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Abstract We consider the minimization of a sum
Pm
i=1 fi(x) consisting of a large

number of convex component functions fi. For this problem, incremental meth-
ods consisting of gradient or subgradient iterations applied to single components
have proved very effective. We propose new incremental methods, consisting of
proximal iterations applied to single components, as well as combinations of gra-
dient, subgradient, and proximal iterations. We provide a convergence and rate
of convergence analysis of a variety of such methods, including some that involve
randomization in the selection of components. We also discuss applications in a
few contexts, including signal processing and inference/machine learning.
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1 Introduction

In this paper we focus on problems of minimization of a cost consisting of a large
number of component functions, such as

minimize
mX
i=1

fi(x)

subject to x ∈ X, (1)

where fi : <n 7→ <, i = 1, . . . ,m, are convex, and X is a closed convex set.1

When m, the number of component functions, is very large there is an incentive to
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use incremental methods that operate on a single component fi at each iteration,
rather than on the entire cost function. If each incremental iteration tends to make
reasonable progress in some “average” sense, then depending on the value of m,
an incremental method may significantly outperform (by orders of magnitude) its
nonincremental counterpart, as experience has shown.

Additive cost problems of the form (1) arise in many contexts such as dual
optimization of separable problems, machine learning (regularized least squares,
maximum likelihood estimation, the EM algorithm, neural network training), and
others (e.g., distributed estimation, the Fermat-Weber problem in location theory,
etc). They also arise in the minimization of an expected value that depends on
x and some random vector; then the sum

Pm
i=1 fi(x) is either an expected value

with respect to a discrete distribution, as for example in stochastic programming,
or is a finite sample approximation to an expected value. The author’s paper [16]
surveys applications that are well-suited for the incremental approach. In the case
where the components fi are differentiable, incremental gradient methods take the
form

xk+1 = PX
`
xk − αk∇fik(xk)

´
, (2)

where αk is a positive stepsize, PX(·) denotes projection on X, and ik is the in-
dex of the cost component that is iterated on. Such methods have a long history,
particularly for the unconstrained case (X = <n), starting with the Widrow-Hoff
least mean squares (LMS) method [58] for positive semidefinite quadratic compo-
nent functions (see e.g., [35], [7], Section 3.2.5). For nonquadratic cost components,
such methods have been used extensively for the training of neural networks under
the generic name “backpropagation methods.” There are several variants of these
methods, which differ in the stepsize selection scheme, and the order in which
components are taken up for iteration (it could be deterministic or randomized).
They are related to gradient methods with errors in the calculation of the gra-
dient, and are supported by convergence analyses under various conditions; see
Luo [35], Grippo [26], [27], Luo and Tseng [34], Mangasarian and Solodov [36],
Bertsekas [12], [13], Solodov [54], Tseng [55]. An alternative method that also
computes the gradient incrementally, one component per iteration, is proposed by
Blatt, Hero, and Gauchman [1]. Stochastic versions of these methods also have a
long history, and are strongly connected with stochastic approximation methods.
The main difference between stochastic and deterministic formulations is that the
former involve sampling a sequence of cost components from an infinite population
under some statistical assumptions, while in the latter the set of cost components
is predetermined and finite.

Incremental gradient methods typically have a slow asymptotic convergence
rate not only because they are first order gradient-like methods, but also because
they require a diminishing stepsize [such as αk = O(1/k)] for convergence. If αk
is instead taken to be constant, an oscillation whose size depends on ak typically
arises, as shown by [35]. These characteristics are unavoidable in incremental meth-
ods, and are typical of all the methods to be discussed in this paper. However,
because of their frequently fast initial convergence rate, incremental methods are

denotes transposition, so x′x = ‖x‖2. Throughout the paper we will be using standard termi-
nology of convex optimization, as given for example in textbooks such as Rockafellar’s [50], or
the author’s recent book [15].
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often favored for large problems where great solution accuracy is not of paramount
importance (see [14] and [16] for heuristic arguments supporting this assertion).

Incremental subgradient methods apply to the case where the component func-
tions fi are convex and nondifferentiable. They are similar to their gradient coun-
terparts (2) except that an arbitrary subgradient ∇̃fik(xk) of the cost component
fik is used in place of the gradient:2

xk+1 = PX
`
xk − αk∇̃fik(xk)

´
. (3)

Such methods were proposed in the Soviet Union by Kibardin [30], following the
earlier paper by Litvakov [33] (which considered convex nondifferentiable exten-
sions of linear least squares problems) and other related subsequent proposals.
These works remained unnoticed in the Western literature, where incremental
methods were reinvented often in different contexts and with different lines of
analysis; see Solodov and Zavriev [53], Ben-Tal, Margalit, and Nemirovski [4],
Nedić and Bertsekas [39], [40], [41], Nedić, Bertsekas, and Borkar [38], Kiwiel [31],
Rabbat and Nowak [48], [49], Shalev-Shwartz et. al. [52], Johansson, Rabi, and
Johansson [29], Helou and De Pierro [28], Predd, Kulkarni, and Poor [44], and
Ram, Nedić, and Veeravalli [46], [47]. Incremental subgradient methods have con-
vergence properties that are similar in many ways to their gradient counterparts,
the most important similarity being the necessity of a diminishing stepsize αk for
convergence. The lines of analysis, however, tend to be different, since incremental
gradient methods rely for convergence on the decrease of the cost function value,
while incremental gradient methods rely on the decrease of the iterates’ distance
to the optimal solution set. The line of analysis of the present paper is of the latter
type, similar to earlier works of the author and his collaborators (see [39], [40], [38],
and the textbook presentation in [5]).

In this paper, we propose and analyze for the first time incremental methods
that relate to proximal algorithms. The simplest one for problem (1) is of the form

xk+1 = arg min
x∈X


fik(x) +

1

2αk
‖x− xk‖2

ff
, (4)

which bears the same relation to the proximal minimization algorithm (Martinet
[37], Rockafellar [51]) as the incremental subgradient method (3) bears to the
classical subgradient method.3 Here {αk} is a positive scalar sequence, and we
assume that each fi : <n 7→ < is a convex function and X is a closed convex set. The
motivation for this method is that with a favorable structure of the components,
the proximal iteration (3) may be obtained in closed form or be relatively simple,
in which case it may be preferable to a gradient or subgradient iteration. In this
connection, we note that generally, proximal iterations are considered more stable
than gradient iterations; for example in the nonincremental case, they converge
essentially for any choice of αk, but this is not so for gradient methods.

2 In this paper, we use ∇̃f(x) to denote a subgradient of a convex function f at a vector x.

The choice of ∇̃f(x) from within ∂f(x) is clear from the context.
3 In this paper we restrict attention to proximal methods with the quadratic regularization

term ‖x − xk‖2. Our approach is applicable in principle when a nonquadratic term is used
instead in order to match the structure of the given problem. The discussion of such alternative
algorithms is beyond our scope, but the analysis of this paper may serve as a guide for their
investigation.



4 Bertsekas

While some cost function components may be well suited for a proximal it-
eration, others may not be, so it makes sense to consider combinations of gradi-
ent/subgradient and proximal iterations. In fact nonincremental combinations of
gradient and proximal methods for minimizing the sum of two functions f and
h (or more generally, finding a zero of the sum of two nonlinear operators) have
a long history, dating to the splitting algorithms of Lions and Mercier [32], and
Passty [45], and have become popular recently (see Beck and Teboulle [9], [10], and
the references they give to specialized algorithms, such as shrinkage/thresholding,
cf. Section 5.1).

In this paper we adopt a unified analytical framework that includes incre-
mental gradient, subgradient, and proximal methods, and their combinations, and
highlights their common behavior. In particular, we consider the problem

minimize F (x)
def
=

mX
i=1

Fi(x)

subject to x ∈ X, (5)

where for all i, Fi is of the form

Fi(x) = fi(x) + hi(x), (6)

fi : <n 7→ < and hi : <n 7→ < are real-valued convex (and hence continuous)
functions, and X is a nonempty closed convex set. We implicitly assume here that
the functions fi are suitable for a proximal iteration, while the functions hi are
not and thus may be preferably treated with a subgradient iteration.

One of our algorithms has the form

zk = arg min
x∈X


fik(x) +

1

2αk
‖x− xk‖2

ff
, (7)

xk+1 = PX
`
zk − αk∇̃hik(zk)

´
, (8)

where ∇̃hik(zk) is an arbitrary subgradient of hik at zk. Note that the iteration
is well-defined because the minimum in Eq. (7) is uniquely attained since fi is
continuous and ‖x − xk‖2 is real-valued, strictly convex, and coercive, while the
subdifferential ∂hi(zk) is nonempty since hi is real-valued. Note also that by choos-
ing all the fi or all the hi to be identically zero, we obtain as special cases the
subgradient and proximal iterations (3) and (4), respectively.

