
Sonderforschungsbereich/Transregio 15 · www.gesy.uni-mannheim.de 
Universität Mannheim · Freie Universität Berlin · Humboldt-Universität zu Berlin · Ludwig-Maximilians-Universität München 

Rheinische Friedrich-Wilhelms-Universität Bonn · Zentrum für Europäische Wirtschaftsforschung Mannheim 
 

Speaker: Prof. Konrad Stahl, Ph.D. · Department of Economics · University of Mannheim · D-68131 Mannheim, 
Phone: +49(0621)1812786 · Fax: +49(0621)1812785 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

April 2007 
 
 

*Thomas Giebe, Institute of Economic Theory I, Humboldt University at Berlin 
 Spandauer Str. 1, 10099 Berlin, Germany. thomas.giebe@wiwi.hu-berlin.de 

**Elmar Wolfstetter, Institute of Economic Theory I, Humboldt University at Berlin 
 Spandauer Str. 1, 10099 Berlin, Germany. elmar.wolfstetter@rz.hu–berlin.de 

 

 

 
Financial support from the Deutsche Forschungsgemeinschaft through SFB/TR 15 is gratefully acknowledged.

 

Discussion Paper No. 199 

License Auctions with Royalty 
Contracts for (Winners and) Losers 

Thomas Giebe* 
Elmar Wolfstetter** 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Research Papers in Economics

https://core.ac.uk/display/9317631?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


License Auctions with Royalty Contracts
for (Winners and) Losers1

Thomas Giebe Elmar Wolfstetter

Institute of Economic Theory I, Humboldt University at Berlin
Spandauer Str. 1, 10099 Berlin, Germany

Email: thomas.giebe@wiwi.hu-berlin.de
elmar.wolfstetter@rz.hu–berlin.de

Tel: +49-30-2093-5652, Fax: +49-30-2093-5619

April (revised) 2007

1We thank Tim Grebe, Hendrik Hakenes, Kai Konrad, Yvan Lengwiler, Benny
Moldovanu, Claudia Wernecke, and in particular the anonymous referees for com-
ments. Financial support from the Deutsche Forschungsgemeinschaft, SFB Tran-
sregio 15: "Governance and the Efficiency of Economic Systems”, is gratefully ac-
knowledged.



Abstract

This paper revisits the licensing of a non–drastic process innovation by an
outside innovator to a Cournot oligopoly. We propose a new mechanism
that combines a restrictive license auction with royalty licensing. This mech-
anism is more profitable than standard license auctions, auctioning royalty
contracts, fixed–fee licensing, pure royalty licensing, and two-part tariffs.
The key features are that royalty contracts are auctioned and that losers of
the auction are granted the option to sign a royalty contract. Remarkably,
combining royalties for winners and losers makes the integer constraint
concerning the number of licenses irrelevant.

JEL classifications: D21, D43, D44, D45.

Keywords: Patents, Licensing, Auctions, Royalty, Innovation, R&D, Mecha-
nism Design.



1. introduction

This paper revisits the standard analysis of licensing an outside innova-
tor’s cost reducing innovation to a Cournot oligopoly. We propose a simple
new mechanism that combines a license auction with royalty licensing in
a particular way. This new mechanism is more profitable than the stan-
dard solutions evaluated in the literature such as standard license auctions,
auctioning royalty contracts, fixed–fee licensing, pure royalty licensing, and
two-part tariffs (see Kamien, 1992, Kamien and Tauman, 1984, 1986, Katz
and Shapiro, 1985, 1986, Sen and Tauman, 2007).

The two key features of the proposed mechanism are that it grants the losers
of the license auction the option to sign a royalty contract, and that it em-
ploys a royalty component in the auctioned contract. Like in the standard
auction, the innovator auctions a restricted number of licenses; but, the auc-
tioned licenses are royalty contracts, and, after the auction, those who lose
the auction are granted the option to sign a pure royalty contract.

In equilibrium, the innovator sets the royalty rate for losers equal to the
marginal cost reduction induced by the innovation. As a result, the royalty
licensing granted in the second stage, after the auction, has no effect on
equilibrium bids since losers of the auction have the same payoff functions
as if no royalty option had been granted. Furthermore, in equilibrium the
number of auctioned licenses is such that no loser is crowded out of the mar-
ket. Thus, royalty income is collected which explains in part the superiority
of the proposed mechanism.

Our analysis also takes into account that the number of licenses must be
an integer which is particularly important if a small number of firms is in-
volved. Here, the royalty component in the auctioned contracts comes into
the picture as a tool for fine tuning. Essentially, that royalty component
is used to implement the optimal mechanism without violating the integer
constraint.

Recently, Sen (2005) showed that this integer constraint can make pure roy-
alty contracts superior to the standard license auction, contrary to a stan-
dard result of the literature. However, in our more general framework that
integer constraint can be satisfied at no loss in profit.

The literature on patent licensing in oligopoly has branched out in various
directions. Sen and Tauman (2007) analyzed an auction of royalty contracts.
Wang (1998) and Kamien and Tauman (2002) analyzed the licensing problem
from the perspective of an innovator who is also an incumbent player in the
downstream product market. While an outside innovator is only interested
in licensing income, an “inside” innovator must also take into account how
giving access to his innovation affects his own downstream profit.

