 3-4  (6g/d) a decrease in phagocytosis and IL-6 mRNA 14 

expression in peripheral blood mononuclear cell was found (108). This study was a one-arm study 15 

using baseline for comparison. Whether the tested ingredient induced the observed immunological 16 

changes cannot be answered from this study. Increased NK cell activity and IL-2 production by PBMC 17 

(Lymphokine production by mononuclear cells) was found in a synbiotic study in elderly (103). As this 18 

was a synbiotic intervention, a causal conclusion about an immunomodulation of the prebiotic 19 

intervention cannot be drawn. No effect was observed on secretion of IL-4, IFNg, and lymphocyte 20 

proliferation in cultured PBMC (102). 21 

A study investigating the application of ingredients showing a prebiotic effect in pregnant women 22 

showed no effect on the composition of lymphocyte subsets or cytokine secretion patterns in 23 

circulating lymphocytes of the off-spring as assessed in cord-blood (109).   24 

A well-designed and controlled human intervention study investigated the effect of a mixture of 25 

galactans on the immune system of healthy elderly volunteers. This study reported that  intake of 26 

such galacto-oligosaccharides (galactans) (5.5 g/d) for 10 weeks significantly increased phagocytosis, 27 

NK cell activity and the production of the anti-inflammatory cytokine IL-10, while the production of pro-28 

inflammatory cytokines IL-1β, IL-6, TNFα was reduced (110). A clear positive correlation between 29 

numbers of bifidobacteria in faecal samples and both, NK cell activity and phagocytosis, was 30 
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observed. This study suggests that a mixture of galactans beneficially affects the immune system and 1 

that the achieved effects may be indirect and mediated via a prebiotic effect i.e. a change in 2 

microbiota composition. A few of the trials described above also show changes in immune markers 3 

alongside changes in the fecal microbiota, mainly increase in bifidobacteria. These studies thus 4 

provide data for the suggested link between a change in the flora and immunomodulation, but more 5 

studies showing correlative findings are required for convincing evidence. 6 

 7 

Only a few studies that investigated the prebiotic effect on immune-related clinical endpoints such as 8 

resistance to infections, allergies and inflammatory bowel disease, have also included measurements 9 

on immune markers. Combining clinical endpoints with such functional markers may provide a 10 

possible mechanistic explanation for the observed effects. In a small number of patients with 11 

moderately active Crohn's disease, consumption of 15 g ITF per day reported positive clinical 12 

outcomes (see section Prebiotic effects in Crohn’s disease of this paper), while IL-10 production by 13 

mucosal dendritic cells isolated from biopsies was increased as did expression of TLR-2 and TLR-4 14 

(111). Although some of the findings correlate with those found in animals studies (112), the open label 15 

character of the study needs to be considered.  16 

In infants at high risk of allergies, a mixture of GOS/FOS supplemented for 6 months reduced plasma 17 

level of total IgE, IgG1, IgG2 and IgG3, whereas no effect on IgG4 was observed. In addition, cow's 18 

milk protein-specific IgG1 was significantly decreased (105). This may be beneficial change in infants 19 

at risk of allergies, and although no direct correlations were reported, the same study found a 20 

significant reduction in the incidence of atopic dermatitis in a subpopulation of the GOS/FOS group 21 

(113). 22 

 23 

Experimental data from animal studies indicate that, besides the systemic immune system, the gut-24 

associated lymphoid tissue (GALT) may be the primary target of immunomodulatory prebiotic effects. 25 

Biomarkers to assess functional changes in the GALT include SIgA, cytokine production, and 26 

lymphocyte numbers. Prebiotic effects have been shown to increase SIgA concentration in the 27 

intestinal lumen, to increase B cell numbers in Peyer’s patches, and, in intestinal tissues, to enhance 28 

IL-10 protein secretion, and to decrease mRNA expression and protein concentrations of pro-29 

inflammatory cytokines (98-101). Genes related to intestinal immune responses seem to be a primary 30 
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target of the prebiotic effects (114). Further, functional activities of NK cells and phagocytes isolated 1 

from various immune tissues were significantly increased but depending on the source of immune 2 

cells (Peyer’s patches, mesenteric lymph nodes, intraepithelial lymphocytes) the prebiotic effects may 3 

differ (115-117). This illustrates the need to differentially study the prebiotic effects of on various immune 4 

compartments. The lack of sufficient tools to investigate prebiotic effects in the human GALT hampers 5 

insights into the possible differential impact on the mucosal vs the systemic immune system. 6 

2.3 Key points 7 

• Plausible hypotheses exist that ingredients showing a prebiotic effect may potentially affect 8 

the immune system as a direct or indirect result of the change in the composition and/or fermentation 9 

profile of the microbiota 10 

• There is currently limited, yet promising evidence that such ingredients modulate immune 11 

markers in humans. Well designed human intervention studies are few.  12 

• Data that showing increased fecal sIgA levels in infants are promising and need to be 13 

confirmed 14 

• While several studies report changes in the fecal microbial composition alongside with 15 

changes in immune markers, only one study so far has correlated these findings.  More studies 16 

addressing such correlation are needed to establish a firm link between changes in the microbiota 17 

and immune markers 18 

• Despite the wealth of evidence that compounds with prebiotic effects affect the intestinal 19 

microbiota, and modulate immune parameters, it is of importance to know whether these 20 

immunomodulatory effects result in a clinically relevant outcome, i.e. improved resistance against 21 

infections, or impairment of allergies and inflammation. Preliminary yet promising clinical endpoint 22 

studies exist that integrate the measurement of immune markers as possible explanation of prebiotic 23 

efficacy. 24 

• Animal studies indicate that immunological effects may vary depending upon the anatomical 25 

site of origin of the immune cell (e.g., Peyer’s patches vs. intraepithelial lymphocytes). However, as 26 

the human GALT as primary target of the prebiotic effects cannot be easily addressed in human 27 

intervention studies, insights are difficult to obtain and thus still limited.  28 

 29 
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2.4 Recommendations 1 

Data from well-designed, controlled human intervention studies with healthy subjects do not allow a 2 

final conclusion about the effects of ingredients showing a prebiotic effect on the immune system. 3 

Data so far are available for ITF and GOS, but few studies have been published sofar. Therefore, 4 

further studies with adequate methodology, investigating immune parameters such as laid out by the 5 

ILSI Task Force on Nutrition and Immunity in Man (80) are warranted to obtain further insights on how 6 

prebiotic effects may modify immune function markers. Furthermore, tools should be developed to 7 

measure the impact of prebiotic effects on the GALT in humans, so an understanding of the tissue-8 

specific effects can be achieved. Findings of such immuno-modulation should lead to hypotheses on 9 

the potential use of compounds with prebiotic effects in relevant health-related conditions, which could 10 

then be tested in well designed clinical endpoint studies. In addition, effects of different prebiotic 11 

chemical structures of prebiotics, dosing and timing of supplementation have to be studied. 12 

 13 

3 Prebiotic effects in paediatrics 4 14 

 15 

3.1 Oligosaccharides and prebiotic effects in infant formulae  16 

 17 

The use of nondigestible carbohydrates in infant formulae and follow-on formulae has been 18 

commented on by the Committee on Nutrition of the European Society for Paediatric 19 

Gastroenterology, Hepatology and Nutrition (ESPGHAN) (118). Based on the evidence obtained in a 20 

search up to January 2004, the Committee concluded that only a limited  number of studies have 21 

evaluated the effects of the addition of substances with prebiotic effects to dietetic products for 22 

infants. Only one type of oligosaccharide mixture of galactans and ITF consisting of galacto-23 

oligosaccharides and a high molecular weight fraction of inulin in a ratio of 9:1 (GOS/FOS) was 24 

evaluated. The Committee stated that although the administration of oligosaccharides with prebiotic 25 

effects has the potential to increase the total number of bifidobacteria in feces and may also soften 26 

stools, there is no published evidence of any clinical benefits after addition of oligosaccharides with 27 

prebiotic effects to dietetic products for infants. No general recommendation on the use of 28 

oligosaccharide supplementation in infancy for preventive or therapeutic purposes can be made. The 29 
                                                 
4 The main authors for this section are Prof. Szajewska and Dr. Stahl. 
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available data on the oligosaccharide mixtures in infant formulae do not demonstrate adverse effects. 1 

Validated clinical outcome measures of prebiotic effects in infants should be characterized in further 2 

well-designed and carefully conducted randomized controlled trials (RCTs), with relevant 3 

inclusion/exclusion criteria and adequate sample sizes. Such trials should also define the optimal 4 

quantities, types and intake durations.  5 

 6 

A number of studies have been published thereafter on the addition of ingredients showing a prebiotic 7 

effect to dietetic products for infants and recently reviewed (119-121; 121). These ingredients have been 8 

used either as one compound or as a mixture of different neutral and acidic oligosaccharides (122-124). 9 

Collectively, these studies confirm that the administration of oligosaccharides with prebiotic effects in 10 

dietetic products have the potential to increase dose-dependently the total number of bifidobacteria in 11 

feces, although at present, it is not possible to define the number of bifidobacteria that would 12 

constitute normal/optimal microbiota, and to soften stools. Furthermore, prebiotic effects modulate 13 

stool pH, SCFAs pattern similar to those of breast fed infants. Whether any of these effects per se is 14 

of benefit is currently not well established. Clinical outcomes related to the use of dietetic products for 15 

infants supplemented with prebiotic effects are discussed in the sections below (e.g. effect on allergic 16 

diseases, infections).  17 

 18 

Currently, the Directive 2006/141/EC on infant formulae and follow-on formulae specifically allows the 19 

addition of GOS-FOS in a ratio of 9/1 and in a quantity of 0.8g/ 100 ml prepared product (125). This 20 

Directive also states that other combinations and maximum levels of FOS and GOS may be used if 21 

they satisfy the nutritional requirements of infants in good health as established by generally accepted 22 

scientific data.  23 

 24 

3.2 Use of prebiotic effects in complementary foods for children  25 

 26 

One  controlled trial (RCT) (126) conducted in 56 healthy, term infants aged 4-12 months evaluated the 27 

tolerance and GI effects of an infant cereal supplemented with either ITF or placebo for 28 days. 28 

Compared with the control group, stool consistency was less often described as 'hard' and more likely 29 

to be described as 'soft' or 'loose' in the  ITF-supplemented group. There was no difference between 30 
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the groups in crying, spitting-up or colic. No difference in stool pH between the groups was found. 1 

There was also no significant difference in growth between the two groups. Clinical outcomes were 2 

not reported. The limitations of this study include the use of non-validated tool for parental 3 

assessment of stool consistency, a small sample size, and a short follow-up period.  4 

 5 

Another double blind RCT (127) involving 35 infants aged 4 to 6 months studied the effect of adding 6 

GOS/FOS to solid foods results in an increase in the fecal proportion of bifidobacteria in the intestinal 7 

microbiota. Intention-to-treat analysis revealed no significant difference between the 2 study groups. 8 

Only per-protocol analysis involving 20 children who complied with the protocol showed that the fecal 9 

percentage of bifidobacteria increased from 43% to 57% (p=0.03) from week 0 to week 6 but did not 10 

significantly change in the control group (36% and 32%, respectively, p=0.4). There were no 11 

statistically significant differences in stool frequency and consistency.  12 

 13 

More recently the prebiotic effect of IFT in chidren aged 7-8 years has also been reported (128).  14 

 15 

3.3 Use of prebiotic effects for pediatric disorders 16 

3.3.1 Diarrheal diseases 17 

It can be hypothesized that the continuous use of products with prebiotic effects might, by providing 18 

an immunologic stimulus (see section Prebiotic effects and immune system of this paper), be useful in 19 

preventing infectious diseases commonly encountered by young children. 20 

In a large well-designed RCT performed in infants aged 6 to 12 months (n=282), Duggan et al. (104) 21 

compared an infant cereal supplemented with oligofructose with a non-supplemented cereal. There 22 

was no difference in the number of diarrheal episodes, episodes of severe diarrhea, or episodes of 23 

dysentery. No significant difference was found in the mean duration of diarrhea. During a second part 24 

of the same trial involving 349 subjects, zinc was added to both oligofructose-supplemented and 25 

control cereals (104). Again, no significant difference was found in any of the outcomes studied 26 

between the groups. In both trials, post immunization titers of the antibody to Haemophilus influenzae 27 

type B were similar in all groups, as were gains in height (no data on weight), number of visits to the 28 

clinic, hospitalizations, and use of antibiotics.  29 
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 1 

More recently, Bruzesse et al. (129) evaluated the effect of an infant formula containing the prebiotic 2 

mixture GOS/FOS) compared with a standard infant formula in an open placebo-controlled involving 3 

342 healthy infants with 12 months follow-up. Compared with controls, the use of prebiotic 4 

supplemented formula was associated with a significant reduction in the incidence of gastroenteritis 5 

(0.12±0.04 vs. 0.29±0.05 episodes/child/12 months; p=0.015), and in the rate of children with ≥1 6 

episode of acute diarrhea (10/96 vs 26/109, RR 0.44 (95% CI 0.22 to 0.86)). The findings regarding 7 

the prevention of GI infections are promising for efficacy. However, there are some methodological 8 

limitations to the study, including no allocation concealment, and no blind control, and no Intention-To-9 

Treat analysis (ITT analysis aims to test for effectiveness under field conditions); this may result in 10 

selection, performance, and/or attrition biases. The impact on respiratory tract infections is discussed 11 

under ‘Respiratory tract infections’. 12 

 13 

One RCT (130) found similar number of episodes of diarrhea in the group of infants fed extensively 14 

hydrolyzed whey formula supplemented either with 0.8g GOS/FOS or maltodextrin as placebo.  15 

 16 

3.3.2 Acute infectious gastroenteritis  17 

The efficacy and safety of administering a mixture of nondigestible carbohydrates, including soy 18 

polysaccharide 25%, α-cellulose 9%, gum arabic 19%, oligofructose 18.5%, inulin 21.5%, and 19 

resistant starch 7%, as an adjunct to oral rehydration therapy in the treatment of acute infectious 20 

diarrhea was assessed in one RCT involving 144 boys with mild to moderate dehydration. It was 21 

hypothesized that with the incorporation of nondigestible carbohydrates, some of them (e.g. galactans 22 

and ITF) with prebiotic effects might promote fermentation in the colon, and thus, decrease fecal 23 

volume and the duration of the diarrheal illness. Intention-to-treat analysis (relevant for effectiveness) 24 

did not show a significant difference in the mean 48-hour stool volume, the duration of the diarrhea 25 

after randomization, the duration of hospital stay, and unscheduled intravenous rehydration. No 26 

significant adverse effects were noted (131). An explanation for the negative results could originate 27 

from the type and the amount of nondigestible carbohydrates added to the ORS. An average dose of 28 

10 to 15g per episode in relatively mild diarrhea may be simply insufficient to achieve a shorter 29 

duration of diarrhea. Furthermore, it is possible that the timing of the intervention was inappropriate, 30 
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making the addition of nondigestible carbohydrates to exclusive oral rehydration therapy an 1 

insufficient measure.  2 

 3 

3.3.3 Antibiotic-associated diarrhea  4 

The rationale for the use of ingredients showing a prebiotic effect for the prevention of antibiotic-5 

associated diarrhea (AAD) is based on the assumption that the use of antibiotics leads to intestinal 6 

dysbiosis and that this is a key factor in the pathogenesis of AAD (132). In contrast to probiotics, (133-7 
137) there is a paucity of data on the prebiotic effects in preventing  AAD. One pediatric double-blind 8 

RCT (138) involved 140 children (1 to 2 years of age) who were treated with amoxicillin for acute 9 

bronchitis. This study revealed no significant difference in the incidence of diarrhea in children 10 

receiving ITF administered in a milk formula (4.5g/L) for 21 days after completion of antibiotic 11 

treatment compared with placebo (10% vs. 6%, RR 0.6, 95% CI 0.2-1.8). However, ingredients 12 

showing a prebiotic effect in a milk formula increased fecal bifidobacteria early after amoxicillin 13 

treatment.  14 

 15 

3.3.4 Respiratory tract infections  16 

In the most recent RCT by Bruzesse et al. (129) described above, it was found that compared with 17 

controls, the use of an infant formula with GOS/FOS was associated with a similar number of 18 

episodes of upper respiratory tract infections (p=0.4), similar number of children with >3 episodes 19 

upper respiratory tract infections (17/60 vs. 29/65; p=0.06), although the number of children with 20 

multiple antibiotic courses per year was lower in children receiving ingredients showing a prebiotic 21 

effect (24/60 vs. 43/65; p=0.004).  22 

 23 

One RCT (130) found that infants fed extensively hydrolyzed whey formula supplemented with 0.8g 24 

GOS/FOS compared with the placebo group had fewer episodes of physician-diagnosed overall and 25 

upper respiratory tract infections (P<0.01), fever episodes (P<0.00001), and fewer antibiotic 26 

prescriptions (P < 0.05).  27 

 28 
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3.4 Prebiotic effects and atopy 1 

Atopic eczema is an itchy inflammatory skin condition with associated epidermal barrier dysfunction. 2 

Therapeutic options (emollients and topical steroids for mild-to-moderate eczema; topical or systemic 3 

calcineurin inhibitors, ultraviolet phototherapy, or systemic azathioprine for moderate-to-severe 4 

eczema) are relatively limited and often unsatisfactory, prompting interest in alternative treatment 5 

methods.  6 

  7 

The rationale for using prebiotic effects in preventing atopic disorders is based on the concept that 8 

prebiotic effects modify the intestinal flora of formula-fed infants towards that of breast-fed infants. 9 

The intestinal flora of atopic children has been found to differ from that of controls with atopic subjects 10 

having more clostridia and tending to have fewer bifidobacteria than non-atopic subjects (139). Thus, 11 

there is indirect evidence that differences in the neonatal gut microbiota may precede or coincide with 12 

the early development of atopy. This further suggests a crucial role for a balanced commensal gut 13 

microbiota in the maturation of the early immune system.  14 

 15 

The Cochrane Review published in 2007 (140), aimed at determining the effect of different ingredients 16 

showing a prebiotic effect (GOS/FOS, only FOS, GOS together with polydextrose and lactulose) on 17 

the prevention of allergic disease or food hypersensitivity in infants. Only 2 RCTs of reasonable 18 

methodological quality according to the reviewers and involving 432 infants reported outcomes related 19 

to allergic disease. The reviewers concluded that there is insufficient evidence to determine the role of 20 

prebiotic supplementation of infant formula for prevention of allergic disease and food hypersensitivity.  21 

 22 

One of the included RCT (140) investigated the effect of the prebiotic mixture (GOS/FOS; dosage: 23 

0.8g/dl) on the intestinal flora and the cumulative incidence of atopic dermatitis during the first 6 24 

months of life in infants at risk for allergy (with at least one parent with documented allergic disease 25 

confirmed by physician). Two hundred six of 259 (79.5%) infants who were randomly assigned to 26 

receive extensively hydrolyzed whey formula supplemented either with 0.8g GOS/FOS (experimental 27 

group, n=102) or maltodextrin as placebo (control group, n=104) were included in the per-protocol 28 

analysis. The frequency of atopic eczema in the experimental group was significantly reduced 29 

compared with the placebo group (9.8% vs. 23.1%, RR 0.42 (95% CI 0.2-0.8)), number needed to 30 
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treat (NNT) 8 (95% CI 5-31). In a subgroup of 98 infants, the parents provided fresh stool samples for 1 

microbiological analysis using plating techniques; the fecal counts of bifidobacteria were significantly 2 

higher in the group fed the GOS/FOS formula compared to the placebo group. No significant 3 

difference was found for the lactobaccilli count between groups. Follow-up of this study, showed that 4 

at 2 years the cumulative incidences of atopic dermatitis, recurrent wheezing, and allergic urticaria 5 

were higher in the placebo group (27.9, 20.6, and 10.3%, respectively) than in the intervention group 6 

(13.6, 7.6, and 1.5%) (P<0.05). This is the first observation that prebiotic effects are able to reduce 7 

the incidence of atopic diseases, and that this effect persists beyond the intervention period. This 8 

assessment is based on a Per Protocol (PP) evaluation which aims at testing efficacy; due to the high 9 

drop-out rate (20% at 6 months and 48% at 2 years of age) and lacking ITT analysis, effectiveness for 10 

field practice needs to be confirmed (141). (See section Prebiotic effects and mineral absorption of this 11 

paper) 12 

 13 

   4.5 Conclusions 14 

 15 

• Only two dietary nondigestible oligosaccharides fulfill the criteria for prebiotic classification. These 16 

are galactans and ITF. Only a limited number of randomized controlled trials evaluating the efficacy 17 

and safety of in pediatric population are available. Some of these studies had methodological 18 

limitations.  19 

• Typically, the studies could show efficacy, i. e. statistical effects based on PP analysis. However, 20 

they may need to be confirmed by effectiveness using ITT analysis. 21 

• Supplementation with such ingredients has the potential to increase the total number of 22 

bifidobacteria in feces and reduce some pathogens. It also can reduce stool pH, increase the 23 

concentrations of fecal short-chain fatty acids like observed in breast fed infants. The clinical meaning 24 

of these findings is still under debate.  25 

• There is evidence from controlled trials that effects are able to reduce the incidence of atopic 26 

diseases, and that this effect persists beyond the intervention period. Confirmation of these data for 27 

effectiveness is needed.  28 

• A reduction in the risk of some infectious diseases is likely, but needs to be confirmed for 29 

effectiveness.  30 
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• The available data on prebiotic effects do not demonstrate adverse effects. 1 

4 Prebiotic effects and Gastro-intestinal disorders5 2 

 3 

4.1 Prebiotic effects and Gastro-intestinal infections 4 

 5 

In adults, the use of ingredients showing a prebiotic effect in the fight against infections has hardly 6 

been studied. A few studies, dealing with different infectious problems, have been reported. 7 

 One study dealing with traveller's diarrhea reports that consumption of 10g ITF per day for a 2-week 8 

pre-travel period continued during a 2-week travel period to high-and medium risk destinations, had 9 

no effect on the prevention of traveller’s diarrhea, although the sense of 'well-being' was improved 10 

(142). Furthermore, a study of patients consuming 12g ITF /day while taking broad-spectrum antibiotics 11 

for 7 days, followed by another 7 days of the same treatment reported no difference from the placebo 12 

group regarding diarrhea incidence, Clostridium difficile infection and hospital stay, while the number 13 

of fecal Bifidobacteria increased significantly (143). In contrast, continued consumption of 12g ITF /day 14 

for 30 days after the cessation of Clostridium difficile-associated diarrhea, reduced the relapse rate, 15 

while increasing bifidobacteria levels (144). 16 

 17 

Overall, the number of studies on the efficacy of ingredients showing a prebiotic effect in the 18 

prevention of infectious diseases is limited. Some positive outcomes exist alongside studies reporting 19 

no-effects. Clearly, a rationale is present for the use of such ingredients. However, any direct effect of 20 

the studied ingredients on the immune system can not be excluded and the measurement of the 21 

putative associated effect on the microbiota is not always included in these studies, hindering the 22 

formation of any conclusions on possible underlying mechanisms. 23 

 24 

4.2 Prebiotic effects and IBS 25 

 26 

The Irritable Bowel Syndrome (IBS) is a functional bowel disorder manifested by chronic, recurring 27 

abdominal pain or discomfort associated with disturbed bowel habit, in the absence of structural 28 
                                                 
5 The main authors for this section are Prof. Guarner and Dr. Respondek (IBS), Dr. Whelan (IBD) and 
Prof. Rowland (colon cancer and bacterial activities).  
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abnormalities likely to account for these symptoms (145). The symptomatic array may include abdominal 1 

pain, discomfort, distension, cramping, distress, bloating, excess flatulence, and variable changes in 2 

frequency and form of stools. Such symptomatic episodes may be experienced by almost every 3 

individual, and in order to separate IBS from transient gut symptoms, experts have emphasized the 4 

chronic and relapsing nature of IBS and have proposed diagnostic criteria based in the recurrence rate 5 

of such symptoms (146). IBS is one of the most common intestinal disorders both in industrialized and 6 

developing countries and it is known to generate significant health care costs (145). 7 

 8 

A precise aetiology for IBS is not recognized. However, epidemiological studies have identified a 9 

series of pathogenetic factors, including genetic and early environmental conditioning, cognitive 10 

/emotional adaptation, altered response to stress and inflammatory post-infectious processes of the 11 

gut mucosa, etc. (145). It has been shown that IBS patients have abnormal reflexes and perception in 12 

response to gut stimuli (147). In subsets of patients the underlying defects appear to be altered GI 13 

motility, visceral hypersensitivity, small bowel bacterial overgrowth, excess gas production, 14 

abnormalities in the composition of the gut microbiota (Table 10) or combinations of them (148).  15 

 16 

Among the modifications of the gut microbiota, a decrease of Bifidobacteria and more specifically 17 

Bifidobacterium catenulatum, has been observed in IBS patients in comparison to healthy subjects 18 

(149-151; 151; 152; 153; 154; 155). 19 

 20 

Hypothetically, some of these disturbances may be corrected or counteracted by prebiotic effects. 21 

Indeed compounds showing such effects are known to modulate the digestive microbiota and 22 

particularly to stimulate the growth of Bifidobacteria especially when the initial level is low (156). 23 

Furthermore human studies with ITF or lactulose have shown that such prebiotics modulate gut transit 24 

(148; 157), decrease putrefactive activity within the gut lumen (158), prevent GI infections (142; 144), and 25 

mitigate inflammatory responses (111; 159; 160).  26 

 27 

Indirect evidence for beneficial effects of ingredients showing a prebiotic effect on abdominal well-28 

being was initially obtained in human trials addressing other primary endpoints. For instance, 29 

Cummings et al (142) tested the effectiveness of ITF in preventing diarrhoea in 244 healthy subjects, 30 
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travelling to high and medium risk destinations for travellers' diarrhoea (see the section Prebiotic 1 

effects and gastro-intestinal infections of this paper for discussion of the effects on risk of intestinal 2 

infections). This randomized, double-blind, placebo-controlled study showed that consumption of 10g 3 