Both iterations (7) and (8) maintain the sequences {zk} and {xk} within the
constraint set X, but it may be convenient to relax this constraint for either
the proximal or the subgradient iteration, thereby requiring a potentially simpler
computation. This leads to the algorithm

zk = arg min
x∈<n


fik(x) +

1

2αk
‖x− xk‖2

ff
, (9)

xk+1 = PX
`
zk − αk∇̃hik(zk)

´
, (10)

where the restriction x ∈ X has been omitted from the proximal iteration, and the
algorithm

zk = xk − αk∇̃hik(xk), (11)
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xk+1 = arg min
x∈X


fik(x) +

1

2αk
‖x− zk‖2

ff
, (12)

where the projection onto X has been omitted from the subgradient iteration. It
is also possible to use different stepsize sequences in the proximal and subgradient
iterations, but for notational simplicity we will not discuss this type of algorithm.
Still another possibility is to replace hik by a linear approximation in an incre-
mental proximal iteration that also involves fik . This leads to the algorithm

xk+1 = arg min
x∈X


fik(x) + hik(xk) + ∇̃hik(xk)′(x− xk) +

1

2αk
‖x− xk‖2

ff
, (13)

which also yields as special cases the subgradient and proximal iterations (3) and
(4), when all the fi or all the hi are identically zero, respectively.

All of the incremental proximal algorithms given above are new to our knowl-
edge. The closest connection to the existing proximal methods literature is the dif-
ferentiable nonincremental case of the algorithm (13) (hi is differentiable, possibly
nonconvex, with Lipschitz continuous gradient, and m = 1), which has been called
the “proximal gradient” method, and has been analyzed and discussed recently in
the context of several machine learning applications by Beck and Teboulle [9], [10]
(it can also be interpreted in terms of splitting algorithms [32], [45]). We note that
contrary to subgradient and incremental methods, the proximal gradient method
does not require a diminishing stepsize for convergence to the optimum. In fact,
the line of convergence analysis of Beck and Teboulle relies on the differentiability
of hi and the nonincremental character of the proximal gradient method, and is
thus different from ours.

Aside from the introduction of a unified incremental framework within which
proximal and subgradient methods can be embedded and combined, the purpose
of the paper is to establish the convergence properties of the incremental methods
(7)-(8), (9)-(10), (11)-(12), and (13). This includes convergence within a certain
error bound for a constant stepsize, exact convergence to an optimal solution for
an appropriately diminishing stepsize, and improved convergence rate/iteration
complexity when randomization is used to select the cost component for iteration.
In Section 2, we show that proximal iterations bear a close relation to subgradient
iterations, and we use this relation to write our methods in a form that is conve-
nient for the convergence analysis. In Section 3 we discuss convergence with a cyclic
rule for component selection. In Section 4, we discuss a randomized component
selection rule and we demonstrate a more favorable convergence rate estimate over
the cyclic rule, as well as over the classical nonincremental subgradient method.
In Section 5 we discuss some applications.

2 Incremental Subgradient-Proximal Methods

We first show some preliminary properties of the proximal iteration in the following
proposition. These properties have been commonly used in the literature, but for
convenience of exposition, we collect them here in the form we need them. Part
(a) provides a key fact about incremental proximal iterations. It shows that they
are closely related to incremental subgradient iterations, with the only difference
being that the subgradient is evaluated at the end point of the iteration rather
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than at the start point. Part (b) of the proposition provides an inequality that is
useful for our convergence analysis. In the following, we denote by ri(S) the relative
interior of a convex set S, and by dom(f) the effective domain

˘
x | f(x) < ∞

¯
of

a function f : <n 7→ (−∞,∞].

Proposition 1 Let X be a nonempty closed convex set, and let f : <n 7→ (−∞,∞] be

a closed proper convex function such that ri(X) ∩ ri
`
dom(f)

´
6= ∅. For any xk ∈ <n

and αk > 0, consider the proximal iteration

xk+1 = arg min
x∈X


f(x) +

1

2αk
‖x− xk‖2

ff
. (14)

(a) The iteration can be written as

xk+1 = PX
`
xk − αk∇̃f(xk+1)

´
, i = 1, . . . ,m, (15)

where ∇̃f(xk+1) is some subgradient of f at xk+1.

(b) For all y ∈ X, we have

‖xk+1 − y‖2 ≤ ‖xk − y‖2 − 2αk
`
f(xk+1)− f(y)

´
− ‖xk − xk+1‖2

≤ ‖xk − y‖2 − 2αk
`
f(xk+1)− f(y)

´
. (16)

Proof (a) We use the formula for the subdifferential of the sum of the three func-
tions f , (1/2αk)‖x−xk‖2, and the indicator function of X (cf. Prop. 5.4.6 of [15]),
together with the condition that 0 should belong to this subdifferential at the
optimum xk+1. We obtain that Eq. (14) holds if and only if

1

αk
(xk − xk+1) ∈ ∂f(xk+1) +NX(xk+1), (17)

where NX(xk+1) is the normal cone of X at xk+1 [the set of vectors y such that
y′(x−xk+1) ≤ 0 for all x ∈ X, and also the subdifferential of the indicator function
of X at xk+1; see [15], p. 185]. This is true if and only if

xk − xk+1 − αk∇̃f(xk+1) ∈ NX(xk+1),

for some ∇̃f(xk+1) ∈ ∂f(xk+1), which in turn is true if and only if Eq. (15) holds,
by the projection theorem.

(b) By writing ‖xk − y‖2 as ‖xk − xk+1 + xk+1 − y‖2 and expanding, we have

‖xk − y‖2 = ‖xk − xk+1‖2 − 2(xk − xk+1)′(y − xk+1) + ‖xk+1 − y‖2. (18)

Also since from Eq. (17), 1
αk

(xk − xk+1) is a subgradient at xk+1 of the sum of f
and the indicator function of X, we have (using also the assumption y ∈ X)

f(xk+1) +
1

αk
(xk − xk+1)′(y − xk+1) ≤ f(y).

Combining this relation with Eq. (18), the result follows. ut

Based on part (a) of the preceding proposition, we see that all the iterations
(7)-(8), (9)-(10), and (13) can be written in an incremental subgradient format:
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(a) Iteration (7)-(8) can be written as

zk = PX
`
xk − αk∇̃fik(zk)

´
, xk+1 = PX

`
zk − αk∇̃hik(zk)

´
, (19)

(b) Iteration (9)-(10) can be written as

zk = xk − αk∇̃fik(zk), xk+1 = PX
`
zk − αk∇̃hik(zk)

´
, (20)

(c) Iteration (11)-(12) can be written as

zk = xk − αk∇̃hik(xk), xk+1 = PX
`
zk − αk∇̃fik(xk+1)

´
. (21)

Using Prop. 1(a), we see that iteration (13) can be written into the form (21),
so we will not consider it further. To show this, note that by Prop. 1(b) with

f(x) = fik(x) + hik(xk) + ∇̃hik(xk)′(x− xk),

we may write iteration (13) in the form

xk+1 = PX
`
xk − αk∇̃fik(xk+1)− αk∇̃hik(xk)

´
,

which is just iteration (21). Note that in all the preceding updates, the subgradient
∇̃hik can be any vector in the subdifferential of hik , while the subgradient ∇̃fik
must be a specific vector in the subdifferential of fik , specified according to Prop.
1(a). Note also that iteration (20) can be written as

xk+1 = PX
`
xk − αk∇̃Fik(zk)

´
,

and resembles the incremental subgradient method for minimizing over X the cost
function

F (x) =
mX
i=1

Fi(x) =
mX
i=1

`
fi(x) + hi(x)

´
[cf. Eq. (5)], the only difference being that the subgradient of Fik is taken at zk
rather than xk.

For a convergence analysis, we need to specify the order in which the compo-
nents {fi, hi} are chosen for iteration. We consider two possibilities:

(1) A cyclic order , whereby {fi, hi} are taken up in the fixed deterministic order
1, . . . ,m, so that ik is equal to (k modulo m) plus 1. A contiguous block of iter-
ations involving {f1, h1}, . . . , {fm, hm} in this order and exactly once is called
a cycle. We assume that the stepsize αk is constant within a cycle (for all k
with ik = 1 we have αk = αk+1 = · · · = αk+m−1).

(2) A randomized order , whereby at each iteration a component pair {fi, hi} is
chosen randomly by sampling over all component pairs with a uniform distri-
bution, independently of the past history of the algorithm.4

4 Another technique for incremental methods, popular in neural network training practice,
is to reshuffle randomly the order of the component functions after each cycle. This alternative
order selection scheme leads to convergence, like the preceding two. Moreover, this scheme has
the nice property of allocating exactly one computation slot to each component in an m-slot
cycle (m incremental iterations). By comparison, choosing components by uniform sampling
allocates one computation slot to each component on the average, but some components may
not get a slot while others may get more than one. A nonzero variance in the number of
slots that any fixed component gets within a cycle, may be detrimental to performance, and
indicates that reshuffling randomly the order of the component functions after each cycle may
work better; this is consistent with experimental observations shared with the author by B.
Recht (private communication). However, establishing this fact analytically seems difficult,
and remains an open question.
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Note that it is essential to include all components in a cycle in the cyclic case,
and to sample according to the uniform distribution in the randomized case, for
otherwise some components will be sampled more often than others, leading to a
bias in the convergence process. For the remainder of the paper, we denote by F ∗

the optimal value:
F ∗ = inf

x∈X
F (x),

and by X∗ the set of optimal solutions (which could be empty):

X∗ =
˘
x∗ | x∗ ∈ X, F (x∗) = F ∗

¯
.

Also, for a nonempty closed convex set X, we denote by dist(·;X) the distance
function given by

dist(x;X) = min
z∈X
‖x− z‖, x ∈ <n.

In our convergence analysis of Section 4, we will use the following well-known
theorem (see e.g., [43], [7]). We will use a simpler deterministic version of the
theorem in Section 3.

