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Garbled Elections

by Patrick W. Schmitz∗ and Thomas Tröger†‡

October 20, 2006

Abstract

Majority rules are frequently used to decide whether or not a public
good should be provided, but will typically fail to achieve an efficient
provision. We provide a worst-case analysis of the majority rule with
an optimally chosen majority threshold, assuming that voters have
independent private valuations and are ex-ante symmetric (provision
cost shares are included in the valuations). We show that if the pop-
ulation is large it can happen that the optimal majority rule is es-
sentially no better than a random provision of the public good. But
the optimal majority rule is worst-case asymptotically efficient in the
large-population limit if (i) the voters’ expected valuation is bounded
away from 0, and (ii) an absolute bound for valuations is known.

1 Introduction

As observed by Buchanan and Tullock (1962, p. 132), making decisions via
majority rule will typically fail to achieve an efficient allocation because the
majority rule captures only the direction of each voter’s preferences, and
“ignores the varying intensities of preference among the separate voters.”
For example, a situation where two voters have a small willingness to pay
for a smoking prohibition and a third has a large willingness to pay for
avoiding the prohibition is indistinguishable from a situation where the first
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two voters’ willingness to pay is large and the third voter’s willingness to
pay is small.

Incentives to reveal each agent’s willingness to pay for a public good
can be provided via a monetary transfer scheme. However, such a scheme
cannot be implemented if some agents are budget constrained. Even without
budget constraints, problems can arise. While implementation in dominant
strategies is always possible (Vickrey, 1961, Clarke, 1971, Groves, 1973),
such a scheme will typically run an ex-post deficit or budget surplus. When
the scheme is altered such that the budget is balanced (d’Aspremont and
Gérard-Varet, 1979), the design of the scheme depends in a delicate way on
the beliefs about the agents’ valuations, which raises the issue of robustness.

The problems associated with transfer schemes may contribute to the fre-
quent use of majority rules, which are transfer-free and can be implemented
in dominant strategies. We consider majority rules with an optimally chosen
majority threshold (possibly different from 50%).1 The fact that majority
rules generally cause an efficiency loss, but have robustness properties that
standard transfer-using schemes lack, creates a trade-off. In environments
where the optimal majority rule causes a small efficiency loss, the trade-off
may lean towards using the optimal majority rule, while it may lean towards
using a more sophisticated transfer-using mechanism in environments where
the optimal majority rule causes a large efficiency loss.2

The purpose of this paper is to measure the efficiency loss caused by
the optimal majority rule. We consider environments where voters have
quasi-linear risk-neutral preferences, have stochastically independent private
valuations (provision cost shares are included in the valuations), and are ex-
ante symmetric. Obviously, the voters who have a positive valuation are
in conflict with the voters who have a negative valuation.3 Full efficiency
would be achieved by the rule that the public good is to be provided if and
only if the sum of the agents’ valuations is positive. The resulting ex-ante
expected surplus is the first best social surplus. To measure the efficiency loss
resulting from the optimal majority rule, we use relative efficiency, which is
defined as the fraction of the first best social surplus that is achieved by the

1No transfer-free (incentive compatible) decision rule yields a higher expected social
surplus than the optimal majority rule, in symmetric independent-private-values environ-
ments. We provide a proof of this result in Appendix B.

2However, if many independent decision problems are appropriately linked, efficiency
can be achieved with a transfer-free scheme (Jackson and Sonnenschein, forthcoming).

3A different strand of the literature has focussed on environments where one alternative
is best for all voters, so that a “good” voting rule is one that allows the voters to find
the best alternative as often as possible (see, e.g., Young, 1995, Austin-Smith and Banks,
1996, and Feddersen and Pesendorfer, 1999).
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optimal majority rule, where the surplus from a random provision is taken
as a benchmark.4

We take the viewpoint of a mechanism designer who wishes to determine
the worst-case relative efficiency within a set of environments, because she
has no information whatsoever about which of these environments is likely
to occur. This approach is analogous to Satterthwaite and Williams’ (2002)
worst-case analysis of double auctions, and is a reaction to the Wilson (1987)
critique, which argues that a mechanism is successful if it operates well in
a range of environments.5 We assume that the mechanism designer has no
information about the environment except, possibly, the population size, a
support restriction, and two further parameters called desirability and bias.

The support restriction bounds the maximum possible absolute value of
any agent’s valuation. This restriction has bite because we normalize the
agent’s expected valuation, conditional on the event that she is in favor of
provision, to 1. The mechanism designer may or may not be able to pin
down a support restriction.

The desirability is the probability that any given agent wants the public
good to be provided. The mechanism designer may know the desirability,
or may know that it falls within a certain range.

The bias6 relates the conditional expected valuation of an agent who
prefers non-provision of the public good to the conditional expected valua-
tion of an agent who prefers provision. For example, an environment where
the agents who prefer non-provision “feel” on average twice as strongly as the
agents who prefer provision has a bias of 2. The optimal majority threshold
is a function of the bias. We assume that the mechanism designer knows
the bias. Observe that the mechanism designer needs to know nothing but
the bias to design an optimal majority rule.

We begin by showing that, for any given bias, desirability, support re-
4The terminology “relative efficiency” is adapted from Satterthwaite and Williams’

(2002) term “relative inefficiency;” they define, in the context of exchange markets, relative
inefficiency as “the fraction of the expected potential gains from trade [. . .] that the
mechanism inefficiently fails to achieve in equilibrium.” I.e., the no-trade outcome is
taken as the benchmark. Rustichini et al. (1994) use the term “expected efficiency.” A
further related concept is Neeman’s (2003) “effectiveness” of an auction, which is defined
as the seller’s expected revenue as a fraction of the expected surplus arising from an
efficient allocation.

5In a similar vein, Neeman (2003) computes worst-case environments with respect to
the seller’s revenue from an English auction.

6The term “bias” is adapted from Barbera and Jackson (2006). In their model, each
voter represents an entire population of individuals. They study weighted majority rules,
where the optimal weights assigned to the various voters depend on the degree to which
each vote reflects the utilities in the represented population.
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striction, and population size, the worst-case relative efficiency is approx-
imated if and only if each agent is with a high probability either nearly
maximally (given the support restriction), positively or negatively, affected
by the public good, or nearly unaffected. In other words, the worst-case rel-
ative efficiency is approximated if and only if the distribution of any agent’s
valuation is close, in the sense of the weak topology, to a distribution that
puts weight only on the largest possible valuation, the smallest possible val-
uation, and the valuation 0; we call such distributions garbling distributions.

The intuition why the worst-case relative efficiency is approximated with
a distribution close to a garbling distribution is that the votes of lightly af-
fected agents count as much as the votes of strongly affected agents towards
the collective decision, which allows the lightly affected individuals to “gar-
ble” the election result.

We provide an explicit formula for the worst-case relative efficiency, for
any given desirability, bias, support restriction, and population size. The
formula can be used by any mechanism designer with full or partial knowl-
edge of these parameters to obtain a lower bound for the relative efficiency,
that is, for the performance of the optimal majority rule.

Many majority elections involve a large number of voters. Hence, we are
particularly interested in the efficiency properties of the optimal majority
rule when the population is large. We show that it is of crucial importance
to a mechanism designer whether or not (i) she knows the desirability is such
that the voters’ expected valuation is bounded away from 0, and whether or
not (ii) she can pin down a support restriction.

We show that the optimal majority rule is worst-case asymptotically ef-
ficient if conditions (i) and (ii) are satisfied. Precisely, the smallest relative
efficiency across any set of distributions satisfying (i) and (ii) converges to
1 in the large-population limit. In other words, conditions (i) and (ii) imply
that the optimal majority rule will aggregate the agents’ private informa-
tion well if the population is large. How large the population must be to
guarantee a particular level of relative efficiency can be computed explicitly.

The worst-case asymptotic efficiency result is in line with the common
perception that majority rules have good information aggregation properties
in large populations.7

7A number of papers, including Feddersen and Pesendorfer (1996, 1997) (see also Fey
and Kim, 2002) for environments with common values and Ledyard and Palfrey (2002) for
environments with private values, study the large-population properties of voting mecha-
nisms in various settings and show that information is well aggregated if the population is
large. Rather than following a worst-case approach, the approach taken in these papers is
to fix the characteristics of an individual voter and establish limit-efficiency results under
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We show that the optimal majority rule is worst-case asymptotically
garbled if both conditions (i) and (ii) fail.8 Precisely, for any given bias
there exists a sequence of environments indexed by the population size such
that the relative efficiency converges to 0 as the population grows. In other
words, for any bias it can happen that the optimal majority rule is essentially
no better than a random provision of the public good if the population is
large. Hence, the optimal majority rule may totally fail to aggregate the
voters’ private information if the population is large.

