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Abstract

In an information cascade experiment participants are confronted with artificial prede-

cessors predicting in line with the BHW model (Bikchandani et al., 1992). Using the BDM

(Becker et al., 1964) mechanism we study participants’ probability perceptions based on

maximum prices for participating in the prediction game. We find increasing maximum

prices the more coinciding predictions of predecessors are observed, regardless of whether

additional information is revealed by these predictions. Individual price patterns of more

than two thirds of the participants indicate that cascade behavior of predecessors is not

recognized.

JEL classification: C91, D81, D82

Keywords: information cascades, Bayes’ Rule, decision under risk and uncertainty, experi-

mental economics



1 introduction

Information cascades as modelled by Bikchandani et al. (1992), henceforth BHW, have be-

come a popular approach to explain herding behavior.1 The BHW model offers explanations

for many economic and social phenomena, such as fashion trends and conformity in con-

sumption decisions. BHW explain herding within a rational choice approach assuming that

agents update beliefs according to Bayes’ rule. The model shows that in a choice situation

under incomplete information it may be rational to follow predecessors and to disregard

one’s own private information. Hence a cascade starts and no further information is ag-

gregated in the observable decisions. Agents may follow wrong decisions of predecessors

even if the aggregated private information would suggest the opposite. Individual ratio-

nality may thus lead to market inefficiencies.

The BHW model implicitly assumes that agents recognize cascade behavior of others. If not,

perceived probabilities of making a good decision increase with the length of the cascade

even if no further information is aggregated. Thus, boundedly rational behavior of agents

would result in an overvaluation of public information and thereby cause further economic

distortions. Consumers, for instance, might misinterpret the number of previous sales of a

specific product as a signal for quality. This could unreasonably increase their willingness

to pay for best-sellers compared to similar competing products. Promotion instruments

that refer to the number of sales, e.g. best-seller lists, could then be used for increasing

demand or for selling at higher prices.

Cascade phenomena have been the subject of numerous experimental studies. The predic-

tions of the BHW model were confirmed in first experimental tests by Anderson and Holt

(1997), henceforth AH. Following AH, most studies investigate cascade behavior by varying

the structure of available information or by selling costly private information.2 Conclu-

sions are drawn from subjects’ predictions and buying decisions. The results suggest that

individuals, if confronted with more complex decision tasks than in the original AH ex-

periment, tend to overestimate private information and thus to deviate from the rational

cascade pattern. Kübler and Weizsäcker (2004) have observed that acquisition rates of

costly signals are generally higher than optimal, but decrease in ongoing cascades. Their

results suggest that subjects overestimate the error rates of their predecessors and that

their depth of reasoning is limited.3 The authors conclude that “...subjects learn from ob-

serving their predecessors’ decisions, but...fail to realize that other subjects also learn from

observing their respective predecessors”.

Oberhammer and Stiehler (2002) investigate whether behavior in cascades reflects Bayesian

updating. In their simple symmetric design, even counting leads to correct urn predictions

if predecessors behave rationally.4 Using the BDM procedure (Becker et al., 1964) they

1For a survey on theoretical and empirical studies dealing with information cascades see Bikchandani et

al. (1996)
2See e.g.Willinger and Ziegelmeyer (1998), Kraemer et al. (2006), Kraemer and Weber (2001), Nöth and

Weber (2003), Kübler and Weizsäcker (2004).
3Kübler and Weizsäcker (2004) use a quantal response model for their analysis. The examination of errors

by using quantal response models (McKelvey and Palfrey (1995), McKelvey and Palfrey (1998)) has become

increasingly popular for explaining deviations from standard BHW model. For other applications of quantal

response equilibria to information cascade models see e.g. Anderson and Holt (1997), Anderson (2001).
4In the AH experiment, prediction errors increase up to 50 percent in asymmetric decision situations

where simple counting of predecessors’ predictions does not lead to a correct urn prediction (Huck and
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asked subjects to submit maximum prices they are willing to pay for participating in the

prediction game. These maximum prices are used as indicators of subjects’ probability per-

ceptions. This procedure allows testing the explanatory power of the standard BHW model

as well as of cascade models in which errors of predecessors are included in subjects’

updating process. The authors report on prices increasing with the number of predeces-

sors. This price increase also occurs in positions where rational predecessors should have

ignored their private signals, i.e. in which their decisions do not reveal additional informa-

tion. Error models can account for the observed price increases, but the pattern could also

be caused by subjects whose depth of reasoning is limited and who thus do not recognize

cascade behavior of others. The authors were unable to distinguish between these alter-

native explanations. Moreover, the decision situations in which individuals had to decide

were endogenously determined, so that observing complete individual price patterns was

impossible.