Proposition 2 (Supermartingale Convergence Theorem) Let Yk, Zk, and Wk, k =
0, 1, . . ., be three sequences of random variables and let Fk, k = 0, 1, . . ., be sets of

random variables such that Fk ⊂ Fk+1 for all k. Suppose that:

(1) The random variables Yk, Zk, and Wk are nonnegative, and are functions of the

random variables in Fk.

(2) For each k, we have

E
˘
Yk+1 | Fk

¯
≤ Yk − Zk +Wk.

(3) There holds, with probability 1,
P∞
k=0Wk <∞.

Then we have
P∞
k=0 Zk <∞, and the sequence Yk converges to a nonnegative random

variable Y , with probability 1.

3 Convergence Analysis for Methods with Cyclic Order

In this section, we analyze convergence under the cyclic order. We consider a
randomized order in the next section. We focus on the sequence {xk} rather than
{zk}, which need not lie within X in the case of iterations (20) and (21) when
X 6= <n. In summary, the idea that guides the analysis is to show that the effect
of taking subgradients of fi or hi at points near xk (e.g., at zk rather than at xk)
is inconsequential, and diminishes as the stepsize αk becomes smaller, as long as
some subgradients relevant to the algorithms are uniformly bounded in norm by
some constant. In particular, we assume the following throughout this section.

Assumption 1 (For iterations (19) and (20)) There is a constant c ∈ < such that

for all k

max
˘
‖∇̃fik(zk)‖, ‖∇̃hik(zk)‖

¯
≤ c. (22)

Furthermore, for all k that mark the beginning of a cycle (i.e., all k > 0 with ik = 1),

we have for all j = 1, . . . ,m,

max
˘
fj(xk)− fj(zk+j−1), hj(xk)− hj(zk+j−1)

¯
≤ c ‖xk − zk+j−1‖. (23)
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Assumption 2 (For iteration (21)) There is a constant c ∈ < such that for all k

max
˘
‖∇̃fik(xk+1)‖, ‖∇̃hik(xk)‖

¯
≤ c. (24)

Furthermore, for all k that mark the beginning of a cycle (i.e., all k > 0 with ik = 1),

we have for all j = 1, . . . ,m,

max
˘
fj(xk)− fj(xk+j−1), hj(xk)− hj(xk+j−1)

¯
≤ c ‖xk − xk+j−1‖, (25)

fj(xk+j−1)− fj(xk+j) ≤ c ‖xk+j−1 − xk+j‖. (26)

Note that conditions (23) and (25) are satisfied if for each j and k, there is a
subgradient of fj at xk and a subgradient of hj at xk, whose norms are bounded
by c. Conditions that imply the preceding assumptions are that:

(a) For algorithm (19): fi and hi are Lipschitz continuous over X.
(b) For algorithms (20) and (21): fi and hi are Lipschitz continuous over <n.
(c) For all algorithms (19), (20), and (21): fi and hi are polyhedral [this is a special

case of (a) and (b)].
(d) The sequences {xk} and {zk} are bounded [since then fi and hi, being real-

valued and convex, are Lipschitz continuous over any bounded set that contains
{xk} and {zk} (see e.g., [15], Prop. 5.4.2)].

The following proposition provides a key estimate.

Proposition 3 Let {xk} be the sequence generated by any one of the algorithms (19)-

(21), with a cyclic order of component selection. Then for all y ∈ X and all k that

mark the beginning of a cycle (i.e., all k with ik = 1), we have

‖xk+m − y‖2 ≤ ‖xk − y‖2 − 2αk
`
F (xk)− F (y)

´
+ α2

kβm
2c2, (27)

where β = 1
m + 4 in the case of (19) and (20), and β = 5

m + 4 in the case of (21).

Proof We first prove the result for algorithms (19) and (20), and then indicate the
modifications necessary for algorithm (21). Using Prop. 1(b), we have for all y ∈ X
and k,

‖zk − y‖2 ≤ ‖xk − y‖2 − 2αk
`
fik(zk)− fik(y)

´
. (28)

Also, using the nonexpansion property of the projection [i.e.,
‚‚PX(u)− PX(v)

‚‚ ≤
‖u− v‖ for all u, v ∈ <n], the definition of subgradient, and Eq. (22), we obtain for
all y ∈ X and k,

‖xk+1 − y‖2 =
‚‚PX`zk − αk∇̃hik(zk)

´
− y
‚‚2

≤ ‖zk − αk∇̃hik(zk)− y‖2

≤ ‖zk − y‖2 − 2αk∇̃hik(zk)′(zk − y) + α2
k

‚‚∇̃hik(zk)
‚‚2

≤ ‖zk − y‖2 − 2αk
`
hik(zk)− hik(y)

´
+ α2

kc
2. (29)

Combining Eqs. (28) and (29), and using the definition Fj = fj + hj , we have

‖xk+1 − y‖2 ≤ ‖xk − y‖2 − 2αk
`
fik(zk) + hik(zk)− fik(y)− hik(y)

´
+ α2

kc
2

= ‖xk − y‖2 − 2αk
`
Fik(zk)− Fik(y)

´
+ α2

kc
2. (30)
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Let now k mark the beginning of a cycle (i.e., ik = 1). Then at iteration
k+j−1, j = 1, . . . ,m, the selected components are {fj , hj}, in view of the assumed
cyclic order. We may thus replicate the preceding inequality with k replaced by
k + 1, . . . , k +m− 1, and add to obtain

‖xk+m − y‖2 ≤ ‖xk − y‖2 − 2αk

mX
j=1

`
Fj(zk+j−1)− Fj(y)

´
+mα2

kc
2,

or equivalently, since F =
Pm
j=1 Fj ,

‖xk+m − y‖2 ≤ ‖xk − y‖2 − 2αk
`
F (xk)− F (y)

´
+mα2

kc
2

+ 2αk

mX
j=1

`
Fj(xk)− Fj(zk+j−1)

´
. (31)

The remainder of the proof deals with appropriately bounding the last term above.
From Eq. (23), we have for j = 1, . . . ,m,

Fj(xk)− Fj(zk+j−1) ≤ 2c ‖xk − zk+j−1‖. (32)

We also have

‖xk−zk+j−1‖ ≤ ‖xk−xk+1‖+ · · ·+‖xk+j−2−xk+j−1‖+‖xk+j−1−zk+j−1‖, (33)

and by the definition of the algorithms (19) and (20), the nonexpansion property
of the projection, and Eq. (22), each of the terms in the right-hand side above is
bounded by 2αkc, except for the last, which is bounded by αkc. Thus Eq. (33)
yields ‖xk − zk+j−1‖ ≤ αk(2j − 1)c, which together with Eq. (32), shows that

Fj(xk)− Fj(zk+j−1) ≤ 2αkc
2(2j − 1). (34)

Combining Eqs. (31) and (34), we have

‖xk+m − y‖2 ≤ ‖xk − y‖2 − 2αk
`
F (xk)− F (y)

´
+mα2

kc
2 + 4α2

kc
2
mX
j=1

(2j − 1),

and finally

‖xk+m − y‖2 ≤ ‖xk − y‖2 − 2αk
`
F (xk)− F (y)

´
+mα2

kc
2 + 4α2

kc
2m2,

which is of the form (27) with β = 1
m + 4.

For the algorithm (21), a similar argument goes through using Assumption
2. In place of Eq. (28), using the nonexpansion property of the projection, the
definition of subgradient, and Eq. (24), we obtain for all y ∈ X and k ≥ 0,

‖zk − y‖2 ≤ ‖xk − y‖2 − 2αk
`
hik(xk)− hik(y)

´
+ α2

kc
2, (35)

while in place of Eq. (29), using Prop. 1(b), we have

‖xk+1 − y‖2 ≤ ‖zk − y‖2 − 2αk
`
fik(xk+1)− fik(y)

´
. (36)
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Combining these equations, in analogy with Eq. (30), we obtain

‖xk+1 − y‖2 ≤ ‖xk − y‖2 − 2αk
`
fik(xk+1) + hik(xk)− fik(y)− hik(y)

´
+ α2

kc
2

= ‖xk − y‖2 − 2αk
`
Fik(xk)− Fik(y)

´
+ α2

kc
2 + 2αk

`
fik(xk)− fik(xk+1)

´
. (37)

As earlier, we let k mark the beginning of a cycle (i.e., ik = 1). We replicate
the preceding inequality with k replaced by k+ 1, . . . , k+m−1, and add to obtain
[in analogy with Eq. (31)]

‖xk+m − y‖2 ≤ ‖xk − y‖2 − 2αk
`
F (xk)− F (y)

´
+mα2

kc
2

+ 2αk

mX
j=1

`
Fj(xk)− Fj(xk+j−1)

´
+ 2αk

mX
j=1

`
fj(xk+j−1)− fj(xk+j)

´
. (38)

[Note that relative to Eq. (31), the preceding equation contains an extra last term,
which results from a corresponding extra term in Eq. (37) relative to Eq. (30). This
accounts for the difference in the value of β in the statement of the proposition.]

We now bound the two sums in Eq. (38), using Assumption 2. From Eq. (25),
we have

Fj(xk)−Fj(xk+j−1) ≤ 2c‖xk−xk+j−1‖ ≤ 2c
`
‖xk−xk+1‖+· · ·+‖xk+j−2−xk+j−1‖

´
,

and since by Eq. (24) and the definition of the algorithm, each of the norm terms
in the right-hand side above is bounded by 2αkc,

Fj(xk)− Fj(xk+j−1) ≤ 4αkc
2(j − 1).