The possible failure of information aggregation in environments with a
large population may be surprising because it contrasts the common per-
ception that majority rules have good information aggregation properties in
large populations.

In Section 2 we describe the model. Section 3 presents the result that
distributions close to garbling distributions approximate the worst-case rela-
tive efficiency. In Section 4 we provide the explicit formula for the worst-case
relative efficiency and derive implications. Appendix A contains most proof
details. In Appendix B we prove the optimality of the majority rule among
all transfer-free decision rules.

2 The model

We consider n ≥ 3 agents who have to decide collectively about whether
or not to provide one unit of an indivisible public good such as a smoke
prohibition or a bridge.

The willingness-to-pay or valuation of agent i ∈ I = {1, . . . , n} for the
public good is denoted vi. In particular, agent i is in favor of provision
if vi > 0, and is against provision if vi < 0. We assume that the cost of
provision is included in v1, . . . , vn via some cost sharing rule. We call vi

agent i’s type.
We assume that agent i’s type is a realization of a random variable ṽi

with cumulative probability distribution (c.d.f.) F . The random variables
ṽ1, . . . , ṽn are stochastically independent. We may assume that each agent is
privately informed about her type, but the formal results, with the exception
of Appendix B, continue to hold if the types are publicly known. We assume
the c.d.f. F is such that no agent is ever indifferent between provision and

the assumption that sufficiently many identical voters exist.
8If one of the conditions (i) and (ii) is satisfied, while the other condition fails, then

the optimal majority rule is neither worst-case asymptotically efficient nor worst-case
asymptotically garbled.
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non-provision,9

Pr[ṽi = 0] = 0. (1)

The probability

dF = Pr[ṽi > 0]

that any given agent i favors the provision of the public good is called the
desirability of the public good. To exclude trivial cases, we assume that the
desirability is strictly between 0 and 1,

0 < dF < 1. (2)

We assume that the first moment of F is finite,

E[ |ṽi| ] < ∞. (3)

For any γ > 0, if the agents’ types were described by the random variables
γṽ1, . . . , γṽn instead of ṽ1, . . . , ṽn, the economy would remain unchanged;
applying the factor γ can be interpreted as a change of the money unit.
Hence, it is without loss of generality to restrict attention to distributions
F such that10

E[ṽi | ṽi > 0] = 1. (4)

That is, we measure any agent’s valuation in units of the expected strength
of the impact of the public good on the agent, conditional on the event that
the agent is in favor of provision. The conditional expectation

bF = E[−ṽi | ṽi < 0]

is called the bias of the distribution F in favor of non-provision of the public
good. If bF > 1, then the agents who prefer non-provision “feel stronger” in
expectation than the agents who prefer provision. Vice versa if bF < 1.

The agents’ expected valuation for the public good is given by

E[ṽi] = dF − (1− dF )bF . (5)

Any pair (F, n) satisfying (1), (2), (3), and (4) is called an environment.
9This assumption avoids ambiguities in the definition of the optimal majority rule. It

is obviously satisfied for any continuous distribution.
10Alternatively, we could have normalized the first moment to 1, but (4) is notationally

more convenient.
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Optimal majority rule

We analyze the collective decision problem from an ex-ante perspective,
supposing that no agent does yet know her type. Under the assumption
that preferences are quasi-linear with respect to monetary transfers, the
Pareto efficient rule is to provide the public good if and only if the sum of
the agents’ valuations is positive, yielding the first-best social surplus11

W ∗
F,n = E

[ n∑
i=1

ṽi

]
+

 . (6)

Assuming that the agents are risk neutral, W ∗
F,n equals n times the ex ante

expected utility of any agent if the Pareto efficient rule is used.
A useful benchmark decision rule is random provision of the public good,

where the public good is provided with probability 1/2 independently of the
agents’ valuations. Using (5), the social surplus from a random provision is

W random
F,n =

n

2
(dF − (1− dF )bF ). (7)

Observe that W random
F,n equals n times the ex ante expected utility of any

agent under the random provision rule.
An α-majority rule (α ∈ (0, 1)) stipulates that the public good is pro-

vided if and only if the number of agents who favor provision is at least
αn. This corresponds to an election where each agent may vote in favor
or against provision, the fraction of votes required for provision is α, and
each agent uses the weakly dominant strategy of voting in favor of provision
if and only if she is in fact in favor. The social surplus arising from the
α-majority rule is

∑
αn≤k≤n

(k − (n− k)bF ) dk
F (1− dF )n−k

(
n
k

)
. (8)

Observe that the expression (8) equals n times the ex ante expected utility
of any agent under the α-majority rule.

We say that α is optimal in environment (F, n) if it is a maximizer of
(8). Clearly, α is optimal if and only if the following conditions hold:

if k − (n− k)bF > 0 then αn ≤ k,
if k − (n− k)bF < 0 then αn > k.

(9)

11We use the shortcut [x]+ = max{0, x} for any x ∈ IR.

7



This yields the following result.12

Remark 1 Consider any F satisfying (1), (2), (3), and (4), and any α ∈
(0, 1). Then α is optimal in the environment (F, n) for all n if and only if

α =
bF

1 + bF
. (10)

The α-majority rule with α satisfying (10) is called the optimal majority
rule in environment (F, n). Observe that the 50%-majority rule is optimal
for all n if and only if bF = 1.

Observe that the mechanism designer needs minimal knowledge about
the environment (F, n) in order to implement the optimal majority rule—
knowing the bias bF is enough. In particular, the mechanism designer does
not need to know the population size n, nor does she need to know the
desirability dF or any finer knowledge of the distribution F .

Using (8) and (9), one sees that the social surplus arising from the opti-
mal majority rule is

W opt maj

F,n = nβ(bF , dF , n), (11)

where

β(b, d, n) def=
1
n

n∑
k=0

[k − (n− k)b]+ dk(1− d)n−k

(
n
k

)
, (12)

for any b > 0, d ∈ (0, 1), and n ≥ 3.
From (11) we obtain a useful representation of the social surplus arising

from the optimal majority rule. In any environment (F, n),

W opt maj

F,n = E

[ n∑
i=1

b̃i

]
+

 , (13)

where b̃1, . . . , b̃n denote stochastically independent random variables, each
taking the value 1 with probability dF and taking the value −bF with prob-
ability 1− dF .

12The “if” part is a special case of Barbera and Jackson (2006, Corollary 1). The case
bF = 1 is treated by Taylor (1969), Schofield (1971), and Curtis (1972), who build on Rae
(1969).
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Relative efficiency

The optimal majority rule will typically fail to achieve the first best expected
surplus. To measure the efficiency loss caused by the optimal majority rule
in general environments, we define for any environment (F, n) the relative
efficiency ρ(F, n), which captures the fraction of the first best social surplus
that is realized by the optimal majority rule, using the social surplus from
a random provision as a benchmark,

ρ(F, n) =
W opt maj

F,n −W random
F,n

W ∗
F,n −W random

F,n

. (14)

Observe that ρ(F, n) is a number in [0, 1], where ρ(F, n) = 1 if and only if the
optimal majority rule achieves the first best social surplus, and ρ(F, n) = 0
if and only if the optimal majority rule is as bad as a random provision of
the public good (however, the results below imply that ρ(F, n) > 0 for all
environments (F, n)).

Remark 2 shows that the first best is achieved in environments where
the distribution F is concentrated on two points. By (1) and (2), this will
be a positive and a negative point. In such environments, an agent’s voting
behavior in the optimal majority rule fully reveals her preferences.

Remark 2 Consider any F satisfying (1) and (2) such that suppF contains
exactly two points. Then ρ(F, n) = 1 for all n.

