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1 Introduction and notation

The modelling of discrepancies among reports is a common problem in the compilation of

macro-economic statistics. See Annex A of Wroe et al. (1999) for a literature review. In general

there is some bookkeeping relation between the reported values which does not hold. The

solution consists of first estimating the accuracy of the various reports and then finding the

optimal adaption of the reported values such that the bookkeeping relation holds, based on these

accuracies.

The estimation of the reporting accuracies can be a difficult problem. In this paper we

consider a situation where this is relatively easy: bilateral data where each quantity is reported

twice. For instance, with international trade data we may have for a particular trade flow the

value reported by the exporter and the value reported by the importer (“mirror values”). Other

bilateral data are direct foreign investment, foreign debt, and international migration.

Discrepancies in international trade data may have several causes, such as omitting

transactions and misidentifying trade partners; see for instance Tsigas et al. (1992), p.298 and

Gehlhar (1996), p.6/7 and ITC (2005) and Ferrantino and Wang (2007), p.5. In the current paper

we discuss the issue from a general statistical modelling point of view, without considering

particular causes. (Of course nothing is better than research into the causes of the discrepancies,

for instance by case studies of customs records – and taking measures to increase the accuracy.)

After a short introduction of the notation of the paper, the classical approach to the modelling

of the reporting errors is discussed in section 2. Here the reporting errors have a zero mean

(unbiased) and different variances. Several estimation methods for these variances are discussed.

The hurried reader who is not interested in estimation is advised to skip the subsections (2.2) and

further.

In section 3 a different model is discussed and estimated, with biased reporting. Here the

reporting errors do not have different variances about a zero mean, but they have different

means; either positive or negative.

A fundamental problem of both models is discussed in section 4: the models are identified up

to a general parameter shift between the two sides of the mirror (say, the exporters and the

importers). A solution is given.

A numerical illustration for both models is given in section 5. The use of the estimates is also

shown and the two models are compared empirically using the illustration results.

A conclusion is given in section 6. Technical details and related issues are presented in

appendices.
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For earlier work on the subject of modelling mirror discrepancies in international trade data,

see Tsigas et al. (1992) and the references therein. They discuss the simultaneous estimation of

the reporting error parameters using regression analysis, including the fundamental problem of

our section 4 (which they do not solve).

In the notation of the model we will use the wording of international trade. LetYi jt be the

logarithm of the unknown true value of the trade flow from countryi to country j in yeart. The

indext might also indicate sectors, or a combination of years and sectors. LetYexp
i jt andYimp

i jt be

the value ofYi jt as reported by the exporteri and the importerj , respectively.

The reporting discrepancies are defined as follows:

∆Yi jt ≡Yexp
i jt −Yimp

i jt (1.1)

Since the logarithm of the flows is used, we have relative discrepancies here1.

2 Unbiased reporting

2.1 The variance model

In this section we discuss the classical approach to the modelling of reporting errors, where they

are stochastic with zero mean and different variances. Then the optimally weighted average of

these observations uses the reciprocal of the error variances as weights. In this way, an accurate

observation (with a small error variance) has a large weight. See for instance equation (5) of the

seminal paper on this subject, Stone et al. (1942).

After a presentation of the model, two alternative estimation methods are presented in

subsections 2.2 and 2.3, respectively. In subsection 2.4 the effect of the non-negativity of the

variances on the computations is discussed.

We assume that the variances are country specific. Hence:

E
[
Yexp

i jt

]
= Yi jt (2.1)

E
[
Yimp

i jt

]
= Yi jt (2.2)

Var
[
Yexp

i jt

]
= Vexp

i (2.3)

Var
[
Yimp

i jt

]
= V imp

j (2.4)

1 For a small relative discrepancy between two reported values a and b we have ∆Y = loga− logb = log(a/b)≈
a/b−1 = (a−b)/b≈ (a−b)/a; see also the computations in table 5.1. Instead of using logs, levels might be used, or

something in between (see Box and Cox (1964)), but this has no effect on the formulas in the this paper (except the exp

and the log in (5.1) and (5.6)).
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for all i 6= j . From (2.1) and (2.2) it follows that:

E[∆Yi jt ] = 0 (2.5)

and hence

Var[∆Yi jt ] = E
[
(∆Yi jt )

2
]

(2.6)

If the reporting errors are uncorrelated with each other then we also have:

Var[∆Yi jt ] = Vexp
i +V imp

j (2.7)

for all i 6= j .

2.2 Least squares regression

The substitution of equation (2.6) into (2.7) gives:

E
[
(∆Yi jt )

2
]

= Vexp
i +V imp

j (2.8)

As a warming up to the more formal modelling in the next subsection, we note that this suggests

the following regression model:

(∆Yi jt )
2 = Vexp

i +V imp
j + εi jt (2.9)

whereεi jt is a regression error term with mean zero. TheVexp
i andV imp

j are the unknown

coefficients to be estimated.