Also from Eqs. (24) and (47), and the nonexpansion property of the projection,
we have

fj(xk+j−1)− fj(xk+j) ≤ c ‖xk+j−1 − xk+j‖ ≤ 2αkc
2.

Combining the preceding relations and adding, we obtain

2αk

mX
j=1

`
Fj(xk)− Fj(xk+j−1)

´
+ 2αk

mX
j=1

`
fj(xk+j−1)− fj(xk+j)

´
≤ 8α2

kc
2
mX
j=1

(j − 1) + 4α2
kc

2m

= 4α2
kc

2m2 + 4α2
kc

2m =

„
4 +

4

m

«
α2
kc

2m2,

which together with Eq. (38), yields Eq. (27) with β = 4 + 5
m . ut

Among other things, Prop. 3 guarantees that with a cyclic order, given the
iterate xk at the start of a cycle and any point y ∈ X having lower cost than xk, the
algorithm yields a point xk+m at the end of the cycle that will be closer to y than
xk, provided the stepsize αk is sufficiently small [less than 2

`
F (xk)−F (y)

´
/βm2c2].

In particular, for any ε > 0 and assuming that there exists an optimal solution x∗,

either we are within αkβm
2c2

2 + ε of the optimal value,

F (xk) ≤ F (x∗) +
αkβm

2c2

2
+ ε,
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or else the squared distance to x∗ will be strictly decreased by at least 2αkε,

‖xk+m − x∗‖2 < ‖xk − x∗‖2 − 2αkε.

Thus, using this argument, we can provide convergence results for various stepsize
rules, and this is done in the next two subsections.

3.1 Convergence Within an Error Bound for a Constant Stepsize

For a constant stepsize (αk ≡ α), convergence can be established to a neighborhood
of the optimum, which shrinks to 0 as α → 0. We show this in the following
proposition.

Proposition 4 Let {xk} be the sequence generated by any one of the algorithms (19)-

(21), with a cyclic order of component selection, and let the stepsize αk be fixed at

some positive constant α.

(a) If F ∗ = −∞, then

lim inf
k→∞

F (xk) = F ∗.

(b) If F ∗ > −∞, then

lim inf
k→∞

F (xk) ≤ F ∗ +
αβm2c2

2
,

where c and β are the constants of Prop. 3.

Proof We prove (a) and (b) simultaneously. If the result does not hold, there must
exist an ε > 0 such that

lim inf
k→∞

F (xkm)− αβm2c2

2
− 2ε > F ∗.

Let ŷ ∈ X be such that

lim inf
k→∞

F (xkm)− αβm2c2

2
− 2ε ≥ F (ŷ),

and let k0 be large enough so that for all k ≥ k0, we have

F (xkm) ≥ lim inf
k→∞

F (xkm)− ε.

By combining the preceding two relations, we obtain for all k ≥ k0,

F (xkm)− F (ŷ) ≥ αβm2c2

2
+ ε.

Using Prop. 3 for the case where y = ŷ together with the above relation, we obtain
for all k ≥ k0,

‖x(k+1)m− ŷ‖
2 ≤ ‖xkm− ŷ‖2− 2α

`
F (xkm)−F (ŷ)

´
+βα2m2c2 ≤ ‖xkm− ŷ‖2− 2αε.

This relation implies that for all k ≥ k0,

‖x(k+1)m − ŷ‖
2 ≤ ‖x(k−1)m − ŷ‖

2 − 4αε ≤ · · · ≤ ‖xk0 − ŷ‖
2 − 2(k + 1− k0)αε,

which cannot hold for k sufficiently large – a contradiction. ut

The next proposition gives an estimate of the number of iterations needed to
guarantee a given level of optimality up to the threshold tolerance αβm2c2/2 given
in the preceding proposition.
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Proposition 5 Let {xk} be a sequence generated as in Prop. 4. Then for ε > 0, we

have

min
0≤k≤N

F (xk) ≤ F ∗ +
αβm2c2 + ε

2
, (39)

where N is given by

N = m

—
dist(x0;X∗)2

αε

�
. (40)

Proof Assume, to arrive at a contradiction, that Eq. (39) does not hold, so that
for all k with 0 ≤ km ≤ N , we have

F (xkm) > F ∗ +
αβm2c2 + ε

2
.

By using this relation in Prop. 3 with αk replaced by α and y equal to the vector
of X∗ that is at minimum distance from xkm, we obtain for all k with 0 ≤ km ≤ N ,

dist(x(k+1)m;X∗)2 ≤ dist(xkm;X∗)2 − 2α
`
F (xkm)− F ∗

´
+α2βm2c2

≤ dist(xkm;X∗)2 − (α2βm2c2 + αε) + α2βm2c2

= dist(xkm;X∗)2 − αε.

Adding the above inequalities for k = 0, . . . , Nm , we obtain

dist(xN+m;X∗)2 ≤ dist(x0;X∗)2 −
„
N

m
+ 1

«
αε,

so that „
N

m
+ 1

«
αε ≤ dist(x0;X∗)2,

which contradicts the definition of N . ut

According to Prop. 5, to achieve a cost function value within O(ε) of the opti-
mal, the term αβm2c2 must also be of order O(ε), so α must be of order O(ε/m2c2),
and from Eq. (40), the number of necessary iterations N is O(m3c2/ε2), and the
number of necessary cycles is O

`
(mc)2/ε2)

´
. This is the same type of estimate as

for the nonincremental subgradient method [i.e., O(1/ε2), counting a cycle as one
iteration of the nonincremental method, and viewing mc as a Lipschitz constant
for the entire cost function F ], and does not reveal any advantage for the incre-
mental methods given here. However, in the next section, we demonstrate a much
more favorable iteration complexity estimate for the incremental methods that use
a randomized order of component selection.

3.2 Exact Convergence for a Diminishing Stepsize

We also obtain an exact convergence result for the case where the stepsize αk
diminishes to zero, but satisfies

P∞
k=0 αk = ∞ (so that the method can “travel”

infinitely far if necessary).
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Proposition 6 Let {xk} be the sequence generated by any one of the algorithms (19)-

(21), with a cyclic order of component selection, and let the stepsize αk satisfy

lim
k→∞

αk = 0,
∞X
k=0

αk =∞.

Then,

lim inf
k→∞

F (xk) = F ∗.

Furthermore, if X∗ is nonempty and

∞X
k=0

α2
k <∞,

then {xk} converges to some x∗ ∈ X∗.

Proof For the first part, it will be sufficient to show that lim infk→∞ F (xkm) = F ∗.
Assume, to arrive at a contradiction, that there exists an ε > 0 such that

lim inf
k→∞

F (xkm)− 2ε > F ∗.

Then there exists a point ŷ ∈ X such that

lim inf
k→∞

F (xkm)− 2ε > F (ŷ).

Let k0 be large enough so that for all k ≥ k0, we have

F (xkm) ≥ lim inf
k→∞

F (xkm)− ε.

By combining the preceding two relations, we obtain for all k ≥ k0,

F (xkm)− F (ŷ) > ε.

By setting y = ŷ in Prop. 3, and by using the above relation, we have for all k ≥ k0,

‖x(k+1)m − ŷ‖
2 ≤ ‖xkm − ŷ‖2 − 2αkmε+ βα2

kmm
2c2

= ‖xkm − ŷ‖2 − αkm
“

2ε− βαkmm2c2
”
.

Since αk → 0, without loss of generality, we may assume that k0 is large enough
so that

2ε− βαkm2c2 ≥ ε, ∀ k ≥ k0.

Therefore for all k ≥ k0, we have

‖x(k+1)m − ŷ‖
2 ≤ ‖xkm − ŷ‖2 − αkmε ≤ · · · ≤ ‖xk0m − ŷ‖

2 − ε
kX

`=k0

α`m,

which cannot hold for k sufficiently large. Hence lim infk→∞ F (xkm) = F ∗.
To prove the second part of the proposition, note that from Prop. 3, for every

x∗ ∈ X∗ and k ≥ 0 we have

‖x(k+1)m − x
∗‖2 ≤ ‖xkm − x∗‖2 − 2αkm

`
F (xkm)− F (x∗)

´
+ α2

kmβm
2c2. (41)
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From the Supermartingale Convergence Theorem (Prop. 2) and the hypothesisP∞
k=0 α

2
k <∞, we see that

˘
‖xkm−x∗‖

¯
converges for every x∗ ∈ X∗.5 Since then

{xkm} is bounded, it has a limit point x̄ ∈ X that satisfies

F (x̄) = lim inf
k→∞

F (xkm) = F ∗.

This implies that x̄ ∈ X∗, so it follows that
˘
‖xkm − x̄‖

¯
converges, and that the

entire sequence {xkm} converges to x̄ (since x̄ is a limit point of {xkm}).
Finally, to show that the entire sequence {xk} also converges to x̄, note that

from Eqs. (22) and (24), and the form of the iterations (19)-(21), we have ‖xk+1−
xk‖ ≤ 2αkc → 0. Since {xkm} converges to x̄, it follows that {xk} also converges
to x̄. ut

4 Convergence Analysis for Methods with Randomized Order

In this section, we analyze our algorithms for the randomized component selection
order and a constant stepsize α. The randomized versions of iterations (19), (20),
and (21), are

zk = PX
`
xk − α∇̃fωk(zk)

´
, xk+1 = PX

`
zk − α∇̃hωk(zk)

´
, (42)

zk = xk − α∇̃fωk(zk), xk+1 = PX
`
zk − α∇̃hωk(zk)

´
, (43)

zk = xk − αk∇̃hωk(xk), xk+1 = PX
`
zk − αk∇̃fωk(xk+1)

´
, (44)

respectively, where {ωk} is a sequence of random variables, taking values from the
index set {1, . . . ,m}.