Worst case relative efficiency

In the following, we take the viewpoint of a mechanism designer who wishes
to determine the set of possible relative efficiency levels across a set of envi-
ronments. To begin with, let us assume that the mechanism designer knows
the bias b > 0 (which is needed to determine the optimal majority rule),
the desirability d ∈ (0, 1), and an upper bound for the absolute value of any
agent’s valuation s > max{1, b}. That is, every c.d.f. in

F(b, d, s) = {F | (1), (2), (3), (4), bF = b, dF = d, suppF ⊆ [−s, s]}

is considered possible. Observe that, in view of the normalization (4), the
support restriction s amounts to excluding the possibility that the impact
of the public good on an agent is arbitrarily stronger than the expected
strength of the impact.13 We are particularly interested in the worst-case

13Neeman (2003) uses an analogous restriction in his analysis of the worst-case perfor-
mance of English auctions. He restricts the ratio between the expected valuation of a
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relative efficiency
ρ(b, d, s, n) = inf

F∈F(b,d,s)
ρ(F, n) (15)

for any population size n ≥ 3. Furthermore, we are interested in deter-
mining the c.d.f.s in F(b, d, s) such that the worst-case relative efficiency is
(approximately) attained.

We also consider the possibility that the mechanism designer has more
limited information. For example, the mechanism designer may not be able
to pin down a support restriction s; that is, she may consider every c.d.f. in

F(b, d,∞) = ∪s>max{1,b}F(b, d, s)

possible. Or the mechanism designer may consider an entire set K ⊆ (0, 1)
of desirability levels possible; that is, she may consider every c.d.f. in

F(b, K, s) = ∪d∈KF(b, d, s)

possible, where s > max{1, b} or s = ∞. For example, K = [0.7, 0.8]
captures a situation where it is known that every agent prefers provision of
the public good with a probability between 0.7 and 0.8.

In many applications the number of voters is large. Hence, we put partic-
ular emphasis on this case. Consider any set D of c.d.f.s F satisfying (1), (2),
(3), and (4). The optimal majority rule is called worst-case asymptotically
efficient in D if

lim
n→∞

inf
F∈D

ρ(F, n) = 1.

This captures a class of c.d.f.s where the optimal majority rule is guaranteed
to perform well if the population is sufficiently large.

The optimal majority rule is called worst-case asymptotically garbled in
D if there exists a sequence (Fn)n≥3 in D such that

lim
n→∞

ρ(Fn, n) = 0.

This captures a class of c.d.f.s where the mechanism designer cannot exclude
the possibility that the optimal majority rule is essentially no more useful
than a random decision if the population is large.

bidder and the largest possible valuation. This is equivalent to the existence of a largest
possible valuation if the expected valuation is normalized to a fixed number.
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Garbling distributions

The valuation of an agent has a garbling distribution if she is with some
probability maximally, positively or negatively, affected by the public good,
and is with the remaining probability not affected at all. The garbling dis-
tribution with parameters d ∈ (0, 1), b > 0, and s > max{1, b} is the c.d.f.
F ∗

b,d,s,0 given by

F ∗
b,d,s,0(v) = b

1− d

s
1v≥−s +

(
s− b

s
+ d

b− 1
s

)
1v≥0 +

d

s
1v≥s

for all v ∈ [−s, s]. Garbling distributions violate assumption (1), because
they put weight on the point 0. Hence, they are not directly involved in the
computation of (15). Nevertheless, garbling distributions will play a crucial
role in our results.

Each garbling distribution is constructed such that it can be approxi-
mated arbitrarily closely by c.d.f.s in F(b, d, s). For all t ∈ (0,min{1, b}),
define a c.d.f. F ∗

b,d,s,t by the formula

F ∗
b,d,s,t(v) = (1− d)

b− t

s− t
1v≥−s + (1− d)

s− b

s− t
1v≥−t

+d
s− 1
s− t

1v≥t + d
1− t

s− t
1v≥s (v ∈ [−s, s]). (16)

Observe that F ∗
b,d,s,t concentrates its weight on the four points −s, −t, t,

and s. The total probability weight on {t, s} equals d. The expectations
conditional on {t, s} and {−s,−t} are 1 and −b, respectively. Hence,

F ∗
b,d,s,t ∈ F(b, d, s). (17)

Moreover, using the weak topology of c.d.f.s on [−s, s],14

F ∗
b,d,s,0 = lim

t→0
F ∗

b,d,s,t. (18)

That is, each garbling distribution is approximated by a c.d.f. such that
an agent with the approximating c.d.f. is either maximally affected by the
public good, or very lightly affected.

The fact that an agent with a garbling distribution is with positive prob-
ability indifferent about the public good means that the social surplus that

14A sequence of c.d.f.s converges weakly if it converges pointwise at all points where the
limit c.d.f. is continuous. The weak topology is metrizable. In particular, any sequentially
continuous function is continuous, and any sequentially compact set is compact. For more
details see Billingsley (1968).
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arises from the optimal majority rule is not well-defined. However, the defi-
nition of the first best social surplus (6) extends straightforwardly to garbling
distributions. The probability that x− agents have the valuation −s, that
x0 agents have the valuation 0, and that x+ agents have the valuation s,
equals

p(x−, x0, x+, s) =
(

b
1− d

s

)x− (s− b

s
+ d

b− 1
s

)x0 (
d

s

)x+
n!

x−!x0!x+!
.

(19)

Hence,

W ∗
F ∗

b,d,s,0
,n =

∑
x+, x0, x− = 0, 1, 2, . . . ,

x+ + x0 + x− = n

s[x+ − x−]+ p(x−, x0, x+, s).

(20)

We now have all the tools that we need.

3 Garbling distributions and the worst case

In this section, we show that the worst-case relative efficiency is approxi-
mated if and only if each agent has a c.d.f. that is close, in the sense of the
weak topology, to a garbling distribution.15

Proposition 1 Let b > 0, d ∈ (0, 1), s > max{1, b}, and n ≥ 3. Given any
sequence (Fm)m=1,2,... in F(b, d, s), the condition

lim
m→∞

ρ(Fm, n) = ρ(b, d, s, n) (21)

holds if and only if
lim

m→∞
Fm = F ∗

b,d,s,0. (22)

In the light of (17) and (18), Proposition 1 shows that the worst-case relative
efficiency is approximated if each agent has a c.d.f. F ∗

b,d,s,t with a small t, that
is, if each agent is either maximally or very lightly affected by the public

15While we focus on the worst-case relative efficiency, any relative efficiency between
the worst-case relative efficiency ρ(b, d, s, n) and 1 is attained by some c.d.f. in F(b, d, s).
By Remark 2, there exists a c.d.f. in F(b, d, s) such that the relative efficiency equals 1.
By continuity, all intermediate relative efficiency levels can be obtained as well.
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good, with probabilities determined by b and d. Vice versa, the worst-
case relative efficiency is approximated only if each agent is with a high
probability either nearly maximally affected or nearly unaffected. However,
the result that the worst-case relative efficiency is approximated only if each
agent’s c.d.f. approximates a garbling distribution does not mean that other
c.d.f.s lead to a high relative efficiency.

The intuition why the worst-case relative efficiency is approximated with
a c.d.f. F ∗

b,d,s,t with a small t is as follows. Whether a lightly affected agent
has a positive valuation t or a negative valuation −t is essentially irrelevant
for the social surplus. However, the vote of a lightly affected agent counts
as much as the vote of a strongly affected agent. Hence, the votes of the
lightly affected individuals tend to “garble” the election result; the greatest
amount of surplus is lost if the non-lightly affected individuals are maximally
affected.

Garbling distributions have a surprisingly simple structure. Neverthe-
less, the plausibility of c.d.f.s that approximate a garbling distribution may
be put into question by the observation that lightly affected individuals
will not participate in the election if there are positive participation costs.
Adding participation costs to the model is nontrivial.16 However, it seems
reasonable to conjecture that an appropriately extended concept of worst-
case relative efficiency would depend continuously on the participation costs.
I.e., small participation costs would lead to a small change of the worst-case
relative efficiency.