Muto (1993), Hernández-Murillo and Llobet (2006) dealt with other market
games such as Bertrand or monopolistic competition with product differen-
tiation in lieu of the Cournot competition assumed here. And Beggs (1992),
Gallini and Wright (1990), Macho-Stadler and Pérez-Castrillo (1991) exam-
ined the benefits of royalty licensing either as a screening device in the face
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of incomplete information concerning the users’ willingness to pay for the
innovation or as a signaling device if the innovator has superior informa-
tion concerning the cost reduction induced by his innovation. Jehiel and
Moldovanu (2000) analyzed single–unit auctions that cause externalities in
an aftermarket. Our results are also driven by the fact that the outcome of
the auction affects competition in the subsequent Cournot market.

The licensing policy proposed in the present paper stipulates royalty pay-
ments from all firms, and price discrimination between firms by offering dif-
ferent combinations of royalty rates and fixed fees. This raises the question:
are royalty rates and discrimination employed in industry? Unfortunately,
the empirical literature on licensing practices does not provide sufficient
evidence to fully answer this question. A widely cited study of U.S. firms ob-
serves that “A down payment with running royalties method was used 46%
of the time, while straight royalties and paid-up licenses accounted for 39%
and 13%, respectively” (Rostoker, 1984, p.64). This finding is often inter-
preted as proving the predominance of royalty licensing (see also the study
on foreign technology licensing to Indian firms by Vishwasrao (2007)).1 That
study also reports that the same innovator often employs different licensing
schemes, possibly for licensing the same innovation to different customers.

Moreover, casual evidence suggests that discrimination is widely used in
software licensing and in the sale of innovative products. A case in point
is the “Original Equipment Manufacturer (OEM) Licensing” where PC man-
ufacturers are charged different prices and sometimes are given a choice
between a “one-time paid-up” license, which entitles the manufacturer to
unlimited distribution of the software within a specified time period, and a
per copy royalty license.

Similarly, new products are often sold to some users for unrestricted use
while others are offered a leasing contract which is effectively a royalty li-
censing scheme. The only difference between these arrangements and the
one proposed here is that customers are typically free to choose between
these two arrangements, whereas the proposed policy assumes that the in-
novator limits that choice by offering a restricted number of licenses.

The plan of the paper is as follows. In Section 2. we state the licensing
problem as a sequential game and introduce basic assumptions. Section 3.
summarizes some general properties of the equilibrium, and Section 4. de-
rives the optimal mechanism and explains the role of the integer constraint
on the number of contracts. Section 5. offers a discussion of the main results
and explores various extensions.

2. the model

There are n ≥ 2 firms with the linear cost function Ci(qi) := cqi, c > 0, and
the inverse demand function P(Q) with Q :=

∑n
i=1 qi. They play a Cournot

1Royalty contracts require inspection rates to monitor output. In a recent empirical
study, Brousseau et al. (2007) report that “license contracts typically grant inspection rights
aimed at controlling the licensee’s usage of the licensed technology or to a third party.”
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game.

An outside innovator owns a patented innovation that reduces the marginal
cost from c to c − ε with c > ε > 0. The innovator can permit the use of
that innovation by issuing licenses. In general, a license is a two-part tariff
contract, with a royalty rate per output unit and a fixed fee. This covers
fixed-fee contracts, pure royalty contracts, and the auctioning of royalty
contracts.

Throughout this text we employ the usual notion of a drastic vs. non–drastic
innovation. An innovation is drastic if its exclusive use by one firm propels
monopolization. Each innovation induces a natural oligopoly of a certain
size, denoted by K, in the sense that if K or more firms operate with the
new technology (at marginal cost c − ε), all firms with marginal cost c exit,
i.e. their equilibrium output is equal to zero because the equilibrium price
is below c. In this text we assume that the innovation is non–drastic in the
sense that K > 1.2

The following stage game (under complete information) is played: the inno-
vator chooses a licensing mechanism; then firms play that mechanism as a
noncooperative game; finally, firms play a Cournot market game, after hav-
ing observed the outcome of the previous play, knowing who gained access
to the innovation and how.

We introduce the modified license auction (k, rw , rl). The innovator auctions
a limited number of k royalty contracts (possibly with a minimum bid), with
the royalty rate rw < ε, and gives those firms who lose the auction the option
to sign a royalty contract with a royalty rate rl > 0. Of course, rw < rl, and
royalty contracts are not accepted if they exceed the cost reduction.3

The mechanism m includes all other standard mechanisms considered in
the literature as special cases, ranging from fixed-fee licensing, pure royalty
licensing, to the auctioning of fixed fee licenses or royalty contracts. For
instance, fixed-fee licensing is equivalent to an auction of k = n contracts
with rw = 0 and a minimum bid, and rl > ε. Pure royalty licensing is
equivalent to k = 0,0 < rl ≤ ε. The case k ∈ [1, n], rw = 0, rl > ε is the
standard license auction analyzed by Kamien (1992) and others, and with
rw > 0 the auction analyzed by Sen and Tauman (2007).

In the following we refer to those firms who win the auction as “winners”
(w) and those who lose as “losers” (l).
The number of contracts k is an integer (which can make a difference but is
typically ignored in the literature).

Throughout our analysis, the inverse market demand function P satisfies
the following assumptions:4

2The notation is borrowed from Kamien (1992). The case of drastic innovation, K ≤ 1,
is trivial. There, the innovation induces a natural monopoly where issuing one fixed–fee
license is optimal.