To fill these two gaps is the aim of this study. It focuses on individual updating behavior

in a cascade design similar to Oberhammer and Stiehler (2002). Subjects are confronted

with the same information structure and the BDM mechanism is used to elicit prices as

indicators of subjects’ probability perceptions. However, we incorporate artificial agents

as predecessors, who follow a simple counting rule, thus predict according to BHW, and –

by definition – never err. Using the strategy method we ask subjects to state their predic-

tions and maximum prices for all possible decision situations. This results in observing

complete individual price setting patterns. By excluding error making of predecessors as

an explanation for the observed decisions, we are able to address the question whether

individuals recognize cascade behavior of others in isolation.

We find that in these rather simple decision tasks, most subjects predict according to theory

(and to simple counting) but many submit increasing maximum prices the more coinciding

predictions of predecessors they observe, regardless of whether additional information

is revealed by these predictions. We conclude that the majority of participants do not

recognize cascade behavior of predecessors.

While we focus on the recognition of predecessors’ rational cascade behavior, we do not

negate that (assumed) erroneous play of human predecessors also influenced subjects’ be-

havior in other experiments. As our artificial agents never err, we most likely create beliefs

about predecessors that are different than in experiments with human players. Therefore,

it is no surprise that behavior in this experiment differs in some aspects from behavior

reported in other cascade studies.

The remainder of the paper is organized as follows. In Section 2 the experimental design

and procedures are described. In Section 3 hypotheses are derived for both rational behav-

ior as assumed in the BHW model and behavior based on the assumption that subjects do

not recognize cascade behavior of others. The results are presented in Section 4. Section

5 concludes.

Oechssler, 2000). In these situations the rule ’follow your own signal‘ offers better predictions than Bayesian

updating. This result suggests that subjects are not always able to apply Bayesian updating in complex

decision tasks
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2 experimental design and procedure

2.1 Experimental Scenario

There are two urns, A and B, with 5 balls each (3 black balls and 2 white balls and vice

versa). In each round of the game, one urn is randomly chosen with equal probability at

the beginning of the game. Participants predict the randomly chosen urn. As participants’

private information a ball is drawn from the urn and its color revealed. As public infor-

mation, urn predictions of predecessors (if any) are announced. Participants are credited

100 ECU (Experimental Currency Units) for correct urn predictions and nothing otherwise.

Participants are further asked to submit maximum prices pmax they are willing to pay

to participate in the prediction game, i.e. to seize the opportunity of winning 100 ECU.

As an incentive compatible mechanism to elicit subjects’ maximum willingness to pay we

implement the Becker-DeGroot-Marschak (BDM) mechanism (Becker et al., 1964): Subjects’

maximum prices are compared to a random price pr , drawn from a uniform distribution in

the the interval [0,100]. If the random price exceeds the maximum price (pr > pmax) the

participant earns nothing. If the random price is equal or lower than the maximum price

(pr ≤ pmax) the participant is credited the amount resulting from her urn prediction

minus the random price (see Table 1).

Correct urn prediction False urn prediction

pr ≤ pmax 100 ECU - pr 0 ECU - pr
pr > pmax 0 ECU 0 ECU

Table 1: Income Calculation.

If participants were risk neutral and maximized their income according to standard ex-

pected utility theory the submitted maximum prices would perfectly reflect their winning

probability perceptions. But these assumptions are hardly satisfied as many experimental

studies on decision making show.5 However, we are not interested in absolute probability

levels, but only in qualitative results. Therefore, prices are a meaningful measure to an-

swer our research question if higher prices reflect higher probability perceptions and vice

versa. To check this, we do not only elicit maximum prices but also ask subjects to submit

subjective probabilities for the correctness of their urn predictions.