ITF daily gave a significantly better sense of `well-being' during the holiday, as recorded in post-study 4 

questionnaires. Likewise, Casellas et al (160) performed a prospective, randomized, double-blind, 5 

placebo controlled trial to test the effect of ITF (12g/day) in patients with active ulcerative colitis. 6 

Interestingly, the study observed a significant decrease in abdominal symptoms with treatment but not 7 

with placebo, as assessed with the validated questionnaire of dyspepsia-related health scale (161).  8 

 9 

Few studies have investigated the effect of ingredients showing a prebiotic effect in patients with IBS. 10 

The study by Olesen et al (162) tested a large dose of finally 20g ITF during 12 weeks. The authors 11 

hypothesized that IBS symptoms may be provoked by large quantities of fermentable carbohydrates 12 

in the colon. After 4-6 weeks on treatment, IBS symptoms worsened, as expected, in patients on 20g 13 

ITF per day and improved in patients on placebo. However, continuous treatment for 12 weeks 14 

resulted in adaptation and there were no differences between groups: symptoms improved in 58% of 15 

the ITF group and in 65% of the placebo group, and symptoms worsened in 8% of the ITF group and 16 

in 13% of the placebo group. Large doses of any fermentable carbohydrates should not be 17 

recommended to IBS patients. 18 

 19 

Hunter and co-workers (163) found no effect of 2g ITF (three times daily) against placebo in a reduced 20 

group of IBS patients studied in a double blind crossover trial. The Rome team of experts on 21 

functional bowel disorders do not recommend the use of a crossover design for IBS treatment trials as 22 

they have the potential disadvantages of carryover effects and unmasking the study product by 23 

differences in taste and palatability (164). Dughera et al (165) reported a positive effect of a synbiotic 24 

(including short chain ITF at 2.5g per day) on clinical manifestations and intestinal function in patients 25 

with IBS. However, this was an open-label and uncontrolled study and IBS studies with subjective 26 

outcomes are prone to study bias (148). 27 

 28 

To date, there are two published studies of adequate study design reporting the effects of an 29 

ingredient showing a prebiotic effect in IBS. The first study screened 2235 subjects and recruited and 30 
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randomized 105 patients with IBS fulfilling Rome II criteria with minor intensity of symptoms as 1 

assessed by an initial questionnaire. Treatment with short chain ITF at 5g per day for 6 weeks 2 

reduced incidence and intensity of symptoms as compared to the placebo product. Prebiotic 3 

treatment also improved functional digestive disorders related quality of life (166). 4 

The second study randomized 44 subjects according to Rome II criteria into 3 groups either receiving 5 

7g/d placebo, 3.5g/d of ingredient showing a prebiotic effect and 3.5g/placebo and 7g/d of the tested 6 

ingredient for 6 weeks. The prebiotic treatment significantly improved flatulence, bloating, and 7 

composite score of symptoms as well subjective global assessment. It also increased the proportion 8 

of Bifidobacteria in faecal samples (167). 9 

 In summary, the two available studies with up to date standard, both provided positive outcomes for 10 

the ITF and GOS tested up to 7g. Results with less positive outcomes either used higher or lower 11 

doses. 12 

4.2.1 Recommendations:  13 

Ingredients showing a prebiotic effect are likely to play a role in the symptomatic control of IBS. 14 

Evidence accumulated so far in well-designed clinical studies is limited, but suggests possible 15 

benefits at moderate doses. Further studies with adequate methodology are warranted. 16 

 17 

4.2.2 Key Points: 18 

• The Irritable Bowel Syndrome (IBS) is a functional bowel disorder manifested by chronic, 19 

recurring abdominal pain or discomfort in the absence of structural abnormalities. 20 

• The symptomatic array includes abdominal distension, cramping, distress, bloating, excess 21 

flatulence, and variable changes in frequency and form of stools. Such symptomatic episodes 22 

may be experienced by almost every individual. 23 

• The underlying defects appear to be altered GI motility, visceral hypersensitivity, small bowel 24 

bacterial overgrowth, excess gas production and abnormalities in the composition of the gut 25 

microbiota or combinations of these. 26 
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• Ingredient showing a prebiotic effect may counteract these disturbances as they were shown 1 

to modulate gut transit, decrease putrefactive activity within the gut lumen, prevent GI 2 

infections, and mitigate inflammatory responses.  3 

• To date, there are only two published studies of adequate study design testing such 4 

ingredient in IBS. Both studies improved the subjects' symptoms. 5 

 6 

4.3 Prebiotic effects and IBD 7 

4.3.1 Introduction 8 

Inflammatory bowel disease (IBD) is a chronic relapsing and remitting disorder characterised by 9 

inflammation, ulceration and stricturing of the GI tract.  Ulcerative colitis (UC) and Crohn’s disease 10 

(CD) are the two main types of IBD. In Europe, the incidence ranges from 1.5 to 20.3 cases per 11 

100,000 person-years for UC and from 0.7 to 9.8 cases per 100,000 person-years for CD, meaning 12 

that up to 2.2 million people in Europe currently live with IBD (168). 13 

Ulcerative colitis causes continuous mucosal inflammation that is restricted to the colon whereas CD 14 

causes discontinuous transmural inflammation anywhere throughout the GI tract, although it most 15 

frequently affects the terminal ileum (169).  Symptoms common to both UC and CD include diarrhoea, 16 

faecal urgency and incontinence.  Severe abdominal pain and rectal bleeding are common and 17 

complications such as fissuring and abscesses may occur. These symptoms can have a profound 18 

impact on patients, with evidence of impaired nutritional status (170) and quality of life (171). 19 

The primary treatment approach in IBD is usually drug therapy.  Patients can be treated with a variety 20 

of drugs, including 5-ASAs (e.g. mesalazine), steroids (e.g. prednisolone) and immunosuppressants 21 

(e.g. azathioprine).  In addition, patients with CD may also receive new biological drugs such as 22 

monoclonal antibodies (e.g. the anti-TNF-α antibody infliximab) when standard drug treatment fails 23 

(172).  Despite their general efficacy, such drugs can carry a significant burden.  They are not only 24 

expensive, but side effects are common, with an incidence of 28% for immunosuppressants, rising to 25 

50% for steroids (173). In addition, approximately 30% of patients with UC and 50% of patients with CD 26 
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will require surgery at some point in their life (173). In the case of UC, a colectomy and formation of an 1 

ileo-anal pouch may be curative. However, following this procedure, a minority of patients will 2 

experience relapsing, remitting pouch inflammation, described as pouchitis. 3 

Nutritional approaches to treating IBD have been investigated.  In clinical trials, enteral nutrition has 4 

been shown to induce remission in 60-85% of patients with CD, however it remains less effective than 5 

steroids (174) and patients report problems with palatability and abstinence from food (175).  In view of 6 

these findings, safe and effective interventions that induce and maintain remission in IBD with a low 7 

incidence of side effects are urgently needed. 8 

In order to identify potential therapeutic targets for IBD, examination of its pathogenesis is required. 9 

Although the precise mechanisms are not yet known, it appears that IBD results from a heightened 10 

mucosal immune response to the GI microbiota in genetically susceptible individuals. 11 

The immunological processes underlying IBD involve alterations in the balance of proinflammatory 12 

and immuno-regulatory cytokines within the mucosal immune system.  Much of the inflammation is 13 

mediated via cytokines released by activated Th1/Th17 lymphocytes. In addition, tumour necrosis 14 

factor (TNF)-α has been shown to play a key role, exerting its effects via stimulation of other 15 

proinflammatory cytokines such as interleukin (IL)-1, IL-6 and interferon (IFN)-γ. Each of these 16 

proinflammatory cytokines have been shown to be elevated during active IBD (176), and biological 17 

therapies such as anti-TNF-α-antibodies directly target this immunological cascade. Other 18 

proinflammatory cytokines include IL-12 and IL-18, both of which are involved in IFN-γ production. In 19 

contrast, the immuno-regulatory response is mediated by cytokines such as IL-10, which 20 

downregulates IFN-γ production (177). Furthermore, some animal studies have indicated immuno-21 

regulatory roles for IL-4 and transforming growth factor (TGF)-β in IBD (178). 22 

There is convincing evidence that the inflammation observed in IBD is driven by the GI microbiota. 23 

For example, it has been shown that animal models of IBD do not develop inflammation when reared 24 

in germ-free conditions, whereas they subsequently develop inflammation once transferred to non-25 

sterile conditions or are artificially colonised with bacteria (179).  Similar observations have been 26 

described in humans with IBD. In patients with colonic CD, formation of an ileostomy, which diverts 27 

the faecal stream away from the site of inflammation, results in disease remission in 65% of patients, 28 
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whilst reversal of this procedure results in disease relapse in 60%, implying that the content of the 1 

faecal stream is in part responsible for driving inflammation (180).  Patients with active IBD also have 2 

elevated GI permeability, thereby increasing the exposure of the mucosal immune system to the 3 

resident microbiota (181). An underlying pathogenic mechanism linking CD and the GI microbiota was 4 

realised when it was found that mutations in the caspase activating recruitment domain 15 (CARD15) 5 

gene, involved in bacterial recognition, were found to result in a 38 fold increase in risk for CD (182).  6 

Interestingly, this mutation does not result in a higher risk of UC and further genome wide association 7 

studies have identified numerous other mutations associated with increased risk of either UC or CD 8 

but that are unrelated to bacterial recognition or sensing (183). Therefore, there are clearly genetic and 9 

environmental triggers related to the onset of IBD other than those involving the GI microbiota.  10 

Despite the evidence that the GI microbiota is necessary to drive the inflammation in IBD, some 11 

bacteria may indeed protect the mucosa from such inflammation.  Studies in both animals models and 12 

patients with IBD have shown that some bacteria decrease abnormal GI permeability (184; 185), thereby 13 

reducing exposure of the mucosal immune system to the GI microbiota. Meanwhile, some probiotics, 14 

in particular bifidobacteria, upregulate immuno-regulatory IL-10 production by dendritic cells (186; 187), 15 

the production of which is therapeutic in animal models of IBD (177). In view of this, studies have 16 

shown some success of both antibiotics and probiotics in the management of IBD and these have 17 

been extensively reviewed elsewhere (188; 189). 18 

Components of the GI microbiota therefore drive proinflammatory and/or immuno-regulatory cytokine 19 

production during IBD. Interestingly, numerous studies demonstrate alterations in the GI microbiota of 20 

patients. Such studies are varied, utilising a wide variety of microbiological techniques (e.g. traditional 21 

culture; molecular microbiology) in different samples (i.e. faeces, inflamed mucosa, non-inflamed 22 

mucosa). Comparisons have been made between UC and/or CD and/or healthy controls, and these 23 

vary as to whether patients were in relapse or remission.  Consequently, studies of the GI microbiota 24 

in IBD are too varied to review in detail here.  However, some conclusions can be drawn regarding 25 

the alterations in GI microbiota in IBD that suggest that ingredients showing a prebiotic effect may be 26 

of potential benefit in its treatment or maintenance. 27 

In general studies adopt two different approaches to investigating the microbiota in IBD. Some 28 

investigate differences in concentration, proportion or diversity of microbial communities (i.e. dysbiosis 29 
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theory), whereas others investigate the presence or absence of selected species (i.e. single strain 1 

theory).  For example, patients with inactive CD have been shown to have lower proportions of faecal 2 

bifidobacteria (190; 191), whereas both patients with active UC or active CD have lower faecal 3 

bifidobacteria, Clostridium coccoides and Clostridium leptum  compared with healthy controls (191). 4 

Lower concentrations of bifidobacteria (192; 193) and higher concentrations of bacteroides (194) have 5 

also been found in the mucosa of both patients with UC or CD.  Meanwhile, another study has shown 6 

that some patients with CD or UC have lower numbers of mucosal Firmicutes and Bacteroidetes (195).  7 

Increased presence of Escherichia coli has been demonstrated in patients with UC or CD (196; 197) and 8 

more recently, lower concentrations of Faecalibacterium prausnitzii were found in the faeces of 9 

patients with CD or UC compared with controls (191). This is important as Faecalibacterium prausnitzii 10 

is immuno-regulatory and higher mucosal concentrations are associated with longer maintenance 11 

following surgically-induced remission of CD (198). 12 

In view of the role of the certain components of the GI microbiota in driving intestinal inflammation, 13 

combined with the apparent dysbiosis in IBD, the use of ingredients showing a prebiotic effect as an 14 

approach to modifying the microbiota in order to induce or maintain remission in IBD has been 15 

investigated.   16 

 17 

The prebiotic concept is defined as the selective stimulation of growth and/or activity of one or a 18 

limited number of microbial genera, species or strains in the gut microbiota that confers health 19 

benefits to the host. Ingredients showing a prebiotic effect have been shown to increase faecal and 20 

mucosal bifidobacteria in healthy subjects (199; 200). This is relevant because bifidobacteria are present 21 

in lower concentrations in the faeces and mucosa of patients with IBD (191; 193), whilst in vitro 22 

experiments have shown that some species of bifidobacteria stimulate IL-10 production, potentially 23 

via interaction with toll-like receptors (TLR) on lamina propria dendritic cells (186).  In addition, prebiotic 24 

ITF have recently been shown to increase concentrations of Faecalibacterium prausnitzii in healthy 25 

subjects (201), although this has not yet been confirmed in patients with IBD.  Furthermore, SCFAs, 26 

produced through the fermentation of such ingredients, modulate inflammation, with cell culture 27 

studies showing that butyrate inhibits pro-inflammatory IL-2 and IFN-γ production and acetate and 28 

propionate increases immuno-regulatory IL-10 production (95). 29 
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Numerous experiments have been conducted to investigate the impact of these ingredients on 1 

chronic intestinal inflammation in animal models of inflammatory bowel disease, and these have been 2 

reviewed elsewhere (202). However at the current time, their use amongst patients with IBD remains 3 

relatively low (203). However, over the last decade there has been an increase in the number of clinical 4 

trials investigating their use in inducing or maintaining remission in IBD (Table 11).  5 

4.3.2 Prebiotic effects in pouchitis 6 

Two studies have been identified that investigate the use of ingredients showing a prebiotic effect in 7 

patients with pouchitis. The first, published in abstract form only, involved 10 patients with active 8 

pouchitis who were treated with a synbiotic combination of Lactobacillus rhamnosus GG and ITF in an 9 

open label study in whom ‘all patients experienced complete clinical and endoscopic remission’ (204). 10 

Unfortunately, further details of the outcomes are limited and the cause of any benefit, be it a placebo 11 

effect, the probiotic, a prebiotic effect or a combination, is unclear.  In a larger, controlled study, 20 12 

patients with inactive pouchitis were randomised to consume 24 g/d ITF or placebo for 3 weeks in a 13 

cross-over study (205). There was a significant reduction in pouchitis disease activity index during the 14 

ITF intervention, despite nobody having active disease. In addition, there was a reduction in faecal 15 

Bacteroides fragilis and an increase in butyrate. Interestingly, bifidobacteria remained unchanged, 16 

perhaps due to the absence of a colon preventing the complete fermentation and prebiotic effects of 17 

the ITF to be realised. Clearly, larger parallel controlled trials in both active and inactive pouchitis are 18 

warranted. 19 

4.3.3 Prebiotic effects in ulcerative colitis 20 

Two trials have used ingredients showing a prebiotic effect to investigate their efficacy in the 21 

management of UC. The first was a pilot study of 18 patients with active UC, who were randomised to 22 

receive either a synbiotic (6g/d of ITFand B. longum) or a placebo. Only 14 completed the study (8 23 

intervention, 6 control) and there was no difference in clinical scores between the intervention and 24 

control group, but there was a lower degree of inflammation (159). In addition, there was an increase in 25 



 44

mucosal bifidobacteria, decrease in TNF-α, IL-1α and antimicrobial human β-defensin peptides in the 1 

synbiotic group. Although this data suggests promising effects, the use of a synbiotic combination 2 

makes it difficult to ascertain the specific effects of the prebiotic on clinical outcome. 3 

In another pilot study in active UC, 19 patients were randomised to receive either an ingredient 4 

showing a prebiotic effect (12 g/d of ITF) or placebo, in conjunction with 3 g/d mesalazine for two 5 

weeks (160).  Only 15 patients completed the study (7 intervention, 8 control) and although there was a 6 

reduction in disease activity, this occurred in both groups, potentially due to them both starting 7 

concomitant drug therapy.  However, compared with placebo, the intervention group had significantly 8 

lower concentrations of the inflammatory marker faecal calprotectin. This trial provides the first 9 

indicator that a prebiotic alone may be of benefit in treating active UC.  Its major limitations include 10 

low numbers in each group, that increase the chance of type II errors, and a short treatment duration 11 

that may be insufficient to allow a prebiotic effect to translate into a clinical effect (160).  12 

In addition to these, a number of studies in UC have investigated the use of compounds that although 13 

described as prebiotic, are not generally considered to be so. Trials of these fibre compounds have 14 

therefore not been included in Table 11. For example, a series of studies have shown that germinated 15 

barley foodstuff increases remission rates when used to treat active UC (206) and results in longer 16 

remission when used in maintenance of UC (207). More recently a trial of psyllium or the probiotic 17 

Bifidobacterium longum did not result in a significant improvement in quality of life or reduction in 18 

serum C-reactive protein, whereas when used together they did (208). 19 

There remains little data on the clinical, microbiological and immunological effects of prebiotics 20 

specifically in maintaining remission in UC. 21 

4.3.4 Prebiotic effects in Crohn’s disease 22 

In a small, open-label study a semi-elemental enteral formula containing ingredients showing a 23 

prebiotic effect (4 g/L of ITF) was fed via nasogastric tube as a sole source of nutrition for six weeks 24 

to 10 children with active CD (209). There was a reduction in disease activity alongside improvements 25 

in markers of inflammation including reduced erythrocyte sedimentation rate and improved white cell 26 
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scans. In light of the evidence for the efficacy of enteral nutrition in inducing remission in active CD 1 

(174), this study design does not allow the clinical consequences of the prebiotic effect to be separated 2 

from those of the enteral nutrition. 3 

A small open label study of ingredients ITF (15g/d) in patients with active CD, demonstrated a 4 

significant reduction in disease activity after three weeks, with 4 out of 10 patients entering disease 5 

remission (111). In addition, faecal, but not mucosal, bifidobacteria increased and there was an 6 

increase in dendritic cell IL-10 production together with TLR-2 and TLR-4 expression.  Clearly caution 7 

is required in interpreting and applying the results of this small uncontrolled trial. 8 

The same group have recently presented the clinical data from a large double-blind, randomised, 9 

placebo-controlled trial of ITF (15g/d) in 103 patients with active CD (210). Analysed on an intention-to-10 

treat basis there were no significant differences in disease activity or the numbers entering disease 11 

remission between groups. However, as the data has only been presented as a conference abstract 12 

there is currently limited clinical data and no microbiological and immunological data published. 13 

Finally, one study has investigated the effect of ingredients showing a prebiotic effect on preventing 14 

relapse in 30 patients following surgically induced remission of CD. This study supplemented a 15 

synbiotic (Pediacoccus pentoseceus, Lactobacillus raffinolactis, Lactobacillus paracasei susp 16 

paracasei 19, Lactobacillus. plantarum, 2.5 g β-glucans, 2.5 g ITF, 2.5 g pectin, 2.5 g resistant starch) 17 

or placebo for 24 months (211). In view of the long follow-up period, only nine patients completed the 18 

study (7 intervention, 2 control) and there were no differences in relapse rates between groups. It is 19 

noteworthy that the amount of the used ingredient contained within the synbiotic was relatively low. 20 

4.3.5 Limitations of existing studies on prebiotic effects in IBD 21 

Of the identified clinical trials of ingredients showing a prebiotic effect in IBD, numerous limitations in 22 

their reporting and trial design have been highlighted.  Firstly, a number have only been published as 23 

conference abstracts (204; 209; 210), therefore impeding detailed data extraction. Many of the studies 24 

used different compounds, some with unconfirmed prebiotic properties, and in different doses. In 25 

addition, many of the studies use a synbiotic combination, making it unclear whether the probiotic, the 26 
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prebiotic or the combination is effective. The majority of the studies have poor study design, with 1 

numerous small pilot studies, some of which do not have control groups. Where control groups are 2 

used they do not always receive a placebo, making subjective outcomes such as patient reports of 3 

disease activity or quality of life difficult to interpret. This is important in view of the high placebo rates 4 

reported in clinical trials of IBD (212; 213). Furthermore, of the trials in CD none have analysed the 5 

influence of disease location, which may be important as ingredients showing a prebiotic effect may 6 

have different efficacy in colonic and ileal disease, due to the site of fermentation and augmentation of 7 

bacterial growth.  8 

 9 

4.3.6 Key points 10 

Inflammatory bowel disease results from a heightened mucosal immune response to the GI 11 

microbiota in genetically susceptible individuals. 12 

Patients with IBD have a GI dysbiosis characterised by, amongst other things, lower concentrations of 13 

luminal and mucosal bifidobacteria, suggesting potential for prebiotic intervention Prebiotic effects 14 

have potential for benefit in IBD by increasing luminal and mucosal bifidobacteria and SCFAs 15 

concentrations and stimulating immuno-regulatory cytokine production. 16 

Numerous small pilot studies have been conducted in pouchitis, UC and CD indicating potential 17 

benefit in treating active disease. 18 

Although some larger trials have been conducted, they are generally limited in study design, 19 

interpretation and analysis, therefore definitive conclusions regarding the clinical efficacy of the 20 

prebiotic effect in IBD are not yet possible. One large RCT has demonstrated no clinical benefit of 21 

treating active CD with ingredients showing a prebiotic effect. 22 

So far, results are substance- and study-specific, but do not warrant a conclusion for prebiotic effects 23 

in general. 24 
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None of the trials conducted thus far have reported concerns regarding the safety of ingredients 1 

showing a prebiotic effect in patients with IBD, and so their use at the doses used would appear safe. 2 

 3 

4.3.7 Recommendations 4 

Further large, multi-centre randomised, double-blind, placebo-controlled trials of ingredients showing 5 

a prebiotic effect in IBD are required.  There is a particular lack of research on maintenance of 6 

remission of IBD and for the treatment colonic IBD (either UC or colonic CD). 7 

Inter-disciplinary research is required that addresses clinical, as well as mechanistic, outcomes that 8 

are validated and relevant to this patient population. 9 

In vivo and in vitro research is also required to further understand the mechanisms by which 10 

ingredients showing a prebiotic effect may achieve their potential benefit. 11 

Healthcare professionals should keep informed of the latest evidence relating prebiotic effect in IBD.  12 

Not only is this an emerging area of research, with clinical trials currently underway, but it is also an 13 

area of interest to patients. 14 

4.4 Prebiotic effects and colon cancer 15 

4.4.1 Colon carcinogenesis- the role of diet and gut microbiota 16 

 17 

Evidence suggests that diet plays an important role in the aetiology of colorectal cancer, However, 18 

identifying conclusively which constituents (e.g. vegetables, meat, fibre, fat, and micronutrients) exert 19 

an effect on risk has been more problematic due to inconsistent data. The 2007 World Cancer 20 

Research Fund report (214) concluded that the epidemiological evidence was convincing or probable 21 

for associations between overweight and obesity (in particular waist circumference), processed meat, 22 

alcohol and increased risk of colorectal cancer. Fibre, garlic, milk and calcium are associated with 23 

decreased risk. There are no published epidemiological studies on ingredients showing a prebiotic 24 

effect and cancer risk. 25 
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Evidence from a wide range of sources supports the view that the colonic microbiota is involved in the 1 

aetiology of cancer (215) and that bacterial metabolism of unabsorbed dietary residues and 2 

endogenous secretions is the origin of many of the genotoxic, and tumour promoting agents found in 3 

faeces (216). 4 

 5 

4.4.2 Prebiotic effects and CCR (colorectal cancer) 6 

 7 

It follows from the above, that modification of the gut microbiota may interfere with the process of 8 

carcinogenesis and this opens up the possibility for dietary modification of colon cancer risk. Prebiotic 9 

modulation of the microbiota by increasing numbers of lactobacilli and/or bifidobacteria in the colon, 10 

has been a particular focus of attention in this regard. Evidence that such an effect can influence 11 

carcinogenesis is derived from a variety of sources: 12 

1- Effects on bacterial enzyme activities. 13 

2- Antigenotoxic effects in vivo. 14 

3- Effects on pre-cancerous lesions in laboratory animals. 15 

4- Effects on tumour incidence in laboratory animals 16 

5- Epidemiological and experimental studies in humans 17 

 18 

4.5 Prebiotic protective effects and bacterial activities 19 

4.5.1 Prebiotic effects and secondary bacterial enzyme activities. 20 

The ability of the colonic microbiota to generate a wide variety of mutagens, carcinogens and tumour 21 

promoters including N-nitrosocompounds, secondary bile acids, ammonia, phenols and cresols from 22 

dietary and endogenously-produced precursors is well documented (215; 217). In addition, the bacterial 23 

enzyme ß-glucuronidase is involved in the release in the colon from their conjugated form of a 24 

number of dietary carcinogens, including polycyclic aromatic hydrocarbons.  25 

Ingredients showing a prebiotic effect should not stimulate bacteria capable for such metabolism. 26 

During in vivo experiments this should result in an overall decrease in toxic substances. 27 
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In general, species of Bifidobacterium and Lactobacillus, have low activities of enzymes involved in 1 

carcinogen formation and metabolism by comparison to other major anaerobes in the gut such as 2 

bacteroides, eubacteria and clostridia (218). This suggests that increasing the proportion of these two 3 

lactic acid bacteria (LAB) in the gut could modify, beneficially, the levels of xenobiotic metabolising 4 

enzymes. It may lead to decreases in certain bacterial enzymes purported to be involved in the 5 

synthesis or activitation of carcinogens, genotoxins and tumour promoters. Such manipulations have 6 

been suggested to be responsible for decreased levels or preneoplastic lesions or tumours in animal 7 

models (219; 220)  and suggests a reduction in the damaging load. 8 

Studies in laboratory animals have in general shown that ITF and galactans decrease caecal enzyme 9 

activities (221; 221; 222). However, human studies have yielded inconsistent or negative results on such 10 

enzyme activities or on production of toxic bacterial metabolites such as ammonia and phenols (65; 223; 11 
224).  12 