Of course this model can not be estimated (is not identified): given a least squares estimate,

one can always add a constant to allVexp
i and subtract the same constant from allV imp

j without

changing the residuals. This is the same as the well-known dummy variables problem: only the

differences between theVexp
i and the differences between theV imp

j are identified, but not their

levels. Note however that we are not interested in such differences here, but we want to compare

mirror data: an export reporting accuracy versus an import reporting accuracy. We will come

back to this problem later, in section 4.1 below.

The sum of the squared residuals is:

SSQ≡∑
i

∑
j 6=i

∑
t

εi jt
2 = ∑

i
∑
j 6=i

∑
t

(
(∆Yi jt )

2−Vexp
i −V imp

j

)2
(2.10)

The first order conditions for a minimum are, for alli:

∂ SSQ

∂Vexp
i

=−2∑
j 6=i

∑
t

εi jt = 0 (2.11)
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and for all j :

∂ SSQ

∂V imp
j

=−2∑
i 6= j

∑
t

εi jt = 0 (2.12)

Note that this system is dependent, because the sum overi of the equations (2.11) is the same as

the sum overj of the equations (2.12). This is another way of looking at the problem of the

solution not being unique.

2.3 Maximum likelihood

In addition to the above assumptions, let the reported values be normally distributed. Then,

using the equations (2.5) and (2.7), their discrepancy is distributed as:

∆Yi jt ∼ N(0,Vi j ) (2.13)

with

Vi j ≡Vexp
i +V imp

j (2.14)

for all i 6= j . In appendix A it is shown that

Var[εi jt ] = (γ2 +2)V2
i j (2.15)

where theεi jt are the regression error terms implicitly defined by equation (2.9) above2 andγ2 is

the (excess) kurtosis of the distribution of the discrepancies. The kurtosis of the normal

distribution is zero. In such cases, with a constant kurtosis, the error variance is proportional

with theVi j and the model is called heteroscedastic. For maximal precision, least squares

requires the weighting of the squared residuals with the reciprocal of the error variances. And

hence in the first order condition for least squares the residuals themselves are thus weighted. As

we shall see, this is indeed the result of maximum likelihood.

Using the formula of the normal density, we get the loglikelihood of the unknown variance

parameters, given the observed discrepancies∆Yi jt (and omitting an irrelevant additive constant

of −n log
√

2π , wheren is the number of observations):

logL = ∑
i

∑
j 6=i

∑
t

log

(
1√
Vi j

exp

(
−

(∆Yi jt )
2

2Vi j

))

= ∑
i

∑
j 6=i

∑
t

(
−1

2
log(Vi j )−

(∆Yi jt )
2

2Vi j

)
(2.16)

2 Of course, the variance of the “true” regression error terms is not the same as the variance of the least squares

regression residuals.
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Note that this likelihood function is highly nonlinear: the large parentheses in the last member of

(2.16) contain the difference between two expressions which go to infinity for smallVi j .

The first order condition for a maximum likelihood with respect toVexp
i is:

∂ logL

∂Vexp
i

= ∑
j 6=i

∑
t

∂

∂Vi j

(
−1

2
log(Vi j )−

(∆Yi jt )
2

2Vi j

)

=
1
2 ∑

j 6=i
∑
t

(
− 1

Vi j
+

(∆Yi jt )
2

V2
i j

)

=
1
2 ∑

j 6=i

(
1

Vi j
∑
t

(
(∆Yi jt )

2

Vi j
−1

))
= 0 (2.17)

For the derivation of the first equal sign in (2.17) we have made use of:

∂Vi j

∂Vexp
k

=

 1 if i = k

0 otherwise
(2.18)

First order condition (2.17) is repeated here on one line, as follows: for eachi we have

∑
j 6=i

(
1

Vi j
∑
t

(
(∆Yi jt )

2

Vi j
−1

))
= 0 (2.19)

As an aid in the interpretation of this equation, note that in the case of a model with only one

variance parameter, sayVi j = V∗, we would have(1/V∗)2 ∑∑
(
(∆Yi jt )

2−V∗
)

= 0 and the

variance estimate would simply be equal to the sample variance:

V∗ =
∑∑(∆Yi jt )

2

n
(2.20)

wheren is the number of observations of∆Yi jt .

The first order condition (2.19) can also be written using the regression error termsεi jt

defined by the least squares regression model (2.9). Then we have for alli:

∑
j 6=i

(
1

V2
i j

∑
t

εi jt

)
= 0 (2.21)

Compare with the first order condition for least squares in (2.11) above. Indeed in (2.21) the

residuals are weighted with the reciprocal of their variance given in (2.15) above. (In appendix C

this is discussed further.)