3Note that these restrictions on rw and rl only exclude strategies of the innovator that
are obviously not optimal.

4These assumptions are similar to those employed in Kamien et al. (1992).

3



Assumption 1 Inverse demand P is strictly decreasing inQ and continuously
differentiable for Q > 0, and P(Q)Q is strictly concave in Q and P(0) > c,
and P(Q) = 0 for all Q ≥ Q̄ > 0 (satiation point).

3. equilibria of the cournot market and licensing subgames

The equilibrium concept is that of a subgame perfect Nash equilibrium
(SPNE) which is found by backward induction.

Cournot subgames The Cournot subgame is an asymmetric oligopoly
game played between winners (w) and losers who have exercised the roy-
alty option and potentially those who have no license at all. We focus on the
particular subgames with k winners and n−k losers who have exercised the
royalty option if and only if rl ≤ ε. Consequently, the unit costs are changed
from c to cw := c−ε+rw , resp. cl := c−ε+rl. At the end of this section we
briefly elaborate on the other subgames in which some firms have neither
acquired a license nor exercised the royalty option.

Depending on the mechanism, in equilibrium either all losers are crowded
out or coexist and produce positive outputs. The critical level of k above
which all losers are crowded out depends upon effective unit costs, cl, cw .
We denote this critical level by K(rw , rl), and mention that K(0, ε) = K,
i.e. auctioning K(0, ε) = K licenses establishes a natural oligopoly of size
K. (Note that in a duopoly crowding out is impossible by assumption of a
non–drastic innovation.)

Using the measure K(rw , rl) it follows that all firms, winners and losers
alike, coexist in the Cournot market if there are less than n winners and
k < K(rw , rl), whereas only winners are active in the Cournot subgame if
k = n or k >K(rw , rl).
Note that for rl ≥ ε all losers have an effective unit cost equal to c (since
a contract with r > ε is never accepted), as in the standard license auction
game without royalty contract option studied by Kamien (1992), Kamien
et al. (1992) and others.

We denote the equilibrium Cournot outputs by qw , ql,Q, and the associated
equilibrium profits of firms by πw , πl:

πi :=
(
P(Q)− ci

)
qi, i ∈ {l,w} (1)

Q := kqw + (n− k)ql (2)

These equilibrium outputs are defined as solutions of the Kuhn–Tucker con-
ditions ∂πi

∂qi
≤ 0, qi

∂πi
∂qi

= 0, i ∈ {w, l}. They are functions of m, although,
with slight abuse of notation, we often use the same symbol for a function
and its value, whenever that distinction is evident from the context.

If both winners and losers coexist (i.e. if ql > 0), one can eliminate the
variable qw and solve for (Q,ql) as a function of average marginal cost, c̄,
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by writing these conditions in the form5

0 = nP(Q)+QP ′(Q)−nc̄ (3)

0 = P(Q)+ qlP ′(Q)− cl (4)

c̄ := k
n
cw +

n− k
n

cl (5)

Interestingly,Q can be solved uniquely as a function of c̄, from (3), and then
ql can be computed by plugging Q into (4). Therefore, Q is exclusively a
function of c̄, and ql is only a function of c̄ and cl.6

Whereas if losers are crowded out (i.e. if P(Q) − cl ≤ 0 and hence ql =
0), the equilibrium aggregate output solves the obvious condition kP(Q)+
QP ′(Q)− kcw = 0 and qw = Q/k.

Lemma 1 Equilibrium aggregate output Q is strictly decreasing in c̄. If win-
ners and losers coexist, both ql and Q are (directly or indirectly) decreasing
in cl. If losers are crowded out, Q is decreasing in k and in cw .

Proof Suppose winners and losers coexist. Then, Q uniquely solves the
condition (nP(Q)+P ′(Q)Q) = nc̄. By Assumption 1 (P(Q)+P ′(Q)Q) and
P(Q) are decreasing in Q; therefore, (nP(Q) + P ′(Q)Q) is also decreasing
in Q. Hence, the equilibrium Q is decreasing in c̄. The assertion concerning
the effects of cl are obvious. Now suppose losers are crowded out. Then,
the market game is a symmetric k-firm oligopoly, and it follows immediately
that Q is decreasing in c̄ and in k. �

Another key property of the asymmetric oligopoly induced by licensing con-
cerns gross profits π̄i, i.e. firms’ profits before deducting royalty payments:

π̄i := πi + Ri, Ri := riqi
=
(
P(Q)− c + ε

)
qi, i ∈ {w, l}. (6)

Lemma 2 Aggregate gross profits are strictly increasing in c̄.

Proof Aggregate gross profits are equal to (P(Q)−c+ε)Q. By assumption
1, aggregate gross profits are concave in Q, and since the innovation is not
drastic, the equilibrium Q is greater than the monopoly output. Therefore,
the sum of gross profits is declining in Q, and since Q is decreasing in c̄, by
Lemma 1, aggregate gross profits are increasing in c̄. �

Lemma 3 If losers are crowded out, i.e. P ≤ c, aggregate gross profits are
decreasing in k.

5With slight abuse of notation we use the same symbol for outputs and equilibrium
strategies, whenever there is no risk of confusion.