The starting point of the proof of Proposition 1 (for details see Appendix
A) is the observation that the social surplus from a random provision (7) and
the surplus that arises from the optimal majority rule (11) are constant on
F(b, d, s). Hence, determining the worst-case relative efficiency amounts to
maximizing the first best social surplus in F(b, d, s). However, a maximizer
does not exist because the constraint set F(b, d, s) is not compact (using the
weak topology). To obtain a compact constraint set, we include c.d.f.s that
violate assumption (1). The extended constraint set includes the topological
closure of F(b, d, s). We embed the resulting maximization problem into the
vector space of signed Borel measures and apply a version of Kuhn and
Tucker’s theorem for infinite dimensional spaces to show that the unique
solution of the maximization problem is given by F ∗

b,d,s,0 (this step presents
the greatest technical difficulties). By (17) and (18), F ∗

b,d,s,0 belongs to the

16Börgers (2004) shows that participation costs introduce a new source of inefficiency,
because the voters’ participation decisions will generally be inefficient in a majority election
with voluntary participation. Krasa and Polborn (2006) generalize the model of Börgers
and show that subsidizing participation may increase welfare.
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topological closure of F(b, d, s). From this, the equivalence of (21) and (22)
is straightforward.

The following example illustrates the fact that the garbling distribution
F ∗

b,d,s,0 is the unique maximizer of the first best social surplus in the topo-
logical closure of F(b, d, s). We consider c.d.f.s that concentrate their weight
on the set {−s, 0, x}, where x ≤ s, and show that the first best social surplus
is uniquely maximized if x = s.

For any p ∈ [d/s, d], consider the c.d.f. Fp that is constructed from
F ∗

b,d,s,0 by replacing the atom at s by an atom of weight p at the point
x = d/p; i.e.,

Fp(v) = b
1− d

s
1v≥−s + (1− b

1− d

s
− p) 1v≥0 + p 1v≥x.

By construction, Fp can be approximated arbitrarily closely using c.d.f.s in
F(b, d, s). Hence, Fp belongs to the topological closure of F(b, d, s),

We claim that the first best social surplus W ∗
Fp,n is maximized if and

only if p = d/s, that is, if and only if Fp = F ∗
b,d,s,0.

By construction, conditional on the event that every agent has one of the
valuations 0 or x, a change of p leads, in expectation, to no change of the
social surplus. Only in the event that at least one agent has the valuation
−s can the realized social surplus depend on p. For concreteness, consider
the case n = 3. Then the crucial event E is that one agent has the valuation
−s and two agents have the valuation x. If x ≤ s/2, the social surplus
arising from event E is 0; if x > s/2, the social surplus arising from event E
is

3b
1− d

s
p2(2x− s) = 3b(1− d)p(2

d

s
− p).

This expression is uniquely maximized at p = d/s, or Fp = F ∗
b,d,s,0.

17

4 Properties of the worst-case relative efficiency

In this section, we provide an explicit formula for the worst-case relative
efficiency and draw several implications. Proposition 2 provides an explicit
formula for the worst-case relative efficiency. The proof relies on Proposition
1 (for details see Appendix A).

17 If n = 2, the first-best surplus arising from Fp is independent of p. This can be used
to show that (21) does not imply (22) if n = 2. For this reason we are assuming n ≥ 3.
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Figure 1: Illustration of formula (23) with bias b = 1, support restriction
s = 2, and population sizes n = 4, 10, 100: the worst-case relative efficiency
ρ(b, d, s, n) as a function of the desirability d.

Proposition 2 For all b > 0, d ∈ (0, 1), s > max{1, b}, and n ≥ 3, the
worst-case relative efficiency is given by

ρ(b, d, s, n) =
β(b, d, n)− 1

2(d− (1− d)b)
1
nW ∗

F ∗
b,d,s,0

,n −
1
2(d− (1− d)b)

. (23)

Formula (23) is directly useful to a mechanism designer who knows the
bias, the desirability, the maximum possible support, and the population
size, but has no additional information about the environment. For example,
the worst-case relative efficiency among environments with desirability d =
1/2, bias b = 1, support restriction s = 2, and a population size of n = 100 is
approximately 71% (cf. Figure 1). This number drops to 32% if the support
restriction is s = 10 (cf. Figure 2).

Proposition 2 can also be used to deal with situations where the mecha-
nism designer has limited information about the desirability, the maximum
possible support, or the population size. For example, the mechanism de-
signer may not be able to pin down a support restriction. Then the following
result is relevant.

Corollary 1 For any bias b > 0, desirability d ∈ (0, 1), and population size
n ≥ 3, the worst-case relative efficiency without support restriction is given
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Figure 2: Illustration of formula (23) with bias b = 1, support restriction
s = 10, and population sizes n = 4, 10, 100: the worst-case relative efficiency
ρ(b, d, s, n) as a function of the desirability d. Observe that the worst-case
relative efficiency is not monotonic in the population size n.

by

lim
s→∞

ρ(b, d, s, n) =
β(b, d, n)− 1

2(d− (1− d)b)
1
2(d + (1− d)b)

. (24)

To prove Corollary 1, it is by Proposition 2 sufficient to show that

lim
s→∞

W ∗
F ∗

b,d,s,0
,n = nd.

Using (19) and (20) one sees that, as s gets large, the only contribution to
the first best social surplus that is not of the order sk with k ≤ −1 comes
from the constellation where one agent has valuation s and all other agents
have valuation 0, that is, x+ = 1 and x0 = n− 1. Because each agent may
be the one with valuation s, the probability of this constellation approaches
n times d/s as s gets large, which yields the expected contribution nd.

Environments with a large population size are of special interest. Many
real elections involve a large number of voters. It seems especially worthwhile
to examine the validity of the common perception that majority rules yield
asymptotically efficient decisions in large-population environments.

16



Corollary 2 For all b > 0, d ∈ (0, 1), and s > max{1, b}, the large-
population limit of the worst-case relative efficiency is given by

lim
n→∞

ρ(b, d, s, n) =

{ √
1+b
2s if d− (1− d)b = 0,

1 if d− (1− d)b 6= 0.
(25)

Corollary 2 reveals the role of the agents’ expected valuation for the
worst-case relative efficiency. If the expected valuation d− (1− d)b 6= 0 (cf.
(5)), then the limit in (25) equals 1, which corresponds to full efficiency. If
the expected valuation equals 0, the limit in (25) is smaller than 1. Accord-
ingly, convergence to 1 in (25) will be slow if the expected valuation is close
to 0 (cf. Figure 1 and Figure 2 at d ≈ 1/2). We can interpret this result
as follows. In environments where the expected valuation is close to 0 it
is most uncertain ex ante whether provision or non-provision of the public
good will be the efficient decision. Hence, in these environments the optimal
majority rule has the “most difficult task,” and the most can go wrong.

The proof of Corollary 2 (for details see Appendix A) relies on the fact
that the garbling distribution F ∗

b,d,s,0 is independent of the population size n.
This makes it possible to apply the law of large numbers if d− (1− d)b 6= 0,
and the central limit theorem if d− (1− d)b = 0.

Next we give a result parallel to Corollary 2 for cases where the mecha-
nism designer cannot pin down a support restriction.18

Corollary 3 For all b > 0 and d ∈ (0, 1), the large-population limit of the
worst-case relative efficiency without support restriction is given by

lim
n→∞

lim
s→∞

ρ(b, d, s, n) =
| d− (1− d)b |
d + (1− d)b

< 1. (26)

The expression (26) is minimized if the expected valuation d−(1−d)b = 0
(cf. Figure 3). This is analogous to Corollary 2. In contrast to Corollary 2,
however, the limit (26) is always smaller than 1. For example, if b = 1 and
d = 0.55, then a relative efficiency close to 10% is possible if the population
is large. This number becomes 1% if d = 0.505. In contrast, if d is close to
0 or 1, then (26) is close to 1. This reflects the fact that it is pretty clear ex
ante whether or not the public good should be provided, so that the optimal
majority rule has an “easy task.” For example, if b = 1 and d ≥ 0.75, then
the optimal majority rule has a relative efficiency of at least 50%.

18 It is worthwhile to note the additional result (a proof of which is sketched in Appendix
A) that (24) is weakly decreasing in n. Hence, (26) provides a tight lower bound for the
relative efficiency among all environments with bias b and desirability d.
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Figure 3: Illustration of formula (26): the large-population limit of the
worst-case relative efficiency without support restriction, as a function of
the desirability d at bias b = 1 and bias b = 2.

The proof of Corollary 3 relies on the law of large numbers. For details
see Appendix A.

We conclude with two results pertaining the worst-case asymptotic prop-
erties of the optimal majority rule when the mechanism designer has only
partial knowledge of the desirability.