The first order condition with respect toV imp
j is similar to the first order condition with

respect toVexp
i . For all j :

∑
i 6= j

(
1

V2
i j

∑
t

εi jt

)
= 0 (2.22)
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Finally, note that we have here the same problem as in the above section 2.2 about least

squares: the first order conditions (2.21) and (2.22) together do not define a unique solution, for

the same reason as in section 2.2. See section 4.1 below.

2.4 Variances are not negative

Since all coefficients in the model are variances, we have the following restrictions for allk:

Vexp
k ≥ 0 (2.23)

V imp
k ≥ 0 (2.24)

Although all the left hand side data in the regression equation (2.9) are positive, these

restrictions might be violated by the least squares regression (section 2.2). Hence we must

minimise the sum of squares under these restrictions.

With maximum likelihood (section 2.3), the total variancesVi j are always positive, since

otherwise the loglikelihood function does not exist. However, the componentsVexp
i andV imp

j can

be negative. Hence in this case they must be restricted too, by (2.23) and (2.24). Moreover we

can not have both aVexp
i and aV imp

j equal to zero (withi 6= j ), because thenVi j is zero. We can

have more than one zero-variance in the following three cases: only export reporting variances

are zero, only import reporting variances are zero, or only the two variances of one country are

zero. This seems an odd feature of the variance model.

3 Biased reporting

From the first three lines of table 5.1 on page 11 one might suspect that France reports its exports

with a negative bias. Even more so, it seems that Italy reports its exports with a positive bias.

Hence we consider a model where the reporting errors do not have different variances about a

zero mean, but different means; either positive or negative:

E
[
Yexp

i jt

]
= Yi jt + µ

exp
i (3.1)

E
[
Yimp

i jt

]
= Yi jt + µ

imp
j (3.2)

with

Var
[
Yexp

i jt

]
= Var

[
Yimp

i jt

]
= V0 (3.3)

Then:

E[∆Yi jt ] = µ
exp
i − µ

imp
j (3.4)
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and also, assuming independent reporting errors:

Var[∆Yi jt ] = 2V0 (3.5)

This suggests the following regression model:

∆Yi jt = µ
exp
i − µ

imp
j + εi jt (3.6)

Compare with equations (1) and further of Tsigas et al. (1992), who also assumes biased

reporting errors.

Model (3.6) is homoscedastic: the regression errors have the same variance. Hence OLS is

an efficient method here. Assuming normally distributed errors, OLS is the same as maximum

likelihood.

Of course the bias model can also not be estimated, as discussed above for the variance

model. Here one can always add a constant to allµ
exp
k and allµ imp

k without changing the

residuals. See section 4.2 below.

4 The fundamental problem of non-uniqueness and the
symmetry axiom

As discussed above, the variance model and the bias model both have a fundamental problem:

the optimal solution is not unique.

Note that there is no empirical way out of this, using the observed discrepancies; we have to

choose between parameter estimates which have the same fit to the observed discrepancies. Only

extra information about the country accuracies can help; for instance from case studies of

individual trade transactions.

In the absence of any prior indication that export reporting is relatively accurate (or

inaccurate) compared to import reporting, the simplest choice is to assume a generally

symmetric situation. This is translated to the two models as shown in the next two subsections.

We compare this symmetry axiom with the non-simultaneous methods such as the GTAP

method described in appendix F, or the computations in ITC (2005). These methods use the

entire discrepancies in the computation, without decomposing them in the two reporting errors;

the latter is only possible with some kind of simultaneity. Hence these method do not have to

find a way out of our non-uniqueness problem. However, they are implicitly symmetrical: all

exporters together are judged on the same set of discrepancies as are all importers together, and

hence on average the two groups get the same result. If all exporters report without error and all

importers report with errors (both positive and negative) then this is not detected by

non-simultaneous methods; nor by the methods proposed here.
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Finally, if there is prior knowledge then this symmetry axiom might be replaced by an

empirical rule such as: import data are on average 25% more reliable than export data. (The

guiding principle of Statistics Canada’sWorld Trade Analyzeris: import data are more reliable

than export data; see LeBlanc (2000).)

4.1 The symmetry in the variance model

As we saw in section 2 above, the variance model can not be estimated (is not identified): one

can always add a constant to allVexp
i and subtract the same constant from allV imp

j without

changing theVi j and hence without changing the regression residuals or the likelihood.

For this model we use the symmetry axiom to propose the following restriction3 4:

∑
k

Vexp
k = ∑

k

V imp
k (4.1)

If log values are used, and the parameters are relative as discussed in footnote 1 on page 3, then

these summations might be weighted with the size of the countries in order to prevent that an

arbitrarily small country has the same influence as a large country. We did not use weights in the

illustration in section 5 below, since the illustration includes countries which do not differ very

much in size.