6Since (P(Q)Q)′ is decreasing and P ′(Q) < 0, it follows that nP(Q) + P ′(Q)Q is also
decreasing. Together with the fact that limQ→0(P(Q) + P ′(Q)Q) = P(0) > c we conclude
that a positive solution Q > 0 exists and is unique. Given Q, existence and uniqueness of
ql follow immediately.
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Proof If losers are crowded out, then the market is a symmetric k-firm
oligopoly with aggregate gross profits equal to kπ̄w . Obviously, reducing
the number of firms in a symmetric oligopoly increases the sum of gross
profits for k ≥ 1. The profit is maximized in a monopoly, i.e. k = 1. �

Finally, we mention that there are also subgames in which some firms have
no license at all. In those subgames one must distinguish between three
kinds of players: winners, losers who exercise the royalty option, and losers
who do not. In that case, the Cournot equilibrium solves an additional Kuhn–
Tucker condition concerning those who have no license, where one has to
change the definition of average marginal cost accordingly. Of course, in the
equilibrium those losers who do not exercise the royalty option are worse
off. A special case is the subgame where no loser has exercised the royalty
option. This is particularly relevant if exercising the royalty is unattractive
because rl > ε.

Royalty licensing subgames After the auction has selected k winners
and n − k losers, each loser can either accept the royalty contract with
the royalty rate rl or refuse and operate under the initial marginal cost c.
The SPE of the royalty licensing subgame is to accept if rl < ε, to reject if
rl > ε, whereas losers are indifferent if rl = ε. However, as will become
clear, rejection cannot be part of the SPE of the entire game. Therefore, in
the SPE of the entire game losers exercise the royalty option if and only if
rl ≤ ε.

Auction subgames In the auction subgames each firm is asked to bid on
at most one of k license contracts in a lowest price auction (possibly with a
minimum bid) where the k highest bidders win, in case of a tie winners are
selected at random, and each winner pays the lowest winning bid.7 Each firm
knows that if it does not obtain a license in the auction it can subsequently
exercise the royalty contract option.

In equilibrium, all licenses are sold since rw < ε, provided the minimum bid
is not set too high. Since firms have complete information, the equilibrium
bid is equal to the value of the auctioned license contract. That value is the
difference between the profit of a winner and that of a loser. In computing
that value it is crucial to distinguish between the case when licenses are
rationed because the innovator restricts the number of licenses (k < n) and
when they are not rationed (k = n). If k = n, bidders’ participation in the
auction affects the structure of the subsequent oligopoly game, whereas if
k < n that market structure cannot be affected by an individual bidder.

As we show below, a minimum serves no purpose if k < n. However, if k = n,
the innovator can only earn revenue if he charges a minimum bid. In that

7Instead of using this slightly unusual pricing rule one could use for example a discrimi-
natory auction where each winner pays his bid or a uniform price auction in which winners
pay the highest losing bid. The disadvantage of these rules is that they have multiple
asymmetric equilibria.
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case, we assume that the innovator applies the most profitable minimum bid,
which is equal to firms’ maximum willingness to pay, b0 := πw(n)−πl(n−1)
(as in Kamien (1992)).

Lemma 4 Suppose k licenses with rw < ε are auctioned, losers have the option
to sign a royalty contract with the royalty rate rl > rw , and the auctioneer
applies the minimum bid, b0, if he sets k = n. The SPNE strategy of each firm
is to participate in the auction and bid an amount equal to8

b(k) =

πw(k)−πl(k) if k ≤ n− 1

πw(n)−πl(n− 1) if k = n.
(7)

Proof The value of an auctioned license is the difference between πw and
πl.
If k < n no firm can unilaterally influence the subsequent market structure
composed of k winners and n − k losers. Because if a firm refrains from
bidding, another bidder wins the license. Therefore, if k < n, each firm
knows that it faces a given market structure in the subsequent oligopoly
game, and therefore should participate in the auction and bid the amount
πw(k)−πl(k).
This is different if k = n. Then, a firm that refrains from bidding thus
changes the subsequent market structure from n winners and no loser to
n − 1 winners and one loser. In that case the auction can only generate
revenue if the innovator sets an appropriate minimum bid because otherwise
firms can buy a license with a zero bid. (Whereas, if k < n, a minimum bid
serves no purpose.) Therefore, the innovator sets a minimum bid equal to
firms’ maximum willingness to pay, πw(n)−πl(n−1), and firms participate
in the auction and bid that amount. �

4. the equilibrium mechanism

The innovator chooses the licensing policy (k, rw , rl) that maximizes his in-
come, Π, which is composed of auction revenue and royalty income from
winners and losers. This format includes the standard mechanisms ana-
lyzed in the literature as special cases. In the SPNE all firms participate in
the auction and bid according to the bid function b(k) and all losers exercise
the royalty option. Therefore,

Π = kb(k)+ krwqw + (n− k)rlql
= k(πw −πl)+ kRw + (n− k)Rl
= k(π̄w − π̄l)+nRl.

(8)

8There, πw(k),πl(k) denote the equilibrium profits in the Cournot subgame with k
winners and n− k losers who exercise the royalty option.
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Proposition 1 (Optimal Licensing) The optimal licensing policy exhibits:

1) full dissemination of the innovation to all firms

2) restrictive license auction, 1 ≤ k ≤ n− 1

3) maximum royalty rate for losers, rl = ε
4) an asymmetric oligopoly is created (i.e. no firm is crowded out).