 13 

4.5.2 Prebiotic and synbiotic effects on pre-cancerous lesions in laboratory animals  14 

 15 
Aberrant crypts (AC) are putative pre-neoplastic lesions seen in the colon of carcinogen treated 16 

rodents. In many cases a focus of two or more crypts is seen and is termed an aberrant crypt focus 17 

(ACF). Aberrant crypts are induced in colonic mucosa of rats and mice by treatment with various 18 

colon carcinogens such as azoxymethane (AOM), DMH and IQ (225).  19 

Ingredients showing a prebiotic effect alone appear to give inconsistent results on carcinogen induced 20 

ACFs which may be partly a consequence of differences in carcinogen and treatment regimes used. 21 

For example Rao et al (226) reported that ITF (10% in diet) had no significant effect on total ACF in 22 

colon, or their multiplicity, in F344 rats, although curiously a significant decrease in ACF/cm2 of colon 23 

was reported. A study by Gallaher et al (227) on Bifidobacterium spp and FOS (2% in diet) gave 24 

inconsistent results with only 1 out of 3 experiments showing a decrease in DMH-induced ACF. In 25 

contrast Verghese et al (228), reported a dose-dependent decrease the incidence of ACF and total 26 

crypts (P<0.01) after ITF supplementation (0, 2.5, 5 and 10 g /100 g diets) in AOM challenged rats. 27 

The effects of prebiotics on ACF may be dependent on the chain length of the ITF, since a number of 28 

studies report more potent inhibition by longer than by shorter chains (229-231). For example, 29 
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Buddington et al (230) reported that inulin (10% in diet), but not oligofructose fed mice had significantly 1 

lower ACF numbers  than controls  2 

 3 

Some studies have found that ITF have differential effects on ACF and tumours. For example 4 

Jacobson et al (232), reported that oligofructose or long chain inulin (15% in diet) increased the 5 

number of ACF but significantly reduced the tumour incidence.  A study by Caderni et al (233) showed 6 

similar results when rats were fed the synbiotic containing ITF alongside Lactobacillus GG, L. 7 

delbrueckii subsp. Rhamnosus and Bifidobacterium lactis Bb12.  Supplementation caused increased 8 

ACF multiplicity after 16 weeks, however significantly reduced tumour incidence following 32 weeks in 9 

AOM challenged rats.   10 

 11 

There are limited studies on ingredients showing a prebiotic effect other than ITF in this area. Challa 12 

et al (234) demonstrated a small reduction (22%) in total ACF in AOM treated F344 rats when the 13 

synthetic, non-digestible disaccharide lactulose was incorporated in the diet at 2%. Hsu CK et al (235) 14 

compared the influence ITF (60 g/kg) and xylo-oligosaccharides supplementation on DMH induced 15 

aberrant crypts in ratsreporting a decrease in the mean number of multicrypt clusters of aberrant 16 

crypts by 56 and 81%, respectively (P<0.05). Wijnands et al (236) compared AOM-induced ACF in 17 

F344 rats fed diets containing low or high GOS (5% vs 20% w/w of a GOS syrup comprising 38% 18 

GOS). There were no significant differences between the dietary groups in total ACF after 7 or 13 19 

weeks of treatment although there was a significant decrease in ACF multiplicity in the high GOS fed 20 

group (4.4 vs 3.07  P<0.5). 21 

 22 

Both Challa et al (234) and Rowland et al (220) studied the effect of combined treatment of probiotic and 23 

prebiotic on ACF numbers. The combination of Bifidobacterium longum and lactulose resulted in a 24 

48% inhibition of colonic ACF, which was significantly greater than that achieved by either 25 

Bifidobacterium longum or lactulose alone (234). Similarly Rowland et al reported a decrease in total 26 

ACF of 74% in rats given Bifidobacterium longum + ITF (by comparison to 29% and 21% reduction 27 

achieved by Bifidobacterium longum or ITF alone). Importantly, the combined administration of 28 

probiotic and prebiotic reduced large ACF by 59% whereas the individual treatments had no effect 29 

(220). Nakanishi et al (237) showed that supplementation with Clostridium butyricum (CB) in AOM 30 
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challenged rats had no significant effect on ACF occurrence. However, CB supplemented alongside 1 

high amylose maize starch (a poorly digestible carbohydrate) decreased the number of ACF 2 

significantly (P<0.05) indicating a degree of synbiotic activity. 3 

 4 

4.5.3 Prebiotic effects and colon tumour incidence in laboratory animals  5 

There are fewer reports on prebiotic and synbiotics than on probiotics in terms of tumour incidence 6 

but overall the studies indicate protective effects. Jacobsen et al (232) compared the incidence of 7 

tumours in AOM challenged rats following consumption of ITF (15 % diet w/w).  Significantly less rats 8 

developed colon tumours in the treated group (P<0.05) compared to the control diet.  The total 9 

number of tumours developed per rat was significantly reduced following both oligofructose (P<0.01) 10 

and Inulin (P<0.05) supplementation. However supplementation had no effect on the malignancy of 11 

the tumours. Wijnands et al (238) compared the effect of cellulose and GOS syrup on induction of 12 

DMH-induced colorectal tumours in Wistar rats consuming basal diets containing low, medium or high 13 

fat content. The cellulose diets contained 4.5 - 5.2% w/w (low cellulose) or 22.6 - 24.5% (high 14 

cellulose) and the GOS syrup diets 8.3 – 9.5% (low GOS) or 26.3 – 28.7% (high GOS). The GOS 15 

syrup used comprised 38% GOS with additional lactose, glucose and galactose, thus the high GOS 16 

diets contained about 10.5% dry weight GOS. The cellulose content of the diet had no effect on total 17 

tumours, but high cellulose increased adenomas and significantly decreased carcinomas. There were 18 

no significant effects of high GOS diets on tumour incidence. Multiplicity of tumours (i.e. number per 19 

tumour-bearing animal), both adenoma and carcinoma was significantly decreased in the hig GOS fed 20 

group. 21 

 22 

Femia et al (239) investigated the protective effects of prebiotic (ITF), probiotic (Bifidobacterium lactis 23 

Bb12 and Lactobacillus rhamnosus GG, (5x108 CFU/g diet) or synbiotic combination of the two,  24 

against AOM-induced colon tumours in rats.  Prebiotic fed groups (prebiotic and synbiotic groups) 25 

resulted in lower adenoma (P < 0.001) and adenocarcinoma (P<0.05) incidence than in the rats not 26 

given prebiotic (probiotic & control). Interestingly, in the groups treated with probiotics (probiotic and 27 

synbiotic groups) the proportion of cancers relative to the total number of tumours was significantly 28 

lower (P=0.04) (9 cancers out of 84 tumours [11%]) than in the control and prebiotic groups (19 29 
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cancers out of 83 tumours [23%]), suggesting a protective effect of probiotics, but not ingredients 1 

showing a prebiotic effect, on development of malignant tumours. 2 

 3 

In the transgenic Min mice model, the mice develop spontaneous adenomas throughout the small 4 

intestine and colon within a few weeks. Results from studies on ITF in this model have been 5 

conflicting, with both inhibitory and stimulatory effects on tumours reported. In one study Min mice 6 

were fed various diets containing wheat bran, resistant starch or oligofructose (5.8% in diet) for 6 7 

weeks. Tumour numbers remained unchanged from the control (low [2%] fibre diet) in the mice fed 8 

either wheat bran or resistant starch, but a significant reduction in colon tumours was observed in rats 9 

receiving the diet supplemented with oligofructose. Furthermore 4 out of the 10 oligofructose fed 10 

animals were totally free of colon tumours (240). These results contrast with those of Mutanen and co-11 

workers using the same model. In the first of their studies, Min mice fed a purified high fat (40% 12 

energy) diet with 2.5% ITF showed non-significant increases in  adenomas in the small and large 13 

intestins compared with the control animals fed the high fat, fibre -free diet alone (241). A subsequent 14 

study (242) using a higher ITF dose (10%) confirmed these results with increases, again non-15 

significant, being seen in the number of adenomas in the small intestine and colon and significant 16 

increases in tumours in the distal small intestine after 9 weeks of treatment. Interestingly, although the 17 

adenoma size in the small intestine was significantly increased in the inulin-fed mice, in the colon the 18 

size was reduced from 3.72mm to 2.54mm (non significant). It has been suggested that the reasons 19 

for the discrepancies in the Min mouse studies are due to major differences in the basal diet fed: high 20 

fat, high glucose diet in the Mutanen studies and high starch diet in the studies of Pierre et al (78; 243).   21 

 22 

Taper & Roberfroid (244) investigated the effects in mice of inulin–type fructans or pectin (15% in the 23 

diet) on the growth of intramuscularly  transplanted mouse tumours, belonging to two tumour lines - 24 

TLT (a mammary tumour) and EMT6 (a liver tumour). The growth of both tumour lines was 25 

significantly inhibited by supplementing the diet with non-digestible carbohydrates. In subsequent 26 

studies, the same authors demonstrated that ITF (15% in diet) reduced the incidence of mammary 27 

tumours induced in Sprague-Dawley rats by methylnitrosourea; and  decreased the incidence of lung 28 

metastases of a malignant tumour implanted intramuscularily in mice (245). 29 

 30 
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4.5.4 Prebiotic effects in human intervention studies  1 

For human intervention trials, cancer is an impractical endpoint in terms of numbers of subjects, cost, 2 

study duration and ethical considerations. An alternative strategy employed in recent studies is to use 3 

early or intermediate biomarkers of cancer such as DNA damage and cell proliferation in colonic 4 

mucosa and genotoxic activity of faecal extracts (‘faecal water’) (246).  5 

  6 

In a larger scale, randomized, double blind, placebo-controlled trial, patients with resected polyps 7 

(n=37) or colon cancer (n=43) were given a synbiotic food supplement composed of ITF and the 8 

probiotics Lactobacillus rhamnosus GG and Bifidobacterium lactis Bb12 for 12 weeks (247). The effect 9 

of synbiotic consumption on a battery of intermediate biomarkers for colon cancer was examined. The 10 

intervention significantly reduced colorectal proliferation as assessed by in vitro [3H]thymidine 11 

incorporation and autoradiography in colorectal biopsy samples. Given the correlation between 12 

colorectal proliferativeactivity and colon cancer risk, these results suggest that synbiotics might be 13 

beneficial for patients with an increased risk of colon cancer. In addition in the polyp patients, the 14 

synbiotic intervention was associated with a significant improvement in barrier function as assessed 15 

by trans-epithelial resistance (TER) of Caco-2 cell monolayers after exposure to fecal water samples. 16 

This anti-promotion effect may reflect changes to the balance of SCFAs and secondary bile acids 17 

(deoxycholic acid and lithocholic acid) in the samples because these gut microbial metabolites have 18 

been shown to influence TER, beneficially and adversely respectively, in this system. Genotoxicity 19 

assays of colonic biopsies and faecal water indicated a decreased exposure to genotoxins in the 20 

polyp patients at the end of the intervention period.  21 

Thus several colorectal cancer biomarkers were altered favorably by the intervention and the results 22 

show consistency with animal studies conducted in parallel (239).  23 

Also of interest was the observation that the polyp patients and cancer patients appeared to respond 24 

differently to the synbiotic, as evidenced by the different effects observed on each biomarker.This 25 

may have been due to the fact that the intestinal microbiota was more refractory to changes induced 26 

by the synbiotic in the cancer patients than in the polyp patients. 27 

 28 
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4.5.5 Mechanisms of anticarcinogenicity and antigenotoxicity 1 

4.5.5.1 Prebiotic effects and in vivo prevention of genotoxicity   2 
More direct evidence for protective properties of probiotics and ingredients showing a prebiotic effect 3 

has been obtained by assessing the ability to prevent DNA damage and mutations (which are 4 

considered to be early events in the process of carcinogenesis) in cell cultures or in animals. 5 

Using the technique of single cell microgel electrophoresis (Comet assay), the prebiotic effect of 6 

lactulose on DNA damage in the colonic mucosa has been evaluated. Rats that were fed a diet 7 

containing 3% lactulose and given dimethylhydrazine (DMH), exhibited less DNA damage in colon 8 

cells than similarly treated animals fed a sucrose diet. In the latter animals, the percentage of cells 9 

with severe DNA damage comprised 33% of the total compared with only 12.6% in the lactulose-fed 10 

rats (248).  11 

Klinder et al. (249) also showed that the prebiotic effect of ITF and probiotic supplementation (8 12 

months) caused a reduction in the genotoxicity of faecal and caecal samples obtained from 13 

azoxymethane-treated rats.   14 

Rafter et al (247) investigated the influence of 12 weeks synbiotic supplementation (Lactobacillus 15 

rhamnosus GG (LGG) + Bifidobacterium lactis Bb12 + ITFmix) on selected cancer biomarkers in 16 

patients with resected colonic polyps or cancer. Synbiotic supplementation resulted in significant 17 

reductions in DNA damage in the colonic mucosa of polyp patients. The results provide evidence that 18 

both supplementation of LAB and prebiotic effects may be protective against the early stages of colon 19 

cancer.  20 

Another important aspect to be considered in relation to the anti-toxic potential associated with a 21 

prebiotic effect is the formation of reducing equivalents, such as glutathione.. Food-borne carcinogens 22 

such as heterocyclic amines and polycyclic aromatic hydrocarbons are often conjugated with 23 

glutathione and thus inactivated. The enzyme involved, glutathione transferase (GSH) is found in the 24 

liver and in other tissues including the gut. Challa et al (234) showed in a study of the effect of a 25 

synbiotic (B. longum and lactulose) on azoxymethane (AOM)-induced aberrant crypt foci (ACF) in the 26 

rat colon that GSH in the colonic mucosa was inversely realted to the ACF numbers and higher with 27 

the synbiotic intervention Such an effect would be effective against a wide range of oxidative damage. 28 

 29 
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4.5.5.2 Effects on bacterial enzymes, metabolite production 1 

As described in the section Microbiota of the gastro-intestinal tract of this paper, the increase in 2 

concentration of lactic acid bacteria (LAB) in the gut as a consequence of consumption of ingredients 3 

showing a prebiotic effect leads to decreases in certain bacterial enzymes purported to be involved in 4 

synthesis or activation of carcinogens, genotoxins and tumour promoters. This would appear to be 5 

due to the low specific activity of these enzymes in LAB (218). Such changes in enzyme activity or 6 

metabolite concentration have been suggested to be responsible for the decreased level of 7 

preneoplastic lesions or tumours seen in carcinogen-treated rats given pro and pre biotics (219; 220). 8 

Although a causal link has not been demonstrated, this remains a plausible hypothesis. 9 

 10 

4.5.5.3 Production of anti cancer metabolites 11 

Luminal SCFAs, in particular butyrate, are potential anti-carcinogenic agents within the gut. Butyrate 12 

is the preferred energy source of colonocytes and has been implicated in the control of the machinery 13 

regulating apoptosis and cellular differentiation. Perrin et al. (250) studied the effect of  different forms 14 

of dietary fibre, a starch free wheat bran, a type 3 resistant starch  and ITF on the prevention of ACF 15 

in rats. Their hypothesis was that, only fibres capable of releasing butyrate in vitro would be capable 16 

of preventing colon cancer. The resistant starch diet and the ITF diet both produced large quantities of 17 

butyrate and inhibited ACF formation, in contrast to the wheat bran diet that neither generated large 18 

amounts of butyrate nor protected against ACF formation.  19 

 20 

4.5.5.4 Stimulation of protective enzymes  21 

Many of the food-borne carcinogens such as heterocyclic amines and polycyclic aromatic 22 

hydrocarbons are known to be conjugated to glutathione, which appears to result in inactivation. The 23 

enzyme involved, glutathione transferase (GSH), is found in the liver and in other tissues including the 24 

gut. Challa et al (234) investigated the effect of Bifidobacterium longum and lactulose on AOM-induced 25 

ACF in the colon and showed that the activity of GSH in the colonic mucosa was inversely related to 26 

the ACF numbers. Such a mechanism of protection would be effective against a wide range of dietary 27 

carcinogens.  28 

 29 
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4.5.5.5 Apoptotic effects 1 

The control of gene expression, cell growth, proliferation and cell death in multi-cellular organisms is 2 

dependent upon the complex array of signals received and transmitted by individual cells. Apoptosis 3 

or programmed cell death is one of the primary mechanisms by which multi-cellular organisms control 4 

normal development and prevent aberrant cell growth. Upregulation of apoptosis has received some 5 

attention recently as a potential mechanism of action of probiotics and ingredients showing a prebiotic 6 

effect. 7 

Hughes & Rowland (251) fed 3 groups of rats one of three diets: basal, basal with oligofructose 8 

(5%w/w) or basal with long chain inulin (5%w/w), for three weeks. All animals were then dosed with 9 

1,2-dimethylhydrazine and killed 24 h later. The mean number of apoptotic cells per crypt was 10 

significantly higher in the colon of rats fed oligofructose (P=0.049) and long chain inulin (P=0.017) as 11 

compared with those fed the basal diet alone. This suggests that such ingredients exert protective 12 

effects at an early stage in the onset of cancer, as the supplements were effective soon after the 13 

carcinogen insult. Comparison of the apoptotic indices between the two oligosaccharide diets showed 14 

no significant difference even though the mean apoptotic index was higher in animals fed long chain 15 

inulin. 16 

 17 

4.5.5.6 Effects on tight junctions 18 

Other studies have looked at cellular and physiological events associated with tumour promotion in 19 

the colon. For example, one feature of colonic tumour promotion is a decrease in epithelial barrier 20 

integrity. 21 

Commane et al (252) showed using an in vitro model of tight junction integrity (transepithelial resitance) 22 

that metabolic products (probably SCFAs) derived from probiotics and ingredients showing a prebiotic 23 

effect fermentations were capable of improving tight junction integrity, suggesting that synbiotics may 24 

have anti tumour promoting activity.  25 

 26 

4.6 Summary and conclusion 27 

• Data from animal models as well as preliminary evidence in human study suggest reduction 28 

in the risk of colon cancer development associated with the prebiotic effects. 29 
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• Data from animal models, with endpoints such as DNA damage, aberrant crypt foci and 1 

tumours in the colon, suggest that reduction in the risk of colon cancer development is 2 

associated with prebiotic effects. 3 

• Limited animal studies also indicate that combinations of pre- and probiotics may be more 4 

effective than either agent alone 5 

• A pre+probiotics study in human subjects using putative biomarkers of cancer risk showed 6 

improvements in some, including a reduction in DNA damage and cell proliferation in colon 7 

biopsies. Further studies are needed 8 

• A number of potential mechanisms for reduction in cancer risk by prebiotic effect, including 9 

changes in gut bacterial enzyme activities , upregulation of apoptosis and induction of 10 

protective enzymes have been explored in animal models, but currently evidence for such 11 

effects in humans is lacking 12 

13 
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5 Prebiotic effects and mineral absorption6 1 

 2 

Accumulating knowledge prompted the scientific community to consider compounds showing prebiotic 3 

effects as a source for putative innovative dietary health intervention for improvement of mineral 4 

retention. This particular effect of ingredients showing a prebiotic effect is indeed especially 5 

challenging because, among the bone builders, calcium is critical in achieving optimal peak bone 6 

mass and modulating the rate of bone loss associated with ageing, and is the most likely to be 7 

inadequate in terms of dietary intakes. Consequently, this specific property of prebiotics has been 8 

investigated extensively because if the mineral is inadequate during growth, the full genetic program 9 

for skeletal mass acquisition cannot be achieved. Then, if calcium intake is not enough to offset 10 

obligatory losses, acquired skeletal mass cannot be maintained, leading to osteoporosis, a major 11 

public health problem. 12 

Moreover, biological properties of ingredients showing a prebiotic effect could extend far beyond, with 13 

potential improvement of other minerals bioavailability, including magnesium, iron or zinc. 14 

 15 

5.1 Rationale behind the prebiotic effects on mineral absorption 16 

Calcium 17 

The most compelling data have demonstrated that ingredients showing a prebiotic effect lead to 18 

increased calcium absorption. As such ingredients are resistant to hydrolysis by small intestinal 19 

digestive enzymes, they reach the colon virtually intact, where they are selectively fermented by the 20 

microbiota (253; 254). This colonic fermentation produces SCFAs and other organic acids that contribute 21 

to lower luminal pH in the large intestine which, in turn, elicits a modification of calcium speciation and 22 

hence solubility in the luminal phase so that its passive diffusion is improved (255-257). SCFAs are also 23 

likely to contribute directly to the enhancement of calcium absorption via a cation exchange 24 

mechanism (increased exchange of cellular H+ for luminal Ca2+) (258). 25 

Further, these ingredients may also modulate transcellular active calcium transport by increasing 26 

calbindin D9K expression in the cecum and colorectum (the intracellular carrier protein involved in the 27 

translocation of calcium to the basolateral membrane of mucosal epithelial cells) (259; 260). 28 

                                                 
6 The main authors of this section are Dr. Coxam, Dr. Davicco, Dr. Léotoing and Dr. Wittrant 
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Another way to contribute to the enhanced mineral absorption is the trophic effect of prebiotics on the 1 

gut (cell growth and functional enhancement of the absorptive area; (261). It has been suggested that 2 

this is mediated by an increased production of butyrate and/or certain polyamines (253). Rémésy et al. 3 

(255) have shown that inulin is able to stimulate ornithine decarboxylase, the rate-limiting enzyme for 4 

polyamine synthesis. Nevertheless, Scholz-Ahrens & Schrezenmeier (262) failed to show that 5 

polyamines mediate this effect.  6 

In summary, ingredients showing a prebiotic effect help to increase calcium bioavailability by 7 

extending the site of mineral absorption (through the tight junctions between mucosal cells in the 8 

small intestine) towards the large intestine.  9 

 10 

Other minerals 11 

With regard to the magnesium, most of the potential of ingredients showing a prebiotic effect on its 12 

absorption are similar to those described for calcium, but less clear. They include increased 13 

magnesium solubility and absorption due to reduced colonic pH (263). Nevertheless, significant effects 14 

on magnesium retention have been demonstrated in dogs, despite the lack of any change in fecal pH 15 

(264). It is also possible that SCFAs affect magnesium absorption (265), butyrate being more efficient 16 

than propionate or acetate (266), probably via a cation exchange mechanism. Indeed, butyric acid is 17 

able to enhance the intestinal uptake by activation of an apical Mg2+/2H+ antiport through the 18 

provision of protons within the epithelial cell. 19 

Iron and zinc balance can be improved by consumption of these ingredients however, animal studies 20 

have failed to show any significant effect on copper bioavailability (267). 21 

 22 

5.2 Summary of key studies (Table 12) 23 

5.2.1 Animal study (Table 13 & 14) 24 

Animal studies targeting the effect of prebiotics on calcium absorption are listed on the Tables 13 and 25 

14. The points arising from these studies are the following: 26 

• -Different types of molecules have been studied, including ITF-Dpav 3-4, ITF-Dpav 12, ITF-Dpav 25, 27 

ITF-MIX, GOS, lactulose or resistant starch. 28 
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• -Dietary supplementation with ITF enhances the uptake of calcium, improves bone mineral 1 

content (BMC) in growing rats and alleviates the reduction in BMC and bone mineral density 2 

(BMD) which follows ovariectomy or gastrectomy in rats. 3 

 4 

5.2.2 Clinical trials (Table 15& 16) 5 

In infants 6 

The only available study targeting the prebiotic effect on mineral metabolism in infants was conducted 7 

in 6 to 12 months healthy formula-fed babies. Even though, ITF did not elicit any modulation of faecal 8 

SCFAs concentration, a beneficial effect on both iron and magnesium absorption and retention was 9 

reported. No significant difference was observed for calcium, copper or zinc (268). 10 

 11 

In adolescents 12 

As far as adolescents are concerned, in 1999, Van den Heuvel et al. (269) demonstrated that a daily 13 

consumption of 15g of ITF  for 9 days stimulated fractional calcium absorption by 10% in young boys 14 

(14-16y). Later on, Griffin et al. (270) provided the evidence that modest intake of ITFmix, corresponding 15 

to 8g per day, stimulated calcium absorption in 60 girls at or near menarche. The increase reached 16 

about 30% after 3 weeks of consumption, when compared with oligofructose only or placebo intakes.  17 

This effect was mostly observed in girls with lower calcium absorption status (271). Moreover, when 18 

given for 36 days to adolescent girls (12-14y), 10 g of ITF-Dpav 3-4 were able to stimulate magnesium 19 

absorption (18%), without affecting calcium absorption, vitamin D or parathyroid (PTH) serum 20 

concentration or urine concentration  which are used as markers of bone resorption (272). 21 

The longest and most compelling study, is a 1 year intervention trial on pre-pubertal girls and boys 22 

(n= 100) that found significantly increased calcium absorption in the group receiving ITF-MIX (8g per 23 

day) after 8 weeks. The effect lasted throughout the intervention period resulting, after 1 year, in 24 

improved whole body BMC and significantly increased BMD, compared to the controls (273). This 25 

demonstrates a beneficial effect on long-term use of this particular mixture on calcium absorption and 26 

bone mineralization in young adolescents. (274). A further study by Abrams et al.showed that 27 

responders to the “treatment” had greater calcium absorption and increased accretion of calcium to 28 
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the skeleton, and thus concluded on the importance of such a strategy to enhance peak bone mass, 1 

as the extra absorbed calcium is deposited in bones (275). 2 

 3 

In adults 4 

It has been previously shown, using the metabolic balance methodology, that addition of up to 40g 5 

per day of ITF and sugar beet fibres, to a normal mixed diet for 28 days improved calcium balance, 6 

without adverse effects on the retention of other mineral (276). However, a study carried out by Van 7 

den Heuvel et al. (277) in healthy young adults, found no significant differences in mineral absorption, 8 

irrespective of the treatment (which consisted of a constant basal diet supplemented for 21 days with 9 

15g/d ITF, or galacto-oligosaccharide, or not supplemented) followed by a 24 hour urine collection. It 10 

was hypothesised that a 24 h period of urine collection, used in the study, was too short to include the 11 

colonic component of calcium absorption and thus to make up a complete balance necessary to 12 

detect the effect of ITF. In a similar way, Teuri et al. (278), investigated a combination of 15g of ITF and 13 