2.2 Implementation of artificial agents

In this cascade experiment a subject’s predecessors are artificial agents, whose predictions

are clearly defined by simple counting, i.e. agents predict according to the majority of

(public and private) signals in favor of urn A or B. Consequently, errors of predecessors are

excluded by definition. Note that in the applied symmetrical information structure simple

counting leads to the same urn predictions as Bayesian updating (Anderson and Holt, 1997).

Thus, urn predictions of artificial agents are in line with BHW. In case of a tie-break, i.e.

an equal number of signals in favor of urn A and B, artificial agents decide according to

5For surveys of experimental studies on individual decision making under risk and uncertainty see e.g.

Camerer (1995) or Hey (1991).
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their private signal. This tie-breaking rule simplifies the updating process compared to a

randomization between urn A and B, as assumed by BHW.

One may object that we influenced participants’ decisions by incorporating artificial agents

who followed a simple counting heuristic. Admittedly, we taught participants to predict

according to the BHW model. But note that we are interested in price setting behavior

rather than in urn predictions. By the precise explanation of the artificial agents’ decision

rule, we wanted to make it as easy as possible for subjects to recognize cascade behavior

of predecessors.

2.3 Use of the strategy method

Participants are asked to state their decisions for all situations that may arise from the

decisions made by up to 5 artificial predecessors. Depending on

• the subject’s own position (1 to 6),

• the color of the privately drawn ball (black or white) and

• the history regarding predecessors’ predictions

there are in total 74 decision situations (see Section 3.2) for which participants have to

submit their urn predictions, maximum prices and subjective probabilities. One of these

74 situations is determined to be payoff relevant as follows:

1. One urn (A or B) is randomly chosen.

2. Subjects’ position (1 to 6) is randomly determined.

3. For each artificial agent a ball is drawn from the chosen urn. The agent predicts

according to the defined decision rules. This prediction is publicly announced.

4. At the (real) subject’s position a ball is drawn and the color announced.

Then the random price is drawn from all integers between 0 and 100. Now the payoffs

from the experiment can be calculated according to the rules summarized in Table 1. The

implementation of the strategy method has two major advantages: First it allows observing

complete individual price patterns. Second, the strategy method causes ‘cold’, i.e. less

emotional responses than spontaneous play and thus helps us to focus on the participants’

ability to recognize cascade behavior of others.6

6For experimental studies on presentation effects see e.g. Brandts and Charness (2000) or Schotter et al.

(1994).
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2.4 Procedure

At the start of a session participants were provided with written instructions as well as with

a supplementary sheet on the working of the BDM mechanism demonstrating that strategic

behavior does not pay.7 Questions were answered privately during the experiment.

After reading the instructions it was demonstrated how the payoff-relevant situation would

be determined. While all decisions had to be submitted via the computer, the choice of

the payoff-relevant situation and the draw of the random price were done by one of the

participants by hand, using real urns (opaque blue bags), balls (table tennis balls), dice and

chips with numbers from 1 to 100.

Prior to the experiment participants answered some control questions about the decision

rules of artificial predecessors and the working of the price mechanism.8 Subjects who

answered all questions correctly in the first go were paid an additional 5e. Participants

were not allowed to proceed to the experiment before all questions were answered correctly.

In the experiment participants submitted their decisions for all 74 situations which were

displayed on the computer screen in random order. After the decisions were taken the

payment relevant situation was determined, the price was randomly chosen, and subjects

were paid according to their decisions.

By using real urns and balls and by the execution of random choices by participants, by

demonstrating the choice of the payment-relevant situation before the sessions started and

by using pre-experimental control questions we ensured that the structure of the experi-

ment, the decision rules of artificial agents as well as the working of the BDM mechanism

were understood by the participants.

The computerized experiment (using the software toolkit z-Tree, Fischbacher (1999)), was

conducted at Humboldt University at Berlin. We ran 4 sessions with 9, 12, 7 and 11 partici-

pants. The 39 subjects, mainly business and economics students, were randomly recruited

from a pool of potential participants. In order to avoid losses a show-up fee of 100 ECU was

paid. The experiment lasted about 80 minutes. 100 ECU corresponded to e10. Average

earnings amounted to approximately e17 on average.