Proposition 3 says that the optimal majority rule is guaranteed to per-
form approximately efficiently in environments with a large population, if
and only if (i) the mechanism designer knows that the desirability is bounded
away from b/(1 + b) (that is, the expected valuation is bounded away from
0) and (ii) there exists a support restriction.19

Proposition 3 Let b > 0, K ⊆ (0, 1) closed, and s > max{1, b} or s = ∞.
The optimal majority rule is worst-case asymptotically efficient in F(b, K, s)
if and only if

b

1 + b
6∈ K and s < ∞.

The proof uses Corollary 2, Corollary 3, and standard uniform-convergence
arguments. For details see Appendix A.

19A set K ⊆ IR is closed if for any sequence (xm) in K such that xm → x ∈ IR we have
x ∈ K.
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Proposition 4 says that the optimal majority rule can lead to a relative
efficiency arbitrarily close to 0 in large-population environments if conditions
(i) and (ii) fail.

Proposition 4 Let b > 0, K ⊆ (0, 1) closed, and s > max{1, b} or s = ∞.
The optimal majority rule is worst-case asymptotically garbled in F(b, K, s)
if and only if

b

1 + b
∈ K and s = ∞.

The proof uses Corollary 2, Corollary 3, and standard uniform-convergence
arguments. For details see Appendix A.

Proposition 4 shows that if the population is large it can happen that
the optimal majority rule is essentially no better than a random provision
of the public good. Hence, there is no guarantee that the optimal majority
rule has good information aggregation properties in large populations.

Appendix A

Lemma 1 For all n ≥ 3 and s > 0, the functional defined by formula (6),

W ∗
·,n : {F | F c.d.f., suppF ⊆ [−s, s]} → IR, F 7→ W ∗

F,n,

is continuous with respect to the weak topology on the set of c.d.f.s on [−s, s].

Proof. We use the “⇒” sign to denote weak convergence. Because the
weak topology is metrizable, it is sufficient to show sequential continuity.
Consider a sequence of c.d.f.s (Fm) such that Fm ⇒ F for some c.d.f. F .
By Billingsley (1968, Theorem 3.2),

Fm × . . .× Fm︸ ︷︷ ︸
n times

⇒ F × . . .× F,

where we use the topology of weak convergence of c.d.f.s on [−s, s]n. The
map

IRn → IR, (v1, . . . , vn) 7→
[∑

i

vi

]
+

is continuous. Hence, using (6) and Billingsley (1968, Theorem 2.1 (ii)),

W ∗
Fm,n =

∫
[−s,s]n

[∑
i

vi

]
+

dFm(v1) · · ·dFm(vn)

→
∫
[−s,s]n

[∑
i

vi

]
+

dF (v1) · · ·dF (vn) = W ∗
F,n.
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QED

For all b > 0, d ∈ (0, 1), s > max{1, b}, and n ≥ 3, consider the opti-
mization problem

(b, d, s, n) max
F c.d.f.,

suppF ⊆ [−s, s]

W ∗
F,n

s.t.
∫ s

−s
1v>0vdF (v) = d, (27)∫ s

−s
1v<0vdF (v) = −b(1− d), (28)∫ s

−s
1v>0dF (v) ≤ d, (29)∫ s

−s
1v<0dF (v) ≤ 1− d. (30)

The constraint set of problem (b, d, s, n) is denoted C(b, d, s). Observe that
C(b, d, s) includes c.d.f.s that violate (1) by putting a positive weight on the
point 0.

Let F(b, d, s) denote the topological closure of F(b, d, s).

Lemma 2 The sets C(b, d, s) and F(b, d, s) are compact, and

F(b, d, s) ⊆ C(b, d, s). (31)

Proof. Because the map

IR → IR, v → 1v>0v

is continuous, the constraint (27) defines a closed set of c.d.f.s (Billingsley
(1968, Theorem 2.1 (ii)). Similarly, (28) defines a closed set. The left-hand
side of constraint (29) corresponds to the probability of the set (0, s], which
is open in [−s, s]. Hence, (29) defines a closed set by Billingsley (1968,
Theorem 2.1 (iv)). Similarly, (30) defines a closed set. Hence, C(b, d, s)
is closed. By Helly’s selection theorem, the set of all c.d.f.s on [−s, s] is
compact. As a closed subset of a compact set, C(b, d, s) is compact.

It is straightforward to check (31). Compactness of F(b, d, s) follows
from (31). QED

Lemma 3 Problem (b, d, s, n) has a solution F ∗.
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Proof. By Lemma 2, the constraint set of problem (b, d, s, n) is compact.
By Lemma 1, the objective function of problem (b, d, s, n) is continuous.
Hence, a solution exists by Weierstrass’ theorem. QED

Lemma 4 Any solution F ∗ of problem (b, d, s, n) is such that suppF ∗ con-
tains at least three elements.

Proof. Suppose that F ∗ puts all probability weight on two points x and
y ≥ x. By (27), y > 0. By (28), x < 0. By (29) and (30), Pr[ṽi = y] = d
and Pr[ṽi = x] = 1 − d, when ṽi denotes a random variable with c.d.f. F ∗.
Hence, y = 1 and x = −b by (27) and (28) with F = F ∗. By Remark 2,

W opt maj

F ∗,n = W ∗
F ∗,n. (32)

Let F be a c.d.f. that puts the weight 1 − d on the point −b, the weight
d(s − 1)/(s − b/n) on the point b/n, and the weight d(1 − b/n)/(s − b/n)
on the point s. Then F ∈ F(b, d, s). Moreover, W opt maj

F,n < W ∗
F,n because,

with positive probability, n−1 agents have valuation b/n and one agent has
valuation −b, in which case (n− 1)b/n− b < 0.

Using that F ∗ ∈ F(b, d, s) and that W opt maj
·,n is constant on F(b, d, s) by

(11),

W ∗
F ∗,n

(32)
= W opt maj

F ∗,n = W opt maj

F,n < W ∗
F,n,

which contradicts the optimality of F ∗. QED

It is useful to embed the constraint set of problem (b, d, s, n) into the
vector space of signed Borel measures on [−s, s],20 and to extend the function
W ∗
·,n by defining

W ∗
F,n =

∫ s

−s
· · ·
∫ s

−s

[
n∑

i=1

vi

]
+

dF (v1) · · ·dF (vn), (33)

for any signed Borel measure F on [−s, s]. Let Θ denote the set of positive
Borel measures on [−s, s]. Consider the relaxed problem

(b, d, s, n)′ max
F∈Θ

W ∗
F,n

20A signed Borel measure on [−s, s] is a real-valued and countably additive function on
the set of Borel sets in [−s, s]. As with probability measures, we represent any signed
measure by a function F on [−s, s], where F (x) denotes the measure of the set [−s, x].

A signed Borel measure that takes only non-negative values is called positive.
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s.t.
∫ s

−s
1v>0vdF (v) ≤ d, (34)∫ s

−s
1v<0vdF (v) ≤ −b(1− d), (35)

(29), (30),∫ s

−s
dF (v) ≤ 1. (36)

Lemma 5 Any solution F ∗ of problem (b, d, s, n) is a solution of problem
(b, d, s, n)′.

Proof. Let H be a solution of (b, d, s, n)′. Because the constraint set of
(b, d, s, n)′ includes the constraint set of (b, d, s, n), it is sufficient to show
that

W ∗
F ∗,n ≥ W ∗

H,n. (37)

Construct a c.d.f. F from H by first adding weight at the point 0 until
the total weight of the measure equals 1, and then redistributing weight
from [0, s) to the point s until constraint (27) is satisfied, and redistributing
weight from [−s, 0) to the point 0 until constraint (28) is satisfied. Then
W ∗

F,n ≥ W ∗
H,n and F belongs to the constraint set of problem (b, d, s, n). By

optimality of F ∗, we have W ∗
F ∗,n ≥ W ∗

F,n, showing (37). QED

Because Θ is convex, we can apply a version of Kuhn and Tucker’s theo-
rem to obtain necessary conditions for any solution to (b, d, s, n)′. By Lemma
5, these conditions apply to any solution F ∗ of problem (b, d, s, n).

For any signed Borel measure H on [−s, s], the Gateaux differential of
W ∗
·,n at F ∗ with increment H, is defined as21

δW ∗(F ∗,H) = lim
γ→0

W ∗
F ∗+γH,n −W ∗

F ∗,n

γ
. (38)

Lemma 6 Let F ∗ be a solution to problem (b, d, s, n). For all signed Borel
measures H,

δW ∗(F ∗,H) = n

∫
[−s,s]n

 n∑
j=1

vj


+

dH(v1)
n∏

k=2

dF ∗(vk).