We assume the following throughout the present section.

Assumption 3 (For iterations (42) and (43)) (a) {ωk} is a sequence of random

variables, each uniformly distributed over {1, . . . ,m}, and such that for each k, ωk
is independent of the past history {xk, zk−1, xk−1, . . . , z0, x0}.

(b) There is a constant c ∈ < such that for all k, we have with probability 1

max
˘
‖∇̃fi(zik)‖, ‖∇̃hi(zik)‖

¯
≤ c, ∀ i = 1, . . . ,m, (45)

max
˘
fi(xk)− fi(zik), hi(xk)− hi(zik)

¯
≤ c‖xk − zik‖, ∀ i = 1, . . . ,m, (46)

where zik is the result of the proximal iteration, starting at xk if ωk would be i, i.e.,

zik = arg min
x∈X


fi(x) +

1

2αk
‖x− xk‖2

ff
,

in the case of iteration (42), and

zik = arg min
x∈<n


fi(x) +

1

2αk
‖x− xk‖2

ff
,

in the case of iteration (43).

5 Actually we use here a deterministic version/special case of the theorem, where Yk, Zk,
and Wk are nonnegative scalar sequences satisfying Yk+1 ≤ Yk − Zk + Wk with

P∞
k=0 Wk <

∞. Then the sequence Yk must converge. This version is given with proof in many sources,
including [7] (Lemma 3.4), and [8] (Lemma 1).
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Assumption 4 (For iteration (44)) (a) {ωk} is a sequence of random variables,

each uniformly distributed over {1, . . . ,m}, and such that for each k, ωk is inde-

pendent of the past history {xk, zk−1, xk−1, . . . , z0, x0}.
(b) There is a constant c ∈ < such that for all k, we have with probability 1

max
˘
‖∇̃fi(xik+1)‖, ‖∇̃hi(xk)‖

¯
≤ c, ∀ i = 1, . . . ,m, (47)

fi(xk)− fi(xik+1) ≤ c‖xk − xik+1‖, ∀ i = 1, . . . ,m, (48)

where xik+1 is the result of the iteration, starting at xk if ωk would be i, i.e.,

xik+1 = PX
`
zik − αk∇̃fi(x

i
k+1)

´
,

with

zik = xk − αk∇̃hi(xk).

Note that condition (46) is satisfied if there exist subgradients of fi and hi
at xk with norms less than or equal to c. Thus the conditions (45) and (46) are
similar, the main difference being that the first applies to “slopes” of fi and hi at
zik while the second applies to the “slopes” of fi and hi at xk. There is an analogous
similarity between conditions (47) and (48). As in the case of Assumptions 1 and
2, these conditions are guaranteed by Lipschitz continuity assumptions on fi and
hi. We will first deal with the case of a constant stepsize, and then consider the
case of a diminishing stepsize.

Proposition 7 Let {xk} be the sequence generated by one of the randomized incre-

mental methods (42)-(44), and let the stepsize αk be fixed at some positive constant

α.

(a) If F ∗ = −∞, then with probability 1

inf
k≥0

F (xk) = F ∗.

(b) If F ∗ > −∞, then with probability 1

inf
k≥0

F (xk) ≤ F ∗ +
αβmc2

2
,

where β = 5.

Proof Consider first algorithms (42) and (43). By adapting the proof argument of
Prop. 3 with Fik replaced by Fωk [cf. Eq. (30)], we have

‖xk+1 − y‖2 ≤ ‖xk − y‖2 − 2α
`
Fωk(zk)− Fωk(y)

´
+ α2c2, ∀ y ∈ X, k ≥ 0.

By taking the conditional expectation with respect to Fk = {xk, zk−1, . . . , z0, x0},
and using the fact that ωk takes the values i = 1, . . . ,m with equal probability
1/m, we obtain for all y ∈ X and k,

E
˘
‖xk+1 − y‖2 | Fk

¯
≤ ‖xk − y‖2 − 2αE

˘
Fωk(zk)− Fωk(y) | Fk

¯
+ α2c2

= ‖xk − y‖2 −
2α

m

mX
i=1

`
Fi(z

i
k)− Fi(y)

´
+ α2c2

= ‖xk − y‖2 −
2α

m

`
F (xk)− F (y)

´
+

2α

m

mX
i=1

`
Fi(xk)− Fi(zik)

´
+ α2c2. (49)
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By using Eqs. (45) and (46),

mX
i=1

`
Fi(xk)− Fi(zik)

´
≤ 2c

mX
i=1

‖xk − zik‖ = 2cα
mX
i=1

‖∇̃fi(zik)‖ ≤ 2mαc2.

By combining the preceding two relations, we obtain

E
˘
‖xk+1 − y‖2 | Fk

¯
≤ ‖xk − y‖2 −

2α

m

`
F (xk)− F (y)

´
+ 4α2c2 + α2c2

= ‖xk − y‖2 −
2α

m

`
F (xk)− F (y)

´
+ βα2c2, (50)

where β = 5.
The preceding equation holds also for algorithm (44). To see this note that Eq.

(37) yields for all y ∈ X

‖xk+1−y‖2 ≤ ‖xk−y‖2−2α
`
Fωk(xk)−Fωk(y)

´
+α2c2 +2α

`
fωk(xk)−fωk(xk+1)

´
.

(51)
and similar to Eq. (49), we obtain

E
˘
‖xk+1 − y‖2 | Fk

¯
≤ ‖xk − y‖2 −

2α

m

`
F (xk)− F (y)

´
+

2α

m

mX
i=1

`
fi(xk)− fi(xik+1)

´
+ α2c2. (52)

From Eq. (48), we have

fi(xk)− fi(xik+1) ≤ c‖xk − xik+1‖,

and from Eq. (47) and the nonexpansion property of the projection,

‖xk−xik+1‖ ≤
‚‚xk−zik+α∇̃fi(xik+1)

‚‚ =
‚‚xk−xk+α∇̃hi(xk)+α∇̃fi(xik+1)

‚‚ ≤ 2αc.

Combining the preceding inequalities, we obtain Eq. (50) with β = 5.
Let us fix a positive scalar γ, consider the level set Lγ defined by

Lγ =

8<:
n
x ∈ X | F (x) < −γ + 1 + αβmc2

2

o
if F ∗ = −∞,n

x ∈ X | F (x) < F ∗ + 2
γ + αβmc2

2

o
if F ∗ > −∞,

and let yγ ∈ X be such that

F (yγ) =

(
−γ if F ∗ = −∞,

F ∗ + 1
γ if F ∗ > −∞,

Note that yγ ∈ Lγ by construction. Define a new process {x̂k} that is identical
to {xk}, except that once xk enters the level set Lγ , the process terminates with
x̂k = yγ . We will now argue that for any fixed γ, {x̂k} (and hence also {xk}) will
eventually enter Lγ , which will prove both parts (a) and (b).

Using Eq. (50) with y = yγ , we have

E
˘
‖x̂k+1 − yγ‖2 | Fk

¯
≤ ‖x̂k − yγ‖2 −

2α

m

`
F (x̂k)− F (yγ)

´
+ βα2c2,
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from which

E
˘
‖x̂k+1 − yγ‖2 | Fk

¯
≤ ‖x̂k − yγ‖2 − vk, (53)

where

vk =

(
2α
m

`
F (x̂k)− F (yγ)

´
− βα2c2 if x̂k /∈ Lγ ,

0 if x̂k = yγ ,

The idea of the subsequent argument is to show that as long as x̂k /∈ Lγ , the scalar
vk (which is a measure of progress) is strictly positive and bounded away from 0.

(a) Let F ∗ = −∞. Then if x̂k /∈ Lγ , we have

vk =
2α

m

`
F (x̂k)− F (yγ)

´
− βα2c2

≥ 2α

m

„
−γ + 1 +

αβmc2

2
+ γ

«
− βα2c2

=
2α

m
.

Since vk = 0 for x̂k ∈ Lγ , we have vk ≥ 0 for all k, and by Eq. (53) and the
Supermartingale Convergence Theorem (cf. Prop. 2), we obtain

P∞
k=0 vk < ∞

implying that x̂k ∈ Lγ for sufficiently large k, with probability 1. Therefore, in the
original process we have with probability 1

inf
k≥0

F (xk) ≤ −γ + 1 +
αβmc2

2
.

Letting γ →∞, we obtain infk≥0 F (xk) = −∞ with probability 1.

(b) Let F ∗ > −∞. Then if x̂k /∈ Lγ , we have

vk =
2α

m

`
F (x̂k)− F (yγ)

´
− βα2c2

≥ 2α

m

„
F ∗ +

2

γ
+
αβmc2

2
− F ∗ − 1

γ

«
− βα2c2

=
2α

mγ
.