3 theory, notation and hypotheses

3.1 Bayes’ rule

In a symmetric cascade structure in which predecessors update information in line with

Bayes’ rule and predict according to their private signal in case of a tie, posterior probabil-

ities just depend on the number of signals in favor of urn A and B. According to Anderson

and Holt (1997), for the applied design, these probabilities can be derived to be as follows:

Pr{A|d} =
1

1+
(

2
3

)d
and Pr{B|d} =

1

1+
(

2
3

)−d
(1)

7This material may be downloaded at http://www.hu-berlin.de/wt1/papers.
8This material may be downloaded at http://www.hu-berlin.de/wt1/papers.
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Thereby, d is defined as the difference between the number of A and B signals. Posterior

probabilities increase with an increasing difference in favor of the respective urn. Thus,

rational subjects would recognize that they should ignore their own signal once a difference

of d = 2(−2) can be inferred from the predecessors’ predictions. From then on subsequent

players would always predict according to the ongoing cascade even if their private signal

does not match the cascade, diminishing the difference to d = 1(−1). Therefore, no further

information can be inferred from their predictions. Posterior probabilities for all further

situations remain stable at Pr{A|d = 3} = 0.77 if confronted with a signal in accordance

with the ongoing cascade or at Pr{A|d = 1} = 0.60 if confronted with an opposed signal.

3.2 Notation

To describe and classify the different situations a subject may be confronted with, we

first introduce some notation: All possible situations in the decision sequences will be

characterized as follows: Predecessors’ predictions are denoted by capital letters (A or B),

private signals by small letters (a=black ball and b=white ball). For example, ABb refers

to a situation in which a subject acts third in the sequence, sees a white ball as her private

signal, and observes that one of her predecessors (the first agent) has predicted “A”, and one

(the second agent) has predicted “B”. We denote these situations as “decision situations”.

We refer to private signals as either pro or contra signals. The naming is based on what a

rational player would do after observing the respective signal: After observing a pro signal,

the player predicts the urn suggested by the signal (or is indifferent which urn to choose),

after observing a contra signal, she rationally predicts against it. Therefore, as long as no

cascade has started, all signals are pro signals, because no player rationally ignores her

signal.

We classify decision situations where no cascade has started yet as cascade positions -3, -2,

and -1. Cascade position -3 refers to a “balanced sample”. This means that predecessors’

decisions and the private signal together reveal a probability of 0.5 for each urn. Thus,

either prediction is in line with rational behavior. Cascade position -2 refers to decision

situations in which equally many predecessors have predicted either urn. This means that

predecessors’ decisions and the private signal together reveal a probability of 0.6 for the

urn indicated by the private signal. Finally, at cascade position -1, among the predecessors,

there is already a one-prediction majority for one of the urns among the predecessors and

the private signal matches that majority. Hence, the probability for predicting correctly is

0.69.

We refer to a player’s position at which a cascade starts as cascade position 0. This means

that a rational player at cascade position 0 is the first to ignore her signal and predict in line

with the majority of predecessors in any case. Despite the fact that the optimal decision is

unaffected by the private signal, the probability of predicting correctly depends on whether

she has observed a pro or a contra signal.

Positions within the cascade are referred to as cascade positions 1, 2, and 3. This means

that 1, 2, or 3 predecessors have already ignored their private signal and have predicted

according to the majority of predictions they observed. Therefore there is no additional

information revealed by their predictions. Thus, the probabilities of predicting correctly

6



FIGURE 1 HERE

Figure 1: Probability pattern according to the BHW model

after receiving a pro or a contra signal at cascade positions 1, 2, or 3 equal those at cascade

position 0.

In total there are thus seven cascade positions. Remember that cascade positions are not

equivalent to the position in the decision sequence at which a player acts. As an example,

consider decision situations AAb and BAAAb which both belong to cascade position 0.

In Table 2, all cascade positions and the corresponding decision situations are summarized.

Private Casc. Decision Situations Number

Signal Pos.