21We drop the argument n when writing the Gateaux differential.
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Proof. For any signed Borel measure H on [−s, s],

W ∗
F ∗+γH,n

(33)
=

∫
[−s,s]n

 n∑
j=1

vj


+

n∏
k=1

(dF ∗(vk) + γdH(vk))

=
∫
[−s,s]n

 n∑
j=1

vj


+

 n∏
k=1

dF ∗(vk) + γ
n∑

i=1

dH(vi)
∏
k 6=i

dF ∗(vk) + O(γ)

 .

Hence,

δW ∗(F ∗,H) =
n∑

i=1

∫
[−s,s]n

 n∑
j=1

vj


+

dH(vi)
∏
k 6=i

dF ∗(vk)

= n

∫
[−s,s]n

 n∑
j=1

vj


+

dH(vi)
∏
k 6=i

dF ∗(vk),

for any i = 1, . . . , n. In particular, we can take i = 1. QED

For any c.d.f. F ∗, let G∗ denote the c.d.f. for −
∑n

i=2 ṽi, given that each
ṽi has the c.d.f. F ∗.

Lemma 7 Let F ∗ be a solution of problem (b, d, s, n). Then there exist
nonnegative numbers l+, l−, p+, p−, p such that

∀v ∈ [−s, s] : η(v) ≤ 0 (39)

and ∫ s

−s
η(v)dF ∗(v) = 0, (40)

where

η(v) def= n

∫
IR

[v − w]+dG∗(w)−
(
(l+v + p+)1v>0 + (l−v + p−)1v<0 + p

)
.

Proof. By Lemma 5, F ∗ is a solution to (b, d, s, n)′. Moreover, there
exists H (namely, H = −F ∗) such that F ∗ + H ∈ Θ and all inequality
constraints of (b, d, s, n)′ are satisfied with strict inequality at F = F ∗ + H.
Hence, by Kuhn and Tucker’s theorem (see Luenberger, 1969, p. 249),22

22Luenberger’s version of the theorem does not directly apply because of the additional
constraint F ∈ Θ. However, because Θ is convex, the proof of the theorem can be
easily adapted to encompass the additional constraint. One only has to add the condition
x0 + h ∈ Θ throughout the proof, where x0 is a solution of the optimization problem, and
h is an increment.
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there exist nonnegative numbers (Lagrange multipliers) l+, l−, p+, p−, p such
that, for all H with F ∗ + H ∈ Θ,

δW ∗(F ∗,H)−
∫ s

−s

(
(l+v + p+)1v>0 + (l−v + p−)1v<0 + p

)
dH(v) ≤ 0. (41)

Using H = F ∗ and H = −F ∗ in (41), we obtain opposite inequalities. Hence,

δW ∗(F ∗, F ∗)−
∫ s

−s

(
(l+v + p+)1v>0 + (l−v + p−)1v<0 + p

)
dF ∗(v) = 0.

(42)
Using Lemma 6,

δW ∗(F ∗, F ∗) = n

∫
[−s,s]n

 n∑
j=1

vj


+

n∏
k=1

dF ∗(vk)

= n

∫ s

−s

∫
IR

[v1 − w]+ dG∗(w)dF ∗(v1). (43)

From (42) and (43) we obtain (40).
Letting H = 1v (v ∈ [−s, s]) in (41) and using Lemma 6, we obtain (39).

QED

Lemma 8 Let G be an arbitrary c.d.f. on IR, and let x, y, z ∈ IR such that
x < y < z and∫

IR
[z − w]+ − [y − w]+

z − y
dG(w) ≤

∫
IR

[y − w]+ − [x− w]+
y − x

dG(w).

Then suppG ∩ (x, z) = ∅.

Proof. Straightforward by partitioning the area of integration as follows,

IR = (−∞, x] ∪ (x, y] ∪ (y, z) ∪ [z,∞).

QED

Lemma 9 For any solution F ∗ of problem (b, d, s, n), if suppF ∗∩(0, s) 6= ∅,
then suppG∗ ∩ (0, s) = ∅.
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Proof. Suppose that suppF ∗ ∩ (0, s) 6= ∅. By (39) and (40), there exists
y ∈ (0, s) such that η(y) = 0. Choose x, z such that 0 < x < y and
y < z < s. By (39), η(y)− η(x) ≥ 0, hence

n

∫
IR

([y − w]+ − [x− w]+) dG∗(w) ≥ l+(y − x).

Similarly, η(z)− η(y) ≤ 0, hence

n

∫
IR

([z − w]+ − [y − w]+) dG∗(w) ≤ l+(z − y).

The claim follows from Lemma 8. QED

Lemma 10 For any solution F ∗ of problem (b, d, s, n), if suppF ∗∩(−s, 0) 6=
∅, then suppG∗ ∩ (−s, 0) = ∅.

Proof. Analogous to Lemma 9.

Lemma 11 For any solution F ∗ of problem (b, d, s, n), suppF ∗ ⊆ {−s, 0, s}.

Proof. We show suppF ∗ ∩ (0, s) = ∅ (the proof of suppF ∗ ∩ (−s, 0) = ∅ is
analogous). Suppose that

∃x ∈ suppF ∗ ∩ (0, s). (44)

First consider the case 0 ∈ suppF ∗. By definition of G∗,

−suppF ∗ ⊆ suppG∗. (45)

Using (44) and (45) we find

−x ∈ (−suppF ∗) ∩ (−s, 0) ⊆ suppG∗ ∩ (−s, 0).

Hence, suppF ∗ ∩ (−s, 0) = ∅ by Lemma 10. Thus, using (28) with F = F ∗,

suppF ∗ ∩ [−s, 0) = {−s}.

Hence, using the definition of G∗ and the assumption n ≥ 3,

−s + x + 0 + . . . + 0︸ ︷︷ ︸
n−3 times

∈ (−suppG∗) ∩ (−s, 0) = −(suppG∗ ∩ (0, s)),
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which contradicts Lemma 9 because of (44).
Now consider the case 0 6∈ suppF ∗. Because the constraint (28) holds

for F = F ∗,
∃y ∈ suppF ∗ ∩ (−s, 0). (46)

Using (44) and Lemma 9, suppG∗ ∩ (0, s) = ∅. Using (46) and Lemma 10,
suppG∗ ∩ (−s, 0) = ∅. Hence,

suppG∗ ∩ [−s, s] ⊆ {−s, 0, s}. (47)

For k = 2, . . . , n, define γ(k) = (n− k)y + (k − 1)x ∈ −suppG∗.
We claim that

∃k̂ ∈ {2, . . . , n− 1} : γ(k̂) = 0. (48)

If γ(2) 6= 0, then γ(2) ≤ −s by (47). On the other hand, γ(n) > 0, and

γ(k) = γ(2) + (k − 2) (x− y)︸ ︷︷ ︸
∈(0,2s)

.

Hence, there exists k̂ such that γ(k̂) ∈ (−s, s), implying (48) by (47).
By Lemma 4, there exists x′ 6= x such that x′ ∈ suppF ∗∩(0, s], or y′ 6= y

such that y′ ∈ suppF ∗ ∩ [−s, 0). If an x′ exists, then |x− x′| < s, hence

−suppG∗ 3 (n− k̂)y + (k̂ − 2)x + x′ = γ(k̂) + (x′ − x) = x′ − x,

contradicting (47). Similarly, if an y′ exists then |y − y′| < s, hence

−suppG∗ 3 (n− k̂ − 1)y + y′ + (k̂ − 1)x = γ(k̂) + (y′ − y) = y′ − y,

contradicting (47). QED

Lemma 12 The unique solution of problem (b, d, s, n) is given by

arg max
F∈C(b,d,s)

W ∗
F,n = {F ∗

b,d,s,0}.

Proof. Straightforward from Lemma 11 and the constraints of problem
(b, d, s, n). QED

Proof of Proposition 1.
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“(22) ⇒ (21).” Suppose that (22) holds. Using Lemma 1 and Lemma
12,

lim
m→∞

W ∗
F m,n = W ∗

F ∗
b,d,s,0

,n > W ∗
F,n, (49)

for all F ∈ F(b, d, s). Hence,

lim
m→∞

ρ(Fm, n)
(7),(11),(14)

=
nβ(b, d, n)− n

2 (d− (1− d)b)
limm→∞ W ∗

F m,n −
n
2 (d− (1− d)b)

(49)
< ρ(F, n).