210mg of calcium added to 100g of cheese given at breakfast to 15 adult healthy women with an 14 

average age of 23 years old. The study failed to show any significant influence of the diet on blood 15 

ionized calcium or PTH concentration over the 8h assessment period. Nevertheless, measuring 16 

serum PTH and ionised calcium do not provide direct information about calcium absorption, as do 17 

isotope techniques, and it has been suggested that he length of the trial was probably too short. 18 

Moreover, the addition of 1.1 g ITF-Dpav 3-4 or caseinophosphopeptides to calcium-enriched milks, a 19 

valuable source of well-absorbed calcium, did not significantly increase calcium absorption in adults 20 

(25-36y), independently of sex (279). Finally, Abrams et al. (280) gave to 13 young adults (average age 21 

of 23y) a supplementation containing 8g of ITF-MIX for 8 weeks. Eight of the 13 volunteers were 22 

classified as responders, based on their level of calcium absorption. 23 

 24 

In postmenopausal women 25 

Ducros et al. (281) carried out a clinical trial in postmenopausal women (age between 50-70 years with 26 

at least 2 years of menopause). The volunteers were provided with 10g/d ITF-Dpav 3-4 or a placebo for 5 27 

weeks using a cross-over design. They demonstrated that consumption of ingredients showing a 28 

prebiotic effect was associated with increased copper absorption, while no significant effect could be 29 

demonstrated on zinc or selenium bioavailability. 30 
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In a similarly designed double-blind randomised, crossover design, post-menopausal women without 1 

HRT (please explain abbreviation) were given 10g of ITF-Dpav 3-4 daily for 5 weeks. Magnesium 2 

absorption and status was determined using mass spectrometer analysis in faeces, urine and blood. 3 

Results showed that the ITF-Dpav 3-4 -enriched diet increased magnesium absorption by 12.3%, 4 

compared to the placebo sucrose control group (282). In the same experiment, Tahiri et al. (283) 5 

showed that over 5 weeks of a moderate daily dose (10 g) of ITF-Dpav 3-4 failed to modify intestinal 6 

calcium absorption in the early postmenopausal phase, while, in the subgroup of late phase (women 7 

who had been going through menopause for more than 6 years), an increase in calcium absorption 8 

was observed.  9 

Twelve older postmenopausal women (of at least 5 years past the onset of menopause) drank 100 ml 10 

of water containing 5 or 10 g of lactulose or a reference substance at breakfast for 9 days. True 11 

fractional calcium absorption was calculated using calcium isotope ratios and consumption of 12 

lactulose was found to increase calcium absorption in a dose-response way (284).  13 

In a crossover trial, 12 postmenopausal women were given a 200 ml yogurt to drink twice a day (at 14 

breakfast and lunch) containing either GOS (20g) or sucrose for 9 days; a greater true calcium 15 

absorption (16%) was observed after consumption of a product rich in GOS. In addition, no increased 16 

urinary calcium excretion was observed, suggesting that GOS could also indirectly increase the 17 

uptake of calcium by bones and/or inhibit bone resorption (285). 18 

Adolphi et al., (286) tested, the hypothesis that, in postmenopausal women (between 48 and 67 y and 19 

who had been postmenopausal for 10.5 ± 0.7 y), consumption of fermented milk (supplemented with 20 

calcium) at bedtime could prevent the nocturnal peak of bone resorption by decelerating its turnover, 21 

and that this effect could be improved by adding calcium absorption enhancers. Actually, they showed 22 

that indeed such a practice can reduce the nocturnal bone resorption and that supplementation with 23 

calcium had no additional effect unless absorption enhancers such as ITF and 24 

caseinphosphopeptides were added. 25 

Kim et al. (287) who investigated the effects of ITF supplementation (8g/d for 3 months) in 26 

postmenopausal women (mean age: 60 y) showed that apparent calcium absorption was significantly 27 

increased by 42% in the ITF group, while a 29% decrease was robserved in the placebo group. This 28 

was associated with lower alkaline phosphate plasma levels (a parameter which is actually not 29 

specific of bone formation) and a trend toward a slight reduction in urinary deoxypyridinolin (a 30 
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biomarker for bone resorption). As expected, due to the very short length of exposure, BMD was not 1 

modified by the treatment. 2 

Finally, 15 women (who were a minimum of 10 y past the onset of menopause and had taken no 3 

hormone replacement therapy for the past years) were treated with 10g/d of a specific mixture of ITF 4 

for 6 weeks, according to a double-blind placebo controlled crossover design. True fractional calcium 5 

absorption, measured by dual isotopes before and after treatment, was significantly increased (+7%) 6 

in women with lower initial BMD (288). 7 

 8 

In institutionalized patients 9 

Bone resorption, used as indicator of calcium retention, remained unchanged in institutionalized 10 

adults after 3 weeks of treatment with 13g per day of ITF-fortified beverages (289). 11 

 12 

5.3 Outline of general rules 13 

 14 

5.3.1 Involvement of the colon 15 

The main points arising from the available studies are that the calcium sparing effect elicited by a 16 

prebiotic effect involves colonic absorption. Indeed, using in vitro Ussing chambers Raschka & Daniel 17 

(261) provided the evidence of the effect of ITF-MIX on transepithelial calcium fluxes in rat large 18 

intestine. 19 

Levrat et al. (290) showed that dietary ITF given in the range of 0 to 20% in the diet stimulated 20 

intestinal calcium absorption in a dose dependent manner, coinciding with a progressive decrease in 21 

caecal or ileal pH, hypertrophy of caecal walls and a rise in caecal pool of SCFA.  22 

Moreover, Ohta et al. (256) demonstrated that in rats fed a ITF-containing diet, but not in those given a 23 

control diet, the ratio of calcium or magnesium to chromium (chromium being used as an 24 

unabsorbable marker to calculate apparent absorption of calcium and magnesium) were correlated 25 

with the fractional length of transit along the colon and rectum, indicating linear disappearance of 26 

calcium and magnesium during the colorectal passage. Consequently, in cecectomized rats, ITF 27 

failed to increase calcium absorption (291).  28 
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Similarly, in patients with conventional ileostomy, data analysis of ITF effects on mineral absorption 1 

and excretion (Mg, Zn, Ca, Fe) showed no significant influence  (292). 2 

This offers an explanation as to why Van den Heuvel et al. (277) found no significant differences in 3 

mineral absorption in healthy young adults, irrespective of the treatment they received (consisting of a 4 

constant basal diet supplemented for 21 days with 15g/d ITF, or galacto-oligosaccharide, or not 5 

supplemented), as the 24 h period of urine collection used in this study was too short to include the 6 

colonic component of calcium absorption and thus to make up a complete balance necessary to 7 

detect the effect of fructans. 8 

Indeed, Abrams et al. (280) gave young adults (average age of 23y) 8 g of ITF-MIX for 8 weeks, and 9 

confirmed that calcium absorption after treatment occurred principally in the colon (69.6 ± 18.6%). 10 

 11 

Nevertheless, it is still unclear whether the calcium sparing effect results from induction of specific 12 

bacterial strains or from their “colonic food” activity (293). 13 

 14 

5.3.2 Dose effect 15 

Various doses of ITF have been investigated ranging from 1.1 g/d to 17 g/d (and even 40g/d in one 16 

case). A minimum level of 8 g/d seems to be required to elicit an improvement on both calcium 17 

absorption and bone mineralisation. Indeed, Lopez-Huertas et al. (279) explained the lack of effect of 18 

the addition of 1.1g ITF or caseinophosphopeptides to calcium-enriched milks in adults by the very 19 

low dose provided in the diet. 20 

However, with regards to animal studies, ITF appears to exhibit a dose-dependent effect on calcium 21 

absorption, as well. Levrat et al. (290) showed that dietary ITF given in the range of 0 to 20% in the diet 22 

stimulated intestinal calcium absorption in a dose dependent manner. Similarly, in the study carried 23 

out by Brommage et al. (294), a near linear increase in calcium absorption was demonstrated in rats 24 

fed a 5 and 10% lactulose containing diet. Nevertheless, it appears that when a minimum is reached, 25 

calcium absorption enhancement occurs whatever the dose, as a diet supplemented with either 10% 26 

of ITF (267) or 5% of oligofructose or other non-digestible carbohydrates (294) leads to a similar 27 

increase (about 60-65%) of the apparent absorption of calcium, even though, raising the content of 28 

oligofructose in the diet from 2.5 to 10% in ovariectomized rats, a bone sparing effect has been 29 

shown, independent of the dose by Scholz-Ahrens et al. (295). 30 
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 1 

5.3.3 Test substances 2 

Various substances such as the different types of ITF, GOS, soy-oligosaccharides, lactulose, or 3 

resistant starch have provided evidence of a positive effect on calcium absorption, at least in the rat. 4 

However, the biological effect is likely to be related to the rate of fermentation which is mainly 5 

dependent on the degree of polymerisation, as well as the solubility and the structural arrangement of 6 

the carbohydrates. In rats fed ITF with different degrees of polymerisation (ITF-Dpav 3-4, ITF-Dpav 25, ITF-7 

MIX), Kruger et al. (296) showed that the various ITF do not have the same effect on calcium retention, 8 

femoral bone density, bone calcium content and excretion of collagen degradation products in the 9 

urine.  10 

From the available data, it can be concluded that the higher biological effects were elicited by a 11 

combination of ingredients showing a prebiotic effect with different chain length. Indeed, ITF-MIX 12 

outperformed the traditional molecules given alone with regard to calcium absorption. Indeed, in 13 

adolescent girls, such a combination increased the true calcium absorption by almost 20%, while 14 

oligofructose alone did not show any significant effect (270). This conceptual rule is even more 15 

apparent in animal experiments. Coudray et al. (297) compared different types of fructans which 16 

differed in both sugar chain length and  chain branching, and found a synergistic effect of a 17 

combination of ITF with different chain lengths in adult male rats.  18 

A potential mechanism for the improved efficiency of such a mixture could be the larger distribution of 19 

fermentation along the colon, depending on the chain length, which is critical to obtain maximum 20 

efficacy at low daily doses. Actually, the short chain components such as oligofructose are most 21 

active in the proximal part of the colon, while the long-chain molecules have their effect in the distal 22 

part. The combination of both molecules offers a synergistic effect on calcium absorption, the 23 

fermentation process taking place over the full length of the colon, thus maximising the mucosal 24 

surface through which the extra solubilised calcium can migrate (298).  25 

5.3.4 Influence of physiological status 26 

It appears that some subjects are more likely to benefit from consumption of inulin, according to their 27 

physiological status. 28 

 29 



 66

5.3.4.1 Initial status in calcium.  1 

First of all, Griffin et al. (271) demonstrated that the most consistent identifiable determinant of a 2 

beneficial effect on calcium absorption was the fractional calcium absorption at baseline with those 3 

individuals with lower absorption during placebo period showing the greatest benefit. This data was 4 

corroborated by data published by Holloway et al. (288) who showed that, in 15 postmenopausal 5 

women (who were a minimum of 10 y past the onset of menopause) treated with 10g/d of ITF-MIX for 6 6 

weeks, true fractional calcium absorption, measured by dual isotopes before and after treatment, was 7 

significantly increased only in those with lower initial BMD. 8 

 9 

5.3.4.2 Estrogen permeation.  10 

From human data we can conclude that an improvement in calcium absorption is possible in 11 

adolescents or young adults. Similarly, a positive effect has been reported in older women. However;, 12 

ITF failed to modulate calcium absorption during the first 5 years after the onset of menopause, a 13 

period, actually, predominantly characterized by hormonal disturbances. In fact, menopausal status is 14 

the overriding factor in determining bone loss in women in their early fifties. Thus, given the 15 

tremendous impact of gonadal hormones on bone health, a high calcium intake will not offset 16 

osteopenia that occurs immediately following menopause.  17 

However, ITF could still remain a source for putative innovative dietary health intervention to prevent 18 

post-menopausal osteoporosis by modulating phytoestrogens bioavalability. Setchell et al. (299) have 19 

found that intestinal metabolism of isoflavones (the major class of phytoestrogens) would be the more 20 

important clue to the clinical efficacy of soy foods in preventing osteopenia. Thus, because a greater 21 

efficacy of phytoestrogens can be expected if converted into equol by the intestinal microbiota, there 22 

is a good rationale for considering non-digestible carbohydrates with prebiotic effects, targeting an 23 

increase of isoflavones bioavailability. Nevertheless, available data are still conflicting. In animal 24 

studies, it has been shown that dietary oligofructose may increase β-glucosidase activity in the large 25 

intestine, leading to an enhancement of the large intestinal absorption of these compounds (300). 26 

Furthermore, in ovariectomized mice (301) or rats (302), two experimental models for postmenopausal 27 

osteoporosis, oligofructose consumption has been shown to augment the bone sparing effect of 28 

isoflavones by improving equol production. Again, Devareddy et al. (303) demonstrated that although 29 

the combination of ITF and soy had no additive effect on BMD, it had a greater effect in reversing the 30 
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loss of certain microarchitectural parameters such as tibial trabecular number, separation and 1 

thickness. By contrast, Zafar et al. (304) concluded from a rat experiment that isoflavones could 2 

enhance calcium absorption, without synergy from ITF, and that actually ITF decreased equol 3 

production. 4 

In postmenopausal women, Piazza et al. (305) showed that the presence of ITF in the diet (3.6g twice 5 

a day) facilitated the absorption of isoflavones. As far as bone metabolism is concerned, Mathey et al. 6 

(302) demonstrated that ITF consumption was able to improve the protective effect of isoflavones on 7 

bone resorption. 8 

 9 

5.4 From mineral absorption to health benefits 10 

The key question of whether the extra absorption of minerals may exhibit substantial benefits needs 11 

to be addressed. 12 

5.4.1 Minerals 13 

Ohta et al. (306) showed that, in rats fed ITF-Dpav 3-4 (1 or 5%in the diet), apparent magnesium 14 

absorption was increased, as compared to controls. The highest dose (and sufficient magnesium in 15 

the diet, i.e. 0.5 mg/g) resulted in a reduction of auricular and facial peripheral hyperemia and 16 

hemorrhage and improved inflammation in magnesium-deficient rats. Similarly, in iron-deficient 17 

animals, ITF-Dpav 3-4 feeding not only increased iron, calcium and magnesium absorption but improved 18 

recovery from anemia, as well (307). Kobayashi also found that soy polysaccharides could enhance 19 

iron absorption and improve anemia (308). 20 

Consequently, these studies provide the evidence that ITF are able to elicit health improvement by 21 

enhancing mineral and calcium absorption. Further studies are necessary to assess this possibility. 22 

 23 

5.4.2 Calcium and bone health 24 

The adequate consumption of calcium in conjunction with optimisation of its absorption is likely to 25 

optimise bone mass. It is thus necessary to prove that the benefits of ingredients showing a prebiotic 26 

effect on calcium absorption persist and can be translated into benefits to bone health, in other words 27 

whether the extra absorbed calcium is deposited in bones, as such a substantial bone benefit may 28 

have important implications for future preventative strategies for osteoporosis. 29 



 68

Even though animal data provide promising results on the role of ingredients showing a prebiotic effect 1 

on bone health, they need to be confirmed by human intervention trials. Most of the scientific evidence 2 

of the bone sparing is based on animal studies, in which they not only improve calcium absorption, but 3 

also prevent bone loss in conditions of estrogen deprivation. Actually, the major available data comes 4 

from the Abrams’s team (273) and the study with ITF-MIX is the only published data dealing with long term 5 

effect. Thus, because when targeting bone mineralization process, calcium is the most likely to be 6 

inadequate in terms of dietary intake, the enhancement of calcium accretion in bones, and hence BMD, 7 

in adolescents given ITF-MIX for 1 year, is very interesting. Indeed, adequate calcium intake in childhood 8 

is critical for the formation and retention of a healthy skeleton. However, if those molecules may help to 9 

optimise peak bone mass, their effect in older people, when bone turnover is increased needs to be 10 

acertained.  11 

Moreover, because bone strength is the ultimate hallmark of bone quality, the issue of persistence of 12 

the beneficial effect on the skeleton is antoher important to consider, in order to assess their potential 13 

in the prevention of the risk of fracture. 14 

 15 

5.5 Key points 16 

 17 

• Ingredients showing a prebiotic effect are able to improve mineral absorption (and especially 18 

calcium) in the animals. 19 

• Most data are available for ITF, in particular ITF-Dpav 3-4 as well asITF-MIX . 20 

• ITF have been found to increase magnesium absorption in humans, nevertheless available 21 

data are very limited. 22 

• These ingredients are able to enhance calcium absorption in human, depending from their 23 

physiological status (no effect in early postmenopausal women). 24 

• The benefits on calcium absorption can be translated into benefits to bone health in animals. 25 

• More interestingly, ITF-MIX given for 1 year to adolescents was able to elicit not only an 26 

enhancement of calcium accretion in bones, but also BMD. In this light, such or similar may 27 

have important implications for future preventative startegies for osteoporosis. 28 
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• A combination of molecules with different degrees of polymerization appears to be more 1 

efficient as shown with the research on ITF-MIX in comparison with the small and high MW 2 

fractions given alone. 3 

 4 

5.6 Recommendations (future targets for research) 5 

 6 

• Further studies are required to investigate the underlying mechanisms of the prebiotic effects  7 

on absorption of minerals, with special attention to the role of the specific changes in gut 8 

microbiota. Indeed  the question still remains open of wether theses effects are due to the 9 

changes in colonic microbiota composition (prebiotic effect) or any other mechanisms.In this 10 

regard, high throughput methodologies such as metabolomics, for example, are warranted. 11 

• Results from ITF, in particular ITF-MIX need to be confirmed in other ingredients showing a 12 

prebiotic effect for a generalisation. 13 

• Further long term well designed clinical trials need to be implemented to prove that the benefits 14 

of these ingredients persist in the longer term (because bone strength is the ultimate hallmark of 15 

bone quality, the issue of persistence of the effect of ITF-DPav 3-4 on the skeleton is important to 16 

consider) to assess their potential in the prevention of the risk of fracture 17 

• With regards to the bone target, it is interesting to focus on relevant populations, i.e. during 18 

childhood and during ageing 19 

• It is still challenging to investigate the potential synergy between the prebiotic effect and  other 20 

nutrients (such as phytoestrogens for example) endowed with bone sparing effect. 21 

 22 

6 Prebiotic effects in weight management and obesity-related disorders7 23 

 24 

Several reviews report the interest of non digestible carbohydrates – which are prone to be fermented 25 

by the gut microbiota in the control of obesity and related metabolic disorders.  Carbohydrates showing 26 

a prebiotic effect have received special attention in this context, since they have been shown - mostly in 27 

experimental animal studies - to regulate food intake and weight gain, as well as metabolic disorders 28 

                                                 
7 The main authors of this section are Prof. Delzenne, Dr. Cani and Dr. Neyrinck 
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associated with obesity, such as liver steatosis, dyslipidemia, diabetes, and/or even hypertension (309). 1 

Most of the data published to date have been obtained through the supplementation with ITF as 2 

prebiotics. The relevance of changes in gut microbiota in the modulation of obesity and related disorders 3 

is discussed, taking into account both animal and human studies published so far. 4 

 5 

6.1 Description of the prebiotic effects on obesity and related metabolic disorders  6 

 7 

6.1.1 Prebiotic effects and regulation of food intake, fat mass and body weight   8 

6.1.1.1 Animal studies  9 

Numerous data have described the effect of prebiotics (5-10% in feed) feeding on the evolution of 10 

body weight and fat mass in experimental animal models (Table 16). The observed decrease in fat 11 

mass had sometimes occurred without significant effect on body weight, and has been observed in all 12 

types of white adipose tissue (epididymal, visceral and or subcutaneous). In numerous studies of 13 

rodent models (lean, genetic or nutritional induced obese mice or rats) this decrease in fat mass 14 

following feeding with ingredients showing a prebiotic effect was associated with a reduction of 15 

food/energy intake. The decrease in food/energy intake is not observed when ITF prebiotics are 16 

substituted by non fermentable dietary fibre (microcrystalline cellulose), suggesting that at least the 17 

colonic fermentation plays a role in the modulation of food intake (310; 311).  18 

6.1.1.2 Potential mechanism  19 

The decrease in food intake associated with prebiotics feeding in animals might be linked to the 20 

modulation of GI peptides involved in the regulation of food intake. Endocrine cells present in the 21 

intestinal mucosa secrete peptides involved in the regulation of energy homeostasis. Among those 22 
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peptides, GLP-1, PYY, Ghrelin and oxyntomodulin have recently been proposed as important 1 

modulators of food intake and energy expenditure (312-315).  2 

Several data obtained in rats and mice show that of ITF-DPav 3-4 reduce food intake, body weight gain 3 

and fat mass development, these features being associated with a significant increase in the portal 4 

plasma levels of anorexigenic peptides GLP-1 and PYY; some data also report a decrease in the 5 

serum level of orexigenic ghrelin upon prebiotics feeding (316-320).  Dietary intervention with ingredients 6 

showing a prebiotic effect in post-natal diets causes a rapid increase in GLP-1  in rats, and this 7 

influences fat mass and glycemia in adulthood (321).  8 

Prebiotics feeding promotes GLP-1 synthesis (mRNA and peptide content) in the proximal colon 9 

namely by a mechanism linked to the differentiation of precursor cells into enteroendocrine cells (322). 10 

The overproduction of GLP-1 of mice supplemented with short chain ITF could constitute a key event 11 

explaining several systemic effects of prebiotics, since the decrease in food intake and in fat mass 12 

after fructans treatment is abolished in GLP-1 Receptor knock-k out mice or in mice treated 13 

chronically with a GLP-1 receptor antagonist -   Exendin 9-39 (323).  14 

6.1.1.3 Human Data  15 

In healthy humans, feeding 16g/d of ITF-DPav 3-4 (short chain ITF) promotes satiety following breakfast 16 

and diner, and reduces hunger and prospective food consumption after the dinner. This is 17 

accompanied by a significant 10% lower total energy intake (324). Similarly, Archer et al. have 18 

demonstrated that the gut microbiota fermentation of ITF, added to food as fat-replacer, is able to 19 

lower energy intake during a test day (325). ITF feeding (20g/d) increased plasma GLP-1 in one 20 

interventional study performed in patients presenting gastric reflux. This study was not aimed at 21 

demonstrating an effect on food intake and/ or satiety (326). The authors suggested that the “kinetics” 22 

of fermentation – assessed by hydrogen breath test – is important to take into account when 23 

assessing the influence of fermented nutrients on circulating gut peptides. The increase in hydrogen 24 

expired (marker of fermentation), correlates with the modulation of plasma GLP-1 level, which could 25 

explain the link between intestinal fermentation and gut peptide secretion. 26 
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According to this observation, we have recently demonstrated that the prebiotics-induced gut 1 

microbiota fermentation was associated with increased postprandial GLP-1 and PYY and subsequent 2 

changes in appetite sensations (327). 3 

  4 

 A recent study demonstrated that supplementation with ITF-MIX not only benefited bone 5 

mineralization, but also had a significant benefit on the maintenance of an appropriate body mass 6 

index (BMI), and fat mass in primarily non obese young adolescents (328). Daily intake of yacon syrup, 7 

allowing to bring 0.14g FOS per kg per day,  over 120 days, resulted in an increase in satiety 8 

sensation and a decrease in body weigth, waist circumference and BMI in obese pre-menopausal 9 

women (329). Interestingly, the relevance of gut hormone modulation in the management of obesity 10 

and metabolic syndrome in humans is supported by some data. A recent clinical trial supports the 11 

evidence that ITF-DPav 3-4 (short chain ITF) decrease food intake, body weight gain and fat mass 12 

development in obese subjects. The authors found a higher plasma PYY levels as well as a drop in 13 

ghrelin following meal, however, they failed to observe an increase GLP-1 plasma concentrations 14 

over a 6-hour meal tolerance test (330). The effect of acute treatment with 8g ITF with or without 0.3g 15 

β-glucans over 2 days did not have any effect on appetite, satiety or food intake, suggesting that an 16 

adaptative process (linked to the modulation of gut microbiota?) may be necessary to observe the 17 

satietogenic effect of prebiotics (331).   18 

 19 

6.1.2 Prebiotic effects and glucose homeostasis 20 

6.1.2.1 Animals.  21 

An improvement of glucose homeostasis by ingredients showing a prebiotic effect has been observed 22 

in rats or mice in several nutritional, genetic, or toxic conditions leading to glucose intolerance and/or 23 

diabetes : high-fructose (332) or high fat diet -fed animals (333-336),  genetically obese or diabetic mice 24 

(337), streptozotocin-induced diabetic rats (338). The improvement of glycemic response can be 25 

explained on either increase insulin secretion or insulin sensitivity, depending on the model.  26 

In streptozotocin treated-rats (STZ), characterized by a diabetes linked to the destruction of β-cells, 27 

prebiotics feeding improve glucose tolerance and increase plasma insulin. In this model, the treatment 28 

with ITF allows a partial restoration of pancreatic insulin and β−cells mass. Endogenous GLP-1 29 
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production is increased in diabetic rats received ITF as compared to other groups (338). This GLP-1 1 

overproduction might be part of the protective effect of dietary ITF because:  2 

1) it has been shown that in diabetes  prone-BB rats that are characterized by a default of 3 

production of gut peptides, no effect of ITF was shown (339),    4 

2) GLP-1 has been shown to increase β-cells differentiation and  5 

3) That beneficial effect of ITF is not due to the satietogenic effect alone, since the 6 

improvement of glucose tolerance and pancreatic β−cell mass observed in STZ-ITF fed rats is 7 

not reproduced through the sole pair-feeding restriction.  8 

It is likely that a more direct effect of GLP-1 could be due to its effect on pancreatic β−cells 9 

differentiation.  10 

ITF improve hepatic insulin sensitivity and increases plasma insulin in diet induced diabetes and 11 

obesity  (high fat fed mice) (340). As shown by an increase in food intake and body mass, genetic and 12 

pharmacological disruption of the GLP-1 receptor action abolished the beneficial effect of the 13 

treatment on both glucose tolerance and insulin sensitivity, suggesting a key role for this gut peptide 14 