The proof is in a sequence of Lemmas, below.

4.1. Pure royalty contracts are not optimal

Using a linear model, Kamien (1992) already showed that license auctions
dominate pure royalty licensing. However, as Sen (2005) pointed out re-
cently, if one takes into account that the number of licenses must be an
integer (which has been ignored in the literature), pure royalty contracts
may be more profitable than license auctions. However, as we now show,
pure royalty contracts are not optimal, even if one accounts for the integer
constraint concerning k. As our proof indicates, the proposed royalty option
to losers plays a key role in establishing this result.

Lemma 5 (Exclusion of Pure Royalty Contracts) Pure royalty licensing,
i.e. k = 0, is not optimal (even if one accounts for the integer constraint
concerning k).

Proof Consider royalty licensing, i.e. k = 0 at the rate rl ∈ (0, ε] (royalty
rates greater than ε are never accepted). We prove the assertion by showing
that the mechanism (k = 1, rw = 0, rl), that issues one license and offers
the same royalty rate rl to all losers is more profitable for the innovator.

Denote firms’ equilibrium outputs under royalty licensing and the stated
mechanism by qR resp. (qw , ql), the associated aggregate outputs by QR :=
nqR, QM := qw + (n−1)ql, and the equilibrium prices by pR, pM . Then, the
innovator’s profit is

Π(1,0, rl) =
(
pM − c + ε

)
qw −

(
pM − c + ε− rl

)
ql + rl(n− 1)ql

=
(
pM − c + ε− rl

) (
qw − ql

)
+ rlQM

>rlQM > rlQR = Π(0,0, rl).

The first inequality follows from three facts: 1) the innovation is non–drastic
and therefore the one licensee cannot crowd out other firms which assures
that the Cournot equilibrium price pM remains above the marginal cost c,
pM > c; hence, royalty income from losers is generated; 2) ε ≥ rl; 3) qw > ql
because the licensee has lower marginal cost. To understand the second
inequality, note that both regimes induce an n-firms oligopoly, where one
firm has lower marginal cost in the modified license auction, which gives
rise to a higher aggregate output, as we show in Lemma 1. �
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4.2. Why it is not optimal to auction k = n licenses

If the innovator auctions k = n licenses, he sets a minimum bid equal to
the amount πw(n)−πl(n− 1) (where, of course, πl(n− 1) can be equal to
zero), and every firm bids that amount, as already explained in Lemma 4.
We now show that such a mechanism is not optimal. Instead, the optimal
mechanism involves restrictive licensing, k < n.

Lemma 6 The optimal mechanism sets k < n (even if one accounts for the
integer constraint concerning k).

Proof Consider the mechanism m := (n, rw , rl), supplemented by a mini-
mum bid equal to πw(n)−πl(n−1). We show that the modified mechanism
m′ := (n−1, rw , rl), that differs fromm only by replacing k = n by k = n−1,
is more profitable for the innovator:

Π(m) : = n(π̄w(n)− π̄l(n− 1)+ Rl(n− 1)) (9)

Π(m′) : = (n− 1)(π̄w(n− 1)− π̄l(n− 1))+nRl(n− 1) (10)

Π(m′)−Π(m) = (n− 1)π̄w(n− 1)+ π̄l(n− 1)−nπ̄(n) > 0. (11)

The latter inequality holds because (11) compares the sums of gross profits
in two different markets: one with n− 1 winners and 1 loser and the other
with n winners. Obviously, the former exhibits a higher average marginal
cost, c̄, and hence a greater sum of gross profits, by Lemma 2. �

4.3. Which royalty rate for losers?

Lemma 7 (Royalty rate for losers) The optimal mechanism sets the roy-
alty rate for losers equal to the cost reduction, rl = ε.

Proof Suppose the royalty rate for losers is raised from rl to r ′l with
rl < r ′l ≤ ε. Assume losers are not crowded out (we show in Lemma 10
that crowding out is not optimal). Therefore, the subsequent market game
is an asymmetric oligopoly, characterized in (3)-(5), with a higher average
marginal cost, c̄′ > c̄. Denote all equilibrium values induced by that change
by a prime, the equilibrium royalty incomes by Ri := riqi, i ∈ {w, l}, and
gross profits (before deducting royalties) by π̄i := πi − Ri.
Recall that, by (8), Π := k(π̄w − π̄l)+ nRl, and use the fact that the sum of
gross profits is increasing in c̄, by Lemma 2, and that the increased royalty
rate r ′l reduces losers’ equilibrium profits, and one concludes,

Π′ −Π = k
(
(π̄ ′w − π̄w)− (π̄ ′l − π̄l)

)
−n(Rl − R′l)

> (n− k)(π̄l − π̄ ′l )− k(π̄ ′l − π̄l)−n(Rl − R′l), by Lemma 2

= n(π̄l − π̄ ′l )−n(Rl − R′l)
= n(πl −π ′l )
> 0.

(12)

Therefore, the optimal rl is equal to the highest rate that is not rejected:
rl = ε. �
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By charging maximum royalties to losers, the industry output is moved to-
wards the monopoly output. This allows the innovator to extract maximum
rent from the winners. Of course, raising royalties for losers may also imply
lower royalty income from them. But this loss is more than compensated
by the increased rent extracted from winners.