-3 Ab;Ba;ABAb;ABBa;BAAb;BABa;ABABAb 14

ABABBa;ABBAAb;ABBABa;BABAAb

pro BABABa;BAABAb;BAABBa

-2 a;b;ABb;ABa;BAb;BAa;ABABb;ABABa;ABBAb 14

ABBAa;BAABb;BAABa;BABAb;BABAa

-1 Aa;Bb;ABAa;ABBb;BAAa;BABb;ABABAa;ABABBb 14

ABBAAa;ABBABb;BABAAa;BABABb;BAABAa;BAABBb

0 AAa;BBb;ABAAa;ABBBb;BAAAa;BABBb 6

pro 1 AAAa;BBBb;ABAAAa;BABBBb;ABBBBb;BAAAAa 6

2 AAAAa;BBBBb 2

3 AAAAAa;BBBBBb 2

0 AAb;BBa;ABAAb;ABBBa;BAAAb;BABBa 6

contra 1 AAAb;BBBa;ABAAAb;ABBBBa;BAAAAb;BABBBa 6

2 AAAAb;BBBBa 2

3 AAAAAb;BBBBBa 2

Total 74

Table 2: Decision Situations.

3.3 Hypotheses

Figure 1 shows a representation of posterior probabilities for all cascade positions given

pro or contra signals according to the BHW model.

As derived in Section 3.1, posterior probabilities of predicting correctly increase between

cascade positions -3 and -1. With the prediction of the agent at cascade position 0, the

cascade starts. From then on, probabilities remain constant. As for 38 out of 39 subjects

(97.4%) we observe highly significant positive correlations between maximum prices and

subjective probabilities,9 we are confident in using the submitted maximum prices to test

our hypotheses.10

9The Pearson correlation coefficient is significant on the 1%-level for all but one subjects. All significant

coefficients are between 0.44 and 0.96, with a median of 0.85. Thus, a majority of subjects exhibit a nearly

linear correlation. The non-parametric Spearman’s rank-order correlation coefficient is significant on the

1%-level for all 39 subjects.
10This correlation does neither need to be perfect nor linear. If, e.g., subjects are risk averse, it may be

expected that the correlation exhibits a non-linear pattern.
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FIGURE 2 HERE

Figure 2: Probability pattern according to the behavioral hypothesis

Hypothesis according to the BHW model: Individuals update information according to

Bayes’ rule and take cascade behavior of others into account.

Price setting behavior at cascade positions -3 to 0 is as follows:

a) p
−3pro
max < p

−2pro
max < p

−1pro
max < p

0pro
max

Price setting behavior at cascade positions 0 to 3 is as follows:

b) p
0pro
max = p

1pro
max = p

2pro
max = p

3pro
max

c) p0con
max = p

1con
max = p

2con
max = p

3con
max

Thereby, we refer to p
0pro
max as the willingness to pay of a subject at cascade position 0, who

is confronted with a pro signal, etc.

There are many studies indicating that individuals’ depth of reasoning is limited.11 We thus

conjecture that even though there is no uncertainty about others’ decision making, individ-

uals do not recognize cascade behavior of predecessors in our simple setting. If subjects

ignore the formation of a cascade, subjective probabilities increase the longer a cascade

continues, as illustrated in Figure 2. From this, we derive our alternative hypothesis.

Behavioral Hypothesis: Individuals update information according to Bayes’ rule, but do not

recognize cascade behavior of others.

Price setting behavior at cascade positions -3 to 0 is as follows:

a) p
−3pro
max < p

−2pro
max < p

−1pro
max < p

0pro
max

Price setting behavior at cascade positions 0 to 3 is as follows:

b) p
0pro
max < p

1pro
max < p

2pro
max < p

3pro
max

c) p0con
max < p

1con
max < p

2con
max < p

3con
max

The BHW and the Behavioral Hypothesis both predict increasing maximum prices from

cascade position -3 to cascade position 0. But they differ in the predicted price patterns

from cascade position 0 to 3.

4 results

4.1 Prediction Behavior

The 39 subjects were independently asked to make decisions for 74 situations. The data

file thus consists of 39*74=2886 urn predictions, prices and subjective probabilities. 546

observations are from situations at cascade position -3 where all predictions are consistent

with BHW since the posterior probability is 0.5. Of the remaining 2340 urn predictions 2268

(96.9%) are in line with BHW. 14 subjects (35.9%) predicted always in line with the theory.