(341). In diet-induced obese dogs, 1% short chain fructans given in the diet for 6 weeks resulted in a 15 

decrease in insulin resistance assessed by euglycemic/hyperinsulinemic clamp, and these effects 16 

occurred in parallel with changes in the expression of genes involved in glucose and lipid metabolism 17 

in the adipose tissue (342).   18 

Altogether, these data support the relevance of the prebiotic modulation of gut microbiota by using 19 

dietary in the control of glucose homeostasis in different models of diabetes. The implication of gut 20 

peptides may be involved in this effect, however, other metabolic mechanisms, - such as a decrease 21 

in inflammatory tone - could also contribute to the improvement of glucose homeostasis upon 22 

treatment with ingredients showing a prebiotic effect (see below). 23 

 24 

6.1.2.2 Human studies 25 

Several papers have been published, which have focused on the influence of ingredients showing a 26 

prebiotic effect on glucose homeostasis in humans. Luo et al. (343) has shown that 20g short chain 27 

fructans given for 4 weeks to healthy subjects decreased basal hepatic glucose production, but had 28 

no detectable effect on on insulin-stimulated glucose metabolism. They tested the same approach in 29 
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type 2 diabetic patients but no significant modification of glucose homeostasis (plasma glucose level, 1 

hepatic glucose production) occurred in the prebiotics treated patients (344). In a similar study 2 

conducted in hypercholesterolemic patients, prebiotics (short chain fructans) treatment reduced the 3 

post-prandial insulin response, but the clinical relevance of this effect remains unclear (345). In a 4 

recent study, a 2-week supplementation with 16g/day ITF, compared with the same amount of 5 

maltodextrin used as placebo, increased GLP-1 production and lessen the post-prandial glucose 6 

response after a standardized breakfast (327). 7 

 8 

6.1.3 Prebiotic effects and lipid homeostasis, including steatosis and hepatic alterations. 9 

6.1.3.1 Animal Studies  10 

Ingredients showing a prebiotic effect are able to modulate hepatic lipid metabolism in rats or 11 

hamsters, resulting in changes in either triglyceride accumulation in the liver (steatosis), and/or serum 12 

lipids (346). In non-obese rats and/or hamsters fed a high carbohydrate diet, a decrease in hepatic and 13 

serum triglycerides was observed, when ITF were added to the diet at concentrations ranging from 14 

2.5 to 10% for several weeks (from 2 to 12 weeks) (347). In animals, reduced triglyceridaemia or 15 

steatosis is often linked to a decrease in de novo lipogenesis in the liver (348). In rats fed a lipid-rich 16 

diet containing fructans, a decrease in triglyceridaemia also occurs without any protective effect on 17 

hepatic triglyceride accumulation and lipogenesis, suggesting a possible peripheral mode of action 18 

(333). By contrast, in obese Zucker rats, dietary supplementation with ITF lessens hepatic steatosis, 19 

with no effect on post-prandial triglyceridaemia when added to the standard diet (349). This effect is 20 

likely to be mainly the of a lower availability of non-esterified fatty acids coming from adipose tissue, 21 

since fat mass and body weight are decreased by the treatment. In obese dogs, a 6 weeks treatment 22 

with short chain fructans was able to increase uncoupling protein 2 and carnitine palmitoyltransferase 23 

1 expression in the adipose tissue, thereby suggesting a higher substrate oxidation  in adipocyte, that 24 

occurred without any significant change in triglyceridemia (342).  25 

 The decrease in triglyceride synthesis and accumulation of dietary prebiotics compounds could be 26 

linked to several events. First, a decrease in glycemia could be part of the process, since glucose 27 

(together with insulin) is a driver of lipogenesis. Second, the SCFAs produced through the 28 

fermentation process, could play a role in the regulation of lipid metabolism. The high proportion of 29 
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propionate produced in the caecum, which reaches the liver through the portal vein, is, at least in 1 

animals, a key event in explaining a lower hepatic triglyceride synthesis (350; 351). Interestingly, acetate, 2 

when supplied in the diet of diabetic mice at a dose of 0.5%  for 8 weeks, activates AMPkinase in the 3 

liver, a phenomenon that is  related to the inhibition of de novo lipogenesis (352). The incubation of rat 4 

hepatocytes with acetate (0.2 mM) activates AMPkinase and decreases sterol response element 5 

binding protein (SREBP-1c) expression, two factors clearly implicated in the regulation of lipogenesis. 6 

Therefore, the classical deleterious role attributed to acetate as a precursor of lipogenesis might be 7 

modulated taking into account its regulatory effect on key molecular factors involved in fatty acid 8 

synthesis in the liver.  9 

 10 

Several studies have also reported a decrease in total serum cholesterol after dietary 11 

supplementation with inulin (10%) in mice or rats (353-357). Experiments in apoE deficient mice support 12 

the fact that dietary inulin (mainly long chain inulin) significantly lowers total cholesterol levels by 13 

about one third. This is accompanied by a significant decrease in the hepatic cholesterol content. The 14 

authors suggest that the decrease in serum cholesterol could reflect a decrease in TAG-rich 15 

lipoproteins which are also rich in cholesterol in apo-E deficient animals (356). 16 

With regard to the hypocholesterolemic effect of prebiotics, several mechanisms have been proposed. 17 

The modulation of the intestinal metabolism of bile acids, (e.g. steroid-binding properties) may be 18 

involved, which are independent of the fermentation of the ingredient showing a prebiotic effect in the 19 

lower intestinal tract (358-360). A recent study, performed in rats supplemented with GOS/FOS, did not 20 

support the involvement of changes in the bile salt pool size and kinetics in the modulation of lipid and 21 

energy metabolism (361).  22 

 23 

6.1.3.2 Human data  24 

Reported effects of prebiotics on circulating blood lipids in both normo- and moderately hyperlipidemic 25 

humans are variable (362). Both positive and negative outcomes have been obtained from a small 26 

number of well designed human studies, devoted to analyse the effect of dietary supplementation with 27 

fructans (doses ranging from 8 to 20g per day) exhibiting prebiotic properties. The effect of ITF 28 

supplementation on lipogenesis has been shown in human volunteers: the hepatic capacity of 29 

triglycerides synthesis is lowered by this ingredients showing a prebiotic effect as previously shown in 30 
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rats (363). In patients with non alcoholic steatohepatitis, short chain ITF supplementation lead to a 1 

decrease in serum activity of amino-transferases, suggesting an improvement of hepatic alterations in 2 

those patients (364), thereby suggesting that a prebiotic approach could be useful in the management 3 

of hepatic disease associated with obesity. 4 

 5 

6.1.4 Prebiotic effects and obesity-associated inflammation. 6 

 7 

Obesity and insulin resistance are associated with a low grade inflammation (for review, see (309; 365). 8 

The gut microbiota   takes part of this component of the metabolic disorder associated with obesity. In 9 

fact, LPS has been considered to be the triggering factor for the early development of inflammation 10 

and metabolic diseases (366). The excessive intake in dietary fat facilitates the absorption of highly 11 

pro-inflammatory bacterial LPS from the gut, thereby increasing plasma LPS level  leading to  12 

“metabolic endotoxemia” (367). Interestingly, several reports have shown that obesity induced following 13 

dietary manipulations (high-fat feeding) (368-371) or genetic deletion (leptin deficient models) (372) is 14 

characterized by changes in gut microbiota towards a decreased number of bifidobacteria. 15 

Importantly, this group of bacteria has been shown to reduce intestinal LPS levels in mice and to 16 

improve the mucosal barrier function (373-376). Feeding mice with ITF-DPav 3-4 restores the number of 17 

intestinal bifidobacteria and reduces the impact of high-fat diet induced-metabolic endotoxaemia and 18 

inflammatory disorders (377; 378). With regard to the possible mechanism of action of these ingredients, 19 

data obtained in obese ob/ob mice showed that they increase the production of a gut peptide secreted 20 

by endocrine cells of the colon, namely glucagon-like peptide-2 (GLP-2), which plays a role on the 21 

intestinal tissue itself, by restoring tight junction protein expression and repartition,  and thereby 22 

decreasing gut permeability, endotoxemia, and associated metabolic disorders (379) . 23 

 24 

The relevance of endotoxemia on metabolic disorders due to fat excess, and diabetes in human is 25 

supported by several recent studies. However, the impact of the prebiotic approach on endotoxemia 26 

and inflammation in obese and diabetic patients has not yet been demonstrated. This area of 27 

research may be very interestingimportant, since inflammation is considered as an important event 28 
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that drives a lot series of metabolic alterations linked to obesity (cardiovascular diseases, NASH, 1 

insulin resistance…). 2 

 3 

6.2 Relation between prebiotic effects and improvement of obesity and associated disorders 4 

 5 

Relative specificity of prebiotics effects versus other “dietary fibres” on physiological targets regulating 6 

appetite and metabolic disorders 7 

 8 

It has been proposed before that the secretion of gut peptides might be part of the effects of 9 

fermentable carbohydrates with prebiotics properties. Some of those effect can also been driven by 10 

dietary compounds for which a prebiotic effect has not yet been shown. Resistant starch has also 11 

been shown to increase GLP-1 and PYY in several rodent studies, with consequences on fat mass 12 

development (380; 381).  13 

An increase in the post-prandial response of GLP-1 was observed after ingestion of β-glucan-rich rye 14 

bread by healthy subjects (382). The administration of guar gum (together with galactose) promoted 15 

the increase in GLP-1 in women, and this was related to a significant increase in satiety (383). An 16 

increase in the level of non-ndigestible carbohydrates (barley-kernel bread) in the evening meal 17 

resulted in an increase in satiety and in a decrease glucose response following breakfast, an event  18 

that can be linked to an increase in GLP-1, to the extent of fermentation (assessed through the 19 

hydrogen breath test) and which is related to a lower proinflammatory cytokine level (IL6) (384).   20 

These data suggest that some effect described for “well established” prebiotics can also be the 21 

attribute of other non-digestible/fermentable carbohydrates. The relevance of the gut microbiota 22 

composition and activity in this process remains poorly explored. In that view, recent data suggest 23 

that butyrate is able to improve insulin sensitivity and energy expenditure in rodents (385) thereby 24 

supporting the hypothesis that besides the changes in the composition of the microbiota, the gut 25 

microbiota, the pattern of fermentation could also be important to take into account.  26 

 27 

What is the contribution of changes in gut microbiota composition in the improvement of metabolic 28 

alterations by prebiotics?  29 

 30 
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A recent study has shown, for the first time in humans, that differences in specific “healthy” bacteria in 1 

gut microbiota may precede the development of becoming overweight (386). The authors found that 2 

Bifidobacterium spp. during the first year of life was higher in number in children who exhibited a 3 

normal weight at 7 years than in children becoming overweight. More importantly, and according to 4 

the results obtained in experimental models, they found that the faecal numbers of S. aureus were 5 

lower in children remaining normal weight than in children becoming overweight. These results 6 

unequivocally imply that the gut microbiota profile in favour of a higher number bifidobacteria and a 7 

lower number of S. aureus in infancy may provide protection against overweight and obesity 8 

development. The authors proposed that S. aureus may act as a trigger of low-grade inflammation 9 

(387), contributing to the development of obesity. Experimental data in mice suggest that the promotion 10 

of Bifidobacteria by the intake of ingredients showing a prebiotic effect - may be helpful per se. On 11 

one hand, intervention studies relating concomitantly the changes in gut microbiota composition (and 12 

activity), and, on the other hand, behavioural (appetite) or physiological changes are therefore 13 

necessary to proof the relevance of the gut microbial changes in the effects.  14 

 15 

6.3 Methodological aspects 16 

 17 

Key questions remain open concerning the adequacy of the experimental protocol to estimate the 18 

relevance of ingredients showing a prebiotic effect in the management of obesity and associated 19 

disorders. The choice of a placebo is rather difficult, and the type of placebo compounds is different 20 

when experiments are conducted in animals or in humans. There may also be differences when 21 

considering endpoints such as fat mass development or satiety, or glucose/lipid homeostasis. 22 

In animal studies, the authors often add ingredients showing a prebiotic effect at a relatively high dose 23 

(1 to 10% wt/wt in the diet) and to compare the data obtained in animals receiving the basal diet 24 

alone. The interpretation of results would then require the difference in energy/nutrients intake and/or 25 

an experimental group with the same intake of energy upon the treatment (pair-fed animals) to be 26 
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taken into account. Other authors propose to replace the amount of ingredients showing a prebiotic 1 

effect by a non digestible-non fermentable carbohydrate such as microcrystalline cellulose as 2 

placebo. This allows a comparison based on differential fermentation properties.  3 

For human studies, the dose of ingredients showing a prebiotic effect is much lower (from 1 to 30g 4 

per day). The organoleptic and physico-chemical properties of the placebo are very important to take 5 

into account. Several placebos are proposed in the literature.  eg a digestible carbohydrate, such as 6 

maltodextrin - i.e. alone (324; 327), or in combination with aspartame (345) - or saccharose (343; 344). 7 

dietary fibres such as oat fibre (331).   8 

The choice of the adequate placebo is really difficult and will depend on the end-point and duration of 9 

the treatment. When estimating the influence on glucose/lipid metabolism, one must consider a 10 

placebo that does not change post-prandial glucose level or has a minor impact as lipogenic 11 

substrate, for example.  12 

For studies aiming at controlling appetite and energy, one has to choose an adequate placebo which 13 

does not exert an effect per se. When estimating a long term effect on body weight composition, the 14 

consequence of placebo treatment on global energy intake must be taken into account.  15 

There are, therefore, several possibilities and the interpretation and discussion of the results might 16 

also take into account the differences that could be due to the placebo effect in a specific context. 17 

 18 

6.4 Conclusions and future trends  19 

 20 

Collectively, these studies provide support for the beneficial effect of prebiotics on energy 21 

homeostasis and body weight gain. Only a few human studies are available to date, but some of them 22 

support a role of gut peptide modulation by ingredients showing a prebiotic effect as a potential 23 

mechanism occurring in the gut, and appetite regulation. The question of the relevance of gut 24 

microbiota modulation in these effects remains unexplored in most of the studies performed in 25 

humans. In mice, an inverse relationship has been established between the level of faecal 26 

bifidobacteria and some features of the metabolic alterations linked to obesity (endotoxemia, fat 27 

mass, glucose intolerance). Some other non digestible carbohydrates or dietary fibres (i.e. resistant 28 

starch, insoluble fibre form barley) - for which prebiotic effect has not yet been established - would be 29 

able to modulate gut peptides production with consequences on appetite, inflammation, and other 30 
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components of the metabolic syndrome. The analysis of the gut microbiota changes will be crucial in 1 

further research and clinical approach, in order to clearly relate those changes with the improvement 2 

of metabolic alterations of the host. This will be the way to propose a “targeted approach in the 3 

modulation of gut microbiota by ingredients showing a prebiotic effect” as relevant in the context of 4 

obesity.   5 
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7 Conclusion and perspectives: Which data to support the hypothesis of a causal 

relationship between a prebiotic effect and health effects/benefits?8 

 

 
A prebiotic effect exists and is now a well established scientific fact. A large number of human 

intervention studies have demonstrated that dietary consumption of food 

products/ingredients/supplements results in statistically significant changes in the composition of the 

faecal (and in some cases, the mucosal) gut microbiota. Most of the available data concern the 

selective stimulation of bifidobacteria (but also lactobacilli). Other purportedly beneficial genera such 

as Roseburia, Eubacterium may be more fully investigated in the future – although further evidence of 

their beneficial effects is required. Some, but not all, studies have reported a reduction in the 

concentration of pathogenic bacteria such as clostridia and salmonella. The more data are 

accumulating, the more it will be recognized that such changes in the composition of the fecal 

microbiota, especially increase in bifidobacteria can be regarded as a marker of intestinal health. This 

is already supported by scientific publications (388-392).  

Research on the impact of the prebiotic effect on the activity (metabolic, regulatory, signaling) of the 

microbiota is ongoing and appropriate relevant methodologies are being developed, validated and 

applied. 

1.  Results from experimental models but also in a few human studies, food 

products/ingredients/supplements with a demonstrated prebiotic effect have been shown to 

modulate certain immunological biomarkers and affect activity(ies) of the immune system. 

Whether changes in immune function markers or immune-health benefits are related to a prebiotic 

induced change in the composition of the gut microbiota is an area for future investigation.  While 

several studies report changes in the fecal microbial composition alongside changes in immune 

markers, only one study sofar has correlated these findings. Although these observations make 

the link between immuno-modulation and microbiota changes likely, convincing evidence needs to 

be established by further studies showing clear correlations between parameters of immune 

function and changes in the microbiota. Although a causal relationship is virtually impossible to 

                                                 
8 The author of this section is Prof. Marcel B. Roberfroid. 



 82

establish in human subjects, current plausible hypotheses and future correlative findings will help 

to establish the correlation between prebiotic modulation of the intestinal microbiota and changes 

in immune function 

2. The effect of breast feeding on infant gut microbiota composition is well established and 

mother’s milk is known to contain a complex mixture oligosaccharides with prebiotic 

(especially bifidogenic) effects, therefore, infant formulae/foods have been supplemented with 

prebiotics. Confirming the studies in adults, it has been demonstrated that such 

supplementation increases the faecal concentration of bifidobacteria. This concomitantly, 

improves stool quality (soft and loose stools), reduces the risk of gastro-enteritis, improves 

general well-being, and reduces the frequency of atopic eczema. It is plausible that these 

effects were microbiota-induced changes. 

3. Changes in the gut microbiota composition are classically considered as one of the many 

factors involved in the pathogenesis of either IBD or IBS. The use of particular food 

products/ingredients/ supplements with prebiotic effects has thus been tested in clinical trials 

with the objective to improve the well-being of patients with such disease states. Promising 

beneficial effects have been demonstrated in some but still preliminary studies with changes 

in gut microbiota composition (especially increase in bifidobacteria concentration) being 

associated. Again, it is feasible to conclude that the mechanism of these effects is linked to 

the prebiotic effect. 

 

4. Colon cancer is another pathology for which a possible role of gut microbiota composition has 

been hypothesized. Numerous experimental studies in mice and rats have reported reduction 

in incidence of tumours and cancers after feeding specific food products / ingredients / 

supplements with prebiotic effects.  Some of these studies (including one human trial) have 

also reported that, in such conditions, gut microbiota composition was modified (especially 

due to increased concentration of bifidobacteria), however, role of such changes in the 

eventual anti-cancer effect of these specific food products / ingredients / supplements 

remains to be definitively proven.  
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5. Dietary intake of particular food products/ingredients/supplements with a prebiotic effect has 

been shown, especially in adolescents, but also tentatively in postmenopausal women, to 

increase Ca absorption as well as bone calcium accretion and BMD. No correlation has been 

reported between such a beneficial effect and changes in gut microbiota composition - 

although this is plausible but not exclusive. However other food 

products/ingredients/supplements that do not show prebiotic effect (e.g. lactose, 

miscellaneous dietary fibres) have also been reported to exert similar effects. Moreover a 

study in adolescents revealed the existence of a genetic component in response (with 1/3rd of 

non responders) to increased calcium absorption. It is thus likely that improved calcium 

absorption is not uniquely caused by changes in gut microbiota composition and might be a 

consequence of a combination of different effects. Preliminary data have reported, mainly in 

experimental models, that specific food products/ingredients/supplements with prebiotic 

effects could also increase the absorption of other minerals (e.g. Mg, Fe). More research is 

needed to confirm these data and, eventually, to demonstrate if their mechanism involves 

changes in gut microbiota composition. 

6. Recent data, both from experimental models and human studies, support the beneficial 

effects of particular food products / ingredients / supplements with prebiotic properties on 

energy homeostasis, satiety regulation and body weight gain. Together with data that 

correlate obesity with differences in gut microbiota composition, these studies have led to 

hypothesize that gut microbiota composition (especially the number of bifidobacteria) may 

contribute to modulate metabolic processes associated with syndrome X, especially obesity 

and diabetes type II. In a study on the mechanism of action of a prebiotic food ingredient in 

reducing obesity, an inverse correlation between bifidobacteria fecal concentration, and gut 

permeability and metabolic endotoxemia (plasmatic LPS), has been reported. However and 

since non-prebiotic dietary fibres have also shown some similar effects, the question of the 

specific benefits that can specifically be attributed to prebiotic effects remains open.  

By reference to the present kowledge (mostly based on the data obtained with the various 

ITFs and the GOS) on the prebiotic effect and its possible multiple physiological 

consequences it appears likely that different compounds (food ingredients or food 
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supplements) including chemically-identical compounds with eg different chain lengths (like in 

the ITF group) will have: 

• different prebiotic effects will influence differently the composition of the microflora in 

the different segments of the intestine, especially in the large bowel 

• different physiological effects and thus will not affect similarly the same functions (as 

this is clearly the case for Ca absorption, a function that is more influenced by ITF-MIX 

than by the different ITFs given separately. 

Any effect of one particular compound with a prebiotic effect can never be generalized to 

another compound, unless this has been scientifically substantiated for each particular food 

ingredient/supplement. (78)  

The majority of successful human trials on the prebiotic effects show significantly increased 

intestinal levels of bifidobacteria. Often, these are associated with improvement in well 

characterised and accepted markers of health.as shown by the extensive and growing body 

of evidence, outlined in this report. This strongly associates prebiotic-induced increases in 

numbers of bifidobacteria in the gut with a range of GI and systemic health benefits. Although 

it could be argued that these studies alone do not necessarily indicate causality, when 

considered with the results of trials in human subjects and animals supplemented with live 

bifidobacteria they do indeed provide compelling evidence that the relationship between 

intestinal bifidobacteria and  health  might well be causal. (388-392) 

Even so, key questions still remain such as:  

• Which effect(s) (see Table 2) is/are causally linked to selective change(s) in gut 

microbiota composition?  

• Which of the physiological and/or pathophysiological well-being and health benefits 

are directly linked with a particular composition of the gut microbiota or (a) selective 

change(s) therein?   

• Which, amongst the physiological and/or pathophysiological well-being and health 

benefits, is (are) not linked to a particular composition of the gut microbiota or (a) 
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selective change(s) therein but is (are) the consequence(s) of other mechanism(s) of the 

product claimed to have a prebiotic effect? 

• Which protocol(s) is (are) now validated to demonstrate change(s) in microbiota 

composition 

• Which protocol(s), methodology(ies) is (are) now available and validated to 

demonstrate links between a particular composition of the gut microbiota or a selective 

change therein and a particular physiological and/or pathophysiological well-being and 

health benefit?    

 

Over the last 2 decades, data has and continues to accumulate improving our knowledge of 

the gut microbiota composition but also, through the metabonomic approaches, gut 

microbiota activities. It has convincingly demonstrated that particular food 

products/ingredients/supplements can, upon feeding, selectively modulate that composition 

and possibly these activities. Dietary consumption of some of these specific food 

products/ingredients/supplements has also been reported to exert a series of beneficial health 

effects that may justify improved function and/or reduction of disease risk claims (21; 393). A 

causal relationship between the induced change(s) in gut microbiota composition and/or 

activity(ies) and these health effects is more than  plausible – given our knowledge that 

prebiotics are known to be specifically metabolized by the gut microbiota. The more we 

understand the complexity of the gut microbiota, its interactions with the gut epithelium, its 

roles in modulating epithelial cell differentiation and epithelial  cell functions and, beyond, in 

the whole body, the more we will be in a position to recommend these food ingredients for 

their health promoting values. It is becoming more and more clear that gut microbiota plays 

key roles in modulating human/animal physiology even far beyond the GI tract. Specific food 

products/ingredients/supplements with prebiotic properties are unique tools to study such 

effects but also offer unique opportunity to develop new functional foods/food ingredients/food 

supplements to improve host health. One major contribution of this review article summarizing 

the state of the art in the research on the metabolic and health effects of these compounds is 

to recommend where research efforts should be concentrated to improve understanding of 
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the activities and the physiological roles of the gut microbiota and in particular the importance 

of its qualitative composition and the consequences of that modulation. Through this, it should 

be possible to better address the continuing burden of gastro intestinally mediated disorders. 

Importantly, tools exist to underpin this with mechanistic explanations of effect leading to 

effective hypothesis driven research. 
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Table 1: Developing definitions of the prebiotic concept 
 

 

 “A non-digestible food ingredient that beneficially affects the host by selectively stimulating the 
growth and/or activity of one or a limited number of bacteria in the colon, and thus improves 

host health” 

Gibson, G. R., Roberfroid, M. B. Dietary modulation of the human colonic microbiota: introducing the 
concept of prebiotics, J. Nutr. 125, 1401-1412, 1995 

 

‘A selectively fermented ingredient that allows specific changes, both in the composition and/or 
activity in the gastrointestinal microflora that confers benefits upon host well being and health.’ 

Gibson G.R., Probert H.M., Van Loo J.A.E., Roberfroid M.B. Dietary Modulation of the Human Colonic 
Microbiota: Updating the Concept of Prebiotics, Nutr. Res. Rev. 17, 259-275, 2004  

 

‘A dietary prebiotic is a selectively fermented ingredient that results in specific changes, in the 
composition and/or activity of the gastrointestinal microbiota, thus conferring benefit(s) upon 

host health.’ 

ISAPP (2008) 6th Meeting of the International Scientific Association of Probiotics and Prebiotics. 
London, Ontario. 

 

 

Table 2: Summary of the main physiological and patho-physiological targets for prebiotic 
effects i.e effects associated with a selective stimulation of growth and/or activity(ies) of one 
or a limited number of gut microorganisms. 
 
  

 

Improvement and/or stabilization of gut microbiota composition 

Improvement of  intestinal functions (stool bulking, stool regularity, stool consistency)  

Increase in  mineral absorption & improvement of bone health (bone Ca content, bone 
mineral density)  

Modulation of gastro-intestinal peptides production, energy metabolism & satiety   

Initiation (after birth) and regulation/modulation of immune functions 

Improvement of  intestinal barrier functions, reduction of metabolic endotoxemia 

Reduction of risk of intestinal infections 

and tentatively  

Reduction of risk of obesity, type II diabetes, metabolic syndrome… 

Reduction of risk and/or improvement in the management of intestinal inflammation  

Reduction of risk of colon cancer  
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Table 3: Description and usual nomenclature of the main products with established prebiotic 
effect. 
 