4.4. Why the optimal mechanism reduces to the choice of c̄

We now show that the optimal mechanism, (k, rw , rl), can be reduced to the
optimal choice of average marginal cost, c̄. The To prepare the proof, we
first exclude the optimality of excessive crowding out. Excessive crowding
out means that the mechanism gives rise to an equilibrium price lower than
losers’ marginal cost, P < c.

Lemma 8 (No “excessive crowding out”) The optimal mechanism exhibits
P ≥ c.

Proof Suppose, per absurdum, that the optimal mechanism involves a
price below c, which implies ql = 0. In that case the innovator’s profit is
Π = kπ̄ , i.e. the innovator collects the sum of winners’ gross profits. Then,
by Lemmas 2 and 3, the innovator’s profit can be increased by raising c̄ or
by lowering k. In the present context the only way to raise c̄ is to raise rw up
to the limit where P = c. It is optimal to raise that limit as much as possible,
which implies rl = ε. Thus, a price below c is not optimal. In turn, lowering
k is a move towards the monopoly outcome, i.e. it raises the price. This
increases the innovator’s profit up to the point where P = c. Again, P < c is
not optimal. �

Lemma 9 The optimal choice of mechanism reduces to choosing the average
marginal cost, c̄ that maximizes

Π(c̄) := (P(Q(c̄))− c)
(
Q(c̄)−nqL(c̄)

)
+Q(c̄)ε. (13)

Proof The innovator’s profit (8) can be written in the form (13) if one re-
places qw by Q and ql and uses the result rl = ε. By Lemma 8, exces-
sive crowding out is not optimal. Therefore, the equilibrium solution of the
Cournot market game, (Q,ql), solves equations (3) and (4). These equilib-
rium outputs are exclusively a function of c̄. It follows that Π is exclusively
a function of c̄. �

Using the definition of c̄ it follows immediately:

Corollary 1 (Degree of freedom) The optimal mechanism has a degree
of freedom. Given the optimal c̄, all combinations of (k, rw) that satisfy the
condition

c̄ = c − k
n
(ε− rw) . (14)

with k ∈ [1, n− 1] and rw < ε are optimal.

This trade-off is illustrated in Figure 1.

10



4.5. Why is it not optimal to “crowd out” losers?

Lemma 10 (No “crowding out”) In the optimal mechanism winners and losers
coexist, i.e. P > c, and qw , ql > 0.

Proof We have already excluded a price lower than c (excessive crowding
out). It only remains to be shown that a mechanism that induces a price
equal to c cannot be optimal either.

Suppose, per absurdum, that the optimal mechanism involves a price equal
to c, which implies that ql = 0 is an interior solution of the losers’ best-reply
problem. Denote the c̄ that gives rise to an equilibrium price equal to c by
c̄∗. Then, one must have:

0 = ∂Π
∂c̄

∣∣∣∣
c̄=c̄∗

= (ε+QP ′)Q′ (by (13))

= (ε+n(c̄∗ − P))Q′ (by (3))

= (ε+n(c̄∗ − c))Q′ (since P = c).

(15)

Therefore, c̄∗ = c − ε
n . Using the definition of c̄, all combinations of (k, rw)

that solve the condition k(ε−rw) = ε are optimal. In particular, (k = 1, rw =
0) is optimal. However, together with P = c, this contradicts the assumption
of a non-drastic innovation. Recall, a non-drastic innovation implies that the
monopoly price is above the pre-innovation cost c. �

4.6. Why the proposed mechanism is superior

Compare the proposed optimal mechanism with the mechanisms consid-
ered in the literature. As we already pointed out, the class of mechanisms
considered here includes all the other mechanisms as special cases. There-
fore, our proposed optimal mechanism cannot be inferior. In Lemmas 6, 10
and 7 we have shown that it is optimal to chose k < n, to not crowd-out
losers, ql > 0, and to set rl = ε. Therefore, unlike all these mechanisms, the
proposed optimal mechanism generates royalty income from losers. This
proves strict superiority, as long as one ignores that the number of licenses
must be an integer.

4.7. Irrelevance of the integer constraint

We have shown that the optimal mechanism exhibits k ∈ [1, n− 1], rw < ε,
rl = ε and no crowding out. Therefore, the optimal average marginal cost is
bounded by c̄ ∈ (c−ε, c). Now we show that the integer constraint concern-
ing the number of contracts, k, is irrelevant in the sense that it can always
be accommodated without affecting the innovator’s equilibrium income.

Corollary 1 suggests that the degree of freedom allows us to implement the
optimal c̄ by choosing an arbitrary integer 1 ≤ k ≤ n− 1. But is this always
feasible?

11



An integer k is feasible for a given optimal c̄ if the corresponding royalty
rate rw = ε − n

k (c − c̄) is smaller than ε. By Lemma 5, which excludes
k = 0, one has c̄ < c and thus rw < ε. Therefore, the optimal c̄ can always
be implemented with an integer k, without loss in profit, as illustrated in
Figure 1.
This also indicates that royalties for winners are essentially useful to “fine
tune” the optimal mechanism in the face of the integer constraint concern-
ing k. If one ignores that integer constraint, royalties for winners serve no
purpose.