Hence, vk ≥ 0 for all k, and by the Supermartingale Convergence Theorem, we
have

P∞
k=0 vk < ∞ implying that x̂k ∈ Lγ for sufficiently large k, so that in the

original process,

inf
k≥0

F (xk) ≤ F ∗ +
2

γ
+
αβmc2

2

with probability 1. Letting γ →∞, we obtain infk≥0 F (xk) ≤ F ∗ + αβmc2/2. ut
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4.1 Error Bound for a Constant Stepsize

By comparing Prop. 7(b) with Prop. 4(b), we see that when F ∗ > −∞ and the
stepsize α is constant, the randomized methods (42), (43), and (44), have a better
error bound (by a factor m) than their nonrandomized counterparts. It is impor-
tant to note that the bound of Prop. 4(b) is tight in the sense that for a bad
problem/cyclic order we have lim infk→∞ F (xk) − F ∗ = O(αm2c2) (an example
where fi ≡ 0 is given in p. 514 of [5]). By contrast the randomized method will get
to within O(αmc2) with probability 1 for any problem, according to Prop. 7(b).
Thus the randomized order provides a worst-case performance advantage over the
cyclic order: we do not run the risk of choosing by accident a bad cyclic order.
Note, however, that this assessment is relevant to asymptotic convergence; the
cyclic and randomized order algorithms appear to perform comparably when far
from convergence for the same stepsize α.

A related convergence rate result is provided by the following proposition,
which should be compared with Prop. 5 for the nonrandomized methods.

Proposition 8 Assume that X∗ is nonempty. Let {xk} be a sequence generated as in

Prop. 7. Then for any positive scalar ε, we have with probability 1

min
0≤k≤N

F (xk) ≤ F ∗ +
αβmc2 + ε

2
, (54)

where N is a random variable with

E
˘
N
¯
≤ m dist(x0;X∗)2

αε
. (55)

Proof Let ŷ be some fixed vector in X∗. Define a new process {x̂k} which is identical
to {xk} except that once xk enters the level set

L =


x ∈ X

˛̨̨
F (x) < F ∗ +

αβmc2 + ε

2

ff
,

the process {x̂k} terminates at ŷ. Similar to the proof of Prop. 7 [cf. Eq. (50) with
y being the closest point of x̂k in X∗], for the process {x̂k} we obtain for all k,

E
˘
dist(x̂k+1;X∗)2 | Fk

¯
≤ E

˘
‖x̂k+1 − y‖2 | Fk

¯
≤ dist(x̂k;X∗)2 − 2α

m

`
F (x̂k)− F ∗

´
+ βα2c2

= dist(x̂k;X∗)2 − vk, (56)

where Fk = {xk, zk−1, . . . , z0, x0} and

vk =

(
2α
m

`
F (x̂k)− F ∗

´
− βα2c2 if x̂k 6∈ L,

0 otherwise.

In the case where x̂k 6∈ L, we have

vk ≥
2α

m

„
F ∗ +

αβmc2 + ε

2
− F ∗

«
− βα2c2 =

αε

m
. (57)
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By the Supermartingale Convergence Theorem (cf. Prop. 2), from Eq. (56) we
have

∞X
k=0

vk <∞

with probability 1, so that vk = 0 for all k ≥ N , where N is a random variable.
Hence x̂N ∈ L with probability 1, implying that in the original process we have

min
0≤k≤N

F (xk) ≤ F ∗ +
αβmc2 + ε

2

with probability 1. Furthermore, by taking the total expectation in Eq. (56), we
obtain for all k,

E
˘
dist(x̂k+1;X∗)2

¯
≤ E

˘
dist(x̂k;X∗)2

¯
− E{vk} ≤ dist(x̂0;X∗)2 − E

8<:
kX
j=0

vj

9=; ,

where in the last inequality we use the facts x̂0 = x0 and E
˘
dist(x̂0;X∗)2

¯
=

dist(x̂0;X∗)2. Therefore, letting k → ∞, and using the definition of vk and Eq.
(57),

dist(x̂0;X∗)2 ≥ E

( ∞X
k=0

vk

)
= E

(
N−1X
k=0

vk

)
≥ E


Nαε

m

ff
=
αε

m
E
˘
N
¯
. ut

A comparison of Props. 5 and 8 again suggests an advantage for the randomized
order: compared to the cyclic order, it achieves a much smaller error tolerance (a
factor of m), in the same expected number of iterations. Note, however, that the
preceding assessment is based on upper bound estimates, which may not be sharp
on a given problem [although the bound of Prop. 4(b) is tight with a worst-case
problem selection as mentioned earlier; see [5], p. 514]. Moreover, the comparison
based on worst-case values versus expected values may not be strictly valid. In
particular, while Prop. 5 provides an upper bound estimate on N , Prop. 8 provides
an upper bound estimate on E{N}, which is not quite the same.

4.2 Exact Convergence for a Diminishing Stepsize Rule

We finally consider the case of a diminishing stepsize rule and obtain an exact
convergence result similar to Prop. 6 for the case of a randomized order selection.

Proposition 9 Let {xk} be the sequence generated by one of the randomized incre-

mental methods (42)-(44), and let the stepsize αk satisfy

lim
k→∞

αk = 0,
∞X
k=0

αk =∞.

Then, with probability 1,

lim inf
k→∞

F (xk) = F ∗.

Furthermore, if X∗ is nonempty and
P∞
k=0 α

2
k < ∞, then {xk} converges to some

x∗ ∈ X∗ with probability 1.
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Proof The proof of the first part is nearly identical to the corresponding part of
Prop. 6. To prove the second part, similar to the proof of Prop. 7, we obtain for
all k and all x∗ ∈ X∗,

E
˘
‖xk+1 − x∗‖2 | Fk

¯
≤ ‖xk − x∗‖2 −

2αk
m

`
F (xk)− F ∗

´
+ βα2

kc
2 (58)

[cf. Eq. (50) with α and y replaced with αk and x∗, respectively], where Fk =
{xk, zk−1, . . . , z0, x0}. By the Supermartingale Convergence Theorem (Prop. 2),
for each x∗ ∈ X∗, we have for all sample paths in a set Ωx∗ of probability 1

∞X
k=0

2αk
m

`
F (xk)− F ∗

´
<∞, (59)

and the sequence {‖xk − x∗‖} converges.

Let {vi} be a countable subset of the relative interior ri(X∗) that is dense in
X∗ [such a set exists since ri(X∗) is a relatively open subset of the affine hull of
X∗; an example of such a set is the intersection of X∗ with the set of vectors of the
form x∗+

Pp
i=1 riξi, where ξ1, . . . , ξp are basis vectors for the affine hull of X∗ and

ri are rational numbers]. The intersection Ω̄ = ∩∞i=1Ωvi has probability 1, since its
complement Ω̄c is equal to ∪∞i=1Ω

c
vi

and

Prob (∪∞i=1Ω
c
vi) ≤

∞X
i=1

Prob (Ωcvi) = 0.

For each sample path in Ω̄, all the sequences
˘
‖xk−vi‖

¯
converge so that {xk} is

bounded, while by the first part of the proposition [or Eq. (59)] lim infk→∞ F (xk) =
F ∗. Therefore, {xk} has a limit point x̄ in X∗. Since {vi} is dense in X∗, for every
ε > 0 there exists vi(ε) such that

‚‚x̄− vi(ε)‚‚ < ε. Since the sequence
˘
‖xk − vi(ε)‖

¯
converges and x̄ is a limit point of {xk}, we have limk→∞

‚‚xk − vi(ε)‚‚ < ε, so that

lim sup
k→∞

‖xk − x̄‖ ≤ lim
k→∞

‚‚xk − vi(ε)‚‚+
‚‚vi(ε) − x̄‚‚ < 2ε.

By taking ε→ 0, it follows that xk → x̄. ut

5 Applications

In this section we illustrate our methods in the context of two types of practical
applications, and discuss relations with known algorithms.

5.1 Regularized Least Squares

Many problems in statistical inference, machine learning, and signal processing
involve minimization of a sum of component functions fi(x) that correspond to
errors between data and the output of a model that is parameterized by a vector
x. A classical example is least squares problems, where fi is quadratic. Often a
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convex regularization function R(x) is added to the least squares objective, to
induce desirable properties of the solution. This gives rise to problems of the form

minimize R(x) +
1

2

mX
i=1

(c′ix− di)
2

subject to x ∈ <n, (60)

where ci and di are given vectors and scalars, respectively. When R is differentiable,
and either m is very large or the data (ci, di) become available sequentially over
time, it makes sense to consider incremental gradient methods, which have a long
history of applications over the last 50 years, starting with the Widrow-Hoff least
mean squares (LMS) method [58].

The classical type of regularization involves a quadratic function R (as in classi-
cal regression and the LMS method), but nondifferentiable regularization functions
have become increasingly important recently. On the other hand, to apply our in-
cremental methods, a quadratic R is not essential. What is important is that R
has a simple form that facilitates the use of proximal algorithms, such as for ex-
ample a separable form, so that the proximal iteration on R is simplified through
decomposition. As an example, consider the `1-regularization problem, where

R(x) = γ‖x‖1 = γ
nX
j=1

|xj |, (61)

γ is a positive scalar, and xj is the jth coordinate of x. Then the proximal iteration

zk = arg min
x∈<n


γ ‖x‖1 +

1

2αk
‖x− xk‖2

ff
decomposes into the n scalar minimizations

zjk = arg min
xj∈<


γ |xj |+ 1

2αk
|xj − xjk|

2

ff
, j = 1, . . . , n,

and can be done in closed form

zjk =

8><>:
xjk − γαk if γαk ≤ x

j
k,

xjk if −γαk < xjk < γαk,

xjk + γαk if xjk ≤ −γαk,

j = 1, . . . , n. (62)

We refer to Figueiredo, Nowak, and Wright [24], [57], Beck and Teboulle [10], and
the references given there, for a discussion of a broad variety of applications in
estimation and signal processing problems, where nondifferentiable regularization
functions play an important role.