 
Generic name and structural characteristics 

(Abbreviation used in text9) 

 
Usual names and average DP (DPav) 

 

 
INULIN-TYPE FRUCTANS  

ITF 
Linear β(2 1) fructosyl-fructose. 

GpyFn and/or FpyFn  
 
 

Oligomers (DP 2-8) 
ITF-DPav 3-4 

 
 
 
 
 

Short and medium size polymers  
 

(DP 2-60) 
ITF-DPav 12 

 
(DP 10-60) 
ITF-DPav 25 

 
Mixtures 

 
(DP 2-8) + (DP 10-60) 

ITF-MIX 

 
 

 
Fructo-oligosaccharides, FOS  
 
 
 
Short-chain fructo-oligosaccharides, scFOS  
(enzymatic synthesis from sucrose) 
(DPav 3.6) 
Oligofructose 
(enzymatic partial hydrolysis of inulin) 
(DPav 4) 
 
 
 
 
 
Inulin (especially chicory inulin) 
(DPav 12) 
 
High molecular weight inulin  
(physical purification) 
(DPav 25) 
 
 
 
Mixture of oligomers and medium size polymers 
 

 
 

GALACTANS 
 

Mixture of 
β(1 6); β(1 3);  β(1 4) galactosyl-galactose  

GOS 
 
 

(DP 2-8) 
 
 

 
 
Galacto-oligosaccharides, 
Trans-galactooligosaccharides, 
(enzymatic transgalactosylsation of lactose) 
 
(DPav 3) 

 
 

Mixture of galactans and inulin-type fructans  
 

GOS-FOS 
 

 
 
Galacto-oligosaccharides and high molecular 
weight inulin,  
Usually known as GOS-FOS or scGOS-lcFOS 

 
 

                                                 
9 The abbreviations mentioned in this table will be used throughout the documents to identify the 
different compounds used in the studies. 
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Table 4: Microbial diversity of the mucosa of the human small intestine as determined by 16S rRNA gene sequence analysis 
 
Subject  Biopsy No. of clones 

examined 

No. of OTUs 

identified 

Phylum: species identified* Reference 

35-year-old 

healthy female 

 

Distal ileum Unknown Unknown Bacteroidetes: Bacteroides vulgatus, uncultured Bacteroides sp. adhufec51 and Parabacteroides spp. 

Firmicutes: Clostridium cluster XIVa (uncultured bacteria mpn group 24 and 66.25) and Streptococcus salivarius 

Wang et al., 2003 

(12) 

Jejunum 88 22 Actinobacteria: Micrococcus mucilaginosus (1 %) 

Bacteroidetes: Prevotella sp. oral clone and P. melaninogenica (3 %) 

Firmicutes: Streptococcus mitis, S. salivarius, S. oralis, S. parasanguis and S. anginosus (68 %); Clostridium clusters XI 

(Mogibacterium neglectum and Peptostreptococcus anaerobius) and IX (Veillonella atypica and V. parvula) (3 and 7 %, 

respectively) 

Fusobacteria: Fusobacterium sp. BS011 (3 %) 

Proteobacteria: Haemophilus parainfluenzae, Pseudomonas putida, Acinetobacter johnsonii, A. lwoffii and A. haemolyticus and 

Neisseria subflava (13 %) 

Others (2 %) 

54-year-old 

healthy female 

 

Distal ileum 85 33 Bacteroidetes: Bacteroides vulgatus, Bacteroides spp., B. thetaiotaomicron, B. ovatus, B. uniformis and Alistipes putredinis 

(49 %) 

Firmicutes: Streptococcus mitis and S. oralis (2 %); Clostridium clusters XIVb (Clostridium lactatifermentans), IX (Dialister 

invisus), IV (Faecalibacterium prausnitzii, Oscillospira guilliermondii and Clostridium orbiscindens) and XIVa (Clostridium 

spp., Clostridium symbiosum, Coprococcus catus, Dorea formicigenerans, Ruminococcus gnavus, R. obeum, Ruminococcus spp. 

and Roseburia intestinalis) (5, 5, 7 and 20 %, respectively) 

Fusobacteria: Fusobacterium varium (1 %) 

Proteobacteria: Sutterella wadsworthensis (1 %) 

Verrucomicrobia: Verrucomicrobium spp. (5 %) 

Others (5 %) 

Wang et al., 

2005(13) 

Jejunum 92 9 Firmicutes: Veillonella parvula (4 %), Lactobacillus reuteri (1 %), L. lactis (11 %), L. mali (73 %), Streptococcus salivarius 

(4 %) and S. pneumoniae (1 %) 

Proteobacteria: Actinobacillus actinomycetemcomitans (5 %) 

74-year-old male 

at autopsy 

 

Ileum 89 17 Firmicutes: Veillonella parvula (15 %), Clostridium lituseburense (1 %), Abiotrophia sp. (1 %), Lactobacillus reuteri (1 %), L. 

mali (20 %), L. lactis (14 %), Streptococcus salivarius (9 %), S. constellatus (1 %) and S. pneumoniae (9 %) 

Fusobacteria: Leptotrichia buccalis (1 %) and Fusobacteria spp. (1 %) 

Proteobacteria: Neisseria gonorrhoeae (1 %) and Actinobacillus actinomycetemcomitans (22 %) 

Others (1 %) 

Hayashi et al., 

2005(15) 
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Subject  Biopsy No. of clones 

examined 

No. of OTUs 

identified 

Phylum: species identified* Reference 

Jejunum 90 13 Bacteroidetes: Bacteroides fragilis (1 %) 

Fusobacteria: Phascolarctobacterium faecium (1 %), Eubacterium ventriosum (1 %), E. cylindroides (1 %), Clostridium 

purinolyticum (3 %), C. leptum (1 %) and Enterococcus group (5 %) 

Proteobacteria: Escherichia coli (4 %) and Klebsiella subgroup (67 %) 

Others (2 %) 

85-year-old 

female at autopsy 

 

Ileum 94 4 Firmicutes: Enterococcus group (13 %) 

Proteobacteria: Klebsiella subgroup (85 %) 

Hayashi et al., 

2005(15) 

Jejunum 91 3 Firmicutes: Enterococcus group (7 %) 

Proteobacteria: Actinobacillus actinomycetemcomitans (1 %) and Klebsiella planticola (92 %) 

87-year-old 

female at autopsy 

 Ileum 89 15 Firmicutes: Rumincococcus gnavus (2 %), Peptostreptococcus anaerobius (6 %), P. micros (2 %), Enterococcus group (33 %), 

Streptococcus salivarius (8 %) and Clostridium leptum (3 %) 

Proteobacteria: Actinobacillus actinomycetemcomitans (1 %), Escherichia subgroup (16 %), Klebsiella subgroup (2 %), 

Klebsiella planticola (21 %) and Xenorhabdus subgroup (5 %) 

Hayashi et al., 

2005(15) 

*Numbers in parentheses represent proportion of clones ascribed to a particular phylum/genus/cluster where known. Names of nearest phylogenetic relatives are given. 
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Table 5: Bacteria, their substrates and products in the human large intestine 
Taken from Salminen et al. (1998).(389) 

Bacteria Gram 

reaction 

Mean concn 

[log10 (g dry weight faeces)−1] 

Mode of action on substrate(s) Fermentation 

product(s) 

Bacteroides – 11.3 Saccharolytic Ac, Pr, Su 

Eubacteria + 10.7 Saccharolytic, some aa-fermenting species Ac, Bu, La 

Bifidobacteria + 10.2 Saccharolytic Ac, La, f, e 

Clostridia + 9.8 Saccharolytic, some aa-fermenting species Ac, Pr, Bu, La, e 

Lactobacilli + 9.6 Saccharolytic La 

Ruminococci + 10.2 Saccharolytic Ac 

Peptostreptococci + 10.1 Saccharolytic, some aa-fermenting species Ac, La 

Peptococci + 10.0 aa fermentation Ac, Bu, La 

Methanobrevibacter + 8.8 Chemolithotrpohic CH4 

Desulfovibrio – 8.4 Various Ac 

Propionibacteria + 9.4 Saccaharolytic, lactate fermentation Ac, Pr 

Actinomyces + 9.2 Saccharolytic Ac, Pr 

Streptococci + 8.9 Carbohydrate and aa fermentation La, Ac 

Fusobacteria – 8.4 aa fermentation, assimilation of 

carbohydrates 

Bu, Ac, La 

Escherichia – 8.6 Carbohydrate and aa fermentation Mixed acids 

aa, amino acid; Ac, acetate; Pr, propionate; Su, succinate; Bu, butyrate; La, lactate; f, formate; e, 

ethanol.
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Table 6: Microbial diversity of the mucosa of the human large intestine as determined by 16S rRNA gene sequence analysis   
 
Subject  Biopsy No. of 

clones 

examined 

No. of OTUs 

identified 

Phylum: species identified* Reference 

Ascending 

colon 

27  Bacteroidetes: Bacteroides vulgatus, Bacteroides spp. 

Firmicutes: Clostridium cluster XIVa (uncultured bacteria mpn group 24 and 66.25, Ruminococcus gnavus) 

35-year-old 

healthy female 

 Descending 

colon 

27  Bacteroidetes: Bacteroides vulgatus, uncultured Bacteroides sp. adhufec51 and Parabacteroides spp. 

Firmicutes: Clostridium cluster XIVa (uncultured bacteria mpn group 24 and 66.25) 

Wang et al., 

2003(12) 

68-year-old 

female with 

mild sigmoid 

diverticulosis 

 

Descending 

colon 

190  Bacteroidetes (17.3 %): Bacteroides vulgatus, uncultured Bacteroides sp. HUCC30 and Parabacteroides spp. 

Firmicutes (1 %): Streptococcus pneumoniae 

Proteobacteria (39.6 %): Shigella flexneri, S. sonnei, Stenotrophomonas maltophila, Leptothrix cholodnii, Herbaspirillum lemoignei, 

Methylobacterium sp., Sphingomonas sp. and Haemophilus influenzae 

Firmicutes: Bacillus–Lactobacillus–Streptococcus (1.3 %); Clostridium cluster I (Clostridium perfringens), IV (Faecalibacterium 

prausnitzii, Ruminococcus spp., Anaerofilum spp. and uncultured bacterium CB25), IX (Veillonella atypica) and XIVa (uncultured 

bacteria mpn group 24 and AF54, Lachnospira pectinoschiza and Clostridium xylanolyticum) (1.3, 17.9, 1.8, and 15.3 %, respectively) 

Wang et al., 

2003‡(12) 

Ascending 

colon 

86 37 Bacteroidetes: Bacteroides vulgatus, Bacteroides spp., B. thetaiotaomicron, B. ovatus, B. uniformis and Alistipes putredinis (27 %) 

Firmicutes: Clostridium clusters XIVb (Clostridium lactatifermentans), IX (Dialister invisus and Propionispira arboris), IV 

(Faecalibacterium prausnitzii, Clostridium sporosphaeroides, C. orbiscindens and Oscillospira guilliermondii) and XIVa 

(Eubacterium halii, E. elegans, E. ramulus, Dorea formicigenerans, Ruminococcus lactaris, R. gnavus, Ruminococcus sp., 

Clostridium symbiosum, Clostridium spp., C. xylanolyticum and Roseburia intestinalis) (6, 9, 13 and 33 %, respectively) 

Fusobacteria: Fusobacterium varium (1 %) 

Proteobacteria: Escherichia coli, Acinetobacter johnsonii and Sutterella wadsworthensis) (4 %) 

Verrucomicrobia: Verrucomicrobium spp. (5 %) 

Others (1 %) 

54-year-old, 

healthy female 

 

Rectum 88 32 Bacteroidetes: Bacteroides vulgatus, Bacteroides spp., B. thetaiotaomicron, B. uniformis and Alistipes putredinis (44 %) 

Firmicutes: Clostridium clusters XI, XIVb, IX, IV and XIVa (Clostridium spp., Eubacterium halii, Dorea formicigenerans, 

Ruminococcus lactaris, R. torques, Ruminococcus spp. and Roseburia intestinalis) (1, 1, 5, 8 and 29 %, respectively) 

Fusobacteria: Fusobacterium varium (1 %) 

Proteobacteria: Escherichia coli (2 %) 

Verrucomicrobia: Verrucomicrobium spp. (9 %) 

Wang et al., 

2005†(13) 



 93

Subject  Biopsy No. of 

clones 

examined 

No. of OTUs 

identified 

Phylum: species identified* Reference 

Caecum 90 41 Bacteroidetes: Bacteroides fragilis (3 %) and Prevotella nigrescens (1 %) 

Firmicutes: Veillonella parvula (2 %), Clostridium xylanolyticum (2 %), C. polysaccharolyticum (2 %), C. leptum (23 %), C. 

lituseburense (1 %), C. glycolicum (1 %), Ruminococcus hansenii (8 %), R. gnavus (4 %), Butyrivibrio fibrisolvens (22 %), 

Eubacterium ventriosum (1 %), Lachnospira multipara (4 %), Lactobacillus reuteri (1 %), Streptococcus salivarius (1 %), S. 

pneumoniae (3 %) and unclassified (14 %) 

Proteobacteria: Actinobacillus actinomycetemcomitans (3 %) 

74-year-old 

male at autopsy 

 

Recto-sigmoid 

colon 

90 38 Bacteroidetes: Bacteroides fragilis (4 %) and unclassified (1 %) 

Firmicutes: Veillonella parvula (1 %), Phascolarctobacterium faecium (3 %), Ruminococcus hansenii (9 %), R. gnavus (6 %), 

Butyrivibrio fibrisolvens (4 %), Eubacterium ventriosum (4 %), Clostridium polysaccharolyticum (2 %), C. leptum (30 %), 

unclassified (6 %) 

Proteobacteria: Desulfovibrio desulfuricans (2 %) and Escherichia subgroup (13 %) 

Other (2 %) 

Hayashi et al., 

2005(15) 

Caecum 91 11 Bacteroidetes: Bacteroides fragilis (3 %) 

Firmicutes: Ruminococcus gnavus (2 %), Clostridium lituseburense (2 %), Enterococcus group (35 %) 

Proteobacteria: Klebsiella subgroup (36 %) 

Actinobacteria: Bifidobacterium infantis (2 %) 

85-year-old 

female at 

autopsy 

 

Recto-sigmoid 

colon 

90 27 Firmicutes: Clostridium xylanolyticum (1 %), C. purinolyticum (1 %), C. ramosum (1 %), C. leptum (11 %), Eubacterium cylindroides 

(1 %), Ruminococcus hansenii (2 %), R. gnavus (1 %), Lactobacillus reuteri (1 %), Enterococcus group (19 %), unclassified (7 %) 

Proteobacteria Desulfovibrio desulfuricans (1 %), Escherichia subgroup (7 %), Klebsiella subgroup (22 %) 

Actinobacteria: Bifidobacterium infantis (2 %) 

Others (19 %) 

Hayashi et al., 

2005(15) 

Caecum 92 22 Bacteroidetes: Bacteroides fragilis (2 %) 

Firmicutes: Veillonella parvula (1 %), Clostridium leptum (4 %), Ruminococcus hansenii (1 %), R. gnavus (3 %), unclassified (12 %), 

Lactobacillus delbrueckii (1 %), L. mali (8 %), Enterococcus group (1 %), Streptococcus salivarius (41 %), S. pneumoniae (16 %) 

Proteobacteria: Escherichia subgroup (7 %), Klebsiella planticola (1 %) 

87-year-old 

female at 

autopsy 

 

Recto-sigmoid 

colon 

92 26 Bacteroidetes: Bacteroides fragilis (2 %) 

Firmicutes: Clostridium xylanolyticum (2 %), C. leptum (1 %), Ruminococcus hansenii (2 %), R. gnavus (5 %), Lactobacillus 

delbrueckii (7 %), L. reuteri (27 %), L. mali (14 %), Streptococcus salivarius (11 %), S. pneumoniae (1 %) and unclassified (11 %) 

Proteobacteria: Escherichia subgroup (1 %) 

Actinobacteria: Actinomyces–Bifidobacterium catenulatum subgroup (9 %), B. bifidum (3 %), B. infantis (2 %) 

Hayashi et al., 

2005(15) 

*Numbers in parentheses represent proportion of clones ascribed to a particular phylum/genus/cluster where known. Names of nearest phylogenetic relatives are given. 
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Table 7: Details of some TGGE and DGGE studies of the faecal microbiota  
 
Target  population Subject Investigation Overall results Reference 

All bacteria 7 males, 9 females Interindividual variation; stability over 6 months 

monitored for two subjects 

Differences in fingerprints among individuals demonstrated 

that each individual harboured a unique microbiota 

(interindividual variation); TGGE profiles were highly 

consistent over time for individuals, demonstrating 

intraindividual stability 

Zoetendal et al. (1998)(9) 

Lactic acid bacteria 2 males, 2 females 

 

 

2 adults on probiotic trial 

Development and validation of group-specific 

primers for human studies 

 

Monitor changes in LAB population during 

Lactobacillus feeding 

Detection of Lactobacillus at >1×105 cfu (g wet weight 

faeces)−1; interindividual variation; intraindividual variation 

over 6 months 

 

Amplicon for the probiotic strain only seen during feeding 

period; one donor had stable fingerprint over time, while the 

other showed variation 

Walter et al. (2000)(394) 

Bifidobacteria 3 males, 3 females Stability of bifidobacterial population over 4 

weeks 

Multiple bifidobacterial biotypes seen in 5 of 6 subjects; no 

amplicon could be generated for one of the subjects 

Satokari et al. (2001)(395) 

Lactobacilli, leuconostocs and 

pediococci 

12 adults 

1 baby boy 

Lactobacillus population stability over time (0, 

6 and 20 months for adults; 0–5 months for 

baby boy) 

Interindividual variation and variable intraindividual stability 

in adults (stable in some individuals, but more dynamic in 

others); no amplicons prior to day 55 for baby, indicating that 

Lactobacillus were below the detection limit, but complexity 

of fingerprint increased after introduction of solid foods to the 

diet 

Heilig et al. (2002)(396) 

All bacteria 50 adults of varying relatedness plus four 

different primates 

Impact of genetic relatedness on composition of 

the faecal microbiota 

Positive linear relationship between host genetic relatedness 

and similarity of fingerprints; significantly higher similarity 

between unrelated humans when compared with other 

primates 

Zoetendal et al. (2002)(11) 

All bacteria 13 pairs of identical twins, 7 pairs of 

fraternal twins and 12 unrelated control 

pairs (4 months–10 years of age) 

Examine faecal samples from related and 

unrelated children 

Profiles for the unrelated group had the lowest similarity; 

highest levels of similarity seen between profiles from  

genetically identical twins; significant differences between 

profiles from fraternal and paternal twins, strongly suggesting 

a genetic influence over the composition of the faecal 

Stewart et al. (2005)(34) 
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Target  population Subject Investigation Overall results Reference 

microbiota 

Clostridium leptum group 

(cluster IV) 

6 adults (23–43 years of age) and 5 

children (5.5–10 years of age) 

7 faecal samples from a 10-year-old child 

over 3 years 

Investigate the diversity of the Clostridium 

leptum subgroup in human faeces 

 

Showed host-specific profiles for the adults, but at least four 

bands were seen in 8/11 subjects 

 

Demonstrated structural succession of the over the first 2 

years, with stabilization in the third year 

Shen et al. (2006)(397) 

All bacteria 

Bacteroides fragilis subgroup 

Clostridium coccoides/ 

Eubacterium rectale group 

(cluster XIVa) 

Clostridium lituseburense group 

(cluster XI) 

3 groups of 10 healthy humans Effect of a prebiotic substrate and a probiotic 

organism and their synbiotic combination on the 

faecal microbiota over 120 days 

All populations examined remained fairly stable over the 

course of the study, with interindividual variation observed; 

intraindividual stability, with minor changes attributed to diet; 

one band appeared or intensified in the universal profiles after 

ingestion of lactulose (attributed to Bifidobacterium 

adolescentis) 

Vanhoutte et al. 

(2006)(398) 
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Table 8: Human studies (healthy persons) designed to determine the prebiotic effect of short-chain fructooligosaccharides (scFOS), 1 
fructooligosaccharides (FOS), galactooligosaccharides (GOS) and inulin.  2 
 3 
Prebiotic Subject Dose Duration Effect References  

Inulin 8 healthy humans, placebo controlled  34 g/d 64 days Significant increase in bifidobacteria established by FISH Kruse et al., 1999(399) 

scFOS 40 healthy humans 2.5 to 20 g/d 14 days Significant increase in bifidobacteria levels without excessive gas production  Bouhnik et al., 1999(400) 

Inulin and FOS 4 or 8 healthy humans 15 g/d 45 days Bifidobacteria becoming predominant in faeces with both inulin and oligofructose Gibson et al.,  1995(401) 

Inulin  35 elderly constipated humans 20 g/d and 40 
g/d 

19 days Significant increase in bifidobacteria, decreases in enterococci and fusobacteria Kleessen et al., 1997(402) 

FOS in biscuits 31 healthy humans, double blind 
placebo controlled  

7 g/d 42 days Significant increase in bifidobacteria established via FISH. No change in total bacterial 
levels  

Tuohy et al., 2001a(403) 

FOS 12 healthy adult humans 4 g/d 42 days Significant increase in bifidobacteria, no change in total bacteria levels Buddington  et al., 
1996(404) 

FOS 8 healthy humans, placebo controlled 8 g/d 5 weeks Significant increase in faecal bifidobacteria and decrease in fecal pH Menne et al., 2000(405) 

GOS 12 healthy humans 15 g/d  Significant increase in faecal lactic acid bacteria Teuri et al., 1998(406) 

GOS plus FOS 90 term infants, placebo controlled 0.4 g/d and 0.8 
g/d 

28 days Dose-dependent stimulating effect on the growth of bifidobacteria and lactobacilli and 
softer stool with increasing dosage of supplementation 

Moro et al., 2002(407) 

scFOS or GOS  40 healthy adults, controlled, double 
blind, parallel group 

10 g/d 6 weeks Significant increase in faecal bifidobacteria Bouhnik et al., 2004(408) 

scFOS 12 healthy persons, +65y 8g/d 4 weeks Well tolerated and lead to a significant increase in faecal bifidobacteria in healthy elderly 
subjects 

Bouhnik et al., 2007(409) 

Inulin 14 healthy adults 9g/d 2 weeks FISH probes show increased bifidobacteria  Harmsen et al., 2002(8) 

Inulin   45 healthy adults 7.7g then 
15.4g/d 

3 weeks Increased bifidobacteria and decreased bacteroides Kleesen et al., 2007(410) 

Inulin     40 adults 8g/d 2 weeks FISH showed an increase in bifidobacteria Tuohy et al., 2001b(411) 

Inulin/FOS 19 adults 10g/d 4 weeks Bifidobacteria increased De Preter et al. 2008(412) 

scFOS 19 elderly persons 8g/d 3weeks Increased bifidobacteria Guigoz et al., 2002(108) 

scFOS 10 healthy adults 4g/d 2 weeks Increased bifidobacteria and lactobacilli Williams et al., 1994(413) 

Inulin 30 healthy volunteers 5 or 8g/d 2 weeks Both doses increased bifidobacteria, a higher 

percent of volunteers responded to 8g/d 

Kolida et al., 2007(199) 

GOS 30 healthy adults 3.6 or 7g/d 7 days Selective bifidogenic effect Depeint et al., 2008(414) 

 4 
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Table 9: The prebiotic effect on immune markers  1 
 2 

Subject Trial design Groups N Duration Key findings of the prebiotic intervention on immune parameters and effect on 
microbiota Reference 

Healthy elderly (> 
70y) 

RPC  
parellel 

(a) daily vitamin & protein supplement with
6g  oligofructose/inulin 
(b) daily vitamin & protein supplement 

(a) 23 
(b) 20 

28 weeks - no effect on secretory IgA,  
- no effect on serum titers after vaccination (influenza A and B and pneumococcus) 
- no effect on secretion of IL-4, IFNg, and lymphocyte proliferation in cultured 
PBMC stimulated with phytohemagglutinin and influenza antigen 

(102) 

Newborn non-
breastfed infants 

RDBPC 
parallel 

(a) standard infant formula 
(b)  prebiotic formula containing mixture 
of 0.6 g GOS/FOS)/100 ml formula 

(c) probiotic formula containing 6.0x109 
cfu B. animalis/100 ml formula 

(a) 19 
(b) 19 
(c) 19 

32 weeks - trend towards higher fecal sIgA (significant at week 16) 
- trend towards higher percentage of fecal Bifidobacteria  
- significantly lower fecal pH (415) 

(106) 

Peruvian breast-fed 
infants 
6-12 mo 

1) RDBPC parallel 
 
 
2) idem 

(a) cereal supplemented with oligofructose 
with of average 0.67g OF/day 
(b) control cereal 
 
(a) cereal supplemented 1 mg zinc/d and 
with oligofructose (average 0.67g OF/day) 
(b) cereal supplemented 1 mg zinc/d 

(a) 141 
(b) 141 
 
 
 
(a) 174 
(b) 175 

6  months 
 
 
 
 
6 months 

- no effect on antibody titers after H.influenza B vaccination 
 
 
 
- no effect on antibody titers after H.influenza B vaccination 
 
- effect on microbiota not adressed 

(104) 

Nursing home elderly 
(77-97 yr) 

uncontrolled  8g oligofructose /day  19 3 weeks Compared to baseline: 
- increase in % CD4 and CD8 lymphocytes 
- decrease in phagocytic activity (mean fluorescence) in granulocytes and 
monocytes 
- reduced IL-6 mRNA expression in PBMC 
- increase in fecal Bifidobacteria and Bacteroides 
-  no effect on fecal Enterobacteriae, Enterococci and Lactobacilli 

(108) 

Newborn healthy 
infants 

RDBPC parallel (a) infant milk formula with 6 g/L 
short-chain GOS and long-chain FOS ratio 
9:1 
(b) infant formula without prebiotics 
 

(a) 21 
(b) 25 

26 weeks - increase in fecal sIgA in those exclusively formula fed 
-increase in % of fecal  bifidobacteria and decrease in % of fecal Clostridia 

(107) 

Adult males RDBPC semi CO (a) bread (placebo) 
(b) bread supplemented with inulin, linseed 
and soya fibre 

(b) 19 
(c) 19 

5 weeks - increase of % lymphocyte expressing surface markers CD19 and CD3+HLA-DR+
- decrease of % lymphocyte expressing ICAM-1  
- decrease of % CD3+ NK+ cells 

(416) 
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(c) idem with antioxidants - no change in phagocytosis  and oxidative burst 
- effect on fecal microbiota not assessed 

Elderly 
(64-79 yr) 

DPRPC, CO (a) galacto-oligosaccharide 5.5g/day 
(b) maltodextrin 

44 10 wks  
with  
4 wks 
washout 

- increase in ex-vivo NK cell activity  
- increase in ex-vivo phagocytosis 
- increase in ex vivo IL-10 production by  PBMC 
- decrease in ex-vivo IL-6, TNFa and IL-1 b production by PBMC 
 
- positive correlation between numbers of Bifidobacterium spp., Lactobacillus- 
Enterococcus spp., and the C. coccoides–E. rectale group with % and total  
number of phagocyting cells. 
- negative correlation between numbers of 
Bacteroides spp. and E. coli d with % and total number of phagocyting cells. 