Corollary 2 (Strict Superiority) The optimal licensing policy is strictly
more profitable than all standard licensing mechanisms such as pure royalty
contracts, standard license auctions, auctions of royalty contracts, and take-
it-or-leave-it two-part tariffs.

We mention that if one does not include the proposed royalties for losers,
as in the mechanism analyzed by Sen and Tauman (2007), the innovator’s
profit is not exclusively a function of c̄, and one does not obtain the above
degree of freedom. As a result one faces an integer problem that generically
entails a loss in profit. The same holds true if one does not include royalties
for winners. Therefore, adding royalties for winners and losers, is crucial
for the above stated irrelevance of the integer constraint.

4.8. Illustration: Linear Demand

The literature on patent licensing usually assumes a linear model with P :=
a−Q,a > c. Due to the prominence of this model, we briefly illustrate our
findings for that case.
In the linear model the optimal c̄ is equal to c̄ = c − a−c+ε

2n , and the optimal
mechanism (k, rw , rl) is:

k ∈ {1, . . . , n− 1},
(
rw , rl

)
=
(
ε− a− c + ε

2k
, ε
)

(16)

Moreover, K = a−c
ε . Specifically, setting k = n− 1 gives rw = 2n−3−K

2(n−1) ε. For
K > 2n − 3 (“weak” innovations), rw is negative, i.e. winners’ outputs are
subsidized.
If one ignores the integer constraint the royalty rate for winners serves no
purpose and

(k, rw , rl) =
(
K + 1

2
,0, ε

)
(17)

is an optimal mechanism.

5. discussion

5.1. Welfare comparisons

Welfare is completely determined by the adopted technologies and aggre-
gate output. In the equilibrium of the Cournot subgame aggregate output

12
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Figure 1: Optimal combinations of (k, rw) for (a,n, c, ε) = (1,20, .4, .05)

is exclusively a function of the average marginal cost c̄ if no crowding out
occurs; whereas if crowding out occurs, aggregate output is exclusively a
function of cw .

Under the proposed mechanism the new technology is used by all firms;
hence, social marginal cost is equal to c − ε. No firm is crowded out, and
thus the equilibrium aggregate output is determined by c̄ ∈ (c − ε, c) (see
(3)). Therefore, welfare is greater than before the innovation, regardless of
which optimal combination of k and rw is applied.

Under optimal pure royalty licensing (with royalty rate r ) the new technology
is also used by all firms and hence social marginal cost is also equal to c−ε.
Aggregate output is completely determined by c − ε+ r . Therefore, if r = ε
(which is optimal in the standard linear model), welfare is smaller than in
the proposed mechanism, although greater than before the innovation.

The standard optimal license auction without royalties has several equilib-
rium outcomes, depending on the magnitude of the innovation (see Kamien
et al. (1992)). For sufficiently strong innovations (reflected in a small number
K), some firms are crowded out. All remaining firms use the new technol-
ogy and social marginal cost is equal to c − ε. Crowding out implies P ≤ c.
Whereas under our proposed mechanism, no firm is crowded out and P > c.
Hence, in this case, the standard license auction entails greater welfare than
our proposed mechanism. For weak innovations, the optimal standard auc-
tion does not crowd out. If all firms get a license, k = n, social marginal cost
is equal to c − ε and the auction achieves the maximum welfare obtainable
under Cournot competition.9

5.2. Why an auction instead of two-part tariffs?

One may ask: why is it not optimal to make a take-it-or-leave-it offer instead
of an auction? Answering this question helps to understand the fundamen-
tal role of the auction in the present context.

Suppose the innovator makes a take-it-or-leave-it offer to each firm that gives
firms the same allocation and transfers as the equilibrium of the auction.

9If k < n, social marginal cost is between c and c−ε, since those who do not get a license
do not get the new technology. Nevertheless, the welfare comparison is ambiguous.
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Then, a designated winner has an incentive to deviate and not accept the
contract, for the following reason:

If the winner accepts, his payoff is the same as that of a firm that accepts
a loser contract, by design of the auction. However, if he rejects the offer,
each loser is made better off because one firm with low marginal cost has
been replaced by one firm with high marginal cost. The deviator is now one
of those losers. Therefore, his payoff is increased.

Why does this logic not apply if the innovator employs an auction to sell win-
ner contracts? The reason is simple. If a firm does not bid or a designated
winner deviates and rejects the offer, another bidder will become a winner
instead. Therefore, the industry structure remains unchanged. Hence devi-
ation does not pay.

Of course, deviation never pays for a loser because if a loser does not exer-
cise the royalty option, the industry structure is not changed at all.

This explains why using auctions to sell a restricted number of licenses is a
clever way to reduce the bargaining power of licensees, more than what the
innovator could achieve with an ultimatum offer.10

5.3. Can a combinatorial auction do even better?

One may think that a combinatorial auction may be even more profitable for
the innovator. However, this is not true, for the following reason.