We now note that the incremental algorithms of this paper are well-suited for
solution of `1-regularization problems of the form (60)-(61). For example, the kth
incremental iteration may consist of selecting a data pair (cik , dik) and performing
a proximal iteration of the form (62) to obtain zk, followed by a gradient iteration
on the component 1

2 (c′ikx− dik)2, starting at zk:

xk+1 = zk − αkcik(c′ikzk − dik).
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This algorithm is the special case of the algorithms (19)-(21) (here X = <n,
and all three algorithms coincide), with fi(x) being γ‖x‖1 (we use m copies of
this function) and hi(x) = 1

2 (c′ix − di)
2. It can be viewed as an incremental ver-

sion of a popular class of algorithms in signal processing, known as iterative
shrinkage/thresholding (see Chambolle et. al. [18], Figueiredo and Nowak [23],
Daubechies, Defrise, and Mol [21], Combettes and Wajs [20], Elad, Matalon, and
Zibulevsky [22], Bioucas-Dias and Figueiredo [17], Vonesch and Unser [56], Beck
and Teboulle [9], [10]). Our methods bear the same relation to this class of algo-
rithms as the LMS method bears to gradient algorithms for the classical linear
least squares problem with quadratic regularization function.

Finally, let us note that as an alternative, the proximal iteration (62) could
be replaced by a proximal iteration on γ |xj | for some selected index j, with all
indexes selected cyclically in incremental iterations. Randomized selection of the
data pair (cik , dik) would also be interesting, particularly in contexts where the
data has a natural stochastic interpretation.

5.2 Iterated Projection Algorithms

A feasibility problem that arises in many contexts involves finding a point with
certain properties within a set intersection ∩mi=1Xi, where each Xi is a closed
convex set. For the case where m is large and each of the sets Xi has a simple
form, incremental methods that make successive projections on the component sets
Xi have a long history (see e.g., Gubin, Polyak, and Raik [25], and recent papers
such as Bauschke [6], Bauschke, Combettes, and Luke [2], Bauschke, Combettes,
and Kruk [3], and Cegielski and Suchocka [19], and their bibliographies). We may
consider the following generalized version of the classical feasibility problem,

minimize f(x)

subject to x ∈ ∩mi=1Xi, (63)

where f : <n 7→ < is a convex cost function, and the method

xk+1 = PXik

`
xk − αk∇̃f(xk)

´
, (64)

where the index ik is chosen from {1, . . . ,m} according to a randomized rule.
The incremental approach is particularly well-suited for problems of the form (63)
where the sets Xi are not known in advance, but are revealed as the algorithm
progresses. We note that incremental algorithms for problem (63), which bear
some relation with ours have been recently proposed by Nedić [42]. Actually, the
algorithm of [42] involves an additional projection on a special set X0 at each
iteration, but for simplicity we take X0 = <n.

While the problem (63) does not involve a sum of component functions, it may
be converted into one that does by using an exact penalty function. In particular,
consider the problem

minimize f(x) + γ

mX
i=1

dist(x;Xi)

subject to x ∈ <n, (65)
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where γ is a positive penalty parameter. Then for f Lipschitz continuous and γ

sufficiently large, problems (63) and (65) are equivalent. We show this for the case
where m = 1 and then we generalize.

Proposition 10 Let f : Y 7→ < be a function defined on a subset Y of <n, and let X

be a nonempty closed subset of Y . Assume that f is Lipschitz continuous over Y with

constant L, i.e., ˛̨
f(x)− f(y)

˛̨
≤ L‖x− y‖, ∀ x, y ∈ Y,

and let γ be a scalar with γ > L. Then the set of minima of f over X coincides with

the set of minima of

f(x) + γ dist(x;X)

over Y .

Proof Denote F (x) = f(x) + γ dist(x;X). For a vector x ∈ Y , let x̂ denote a vector
of X that is at minimum distance from X. If γ > L, we have using the Lipschitz
property of f ,

F (x) = f(x)+γ‖x−x̂‖ = f(x̂)+
`
f(x)−f(x̂)

´
+γ‖x−x̂‖ ≥ f(x̂) = F (x̂), ∀ x ∈ Y,

with strict inequality if x 6= x̂. Hence the minima of F over Y can only lie within
X, while F = f within X. This shows that if γ > L, then x∗ minimizes f over X
if and only if x∗ minimizes F over Y . ut

We now provide a generalization for m > 1.

Proposition 11 Let f : Y 7→ < be a function defined on a subset Y of <n, and let

Xi, i = 1, . . . ,m, be closed subsets of Y with nonempty intersection. Assume that f is

Lipschitz continuous over Y . Then there is a scalar γ̄ > 0 such that for all γ ≥ γ̄, the

set of minima of f over ∩mi=1Xi coincides with the set of minima of

f(x) + γ

mX
i=1

dist(x;Xi)

over Y .

Proof For positive scalars γ1, . . . , γm, and k = 1, . . . ,m, define

F k(x) = f(x) + γ1 dist(x;X1) + · · ·+ γk dist(x;Xk),

and for k = 0, denote F 0(x) = f(x), γ0 = 0. Let L denote the Lipschitz constant
for f . By applying Prop. 10, the set of minima of Fm over Y coincides with the
set of minima of Fm−1 over Xm provided γm is greater than L+ γ1 + · · ·+ γm−1,
the Lipschitz constant for Fm−1. Similarly, we obtain that for all k = 1, . . . ,m, the
set of minima of F k over ∩mi=k+1Xi coincides with the set of minima of F k−1 over
∩mi=kXi, provided γk > L+ γ1 + · · ·+ γk−1. Thus, the set of minima of Fm over Y
coincides with the set of minima of f over ∩mi=1Xi, provided the scalars γ1, . . . , γm
satisfy

γk > L+ γ1 + · · ·+ γk−1, ∀ k = 1, . . . ,m,

where γ0 = 0. For such γ1, . . . , γm, the set of minima of f + γ
Pm
i=1 dist(·;Xi) over

Y coincides with the set of minima of Fm over Y if γ ≥ γm, and hence also with
the set of minima of f over ∩mi=1Xi. ut
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Note that while the penalty parameter thresholds derived in the preceding
proof are quite large, lower thresholds may hold under additional assumptions,
such as for convex f and polyhedral Xi. Regarding algorithmic solution, from
Prop. 11, it follows that we may consider in place of the original problem (63)
the additive cost problem (65) for which our algorithms apply. In particular, let us
consider the algorithms (19)-(21), with X = <n, which involve a proximal iteration
on one of the functions γ dist(x;Xi) followed by a subgradient iteration on f . A
key fact here is that the proximal iteration

zk = arg min
x∈<n


γ dist(x;Xik) +

1

2αk
‖x− xk‖2

ff
(66)

involves a projection on Xik of xk, followed by an interpolation. This is shown in
the following proposition.

Proposition 12 Let zk be the vector produced by the proximal iteration (66). If xk ∈
Xik then zk = xk, while if xk /∈ Xik ,

zk =

(
(1− βk)xk + βkPXik

(xk) if βk < 1,

PXik
(xk) if βk ≥ 1,

(67)

where

βk =
αkγ

dist(xk;Xik)
.

Proof The case xk ∈ Xik is evident, so assume that xk /∈ Xik . From the nature of
the cost function in Eq. (66) we see that zk is a vector that lies in the line segment
between xk and PXik

(xk). Hence there are two possibilities: either

zk = PXik
(xk), (68)

or zk /∈ Xik in which case by setting to 0 the gradient at zk of the cost function in
Eq. (66) yields

γ
zk − PXik

(zk)‚‚‚zk − PXik
(zk)

‚‚‚ =
1

αk
(xk − zk).

Hence xk, zk, and PXik
(zk) lie on the same line, so PXik

(zk) = PXik
(xk) and

zk = xk −
αkγ

dist(xk;Xik)

`
xk − PXik

(xk)
´

= (1− βk)xk + βkPXik
(xk). (69)

By calculating and comparing the value of the cost function in Eq. (66) for each
of the possibilities (68) and (69), we can verify that (69) gives a lower cost if and
only if βk < 1. ut

Let us finally note that our incremental methods also apply to the problem

minimize
mX
i=1

fi(x)

subject to x ∈ ∩mi=1Xi.
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In this case the interpolated projection iterations (67) on the sets Xi are followed
by subgradient or proximal iterations on the components fi. A related problem is

minimize f(x) + c

rX
j=1

max
˘
0, gj(x)

¯
subject to x ∈ ∩mi=1Xi,

which is obtained by replacing convex inequality constraints of the form gj(x) ≤ 0
with the nondifferentiable penalty terms cmax

˘
0, gj(x)

¯
, where c > 0 is a penalty

parameter. Then a possible incremental method at each iteration, would either do
a subgradient iteration on f , or select one of the violated constraints (if any) and
perform a subgradient iteration on the corresponding function gj , or select one of
the sets Xi and do an interpolated projection on it. Except for the projections on
Xi, variants of this algorithm are well-known.