(110) 

Pregnant women RDBPC (a) 9 g/d GOS/lcFOS  
(b) maltodextrin 

48 From week 
25 of 
gestation 
until 
delivery 

- no change of  fetal (cord-blood) immune parameters (lymphocyte subsets, 
cytokine secretion)  
 
- increased proportions of bifidobacteria in maternal fecal samples  
- no change in the proportion of lactobacilli 
-  no change in bifidobacteria and lactobacilli percentages in infants  

(109) 

Newborn infants at 
risk for allergy 

RDCPC (a) hypoallergenic whey formula with 8 g/l 
GOS/FOS in a 9 : 1 ratio 
(b)  hypoallergenic whey formula with 8 g/l 
maltodextrine (placebo)  

(a) 41 
(b) 43 

6 months - significant reduction in plasma levesl of total IgE, IgG1, IgG2 and IgG3 
- no effect on IgG4  
- Cows milk protein-specific IgG1 was significantly decreased.  

-  no effect on response to DTP vaccine 
 
- significant increase in the number of fecal bifidobacteria 
 - no effect on fecal lactobacilli counts (113) 

(105) 

 1 
2 
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Table 10: Comparison of faecal microbiota between IBS and healthy control subjects 1 
 2 

3 
Subject (n) Results of IBS versus control subjects Reference 

IBS subjects (20) 
Control subjects (20) 

Lower number of coliforms, lactobacilli and bifidobacteria (5) 

IBS subjects (Rome II criteria) (25) 
Control subjects (25) 

Lower number of Bifidobacteria 
Higher  number of Clostridium perfringens 
Higher  number of Enterobacteriaceae 
Lower Bifidobacteria/ Enterobacteriaceae ratio 

(6) 

IBS subjects (Rome II criteria) (26) 
Control subjects (25) 

Higher number of coliforms  
Higher proportion of aerobic bacteria  

(27) 

IBS subjects (Rome II criteria) (27) 
Control subjects (22) 

Lower  number of  Lactobacillus spp in diarrhoea predominant IBS 
Higher  number of Veillonella spp in constipation predominant IBS 
Lower  number of  Bifidobacterium catenulatum and Clostridium coccoides 

(7) 

IBS subjects (Rome II criteria) 
Control subjects 

Lower number of  Lactobacillus spp,  Bifidobacteria and lactate-utilizing bacteria 
Higher number of Sulphate-reducing bacteria 

(8) 

IBS subjects (Rome II criteria) (16) 
Control subjects (16) 

Lower proportion of Clostridium coccoides and Eubacterium rectale  in constipation predominant IBS (11) 

IBS subjects (Rome II criteria) (24) 
Control subjects (23) 

Lower number of Collinsella;  Lower prevalence of Collinsella aerofaciens;   
Lower  number of  Coprococcus eutactus 
Lower  number of  Bifidobacterium catenulatum 

(9) 

IBS subjects (Rome II criteria) (41) 
Control subjects (26) 

Lower  number of Bifidobacteria 
Lower  number of Bifidobacterium catenulatum 

(10) 
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Table 11: Clinical trials on the prebiotic effect in inflammatory bowel disease 1 
 2 
Subjecfs Trial design1 Groups N2 Duration Key findings Reference 

Pouchitis 
(active) 

Open label (a) FOS (1 tablet/d) 
 L. rhamnosus GG (1 tablet/d) 

(a) 10 - ’Clinical and endoscopic remission’ Friedman 
et al (2000)(204)  

Pouchitis 
(remission) 

DB-RCT, CO (a) Inulin (24 g/d) contained in drink 
(b) Placebo drink 

(a/b) 20 
 

3 weeks Compared with baseline, the prebiotic: 
 Reduced pouchitis activity 
 Reduced B. fragilis 
 Had no effect on bifidobacteria 
 Increased faecal butyrate 

Welters 
et al (2002)(205)  

UC (active) DB-RCT (a) Oligofructose / inulin (12 g/d) 
 B. longum (4x1011 cells/d) 
(b) Maltodextrose placebo (12 g/d) 

(a) 9 
(b) 9 

1 month  Compared with placebo, the synbiotic: 
 Reduced sigmoidoscopy score 
Compared to baseline, the synbiotic: 
 Increased mucosal bifidobacteria  
 Reduced human beta defensin mRNA 
 Reduced TNF α, IL-1α 
 Reduced mucosal inflammation 

Furrie 
et al (2005) (159) 

UC (active) DB-RCT (a) Oligofructose / inulin (12 g/d) 
(b) Maltodextrose placebo (12 g/d) 
 
Both groups started Mesalazine 3 g/d  

(a) 10 
(b) 9 

2 weeks Compared with placebo, the prebiotic:  
 Did not result in greater reduction in disease activity 
 Reduced faecal calprotectin 
Compared to baseline, the prebiotic: 
 Reduced disease activity 
 Reduced dyspepsia 

Casellas 
et al (2007)(160) 

CD, paediatric  
(active) 

Open label (a) Oligofructose / inulin (mean 8.4 g/d)  Enteral nutrition 
(semi-elemental)  

(a) 10 6 weeks Compared with baseline, the prebiotic enteral formula: 
 Reduced disease activity 
 Reduced inflammation (ESR, WBC scan) 
 Increased quality of life 

Hussey 
et al (2003)(209) 

CD (active) Open label (a) Oligofructose / inulin (15 g/d) (a) 10 3 weeks Compared with baseline, the prebiotic: 
 Reduced disease activity 
 Increased faecal bifidobacteria 
 Did not affect mucosal bifidobacteria 
 Increased dendritic cell IL-10 
 Increased dendritic cell TLR-2 and TLR-4 expression 

Lindsay 
et al (2006) (111) 
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CD (remission) DB-RCT (a) Synbiotic 2000 
 (inulin, resistant starch, pectin, β-glucans,  2.5g 
each, P. pentoseceus, L. raffinolactis,  L. paracasei, L. 
plantarum) 
(b) Placebo 

(a) 20 
(b) 10 

24 months Compared with placebo, the synbiotic:  
 Did not influence relapse rates 

Chermesh 
et al (2007) (211)  

CD (active) DB-RCT (a) Oligofructose / inulin (15 g/d) 
(b) Maltodextrose placebo (15 g/d) 

(a) 54 
(b) 49 

4 weeks Compared with placebo, the prebiotic:  
 Did not lower disease activity  
 Did not result in greater reduction in disease activity 
 Did not result in greater numbers in remission 

Benjamin 
et al (2009)(210) 

1 DB-RCT, double-blind randomised controlled trial 1 
2 Numbers recruited to each group2 



 102 

Table 12: Published reviews on the prebiotic effect on mineral metabolism 
 

Model Dietary fibres Mineral Results References 

- Human 
- Rat 

Fibres 
Phytic acid 

Ca, Mg, Fe, Zn Mineral metabolism (417) 

- Rat Prebiotics (FOS) Ca Bioavailability (418) 
- Human 

- Rat 
Oligosaccharides Ca, Mg, Fe, Zn Ca absorption 

Ca absorption Methodology concerns 
(419) 

- Human Oligosaccharides Ca Bioavailability (277) 
- Human 

- Rat 
Prebiotics 

 
Ca, Mg, P, Fe, Zn Mineral metabolism (Schaafsma et al., 

1998)(420) 

- Human 
- Rat 

Prebiotics 
Synbiotics 

Ca, Mg, Fe, Zn Bioavailability 
Functional foods 

(254) 

- Human 
- Rat 

Prebiotics 
Probiotics 

Ca, Mg, Fe, Zn Bioavailability (421) 

- Human Prebiotics 
(oligofructose,  inulin) 

Ca, Mg, Fe, Zn Mineral absorption (422) 

- Human 
- Rat 

Prebiotics 
 

Ca Ca absorption (423) 

- Human 
- Rat 

Prebiotics 
(FOS, GOS) 

Ca, Mg, Fe, Zn Mineral absorption (424) 

- Human 
- Rat 

Prebiotics 
(oligofructose, oligosaccharides) 

Ca, Mg, Fe, Zn Mineral metabolism 
Ca metabolism 
Bone structure 

Mechanisms of action 

(293) 

- Human 
 

Prebiotics 
(oligofructose,  inulin) 

Ca Ca absorption 
 

(Roberfroid, 2002)(425) 

- Human 
- Rat 

Prebiotics 
(oligofructose,  inulin) 

Ca Ca absorption 
Functional foods 

(Cashman, 2002)(426) 

- Human 
- Rat 

Prebiotics 
(oligofructose,  inulin) 

Ca, Mg, P Ca bioavailability 
 

(Kaur & Gupta, 
2002)(427) 

- Rat Prebiotics 
(oligofructose, inulin , TOS) 

Ca, Mg Mineral metabolism 
Bone structure 

Mechanisms of action 

(Scholz-Ahrens & 
Schrezenmeir,  

2002)(295) 

- Rat 
- Human 

Prebiotics 
(oligofructose, inulin, GOS) 

Ca Ca bioavailability 
Bone structure 

Mechanisms of action 

(Cashman,  2002)(428) 

- Human Prebiotics Ca Ca bioavailability (Cashman,  2002)(426) 
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- Human 

- Rat 
Prebiotics Mineral and trace elements Mineral absorption, mechanisms of action A. Bongers & 

E.G.H.M.van den 
Heuvel (2003)(429) 

- Human 
- Rat 

Prebiotics 
 

Ca Ca absorption, Bone health, Mechanisms of action, Osteoporosis (Cashman,  2003)(430) 

- Human 
- Rat 

Prebiotics 
 

Ca Ca absorption (Caers, 2003)(431) 

- Human 
- Rat 

Prebiotics 
(FOS, GOS, oligofructose, inulin) 

Mg Mg absorption (Coudray et al.,  
2003)(432) 

- Human Prebiotics Mg Mg absorption (Coudray, 2004)(433) 
- Human 

- Rat 
Prebiotics 

(oligofructose, IF + oligofructose) 
Ca Ca balance, Bone health, Osteoporosis (Coxam, 2005)(298) 

- Rat Prebiotics 
(oligofructose, inulin) 

Ca, Mg Ca absorption, Mg retention, Bone health (Weaver, 2005)(434) 

- Human 
- Rat 

Prebiotics 
(oligofructose, inulin) 

Ca Ca absorption, Bone health, Osteoporosis (Abrams, 2005)(273) 

- Human 
- Rat 

Prebiotics 
(oligofructose, inulin) 

 

Ca Ca absorption, Bone health 
 

(Franck, 2006)(435) 

- Human 
- Rat 

Prebiotics 
(oligofructose, inulin) 

 

Ca Ca absorption, Bone health, Osteoporosis (Bosscher, Van Loo & 
Franck, 2006)(436) 

- Human Prebiotics 
 

Ca Ca absorption, Bone mineralization, Mechanisms of action (Cashman,  2006)(274) 

- Human Prebiotics 
(oligofructose, inulin) 

Phytoestrogens 

Ca Ca  Bioavailability, Bone health, Phytoestrogens bioavailability (Coxam, 2007)(437) 

- Rat Prebiotics 
(oligofructose, inulin) 

(impact of polymerization degree of prebiotics) 

Ca, Mg P, Fe, Zn Mineral metabolism, Ca metabolism, Bone health, Mechanisms of action (Scholz-Ahrens & 
Schrezenmeir,  

2007)(438) 

- Human 
- Rat 

Prebiotics 
Probiotics 
Synbiotics 

Ca Ca absorption, Bone health, Mechanisms of action (Scholz-Ahrens et al., 
2007)(439) 

- Human 
- Rat 

Prebiotics 
(oligofructose, inulin) 

Ca, Mg Ca absorption, Bone health (Alexiou & Franck, 
2008)(440) 

- Human 
- Rat 

Prebiotics 
(oligofructose, inulin) 

 

Ca Ca absorption, Bone health, Osteoporosis (Gibson & Delzenne, 
2008)(441) 
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FOS: Fructo- oligosaccharides 
GOS: Galacto- oligosaccharides 
TOS: Transgalacto- oligosaccharides 
 
 
 
 
 
 
 
 
 
 
 
 
 

- Human Prebiotics 
 

Ca Ca absorption 
 

(De Vresse &  
Schrezenmeir,  2008)(158) 

-Rat 
-Dog 

Prebiotics 
 

Ca Ca absorption 
 

(Griffin & Abrams, 
2008)(442) 

- Human 
- Rat 

Prebiotics 
 

Ca Ca absorption, Bone mineralization (Hawthorne & Abrams, 
2008)(443) 

- Human Prebiotics 
(oligofructose, inulin) 

Ca, Mg, Fe, Zn Mineral metabolism, Bone remodelling, Mechanisms of action (Kelly, 2009)(444) 

- Human Prebiotics 
Probiotics 

Ca Ca absorption, Osteoporosis (De Vrese, 2009)(445) 
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Table 13: The prebiotic effects on bone metabolism in the rat 
 

 

Substance Amount 
g/100g diet 

length of treatment 

Bone Effect Study design 
Animals (n) 

Method analysis 

Reference 

GOS 20 d ↑ tibia Ca content OVX Wistar rats 
AAS 

(Chonan et al., 
1995)(446) 

FOS (Meioligo-P, Japan) 5 
60 d 

↑ femoral Ca content 
↑ bone volume 

 

Growing Wistar rats (16 males) 
AAS 

Histomorphometric method 

(Takahara et al., 
2000)(447) 

Oligofructose (Orafti) or 
Inulin (Orafti) 

10 
13 weeks 

Both ↑ femoral Ca content 
 

Growing Fisher rats (30 males,  4 week-old) 
ICPMS 

(Richardson et al., 
2002)(448) 

Ca + Inulin  (Raftiline HP, 
Orfati) 

0.2 + 5 or 
0.2 + 10 or 
0.5 + 5 or 

0.5 + 10 or 
1 + 5 or 

1 + 10 or 
From 4 to 22 weeks 

↑ Whole body BMC 
↑ Whole body BMD 

Ns Whole body bone area 
In each case (whatever Ca concentration 

and at all stage) 

Growing  Wistar rats (36 males, 4 week-old) 
DEXA 

(Roberfroid et al., 
2002)(425) 

Ca +  FOS (Raftilose P95, 
Orfati) 

0.5 + 2.5 or 
 
 
 

0.5 + 5.0 or 
 
 
 

0.5 + 10 or 
 
 
 

1.0 + 50 or 
16 weeks 

Ns L1-L4  Ca content 
↑ trabecular tibial  thickness 

 
Ns L1-L4  Ca content 

↑ trabecular tibial perimeter 
 

↑  L1-L4  Ca content 
↑ trabecular tibial perimeter 

 
↑  L1-L4   Ca content 
↑ trabecular number 

OVX  Fisher 344 rats (96 females, 6 week-old) 
AAS 

Histomorphometric method 

(Scholz-Ahrens et 
al., 2002)(295) 

-Oligofructose FOS (DP2-8, 
Orafti) or 

Inulin (Orafti) + FOS (DP2-8, 
Orafti) 

 
-Inulin (DP>23) 

 
 

5 
 
 
 
 

5 
 

4 weeks 

Ns femoral BMC 
Ns femoral BMD 
↑ spine BMC 

 
 

↑ femoral BMD 
↑ spine BMC 

↓ bone resorption 

Growing  Sprague-Dawley rats (40 males, 7 week-old) 
DEXA 
ELISA 

(Kruger et al., 
2003)(296) 

-HP Inulin (DP 10-65) +   
ITF-MIX (OF)  

-HP Inulin (DP 10-65) + 
Oligofructose 

- HP Inulin (DP 10-65) 
-  ITF-MIX 

- BC (branched –chain) 
inulin 

5+5 
 

5+5 
 

10 
10 
10 

 
28 d 

Ns tibial Ca content 
 

Ns tibial Ca content 
 

Ns tibial Ca content 
Ns tibial Ca content 
Ns tibial Ca content 

Growing Wistar rats (10 males, 6 week-old) 
AAS 

(Coudray et al., 
2003)(297) 
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ITF-MIX 5.5 
21 d 

↑ femoral BMC 
↑distal femur  BMD 

OVX  Sprague-Dawley rat (26 females,  6 month-old) 
Ca45 kinetics method 

AAS 

(Zafar et al., 
2004a)(449) 

-Inulin 
 
 

- Inulin + IF 

5 
 
 

5 + 0.8 
21 d 

Ns femoral Ca content 
 

↑ femoral bone Ca content vs inulin 

Growing  Sprague-Dawley rats (48 males, 6 week-old) 
Ca45 kinetics method 

AAS 

(Zafar et al., 
2004b)(304) 

IF (Prevastein, Eridania 
Beghin Say)+FOS (Actilight, 

Beghin Meiji) 

10(μg/gwt/d) + 7.5 
 

20 + 7.5 
 
 
 

40 + 7.5 
 
 
 

80 + 7.5 
 
 

3 months 

↑ Femoral  BMD vs IF 
 

↑ Femoral  BMD vs IF 
↑ Femoral failure load 

↓ urinary DPD 
 

↑ Femoral  BMD vs IF 
↑ Femoral failure load 

↓ urinary DPD 
 

↑↑ Femoral  BMD vs IF vs (IF10 + FOS) 
↑ Femoral failure load 

↓ urinary  DPD 

Intact  or OVX  Wistar  rat  (88 females, 3 month-old) 
DEXA 

3-point bending test 
RIA 

(Mathey et al., 
2004)(302) 

Difructose anhydride III 
(DFAIII) (Nippon Beet sugar 

Mfg) 

1.5 or 3 
8 weeks 

In intact rats 
Ns Maximum breaking force 

Ns distal femoral BMD 
 

In OVX rats 
femoral  Ca content 

↑distal femoral BMD with 3% DFAIII 
↑Maximum breaking force 

↓ urinaryDPD in DFAIII groups (trend) 

Intact  or OVX Sprague-Dawley rats (50 females, 6 week-old) 
DEXA, 3-point bending test 

ELISA 
 

(Mitamura & Hara, 
2005)(450) 

-Difructose anhydride III 
(DFAIII) (Nippon Beet sugar 

Mfg) 
- DFAIII + vitamin D-deficient 

 

1.5 
8 weeks 

In intact rats 
Ns femoral  Ca content 

 
In OVX rats 

↑ femoral Ca content 

Intact  or OVX Sprague-Dawley rats (64 females, 6 week-old, vitamin D 
deficient or not) 

AAS 

 (Mitamura & Hara, 
2006)(451) 

-Oligofructose (chicory roots, 
Cosucra) 

 
-Inulin (chicory roots,  

Cosucra) 
 

5 
 
 

5 
 
 

3 months 

↑ Femur BMD 
↑cancellous tibia area 

 
↑ Femur BMD 
↑ femoral BMC 

↑ cancellous L3 area 
↓ CTX1 

Growing Wistar rats (38 males, 6 week-old) 
DEXA (pQCT) 

ELISA 
 

(Nzeusseu et al., 
2006)(452) 

FOS (Raftilose P95, Orfati) 5 
23 d 

 

Ns Femur BMD 
↑ Femur biomechanical properties 

Growing  Wistar rats (16 males, 4 week-old) 
DEXA 

3-point bending test 

(Lobo et al., 
2006)(453)  
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AAS: Atomic absorption spectrophotometry 
DEXA: Dual- energy X ray absorptiometry 
Femoral mechanical testing (3- point bending test) 
FOS: Fructo-oligosaccharides 
Galacto-oligosaccharides (GOS) 
IF: Isoflavones

FOS or 
IF+FOS 

4 months ↑Whole body BMD vs control OVX 
↑tibial BMC vs control OVX 

↑lumbar BMD and BMC vs control OVX 
(no additive effects with IF+FOS) 

↑tibial microarchitectural properties in 
IF+FOS   (↑trabecular number vs OVX 

control) 
 

OVX  Sprague-Dawley  rat  (69 females, 9 month -old) 
DEXA 

Tomography 

(Devareddy et al., 
2006)(303) 

Lc Inulin (Beneo HP, Orafti) 5 
8 weeks 

Ns BMD 
↑ femoral BMC 

Ns bone markers 
(OC , CTX1) 

Growing  Sprague-Dawley  rats (48 females, 3 week-old) 
DEXA 
ELISA 

(Jamieson et al., 
2008)(454) 

-Inulin long – chain 
(Cosucra) or 

Inulin short – chain 
(Cosucra) 

 
 

-Chicory (Cosucra) 
 
 
 

7.5 
 
 
 
 
 

7.5 
 
 

3 months 

Trend to ↑ diaphysal femoral  BMD and 
BMC 

Ns bone markers 
(OC ,DPD) 

 
↑diaphysal femoral BMD and BMC 

↑ Femoral failure load 
Ns bone markers 

(OC , DPD) 

Growing Wistar rats (40 males, 3 month-old) 
DEXA 

3-point bending test 
RIA 

(Demigne et al., 
2008)(455) 

-SO (soybean oil) +   ITF-MIX   
 

- SO + Fish oil +  ITF-MIX 
 

15 + 10.87 
 
 

15  +11.5 + 10.87 
 

15 d 

Ns femoral Ca content 
 

↑ femoral Ca content 
↑ tibial  Ca content 
↑ tibial bone strength 

Growing  Wistar rats (24 males rats, 6 week-old) 
AAS 

3-point bending test 

(Lobo et al., 
2009)(456) 

IF or 
FOS or 

IF + FOS (Meioligo-P, Meiji) 

0.2 
5 

0.2 + 5 
 

6 weeks 

↑distal femoral BMD and trabecular  femur 
vs control OVX 

( additive effects with IF+FOS) 

OVX mice (64 females ddY strain, 6week -old) 
Tomography 

(Ohta et al., 
2002)(301) 

Inulin (Orafti) 10 
2 weeks 

↑ Mg bone content C57B16J mice (24 males, 4 month-old) 
AAS 

(Rondon et al., 
2008)(457) 
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Table 14: The prebiotic effects on mineral absorption in the rat 

Substance Amount 
g/100g diet 

length of treatment (n) 

Mineral absorption Study design 
Animals (n) 

Method analysis 

References 

Raftilose P95 (Orafti) 5 
3 d 

↑ fractional Ca47 absorption Fisher 344 (40 males, 38 week-old) 
Ca47 method 
Sc47 method 

Gamma counter 

(Brommage et al., 
1993)(294) 

FOS  (Meioligo-P, Meiji) 5 
28d 

↑ apparent Ca and Mg absorption in intact rats 
↑ apparent Mg absorption in cececomized rats 

 

Intact or  cececomized rats  
AAS 

(Ohta et al., 1994a)(291) 

FOS  (Meioligo-P, Meiji) 
(low Mg, High Ca and High P) 

1 
5 
 

↑ apparent Mg absorption  
 

 Mg- deficient rats  
AAS 

(Ohta et al., 1994b)(306) 

FOS  (Meioligo-P, Meiji) 
 

5 
2 weeks 

↑ apparent Ca, Mg and Fe absorption 
Improve recovery from anemia 

Fe - deficient rats for 3 weeks  
(anemic rats) 

AAS 

(Ohta et al., 1995a)(307) 

FOS  (Meioligo-P, Meiji) 
(chromium-mordanted cellulose as 

an unabsorbable marker) 

5 
1d 

↑ apparent Ca  and Mg  absorption 
And  

Colorectal absorption of Ca  and Mg   
 

Growing Sprague-Dawley rats (28 males, 6 week-old) 
(colon and rectum) 

 
AAS 

(Ohta et al., 1995b)(256) 

GOS 20 d ↑ apparent Ca absorption OVX wistar  rats 
AAS 

(Chonan et al., 
1995)(446) 

TOS (Meioligo-P, Meiji) 5 
10 
10d 

↑ apparent Ca absorption Growing Wistar rats (males) 
AAS 

(Chonan & Watanuki, 
1995)(458) 

Raftilose P95 (Orafti) or 
Raftiline ST (Orafti) 

10 
24d 

Both ↑ apparent Ca, Mg and Zn retention 
Ns on Cu absorption 

Raftilose ↑ apparent Fe 
 

Wistar rats (30 males, 100g) 
ICPMS 

 

(Delzenne et al., 
1995)(267) 

-Lactilol-oligosaccharide (LO) 
-Galactooligosaccharides 

(GL) 

5 
2 weeks 

↑ apparent Ca absorption in LO 
↑ apparent Mg  absorption in LO and GL 

Growing Sprague-Dawley rats (males, 8 week-old) 
AAS 

(Yanahira  et al., 
1997)(459)y 

FOS  (Meioligo-P, Meiji) 10 
10d 

↑ apparent Ca absorption Growing gastrectomized  Sprague-dawley rats (17 males, 4 week-old) 
AAS 

(Ohta et al., 1998)(259) 

FOS (Meioligo-P, Meiji) 5 
3 d 

↑ true and apparent Ca absorption 
↑ Ca balance 

Growing  Wistar rats (16males, 6 week-old) 
Ca45 kinetics study 

AAS 

(Morohaschi et al., 
1998)(460) 