11For depth of reasoning analyses in normal form games see e.g. Ho et al. (1998) or Nagel (1995). For

information cascades, Kübler and Weizsäcker (2004) have shown that subjects’ depth of reasoning is limited.

See our discussion in Section 1.
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The rate of seemingly rational predictors sharply increases up to 82.1% (32 out of 39), if

we include subjects who predicted in line with the BHW in at least 95% of the relevant

situations.12

As mentioned in Section 2, our experimental design and procedure indirectly influence

subjects to predict in line with BHW. Thus, the high rate of predictions in line with Bayesian

updating is not astonishing. Subjects followed their own signal in 77.1% of all tie-breaking

situations (with posterior probabilities of 50%).13

At cascade positions 0 to 3 rational agents would follow their predecessors even when

confronted with a contra signal. However, the error rate in such situations is essentially

higher (6.7%) than in cases in which the signal coincides with the ongoing cascade (0.6%).

In order to provide insight into the structure of prediction errors in ongoing cascades, we

compared error rates at different cascade positions and summarized the results in Table

3. When subjects are confronted with pro signals, error rates are similarly low at cascade

positions 0 to 3 (between 0.0% and 1.3%). When confronted with contra signals, the error

rate at cascade position 0 is higher (12.8%) than at later cascade positions.14

Subjects apparently overvalue their private information at early cascade positions but as-

sign more weight to the sequence of predecessors’ predictions the longer the cascade con-

tinues.

Cascade Number Number of errors [error rate] after...

position of cases pro signal contra signal

0 234 3 [1.3%] 30 [12.8%]

1 234 0 [0.0%] 11 [4.7%]

2 78 0 [0.0%] 0 [0.0%]

3 78 1 [1.3%] 1 [1.3%]

Total 626 4 [0.6%] 42 [6.7%]

Table 3: Prediction errors at different cascade positions

4.2 Price setting behavior and subjective probabilities

The question remains whether subjects who predict in line with BHW also recognize that a

cascade formation takes place. Thus, in the following, we concentrate on predictions that

were in line with BHW. For each of the 2812 correct predictions we have one maximum

price for participating in the prediction game and one subjective probability for making a

correct prediction. To give a first overview of price setting behavior for different cascade

12The remaining (incorrect) predictions do not seem to follow any systematic pattern. In each of the

relevant decision situations, one or two subjects made a mistake.
13This rate resembles the one in Oberhammer and Stiehler (2002) (79%), but is lower than rates found

in Anderson and Holt (1997) and Anderson (2001) (85.4% and 88.5%). However, their design was different

to Oberhammer and Stiehler’s and ours in a number of characteristics, e.g. they used a non-computerized

design and a different signal precision.
14This pattern of error rates is in line with the data of Anderson and Holt (1997), Anderson (2001) , and

Oberhammer and Stiehler (2002) among others. However, the level of error rates is higher in all those studies.

This may be due to the fact that players distrust their human predecessors and thus follow their own signal

more often.
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positions and private signals, we report average prices and probabilities for each of the

11 different cascade position/signal combinations (7 cascade positions with a pro signal

and 4 with a contra signal).15 The aggregated results are summarized in Table 4. Figure 3

illustrates the aggregated price setting pattern.

FIGURE 3 HERE

Figure 3: Average prices for different cascade positions and private signals

Private Casc. Individual avg. prices Subjective prob. (in %) Prob. according to..

signal pos. Mean Median SD Mean Median SD Behav. BHW

-3 32.9 35.6 18.6 46.2 49.6 8.0 50.0 50.0

pro -2 39.7 39.2 17.3 51.6 53.4 9.0 60.0 60.0

-1 53.1 53.9 17.9 61.8 62.9 9.3 69.2 69.2

0 59.5 60.4 20.2 67.8 68.3 11.1 77.1 77.1

pro 1 67.8 76.7 22.2 75.5 78.5 11.2 83.5 77.1

2 73.1 80.0 20.7 81.3 85.0 12.5 88.4 77.1

3 73.9 81.3 23.9 83.0 87.5 14.9 91.9 77.1

0 39.7 41.0 16.7 49.4 52.5 12.3 60.0 60.0

contra 1 50.8 50.8 20.5 60.1 61.2 12.9 69.2 60.0

2 55.5 58.3 23.6 65.9 67.5 15.6 77.1 60.0

3 63.8 70.3 25.9 74.9 77.5 16.7 83.5 60.0

Table 4: Price setting behavior and subjective probability statements

As predicted by the BHW model and by our behavioral hypothesis, maximum prices increase

from cascade position -3 to 0. When information cascades form, the submitted prices

at later cascade positions are higher than at earlier positions. This is in line with our

behavioral hypothesis. A similar pattern can be observed for the subjective probabilities.