6 Conclusions

The incremental proximal algorithms of this paper provide new possibilities for
minimization of many-term sums of convex component functions. It is generally
believed that proximal iterations are more stable than gradient and subgradient
iterations. It may thus be important to have flexibility to separate the cost func-
tion into the parts that are conveniently handled by proximal iterations (e.g., in
essentially closed form), and the remaining parts to be handled by subgradient
iterations. We provided a convergence analysis and showed that our algorithms
are well-suited for some problems that have been the focus of recent research.

Much work remains to be done to apply and evaluate our methods within the
broad context of potential applications. Let us mention some possibilities that may
extend the range of applications of our approach, and are interesting subjects for
further investigation: alternative proximal and projected subgradient iterations,
involving nonquadratic proximal terms and/or subgradient projections, alternative
stepsize rules, distributed asynchronous implementations along the lines of [38],
polyhedral approximation (bundle) variants of the proximal iterations in the spirit
of [11], and variants for methods with errors in the calculation of the subgradients
along the lines of [41].
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5. Bertsekas, D. P., Nedić, A., and Ozdaglar, A. E., 2003. Convex Analysis and Optimization,
Athena Scientific, Belmont, MA.

6. Bauschke, H. H., 2001. “Projection Algorithms: Results and Open Problems,” in Inherently
Parallel Algorithms in Feasibility and Optimization and their Applications (D. Butnariu,
Y. Censor, and S. Reich, eds.), Elsevier, Amsterdam, Netherlands.



Incremental Proximal Methods for Large Scale Convex Optimization 27

7. Bertsekas, D. P., and Tsitsiklis, J. N., 1996. Neuro-Dynamic Programming, Athena Scien-
tific, Belmont, MA.

8. Bertsekas, D. P., and Tsitsiklis, J. N., 2000. “Gradient Convergence in Gradient Methods,”
SIAM J. Optimization, Vol. 10, pp. 627-642.

9. Beck, A., and Teboulle, M., 2009. “A Fast Iterative Shrinkage-Thresholding Algorithm for
Linear Inverse Problems,” SIAM J. on Imaging Sciences, Vol. 2, pp. 183-202.

10. Beck, A., and Teboulle, M., 2010. “Gradient-Based Algorithms with Applications to Signal-
Recovery Problems,” in Convex Optimization in Signal Processing and Communications (Y.
Eldar and D. Palomar, eds.), Cambridge University Press, pp. 42-88.

11. Bertsekas, D. P., and Yu, H., 2009. “A Unifying Polyhedral Approximation Framework for
Convex Optimization,” Lab. for Information and Decision Systems Report LIDS-P-2820,
MIT; to appear in SIAM J. on Optimization.

12. Bertsekas, D. P., 1996. “Incremental Least Squares Methods and the Extended Kalman
Filter,” SIAM J. on Optimization, Vol. 6, pp. 807-822.

13. Bertsekas, D. P., 1997. “A Hybrid Incremental Gradient Method for Least Squares,” SIAM
J. on Optimization, Vol. 7, pp. 913-926.

14. Bertsekas, D. P., 1999. Nonlinear Programming, 2nd edition, Athena Scientific, Belmont,
MA.

15. Bertsekas, D. P., 2009. Convex Optimization Theory, Athena Scientific, Belmont, MA.
16. Bertsekas, D. P., 2010. “Incremental Gradient, Subgradient, and Proximal Methods for

Convex Optimization: A Survey,” Lab. for Information and Decision Systems Report LIDS-
P-2848, MIT.

17. Bioucas-Dias, J., and Figueiredo, M. A. T., 2007. “A New TwIST: Two-Step Iterative
Shrinkage/Thresholding Algorithms for Image Restoration,” IEEE Trans. Image Process-
ing, Vol. 16, pp. 2992-3004.

18. Chambolle, A., DeVore, R. A., Lee, N. Y., and Lucier, B. J., 1998. “Nonlinear Wavelet Im-
age Processing: Variational Problems, Compression, and Noise Removal Through Wavelet
Shrinkage,” IEEE Trans. Image Processing, Vol. 7, pp. 319-335.

19. Cegielski, A., and Suchocka, A., 2008. “Relaxed Alternating Projection Methods,” SIAM
J. Optimization, Vol. 19, pp. 1093-1106.

20. Combettes, P. L., and Wajs, V. R., 2005. “Signal Recovery by Proximal Forward-Backward
Splitting,” Multiscale Modeling and Simulation, Vol. 4, pp. 1168-1200.

21. Daubechies, I., Defrise, M., and Mol, C. D., 2004. “An Iterative Thresholding Algorithm
for Linear Inverse Problems with a Sparsity Constraint,” Comm. Pure Appl. Math., Vol.
57, pp. 1413-1457.

22. Elad, M., Matalon, B., and Zibulevsky, M., 2007. “Coordinate and Subspace Optimization
Methods for Linear Least Squares with Non-Quadratic Regularization,” Journal on Applied
and Computational Harmonic Analysis, Vol. 23, pp. 346-367.

23. Figueiredo, M. A. T., and Nowak, R. D., 2003. “An EM Algorithm for Wavelet-Based
Image Restoration,” IEEE Trans. Image Processing, Vol. 12, pp. 906-916.

24. Figueiredo, M. A. T., Nowak, R. D., and Wright, S. J., 2007. “Gradient Projection for
Sparse Reconstruction: Application to Compressed Sensing and Other Inverse Problems,”
IEEE J. Sel. Topics in Signal Processing, Vol. 1, pp. 586-597.

25. Gubin, L. G., Polyak, B. T., and Raik, E. V., 1967. “The Method of Projection for Find-
ing the Common Point in Convex Sets,” U.S.S.R. Comput. Math. Phys., Vol. 7, pp. 1-24
(English Translation).

26. Grippo, L., 1994. “A Class of Unconstrained Minimization Methods for Neural Network
Training,” Optim. Methods and Software, Vol. 4, pp. 135-150.

27. Grippo, L., 2000. “Convergent On-Line Algorithms for Supervised Learning in Neural
Networks,” IEEE Trans. Neural Networks, Vol. 11, pp. 1284-1299.

28. Helou, E. S., and De Pierro, A. R., 2009. “Incremental Subgradients for Constrained
Convex Optimization: A Unified Framework and New Methods,” SIAM J. on Optimization,
Vol. 20, pp. 1547-1572.

29. Johansson, B., Rabi, M., and Johansson, M., 2009. “A Randomized Incremental Subgradi-
ent Method for Distributed Optimization in Networked Systems,” SIAM J. on Optimization,
Vol. 20, pp. 1157-1170.

30. Kibardin V. M., 1980. “Decomposition into Functions in the Minimization Problem,”
Automation and Remote Control, Vol. 40, pp. 1311-1323.

31. Kiwiel, K. C., 2004. “Convergence of Approximate and Incremental Subgradient Methods
for Convex Optimization,” SIAM J. on Optimization, Vol. 14, pp. 807-840.



28 Bertsekas

32. Lions, P. L., and Mercier, B., 1979. “Splitting Algorithms for the Sum of Two Nonlinear
Operators,” SIAM Journal on Numerical Analysis, Vol. 16, pp. 964-979.

33. Litvakov, B. M., 1966. “On an Iteration Method in the problem of Approximating a
Function from a Finite Number of Observations,” Avtom. Telemech., No. 4, pp. 104-113.

34. Luo, Z. Q., and Tseng, P., 1994. “Analysis of an Approximate Gradient Projection Method
with Applications to the Backpropagation Algorithm,” Optimization Methods and Soft-
ware, Vol. 4, pp. 85-101.

35. Luo, Z. Q., 1991. “On the Convergence of the LMS Algorithm with Adaptive Learning
Rate for Linear Feedforward Networks,” Neural Computation, Vol. 3, pp. 226-245.

36. Mangasarian, O. L., and Solodov, M. V., 1994. “Serial and Parallel Backpropagation Con-
vergence Via Nonmonotone Perturbed Minimization,” Opt. Methods and Software, Vol. 4,
pp. 103-116.

37. Martinet, B., 1970. “Regularisation d’inéquations variationelles par approximations succes-
sives, Revue Fran. d’Automatique et Infomatique Rech. Opérationelle, Vol. 4, pp. 154-159.
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42. Nedić, A., 2010. “Random Projection Algorithms for Convex Minimization Problems,”
Univ. of Illinois Report; to appear in Math. Programming Journal.

43. Neveu, J., 1975. Discrete Parameter Martingales, North-Holland, Amsterdam, The Nether-
lands.

44. Predd, J. B., Kulkarni, S. R., and Poor, H. V., 2009. “A Collaborative Training Algorithm
for Distributed Learning,” IEEE Transactions on Information Theory, Vol. 55, pp. 1856-
1871.

45. Passty, G. B., 1979. “Ergodic Convergence to a Zero of the Sum of Monotone Operators
in Hilbert Space,” J. Math. Anal. Appl., Vol. 72, pp. 383-390.

46. Ram, S. S., Nedić, A., and Veeravalli, V. V., 2009. “Incremental Stochastic Subgradient
Algorithms for Convex Optimization,” SIAM Journal on Optimization, Vol. 20, pp. 691-717.
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