-FOS  short – chain (Meioligo-P, 
Meiji) 

(normal and Ca deficient diet) 
 

10 
10d 

↑  CaBP levels  
Independent of 1,25(Oh)2D3 action 

 

Rats 
(intestinal CaBP levels) 

AAS 

(Takasaki  et al., 
2000)(260) 
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FOS (DP 3-50) 
(Cosucra) 

 
 
 

FOS + PA (phytic acid) 

10 
 
 
 
 

10+7 
21 d 

↑ apparent Ca, Mg, Fe, Cu absorption 
↑ cecal Ca, Mg 

Ns Ca status 
 

↑ cecal Ca 
Ns cecal Ca vs PA 

Growing Wistar rat ( 32 males, 6 week-old) 
AAS 

(Lopez et al., 2000)(257) 

FOS (Meioligo-P, Meiji) 5 
60d 

↑ apparent Ca absorption 
↑ fractional Ca absorption 

Growing  Wistar  rats (16  males, 6 week-old ) 
AAS 

(Takahara et al., 
2000)(447) 

-Inulin (Orafti) 
 

-Inulin + resistant starch 

10 
 

5 
21d 

↑ apparent Ca  absorption 
↑Ca retention 

(higher effect with inulin+resistant starch) 

Adult Wistar rats (32 males, 8 week-old) 
AAS 

(Younes et al., 
2001)(461) 

-Difructose anhydride III (DFAIII) 
(Nippon Beet sugar Mfg) 

 
 
 
 

- Difructose anhydride III 
(DFAIII) (Nippon Beet sugar Mfg) 

3 
4 weeks 

 
 
 
 
 

1.5 
3 

4 weeks 

↑ apparent Ca  absorption 
 
 
 
 
 

-↑ Ca  absorption rate was higher in 
cecolonectomized rats  

 
 

 

-Intact  or OVX growing Sprague-Dawley rats (20 females, 6 week-old) 
 

- OVX or OVX cecocolonectomy growing Sprague-Dawley rats (20 females, 
6 week-old) 

AAS 

(Mitamura  et al., 
2002)(462) 

Ca + Oligofructose 0.5 + 2.5 
 
 

0.5 + 5.0 
 
 

0.5 + 10 
 
 

1.0 + 50 
(16 weeks) 

↓  apparent Ca absorption (after 4 wk) 
 

Ns  apparent Ca absorption 
 

↑  apparent Ca absorption 
Vs OVX (wk 8) 

 
↑  apparent Ca absorption 

Vs OVX (wk 4) 
Vs OVX (wk 8) 

Vs OVX (wk 16) 

OVX  Fisher 344 rats (96 females, 6 week-old) 
AAS 

 

(Scholz-Ahrens et al., 
2002)(295) 

-HP Inulin (DP 10-65) +   ITF-MIX  
(OF)  

-HP Inulin (DP 10-65) + 
Oligofructose 

- HP Inulin (DP 10-65) 
-  ITF-MIX 

- BC (branched –chain) inulin 

5+5 
 

5+5 
 

10 
10 
10 

 
28 d 

↑  apparent Ca and Mg absorption 
↑Ca and Mg balance 

 
OF+HP : additive effect 

Growing Wistar rats (10 males, 6 week-old) 
AAS 

(Coudray et al., 
2003)(297) 

-Oligofructose FOS (DP2-8, 
Orafti) or 

 
-Inulin (DP>23) 

 
 

-Inulin (Orafti) + FOS (DP2-8, 
Orafti) 

5 
 
 

5 
 
 

5 
4 weeks 

Ns urinary Ca excretion 
 
 

Ns urinary Ca excretion 
↑Ca bioavailability 

 
↑ urinary  Ca excretion 

Growing  Sprague-Dawley rats (40 males, 7 week-old) 
ICPOES 

(vista model inductively coupled plasma optical emission spectroscopy) 

(Kruger et al., 
2003)(296) 
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ITF-MIX 5.5 
21 d 

↑ true Ca absorption 
↑ Ca balance 

OVX  Sprague-Dawley rat (26 females,  6 month-old) 
Ca45 kinetics method 

AAS 

(Zafar et al., 
2004a)(449)  

-Inulin 
 

- Inulin + IF 

5 
 

5 + 0.8 
21d 

Ns true Ca absorption  vs IF Growing  Sprague-Dawley rats (48 males, 6 week-old) AAS, 
Ca45 kinetics method 

 

(Zafar et al., 
2004b)(304) 

-FOS  short – chain (Meioligo-P, 
Meiji) 

-Four non digestible saccharides 
(DFAIII, Nippon Beet Sugar MFG) 

 
-FOS  short – chain (Meioligo-P, 

Meiji) 
-Four non digestible saccharides 

(DFAIII, Nippon Beet Sugar MFG) 
 

-FOS  short – chain (Meioligo-P, 
Meiji) 

-Four non digestible saccharides 
(DFAIII, Nippon Beet Sugar MFG) 

3 
4 weeks 

Measurement after 10-14 
days 

 
 
 

3 
4 weeks 

Measurement after 24-28 
days 

 
 
 

3 
5 weeks 

↑ apparent Ca, Mg, Fe absorption 
 
 
 
 
 

↑  apparent Ca, Mg absorption 
Higher effect with DFAIII 

DFAIII ↑ Fe absorption 
 
 

-Ns apparent Ca absorption in OVX rats 
-↑ apparent Ca absorption vs  FOS in OVX rats 

Growing  Sprague-Dawley rats (48 males) 
AAS 

 
 
 
 
 
 
 
 
 
 
 

Growing OVX Sprague-Dawley (68 females, 6 week-old) 
AAS 

(Asvarujanon, 2005)(463) 
 

Difructose anhydride III (DFAIII) 
(Nippon Beet sugar Mfg) 

1.5 or 3 
8 weeks 

Both doses restore the reduced Ca absorption in 
OVX rats and Mg absorption in both OVX and 

SH rats 

Intact  or OVX Sprague-Dawley rats (50 females, 6 week-old) 
AAS 

(Mitamura & Hara, 
2005)(450) 

ITF-MIX 10 
21 d 

↑ Net transepithelial Ca transport (large intestin) 
↑ Ca absorption rate (caecum) 

Growing  Sprague-Dawley rats (48 males)  (transepithelial Ca in vitro) 
AAS 

(Raschka, 2005)(261) 

Ca + inulin (Raftiline, Orafti) 0.25 + 10 
0.50 + 10 
0.75 + 10 

40 d 

After 13 d 
↑ apparent Ca absorption 

higher effect when Ca is low (0.25) or high 
(0.75) 

 
After 40 d 

↑ apparent Ca absorption 
higher effect when Ca is low (0.25) 

Growing rats, 10 weeks (10 males wistar) 
AAS 

(Coudray et al., 
2005a)(464) 

Inulin  (Raftaline, Orafti) 7.5 
3 weeks 

 
-↑ true Ca absorption 

Higher effect in 10 and 20 month-old animals vs 
those aged 2 and 5 month-old 

 
 

Wistar rats (18 males 
-2 month-old 
-5 month-old 
-10 month-old 
-20 month-old 

 
Ca44 method, AAS 

ICPMS 

(Coudray et al., 
2005b)(465) 

-Difructose anhydride III (DFAIII) 
(Nippon Beet Sugar MFG) 
-FOS (Meioligo-P, Meiji) 

 

3 
 

3 
4 weeks 

↑ Fe absorption 
 
 

DFAIII restores gastrectomy-induced Fe 
malabsorption 

Growing  Sprague-Dawley rats (18 males, 4 week-old) 
 

Growing gastrectomized Sprague-Dawley rats (32 males, 4 week-old) 
AAS 

(Shiga et al., 2006)(466) 
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Apparent absorption: Ca intake (I) –Ca fecal excretion (F) 

Shoyu polysaccharides 
(SPS) 

 ↑ iron  absorption in organs Anemics rats  
(in vivo, in vitro) 

(Kobayashi  et al., 
2006)(308) 

FOS (Raftilose P95, Orfati) 5 
23 d 
 

↑ apparent Ca absorption 
↑ apparent Mg absorption 

Growing  Wistar rats (16 males, 4 week-old) 
AAS 

(Lobo et al., 2006)(453) 

-Oligofructose (chicory roots, 
Cosucra) 
 
-Inulin (chicory roots,  Cosucra) 

5 
 
 
5 
 
3 months 

↑ apparent Ca absorption 
(Higher effect with inulin which could be related 
to an ↑ calbindin-9K) 
 

Growing Wistar rats (38 males, 6 week-old) 
AAS 
 
 

(Nzeusseu et al., 
2006)(452) 

-Difructose anhydride III (DFAIII) 
(Nippon Beet sugar Mfg) 
- DFAIII + vitamin D-deficient 

1.5 
8 weeks 

In intact rats 
Ns apparent Ca absorption 
↑ apparent Ca absorption in vitamin D-deficient 
rats 
 
In OVX rats 
↑ apparent Ca absorption (higher effect in 
vitamin D-deficient rats) 

Intact  or OVX Sprague-Dawley rats (64 females, 6 week-old, vitamin D 
deficient or not) 
AAS 

(Mitamura & Hara, 
2006)(451) 

Inulin  (Raftaline, Orafti) 7.5 
3 weeks 

 
-↑ true Cu and Zn absorption 
lower effect in 10 and 20 month-old animals vs 
those aged 2 and 5 month-old 
 

Wistar rats (18 males 
- 2 month-old 
-5 month-old 
-10 month-old 
-20 month-old 
 
Cu65  Zn67 method, AAS 
ICPMS 

(Coudray et al., 
2006)(467) 

-Inulin long – chain 
(Cosucra) or 
-Inulin short – chain 
(Cosucra) 
- Chicory (Cosucra) 

7.5 
 
 
 
3 months 

↑ apparent Ca absorption (1 month) 
Ns 3 month 
 

Growing Wistar rats (40 males, 3 month-old) AAS (Demigne et al., 
2008)(455) 

Inulin (Orafti) 10 
2 weeks 

↑ Mg absorption C57B16J mice (24 males, 4 month-old) 
AAS 

(Rondon et al., 
2008)(457) 

-GR inulin (Orafti) 
 
-Artichoke inulin 
-  ITF-MIX 
-Artichoke + P95 oligofructose 

0.1 
(0.82g/d human 
equivalent dose) 
 
 
75 d 

-Ns on calcemia level 
 
-↑ calcemia 
-Ns on calcemia level 
-Ns on calcemia level 
 

Growing  Sprague-Dawley rats (36 females, 6 week-old) 
Colorimetric assay 

(Azorin-Ortuno, 
2009)(468) 

-SO (soybean oil) +   ITF-MIX 
 
- SO + Fish oil +  ITF-MIX 
 

15 + 10.87 
 
 
15  +11.5 + 10.87 
15 d 

↑ apparent Ca absorption 
 
 
↑ apparent Ca absorption (higher effect) 
 

Growing  Wistar rats (24 males rats, 6 week-old) 
AAS 
 

(Lobo et al., 2009)(456) 

Inulin HPX (Orafti) 2.5 
5 d 

Ns apparent Ca absorption Wistar rats (24 males, 6 week-old) 
AAS 

(Klobukowski et al., 
2009)(469) 

FOS 
FOS + PA (phytic acid) 
(Shandong Zibo Jiyun 
Biotechnology) 

0.08 or 0.25 
0.08 + 1 or 0.25 + 1 
4 weeks 

FOS↑ apparent Ca, Mg and Fe absorption and 
counteract the deleterious effects of PA 
 
 

Kung-Ming mice (60  males, 4 week-old) 
AAS 

(Wang et al., 2009) 
(with mice)(470) 
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AAS: Atomic absorption spectrometry  
Ca balance: 4-7 days balance period (I, F, U using metabolic cages) % Ca45 absorption: % Ca45 oral dose / % Ca45  IP dose x 100 
 
Fractional Ca absorption:  Ca47 , Sc49  ratio (I – F) 
GOS: Galactooligosaccharides 
ICPMS: Inductively coupled plasma mass spectrometry 
Net retention: Ca intake (I) – [Ca fecal excretion (F) + Ca urinary excretion (U)] 
TOS: Transgalactosylated oligosaccharides 
True intestinal Ca absorption: (Ca45 Ca44 ) = (I – F)+ f (endogenous net Ca excretion) 
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 Table 15: The prebiotic effects on mineral absorption in the human 
 

 

Substance Amount (g/d) 
length of 

treatment (n) 

Mineral absorption Study design  
Subjects (n) 

Reference 

Sc Inulin (infant formula) 0.75, 1 or 1.25 Ns apparent Ca absorption 
(↑ apparent and net iron retention with 1g/d) 

(↑ apparent and net Mg retention with O.75 & 1. 25g/d) 

R study 
Formula-fed Infants (6-12 month-old) (36) 

AAS 

(Yap et al., 
2005)(268) 

Oligofructose (Raftilose P95, 
Orafti) 

15 
9 days 

↑ true fractional Ca  absorption R, DB, CO study 
Male adolescents (24) 

Kinetic technique (Ca44, Ca48) 

ICPMS 

(Van den Heuvel et 
al., 1999a)(269) 

Oligofructose (Raftilose P95, 
Orafti) or 

Sc-FOS + ITF-MIX 

8 
3 weeks 

Ns with oligofructose 
↑ true Ca absorption with Synergy 1 

DB, CO study 
Young Girls (29) 

Kinetic technique (Ca46, Ca42) 

TIMMS 

(Griffin et al., 
2002)(270) 

Sc-FOS +  
ITF-MIX 

8 
3 weeks 

↑ true Ca absorption R, CO study 
 Young girls (54) 

Kinetic technique (Ca46, Ca42) 

TIMMS 

(Griffin et al., 
2003)(271) 

Sc-FOS +   
ITF-MIX 

8 
1 year 

↑ fractional Ca absorption DB study 
Male & female adolescents (48) 

Kinetic technique (Ca46, Ca42) 

TIMMS 

(Abrams et al., 
2005b)(273) 

Sc-FOS +  
ITF-MIX 

8 
1 year 

↑ true fractional Ca  absorption 
(32 responders & 16 non-responders) 

 

DB, PC, Sex stratification study 
Male and female adolescents (48) 

Kinetic technique (Ca46, Ca42) 

TIMMS 

(Abrams et al., 
2007b)(275) 

Sc-FOS 
(Actilight, Beghin Meiji) 

10 
37 days 

Ns true fractional Ca absorption 
(↑ true Mg  absorption) 

R, DB, CO study  
 Adolescent girls (14) 

Low Ca intake 
(Ca44, Ca48) ICPMS 

(Van den Heuvel et 
al., 2009)(272) 

Inulin (Chicory roots) 40 
28 days 

↑ apparent Ca 
absorption 

3x3 Latin square 
Young men (9) 

AAS 

(Coudray et al., 
1997)(276) 

Inulin (Raftiline ST, Orafti) 
OF (Raftilose P95, Orafti) 

17 
3 days 

Ns mineral (Ca, Mg, Zn, Fe) excretion because of ileostomy DB, CO study ileostomised patients (5 men 
and 5 women) 

AAS 

(Ellegard et al., 
1997)(292) 

Inulin, FOS, or GOS (Orafti) 15 
21 days 

Ns true fractional Ca or iron absorption 
(Methodologic concern : analysis after 24h urines) 

DB, CO study 
Young men (12) 

Kinetic technique (Ca44, Ca48) 

ICPMS 
 

(Van den Heuvel et 
al., 1998)(277) 

Inulin (Raftiline, Orafti) + Ca 
(210 mg/d) 

15 
5 days 

Ns urinary Ca excretion 
(lower iPTH lower later increase in Ca absorption) 

R, DB, CO study 
Young woman (50) 

AAS 
IRMA 

(Teuri et al., 
1999)(278) 
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AAS: Atomic Absorption Spectrometry 
Fractional Ca: (Ca44, Ca43) ) ratio ; (Ca46, Ca42 )  ratio 
ICPMS: Inductively Coupled Plasma Mass Spectrometry 
R, randomized; DB, double-blind, PC, Placebo Control; CO, crossover 
TIMMS: Thermal Ionisation Magnetic sector Mass Spectrometry 
 

Shoyu polysaccharides 
(SPS) 

0.6 
4 weeks 

↑ in plasma  iron in the SPS group R, DB, PC parallel  study 
Young woman (45) 

AAS 

(Kobayashi   et al., 
2006)(308) 

FOS (Ebro-Puleva) in milk 0.75g/100ml 
1d 

Ns true fractional Ca absorption R, DB, CO study 
Young men (8) and women (7) 
Kinetic technique (Ca44, Ca42) 

ICPMS 

(Lopez-Huertas et 
al., 2006)(279) 

Sc-FOS +   
ITF-MIX 

8 
8 weeks 

↑ true fractional Ca absorption 
(responders /non responders) 

Colonic absorption 

Young adults (13) 
Kinetic technique (Ca42, Ca46) 

TIMMS 
 

(Abrams et al., 
2007a)(280) 

Lactulose 5 or 10 
9 days 

Ns true fractional Ca absorption with 5g/d 
↑ true Ca absorption with 

10g/d 

R, DB, CO study 
POM (12) 

Kinetic technique (Ca44, Ca48) 

ICPMS 

(Van den Heuvel et 
al., 1999b)(284) 

Transgalactooligosaccharide 
TOS (Elix’or) 

20 
9 days 

↑ true Ca absorption R, DB, CO study 
POM (12) Kinetic technique (Ca44, Ca48) 

ICPMS 

(Van den Heuvel et 
al., 2000)(285) 

Sc FOS (Beghin-Say) 10 
35 days 

↑ Mg absorption, accompanied by an ↑ in plasma  Mg25 and higher Mg 
excretion 

R, DB, CO study 
POM (12) Kinetic technique (Mg25) 

ICPMS 

(Tahiri et al., 
2001)(282) 

Sc FOS (Beghin-Say) 10 
35 days 

-Ns true Ca absorption 
-Trend for 

↑ in women > 6 yr POM subgroup 

R, DB, CO study 
POM (12) Kinetic technique (Ca44) 

ICPMS 

(Tahiri et al., 
2003)(283) 

Chicory fructan fiber (Cosucra) 8 
3 months 

↑ apparent Ca absorption 
↑ apparent iron absorption 

DB parallel design 
POM (13) 

AAS 

(Kim et al., 
2004)(287) 

Sc FOS (Actilight, Beghin-Say) 10 
35 days 

↑ Cu absorption 
No effect on ZN and Se 

R, DB, CO study 
POM (12) 

Kinetic technique (Cu65 Zn67 Se74) 

ICPMS 

(Ducros et al., 
2005)(281) 

Sc-FOS +  
ITF-MIX 

10 
6 weeks 

↑ fractional Ca absorption R, DB, PC, CO study 
POM (50) 

Kinetic technique (Ca46, Ca42) 

ICPMS 

(Holloway et al., 
2007)(288) 

Sc-FOS +   
ITF-MIX 

+ Ca + CPP + fermented milk 

1.75g/cup 
14 days 

-↑ intestinal Ca absorption 
with Synergy 1 + Ca + CPP 

 
 

Parallel DB, PC study 
POM (85) 

HPLC 
Colorimetric assay (Kone) 

(Adolphi et al., 
2009)(286) 
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Table 16: The prebiotic effects on human bone health 
 
 

MD: Bone Mineral Density, BMC: Bone Mineral Content, PP: Caseinophosphopetide, DPD: Deoxypyridinoline, ELISA: Enzyme-Linked Immunosorbent Assay, IRMA: Immunoradiometric assay 
OC: Osteocalcin, POM: Postmenopausal women, PTH: Parathormone, RIA: Radioimmunoassay

Substance Amount 
g/d 

length of treatment (n) 

Bone Effect Study design  
Subjects (n) 

Method analysis 

References 

Sc-FOS +  ITF-MIX 8 
1 year 

↑ BMC 
↑ BMD 

DB, PC, Sex stratification study 
Male and female adolescents (48) 

DEXA 

(Abrams et al., 
2005b)(273) 

Sc-FOS +  ITF-MIX 8 
1 year 

Higher Ca accretion in responders (Ca absorption ↑ by at 
least 3%) 

 

DB, PC, Sex stratification study 
Adolescents (48) 

32 responders & 16 non-responders 
DEXA 

(Abrams et al., 
2007b)(275) 

 

Sc-FOS 
(Actilight, Beghin Meiji) 

10 
37 days 

Ns bone resorption 
(DPD) 

Ns PTH 
Ns Vitamin D 

R, DB, CO study  
Adolescent (40) 

HPLC 
 

(Van den Heuvel et 
al., 2009)(272) 

Inulin (Raftiline, Orafti) + Ca 
(210 mg/d) 

15 
5 days 

Ns PTH R, DB, CO study 
Young woman (50) 

IRMA 
 

(Teuri et al., 
1999)(278) 

Sc FOS (Beghin-Say) 10 
35 days 

Ns bone turnover (OC-DPD) 
1,25(OH)2D  in early POM subgroup 

R, DB, CO study 
POM (12) 

Kinetic technique (Ca44) 

ICPMS, RIA 

(Tahiri et al., 
2003)(283) 

Chicory fructan fiber (Cosucra) 8 
3 months 

Ns lumbar spine or femoral neck BMD (short term study) 
Ns bone turnover markers 

Trend to  DPD 

DB parallel study 
POM (13) 

DEXA, IRMA, ELISA 

(Kim et al., 
2004)(287) 

Sc-FOS +  ITF-MIX 10 
6 weeks 

 

↑ Bone turnover 
(OC-DPD) 

R, DB, PC, CO design 
POM (50) 

IRMA –ELISA 

(Holloway et al., 
2007)(288) 

Isoflavones + prebiotics or 
Isoflavones +sc FOS (Actilight, 

Beghin-Meiji) 

7 
30 days 

 

Ns bone formation (b-ALP) 
bone resorption (DPD) compared to when isoflavones 

are given alone 
Higher effects in early POM vs late POM 

 

Parallel DB, PC study  
POM (39) 
IRMA-RIA 

(Mathey et al., 
2008)(471) 

Sc-FOS +  ITF-MIX 
 

ITF-MIX + Ca + CPP + fermented 
milk 

1.75g/cup 
14 days 

Fermented milk nocturnal bone turnover ( DPD) 
Additional effect of Synergy 1 + Ca + CPP 

Parallel DB, PC study 
POM (85) 

HPLC 

(Adolphi et al., 
2009)(286) 

Inulin (Fruitifit Sensus Inc) 15 
3 weeks 

Ns bone resorption (urinary NTx) DB, CO study 
Institutionalized adults (less than 60 year-old) (15) 

ELISA 

(Dahl  et al., 
2005)(289) 
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Table 17. Experimental data supporting the prebiotic effects on body weight and fat mass development   
 
 

Animal model Study  design 
 

Results Reference 

Male Wistar rats 10% FOS or GOS – 50d BW gain (NS) (472) 
Male obese Zucker rats 10% FOS – 7 wk BW gain (473) 
Male Wistar rats 10% FOS – 3 wk daily BW gain =  (474) 
Male obese Zucker rats 10% fructan (ITF-MIX) – 8 wk BW gain (475) 
Male Wistar-Han rats fed either high fructose 
diet or starch-based diet 

10% FOS – 4 wk BW gain (NS) 
 

(476) 

Male Wistar rats 10% FOS or FOS+inulin  or inulin alone  – 3 wk BW gain (NS) 
EAT for FOS and inulin  

(477) 

Male Wistar rats fed a HF–HC diet pretreatment with standard diet or FOS-enriched (10%) 
standard diet for 35 d followed by 15 d of HF-HC diet with 
or without FOS (10%)  

BW gain 
EAT 

(478)  

Male Wistar rats 5% high and low-molecular inulin versus 5% cellulose– 4 
wk  

BW gain =  
 

(479) 

Male C57Bl/6J mice fed a HF– carbohydrate 
free diet 

10% FOS – 4 wk BW gain 
EAT 

(480) 

Male Wistar rats 5% or 10% inulin – 4wk final BW (NS)  (481) 
Male C57Bl/6J mice fed a HF–carbohydrate 
free diet 

10% FOS – 4 wk BW gain 
EAT 

(482) 

Male C57Bl/6J mice fed a HF–HC diet 10% FOS – 4 wk BW gain (NS) 
EAT =  

(483) 

Male Wistar rats fed a HF and HC diet 5 % inulin – 8 wk final BW (484) 
Male Wistar rats 10% FOS – 4 wk BW gain  

EAT, IAT, VAT  
(485) 

Male C57Bl/6J mice fed a HF–carbohydrate 
free diet 

10% FOS – 14 wk BW gain 
EAT, VAT, SAT 

(486) 

Male obese (cp/cp) James C Russell corpulent 
rats 

9 % inulin – 3 wk final BW (487) 

Male C57Bl/6J mice 10% FOS  or  inulin-type fructans from Agavae - 5 wk BW gain 
EAT for fructans from Agave tequilana Gto 

(488) 

Female Sprague–Dawley rats 5% inulin + 5% cellulose versus 10% cellulose – 4 and 8 
wk 

BW gain (NS) 
whole body fat mass 

(489) 

Male obese ob/ob mice 10% FOS – 5 wk EAT, VAT, SAT (490) 
 
BW, body weight; d, days; EAT, epididymal adipose tissue; FOS, fructo-oligosaccharides; GOS, galacto-oligosaccharides; HC, high carbohydrate; HF, high fat; IAT, inguinal adipose tissue; NS, not 
significant; SAT, subcutaneous adipose tissue; VAT, visceral adipose tissue; wk, weeks.     
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Figure 1: Schematic representation of gut microbiota 1330 

Major phylla and genera are located on a logarithmic scale as N° of CFU/g of faeces. Genera on the left site 1331 

are likely to be potentially harmful whereas those on the right site are potentially beneficial to health. Those 1332 

that sit both on the left site and the right site either contain species that are potentially harmful and species 1333 

that are potentially beneficial to health or contain genera/species that still need to be classified. Indeed many 1334 

of these have only recently been identified in the gut microbiota and their activity(ies) is/are still largely 1335 

unknown.   1336 
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