This implies (21), by definition of ρ.
“(21) ⇒ (22).” Let (Fm) be a sequence in F(b, d, s) that satisfies (21).
Because W opt maj

·,n is constant on F(b, d, s) by (13),

lim
m→∞

W ∗
F m,n = sup

F∈F(b,d,s)
W ∗

F,n. (50)

Observe that

sup
F∈F(b,d,s)

W ∗
F,n

(17)

≥ lim sup
t→0

W ∗
F ∗

b,d,s,t
,n

Lemma 1= W ∗
F ∗

b,d,s,0
,n. (51)

By (31) and Lemma 12,

sup
F∈F(b,d,s)

W ∗
F,n ≤ W ∗

F ∗
b,d,s,0

,n. (52)

From (50), (51), and (52),

lim
m→∞

W ∗
F m,n = W ∗

F ∗
b,d,s,0

,n. (53)

Suppose that Fm 6⇒ F ∗
b,d,s,0. Then there exists a subsequence (Fmk) and an

open neighborhood N of F ∗
b,d,s,0 such that

∀k : Fmk 6∈ N.

Using Lemma 2, F(b, d, s)\N is compact. Hence, by the Bolzano Weierstrass
theorem, (Fmk) has a subsequence (Fmkl ) that converges to some

F ∗ ∈ F(b, d, s) \N. (54)

Using Lemma 1,

W ∗
F ∗,n = lim

l→∞
W ∗

F
mkl ,n

(53)
= W ∗

F ∗
b,d,s,0

,n. (55)
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By (54) and Lemma 2, F ∗ ∈ C(b, d, s). Hence, F ∗ = F ∗
b,d,s,0 by (55) and

Lemma 12, in contradiction with (54). Hence, Fm ⇒ F ∗
b,d,s,0, showing (22).

QED

Proof of Proposition 2. From (18) and Proposition 1,

ρ(b, d, s, n) = lim
t→0

ρ(F ∗
b,d,s,t, n)

(11), (17)
=

nβ(b, d, n)− n
2 (d− (1− d)b)

limt→0 W ∗
F ∗

b,d,s,t
,n −

n
2 (d− (1− d)b)

.

Hence, the result follows from Lemma 1. QED

Proof of Corollary 2. From (12) one sees that

β(b, d, n) =
1
n

E

[ n∑
i=1

b̃i

]
+

 , (56)

where b̃1, . . . , b̃n denote stochastically independent random variables, each
taking the value 1 with probability d and taking the value −b with proba-
bility 1− d.

By the law of large numbers,

lim
n→∞

1
n

n∑
i=1

b̃i = E[b̃i] = d− (1− d)b. (57)

By (56) and (57),

lim
n→∞

β(b, d, n) = [d− (1− d)b]+ .

Thus,

lim
n→∞

β(b, d, n)− 1
2
(d− (1− d)b) =

1
2
| d− (1− d)b | . (58)

Let ṽi denote a random variable with c.d.f. F ∗
b,d,s,0. By the law of large

numbers,

lim
n→∞

1
n

n∑
i=1

ṽi = E[ṽi] = d− (1− d)b. (59)

From (6) and (59),

lim
n→∞

1
n

W ∗
F ∗

b,d,s,0
,n −

1
2
(d− (1− d)b) =

1
2
| d− (1− d)b | . (60)
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Suppose that d− (1− d)b 6= 0. Then (25) follows by dividing (58) through
(60).

Suppose that d − (1 − d)b = 0. Then E[ṽi] = E[b̃i] = 0. By the central
limit theorem, as n →∞,

1√
n

n∑
i=1

b̃i ⇒ ñ1,

where ⇒ denotes weak convergence, and ñ1 denotes a normally distributed
random variable with mean 0 and variance V AR[b̃i] = b. Hence, using (12),

√
n β(b, d, n) → E

[
[ñ1]+

]
. (61)

Similarly, using (6),

1√
n

W ∗
F ∗

b,d,s,0
,n → E

[
[ñ2]+

]
, (62)

where ñ2 denotes a normally distributed random variable with mean 0 and
variance

V AR[ṽi] = E[ṽ2
i ] = s(b(1− d) + d) =

2sb

1 + b
=: σ2

b,s.

Using again d− (1− d)b = 0, we can conclude from (61) and (62) that

lim
n→∞

ρ(b, d, s, n) =
E
[
[ñ1]+

]
E
[
[ñ2]+

]

=
1√
b

∫∞
0 te−

t2

2b
dt

1
σb,s

∫∞
0 te

− t2

2σ2
b,s dt

=

1√
b
(−b) e−

t2

2b

∣∣∣∣∞
0

1
σb,s

(−σ2
b,s) e

− t2

2σ2
b,s

∣∣∣∣∣∣
∞

0

=

√
1 + b

2s
.

QED

Proof of Corollary 3. In the proof of Corollary 2 we have seen that

lim
n→∞

β(b, d, n) = [d− (1− d)b]+ .
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Using this in (24) we obtain the result. QED

Proof of Proposition 3. “if”: By (25), the sequence of continuous func-
tions (ρ(b, ·, s, n))n=3,4,... converges pointwise to 1 on K, as n →∞. Because
K is compact, the convergence is uniform, that is,

lim
n→∞

sup
d∈K

| ρ(b, d, s, n)− 1 | = 0.

This implies

lim
n→∞

inf
d∈K

ρ(b, d, s, n) = 1,

as was to be shown.
“only if”: Suppose that s = ∞. Then worst-case asymptotic efficiency

cannot hold, by (26).
Suppose that b/(1+b) ∈ K. Defining d = b/(1+b), we have d−(1−d)b =

0, hence worst-case asymptotic efficiency cannot hold, by (25). QED

Proof of Proposition 4. “if”: follows from (26).
“only if”: Suppose that s < ∞. Define

ρ∗ =

√
1 + b

2s
.

Extend ρ continuously to points with d = 0 and d = 1, that is,

ρ(b, 0, s, n) = 1, ρ(b, 1, s, n) = 1.

By (25), the sequence of continuous functions (min{ρ(b, ·, s, n), ρ∗})n=3,4,...

converges pointwise to ρ∗ on [0, 1], as n →∞. Because [0, 1] is compact, the
convergence is uniform, that is,

lim
n→∞

sup
d∈[0,1]

| min{ρ(b, d, s, n), ρ∗} − ρ∗ | = 0.

This implies

lim infn→∞ inf
d∈[0,1]

ρ(b, d, s, n) ≥ ρ∗,

showing that the optimal majority rule is not worst-case asymptotically
garbled in F(b, (0, 1), s).
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Now suppose that b/(1+ b) 6∈ K. Then a uniform-convergence argument
using (26) shows that the optimal majority rule is not worst-case asymptot-
ically garbled in F(b, K,∞). QED

Proof of the claim made in footnote 18. Let α = b/(1 + b). By (24),
it is sufficient to show that

β(b, d, n) ≥ β(b, d, n + 1). (63)

Using Remark 1 and (11), one sees that (63) is equivalent to

W opt maj

F,n

n
≥

W opt maj

F,n+1

n + 1
, (64)

for any F with bias b and desirability d.
Suppose that αn is an integer. Let k = αn.
Call agent i a Y-agent if vi > 0, and call her an N-agent otherwise.
Consider the following rule *. If the number of Y-agents in {1, . . . , n} is

greater than or equal to k +1, the public good is provided. If the number of
Y-agents in {1, . . . , n} is smaller than or equal to k − 1, it is not provided.
If the number of Y-agents in {1, . . . , n} equals k, agent n + 1 decides about
the provision.

Observe that rule * is identical to the optimal majority rule with n + 1
agents, because

k < α(n + 1) < k + 1.

We claim that

** the expectation of the joint surplus of the agents 1 to n accord-
ing to rule * is identical to the expectation of the joint surplus
of the agents 1 to n according to the optimal majority rule in
the environment without agent n + 1,

thus showing that (64) holds with “=”.
Let k̃ denote the random variable for the number of Y-agents in {1, . . . , n}.