At cascade position 3, subjects’ average maximum prices and subjective probabilities are

higher than predicted by BHW.

As mentioned above, we observe that subjects associate higher probabilities of predicting

correctly with a higher willingness to pay for taking part in the prediction game. We also

find that at each cascade position, average subjective probabilities exceed average submit-

ted maximum prices, indicating that risk aversion plays a role. The difference between

prices and subjective probabilities does not vary systematically over probability levels and

cascade positions.

In order to test our hypotheses, we ran nonparametric Friedman tests based on individual

average prices for each cascade position. Moreover, we used the individual average prices

to calculate the Spearman rank correlation coefficient for each of the three conjectured

price/cascade position relationships. The results are presented in Table 5.

Both statistical measures confirm that subjects generally infer information from predeces-

sors’ urn predictions (see row a). The H0-hypothesis that prices are constant from cascade

position -3 to 0 is rejected. Instead, we observe a significantly positive relation (Spearman’s

15For the analysis of price setting behavior we excluded observations of one subject whose submitted

maximum prices are apparently unsystematic and often on an invariantly low level (85% of his maximum

prices are below 10). However, including this observation does not change our findings.

10



Friedman test Spearman rank corr.

Hypothesis (H0) χ2 (sign.) ρ (sign. 2-tailed)

a) p
−3pro
max = p

−2pro
max = p

−1pro
max = p

0pro
max 91.02 (.000) .482 (.000)

b) p
0pro
max = p

1pro
max = p

2pro
max = p

3pro
max 42.86 (.000) .272 (.001)

c) p0con
max = p

1con
max = p

2con
max = p

3con
max 64.45 (.000) .374 (.000)

Table 5: Friedman-tests and Spearman rank correlations for maximum prices and cascade

positions

ρ > 0 with p < 0.01) between submitted maximum prices and the respective cascade posi-

tions. This finding is in line with Bayesian updating. However, all other hypotheses derived

from the BHW model are rejected (see rows b and c). We observe – in line with the alternative

(behavioral) hypothesis – significantly positive correlation coefficients at cascade positions

0 to 3 if confronted with pro, resp. contra signals. Applying the same tests to subjective

probabilities instead of prices yields the same results.

Observation I Aggregate price pattern

1. In situations where no information cascade has yet formed, the average willingness to

pay positively depends on the cascade position (-3 to 0). This is in line with both the

BHW model and the behavioral hypothesis.

2. The aggregated price setting pattern within cascades is in line with the behavioral

hypothesis, i.e. the correlation coefficients between average maximum prices and the

cascade position (0 to 3, for both pro and contra signals) are significantly positive.

One may object that the price pattern may be due to the behavior of some subjects who

did not understand the rules of the game and/or the decision rules of artificial agents.

To check whether this objection is justified, we applied the same analysis to the subsample

of subjects who predicted in line with BHW in more than 95% of the cases and answered

all questions about artificial predecessors correctly at first go.16

Our findings turn out to be robust. We find a similar price pattern for the considered sub-

sample, i.e. the hypothesis according to BHW has to be rejected in favor of our behavioral

hypothesis.

The use of the strategy method does not only allow to analyze aggregate behavior, but

also to obtain complete individual price setting patterns. We calculate Spearman rank

correlation coefficients between submitted maximum prices and the respective cascade

positions for each single participant. As before, we analyze:

1. maximum prices at cascade positions -3 to 0.

2. maximum prices at cascade positions 0 to 3 if confronted with pro signals.

3. maximum prices at cascade positions 0 to 3 if confronted with contra signals.