Suppose the auctioneer runs the following combinatorial auction (ignoring
royalties to winners): Each firm is invited to make a bid contingent on getting
one out of k ∈ {1,2, . . . , n} licenses. After all bids have been submitted, the
auctioneer selects the most profitable k, awards k licenses, and all winners
pay their bids. In equilibrium, bids are such that bidders are indifferent
between winning and losing, as in (7). Of course, bids differ for different
values of k, reaching a maximum at some k. The auctioneer selects that k,
which is precisely the number of licenses that he auctions in our simple auc-
tion. We conclude that using combinatorial auctions cannot further boost
the innovator’s profit.11

5.4. The “chutzpah mechanism” revisited

Having characterized the optimal mechanism in the class (k, rw , rl), one may
ask: is it the best the innovator can do or is there a superior mechanism?
Following Kamien (1992), Kamien et al. (1992) we address this question by

10Of course, two-part tariffs are equally good if the innovator can credibly threaten to
withdraw the innovation if one or more firms do not accept the offered two-part tariffs. In
this light, the advantage of the auction is that it works without such “collective punishment”
threats.

11Note, however, that combinatorial auctions are attractive if firms are heterogeneous,
and firms are allowed to make bids contingent on who gets the innovation.
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looking at an extreme reference point that can be implemented by an appro-
priately generalized “chutzpah mechanism”.12 That reference point can be
useful as an upper bound of the innovator’s profit.

Taking (k, rw , rl) as given, the innovator cannot possibly extract more than
the total industry gross profit,

∑
π̄ := kπ̄w(k) + (n − k)π̄l(k). However,

each firm can assure itself at least a (net) profit equal to πl(n − 1), since
πl(k) ≥ πl(n−1), for all k ≥ n−1. Therefore, the innovator cannot extract
more than:

Π̃(k) : =
∑
π̄ −nπl(n− 1).

Comparing this with (8) one finds, after a bit of rearranging,

Π̃(k)−Π(k) = n(πl(k)−πl(n− 1) ≥ 0,

with equality if and only if k = n − 1. Therefore, if one chooses the opti-
mal proposed mechanism, (k, rw , rl), the equilibrium innovator profit, Π, is
bounded from above:

Π ≤ Π̃(k).

This upper bound can be reached by our proposed mechanisms for k = n−1,
which is an optimal number of licenses in the proposed mechanism.

Of course, the innovator can reach Π̃(k) for all other k and even higher
profits if he can extort additional transfers by threatening to trigger a col-
lective penalty in the event when at least one firm fails to pay. This can be
achieved by a generalized “chutzpah mechanism”, which may be useful as
a benchmark but offers no practically relevant guidance.13

5.5. Bertrand competition and differentiated goods

One may wonder to what extent our results rely on the assumptions of
Cournot competition and homogeneous goods. If one maintains the homo-
geneous goods assumption but replaces Cournot by Bertrand competition,
the optimal licensing mechanism obviously gives rise to monopoly, as al-
ready pointed out by Kamien (1992). However, as it is generally the case,
the combination of homogeneous goods with Bertrand competition is only
a borderline case. Therefore, Bertrand competition can only yield plausible
results in the context of heterogenous goods.

If goods are sufficiently heterogeneous substitutes, each firm has its own
market niche even if there is some dispersion of costs. Therefore, crowding
out should be of less concern. Exclusive licensing is profitable to the innova-
tor, as in the above model, since granting a license to a firm inflicts a negative

12The “chutzpah mechanism” was introduced by Kamien et al. (1990).
13There, 1) the innovator offers the mechanism (k, rw , rl = ε) supplemented by a partici-

pation fee equal to π̄l(k)−π̄l(n−1), and the proviso that this offer is valid only if alln firms
pay the requested participation fee. 2) If a bidder refuses to pay the participation fee, the
innovator calls off the auction 1), refunds the collected participation fees (if any), and then
3) runs the unconditional license auction with royalties: (k, rw , rl) = (n− 1, rw , rl = ε).
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externality on all other firms. Similarly, adding the royalty option to losers
unambiguously increases the innovator’s profit, since granting that option
does not affect the payoffs of winners, and thus does not affect the equilib-
rium bids for the license. This suggests that the same logic that drives the
superiority of the proposed mechanism in the above model applies equally
well to Bertrand competition with sufficiently heterogeneous substitutes.

However, if goods are complements, the picture should change more drasti-
cally. In that case, firms mutually benefit from each others’ cost reduction,
since one firm’s price reduction raises the other firms’ demand. Therefore,
giving one firm a license does not inflict a negative externality upon others
which in turn implies that one cannot induce higher bids by restricting the
number of licenses. This reasoning applies regardless of whether there is
either Cournot or Bertrand competition. Therefore, one should expect that
the attraction of auctioning a limited number of licenses vanishes, and it
should be optimal to give all firms a license (k = n).

5.6. Further extensions

The literature has suggested that pure royalty licensing can be justified by
uncertainty concerning the success of the innovation. This is due to the fact
that royalty licensing entails a sharing of that risk between innovator and li-
censees. In this regard, the proposed mechanism could perform even better
than pure royalty licensing. If firms have different degrees of risk aversion,
the more risk averse firms would tend to lose the auction and then exercise
the royalty licensing option. And the less risk averse firms would tend to win
one of the fixed–fee licenses in the auction. In this way, the proposed mech-
anism would allow the innovator to gain from price discrimination between
firms with different degrees of risk aversion.

Aoki and Tauman (2001) have explored how spillovers affect the optimal
license auction. Spillovers reduce the royalty dividends collected by the
innovator, since part of the cost reduction due to the innovation is already
available without licensing. This suggests that spillovers make the option
to sign a royalty licensing contract less valuable. But it should not eliminate
that benefit altogether, unless the complete cost reduction spills over.
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