According to rule *, conditional on the event k̃ 6= k, agent n + 1 has no im-
pact on the collective decision, so that the joint surplus of the agents 1 to n
is the same as in the optimal majority rule in an environment with n agents.

Conditional on the event k̃ = k, the expectation of the joint surplus of
the agents 1 to n according to the optimal majority rule in an environment
with n agents is

k · 1 + (n− k)(−b) = 0.
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According to rule *, the expectation of the joint surplus of the agents 1
to n conditional on the event k̃ = k is still 0. While agent n + 1 makes
the decision, this has no impact on the conditional expectation because the
valuation of agent n + 1 is stochastically independent of the valuations of
the agents 1 to n. This completes the proof of **.

Suppose that αn is not an integer. Then there exists an integer k such
that

k < αn < k + 1.

There are two cases. If α(n + 1) ≤ k + 1, the rule * is, as before, identical
to the optimal majority rule with n + 1 agents. However, ** does not hold.
Conditional on the event k̃ = k, the expectation of the joint surplus of the
agents 1 to n according to the optimal majority rule in an environment
with n agents is 0 (because the public good is not provided). But according
to rule * the public good is provided whenever agent n + 1 is a Y-agent.
Conditional on the event that k̃ = k and agent n + 1 is a Y-agent, the
expectation of the joint surplus of the agents 1 to n according to rule * is

k · 1 + (n− k)(−b) < 0.

Hence, (64) holds with “>”.
If α(n+1) > k+1, the rule * is not identical to the optimal majority rule

with n+1 agents. In this case, the joint surplus of the agents 1 to n according
to the optimal majority rule with n + 1 agents is smaller than according to
rule *, which in turn is smaller than their joint surplus according to the
optimal majority rule in an environment with n agents. Again, (64) holds
with “>”. QED

Appendix B

In this section, we assume that each agent is privately informed about her
valuation.

A (transfer-free) decision rule is a function

φ : Ωn → [0, 1],

where Ω = suppF \ {0} denotes each agent’s type space, and φ(v1, . . . , vn)
denotes the probability that the public good is provided if the realized type
profile is (v1, . . . , vn). A transfer-free mechanism M is a game form that
assigns collective decisions to action profiles,

M : A1 × . . .×An → [0, 1],
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where Ai denotes player i’s action space in M . By the revelation principle, a
decision rule φ is a Bayesian Nash equilibrium outcome of some transfer-free
mechanism if and only if it is incentive compatible,

∀i, vi, v
′
i : E[φ(vi, ṽ−i)]vi ≥ E[φ(v′i, ṽ−i)]vi. (65)

The following result characterizes incentive compatible decision rules. The
proof is immediate from (65).

Lemma 13 A decision rule φ is incentive compatible if and only if there
exist numbers q+

1 , . . . , q+
n ∈ [0, 1] and q−1 , . . . , q−n ∈ [0, 1] such that,

∀i, vi : E[φ(vi, ṽ−i)] =

{
q+
i if vi > 0,

q−i if vi < 0,

and q+
i ≥ q−i for i = 1, . . . , n.

Our goal is to find an incentive compatible decision rule that maximizes
the social surplus

WF,n(φ) = E

[
n∑

i=1

ṽiφ(ṽ)

]
.

A decision rule φ is second best in environment (F, n) if it maximizes WF,n(φ)
among all incentive compatible decision rules.

For all α ∈ (0, 1), the α-majority rule is given by

φα-maj(v1, . . . , vn) =

{
1 if |{i|vi > 0}| ≥ α n,
0 otherwise.

It is useful to define the partition of the set of vectors in IRn with nonzero
components into orthants,

Q(n) = {I1 × . . .× In | ∀i : Ii = (0,∞) or Ii = (−∞, 0)}.

Each element of Q(n) corresponds to a set of vectors that is characterized
by a constant sign for each agent’s type (if n = 2 then Q(n) consists of four
quadrants).

A decision rule φ is called a voting rule if φ is constant on each element
of Q(n).23

23From Lemma 13 it is clear that not every voting rule is incentive compatible. More-
over, it can be shown that not every incentive compatible decision rule is a voting rule.
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Lemma 14 below shows that any level of social surplus that can be ob-
tained with an incentive compatible decision rule can also be obtained with
an incentive compatible voting rule. The idea of the proof is to compute, for
an arbitrary incentive compatible decision rule φ, the average probability of
providing the public good on each element of Q(n). We construct a voting
rule φ̂ via these averages, and show that φ̂ is incentive compatible and yields
the same social surplus as φ.

Lemma 14 For any incentive compatible decision rule φ there exists an
incentive compatible voting rule φ̂ such that WF,n(φ) = WF,n(φ̂).

Proof. Let q+
1 , . . . , q+

n , q−1 , . . . , q−n denote the parameters associated with φ
according to Lemma 13. Then,

WF,n(φ) =
n∑

i=1

E [ṽiφ(ṽ1, . . . , ṽn)]

=
n∑

i=1

E [ṽiE [φ(ṽi, ṽ−i) | ṽi]]

=
n∑

i=1

E
[
ṽi(q+

i 1ṽi>0 + q−i 1ṽi<0)
]

=
n∑

i=1

(
q+
i E [ṽi1ṽi>0] + q−i E [ṽi1ṽi<0]

)
. (66)

Let ṽ = (ṽ1, . . . , ṽn). Define a rule φ̂ by φ̂(v) = E[φ(ṽ) | ṽ ∈ Q] for all
v ∈ Q ∩ S and all Q ∈ Q(n). Hence, φ̂ is a voting rule.

Because q+
i = E[φ(vi, ṽ−i)] for every vi > 0 by Lemma 13,

q+
i = E[φ(ṽi, ṽ−i) | ṽi > 0].

Hence, for all vi > 0,

q+
i =

∑
Q=I1×...×In∈Q(n), vi∈Ii

E[φ(ṽ) | ṽ ∈ Q] · Pr[ṽ ∈ Q | ṽi > 0]

=
∑

Q=I1×...×In∈Q(n), vi∈Ii

E[φ̂(vi, ṽ−i) | ṽ ∈ Q] · Pr[ṽ ∈ Q | ṽi > 0]

= E[φ̂(vi, ṽ−i) | ṽi > 0]
= E[φ̂(vi, ṽ−i)].

Similarly, for all vi < 0, we find q−i = E[φ̂(vi, ṽ−i)]. Thus, φ̂ is incentive
compatible by Lemma 13. Taking the steps leading to (66) in reverse order
while replacing φ with φ̂, we obtain WF,n(φ̂) = WF,n(φ). QED
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Proposition 5 shows that some α-majority rule is always second best,
and characterizes the optimal α.24

Proposition 5 For any environment (F, n), an α-majority rule with α =
bF /(1 + bF ) is second best.

To prove this result, we can, by Lemma 14, focus on voting rules. We
determine an optimal voting rule, ignoring incentive compatibility (65) at
first. The resulting rule is the α-majority rule.

Proof of Proposition 5. Let φ be a second-best decision rule. By
Lemma 14, we can assume w.l.o.g. that φ is a voting rule. We use the
shortcut φ(Q) = φ(v) for any v ∈ Q and Q ∈ Q(n). Then,

WF,n(φ) =
∑

Q∈Q(n)

φ(Q)E[
∑

i

ṽi | ṽ ∈ Q] Pr[ṽ ∈ Q]

=
∑

Q∈Q(n)

φ(Q)
∑

i

E[ṽi | ṽ ∈ Q] Pr[ṽ ∈ Q]

=
∑

Q=I1×...×In∈Q(n)

φ(Q) Pr[ṽ ∈ Q]
∑

i

E[ṽi | ṽi ∈ Ii].

This expression is maximized if, for all Q = I1 × . . .× In ∈ Q(n),

φ(Q) =

{
1 if

∑
i E[ṽi | ṽi ∈ Ii] > 0,

0 if
∑

i E[ṽi | ṽi ∈ Ii] < 0.
(67)

Defining k(Q) = |{i|Ii = (0,∞)}|,∑
i

E[ṽi | ṽi ∈ Ii] = k(Q)− bF (n−k(Q)) = (1+bF )n(
k(Q)

n
− bF

1 + bF
). (68)

By (67) and (68), the α-majority rule with α = bF /(1 + bF ) is second best.
QED
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