16Note that some of these control questions referred to situations at which artificial predecessors showed

cascade behavior, i.e. predicted against their private signals.
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According to the significance of the rank correlation coefficients (at the 5% level), we classify

subjects in the following four groups:

• BHW subjects: Those who show a significantly positive correlation between cascade

positions and maximum prices at cascade positions -3 to 0, but, for both pro and

contra signals, no significant correlation at cascade positions 0 to 3.

• Subjects completely ignoring the cascade formation: Those who show significant

positive correlation coefficients at cascade positions -3 to 0 and, for both pro and

contra signals, also at cascade positions 0 to 3.

• Subjects partly ignoring the cascade formation: Those who show significant posi-

tive correlation coefficients at cascade positions -3 to 0 and, either for pro or contra

signals, also at cascade positions 0 to 3.

• Others: Subjects who do not show a significant positive correlation coefficient at

cascade positions -3 to 0 or who show a significant negative correlation between prices

and cascade positions, whose behavior is thus not in line with either hypothesis.

Identified groups Number Identified patterns*

of subj. % a) b) c) Number of subj.

BHW subjects 7 17.9 + � � 7

Subj. completely ignoring 17 43.6 + + + 17

the cascade formation

Subj. partly ignoring 10 25.6 + + � 2

the cascade formation + � + 8

Others 5 12.8 � + + 1

� � + 1

� � � 2

+ - � 1

Total 39 100.0 39

*Identified price patterns at cascade positions -3 to 0 (column a) and at cascade

positions 0 to 3 when confronted with pro (column b), resp. contra signals (column c).

Significant positive (negative) correlations (p < 0.05, 2-tailed) between max. prices

and cascade positions are indicated by + (-), insignificant correlations by �.

Table 6: Individual price patterns

The results are summarized in Table 6. For 17 subjects (43.6%), all three correlation coeffi-

cients are significantly positive, i.e. completely in line with the behavioral hypothesis. For

another 10 subjects (25.6%), the correlation coefficient is significantly positive at cascade

positions -3 to 0, and, either for pro or for contra signals, also at cascade positions 0 to 3.

This indicates that cascade behavior of predecessors is not consistently recognized. Only

for 7 of the 39 subjects (17.9%), all three correlation coefficients are in line with the stan-

dard BHW model, i.e. significantly positive at cascade positions -3 to 0, but insignificant at

cascade positions 0 to 3. Finally, 5 subjects exhibit a price setting behavior that is not in

line with either hypothesis: 4 subjects show no significant positive correlation at cascade

positions -3 to 0. One subject showed a negative correlation between prices and cascade

positions when confronted with pro signals. Overall, price setting behavior of more than
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two thirds of the subjects indicates that cascade formation is not consistently recognized

whereas less than 20% of the subjects show price setting patterns in line with the standard

BHW model.

Observation II Individual price setting patterns

1. At cascade positions -3 to 0, almost 90% of participants show a significantly positive

rank correlation between submitted maximum prices and cascade positions, indicating

that information revealed by predecessors’ urn predictions is taken into account.

2. Only 17.9% of subjects show a price setting pattern in line with the standard BHW

model, i.e. showed significantly positive correlation at cascade positions -3 to 0 but no

significant correlation coefficients at later cascade positions.

3. For 43.6% of the participants, price setting patterns are completely in line with the

behavioral hypothesis, i.e. all 3 considered correlation coefficients are significantly

positive. For more than two thirds of the subjects price setting behavior is at least partly

in line with the behavioral hypothesis, i.e. the correlation coefficients are positive for

either pro or contra signals at cascade positions 0 to 3.

5 conclusion

We designed an experiment to test whether individuals recognize cascade behavior of oth-

ers. Our findings clearly support the alternative (behavioral) hypothesis, that they do not.

Although urn predictions are in line with BHW, maximum prices increase the longer a cas-

cade continues. More than two thirds of the participants obviously ignore cascade behavior

of predecessors. In contrast, only 18% of participants set prices in line with the BHW model.

Participants in our experiment are informed about decision rules used by artificial pre-

decessors. Errors by predecessors are excluded. We are aware that in real life there is

uncertainty about behavior of others. Of course, this may influence cascade behavior. But

if individuals do not recognize cascade behavior of others in our simple setting with arti-

ficial agents, then it is unlikely that they do so when their predecessors are humans.
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