As an alternative to (4.1), the above mentioned imaginary empirical rule “import data are on

average 25% more reliable than export data” might be formulated as:(1−c)2 ∑k Vexp
k = ∑k V imp

k

with c = 0.25. We have not applied such a rule.

Also as an alternative for equation (4.1), we experimented with an extra optimisation

criterion: choose the solution with largest correlation between theVexp
k and theV imp

k . The idea

behind this was: a country has or has not a good national statistical bureau, and this affects both

the export reporting and the import reporting. However, this did not give satisfactory results.

This might be due to a non-optimal stationary point; see the computer appendix D. Also, this

“nested optimisation” is more complicated than the addition of an equality restriction to the

optimisation.

3 Equation (4.1) holds also for the so-called adjusted means, or least squares means. See for instance Searle et al.

(1980), equation (4.2) and the next. In a private communication Cyrille Schwellnus suggested a refinement, where the

reciprocals of the number of categories in the formula for the adjusted means are replaced by a ratio which depends on

the number of trading partners of the country.

4 The non-negativity restrictions (2.23) and (2.24) might be used to find a unique solution for the variance model. They

increase the residual sum of squares, or decrease the likelihood, and it might be that only one combination of binding

restrictions gives the smallest increase or decrease, respectively. We have not followed this line of inquiry because it can

only work, if at all, if the estimate without the restrictions violates the restrictions. Also there is a computer programming

problem here; see the last section of appendix D below.
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4.2 The symmetry in the bias model

As discussed above, the bias model is not identified, similar to the variance model. One can

always add a constant to allµ
exp
k and allµ imp

k without changing the residuals. A restriction is

imposed, again motived by symmetry, as with (4.1) above. Think of a single discrepancy fromi

to j , whereµ
exp
i + µ

imp
j = 0 implies that the truth is halfway between the two reports. This

results in a restriction on the overall sum:

∑
k

(
µ

exp
k + µ

imp
k

)
= 0 (4.2)

A weighted sum might be used here, as with equation (4.1); see the discussion below that

equation.

Note that this problem is computationally trivial here, compared with the variance model,

since here are no non-negativity restrictions on the parameters. Hence one can easily apply

equation (4.2) to estimation results by adding a constant to all coefficient estimates such that the

equation holds. We have applied this idea to the table published in Tsigas et al. (1992); see

appendix E below.

Finally, as an alternative to (4.2), the above mentioned imaginary empirical rule “import data

are on average 25% more reliable than export data” might be formulated as:

∑k

(
(1−c)µ

exp
k + µ

imp
k

)
= 0 with c = 0.25. Again, we have not applied such a rule.

5 A numerical illustration using trade in services

5.1 The data

We illustrate the above methods with table 5.1, which contains reported trade in services

between four large European countries. This is the lowest number of countries which leaves

some degrees of freedom in the model: 4× (4−1) = 12 observed discrepancies and 2×4 = 8

reporting error parameters to be estimated, giving 4 degrees of freedom. (With three countries

we have 6−6 = 0 degrees of freedom.) The services are the category “Other Commercial

Services” (OCS). For instance the first line shows that the trade flow from France to Germany

was reported by France as 1.3 billion USD and the same flow was reported by Germany as 4.8

billion USD. The total discrepancy at the bottom of the∆ column is fairly small and we did not

adjust the data to make this zero5.

5 The total discrepancy is 1.5 billion USD, or 3%. This is surprisingly low considering the individual discrepancies. Issues

such as total exports not being equal to total imports are outside the scope of this paper; one might adjust the data prior

to modelling.
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The table also gives three indicators of the percentage discrepancies. The “∆ logs” is the

∆Yi jt in the model formulas. (For example, in the first row we have log1.3− log4.8 = −1.31=

−131%6. The “mean” in the penultimate column is the mean of the two reported values. (For

example(1.3−4.8)/((1.3+4.8)/2) = −1.15= −115%.) The “|∆|/import” is the GTAP

criterion of accuracy for the trade in goods; see appendix F below. Only three of the 12

discrepancies are below the GTAP 20% threshold, in any of the three percentage columns.

Table 5.1 Reported trade in services, OCS (2002, billion USD)

reporting reporting reported reported ∆ |∆| ∆ logs ∆ / mean |∆| / import

exporter importer export import (GTAP)

%

France Germany 1.3 4.8 −3.5 3.5 −131 −115 73

France Italy 1.8 3.7 −1.9 1.9 −72 −69 51

France UK 3.8 3.3 0.5 0.5 14 14 15

Germany France 4.7 3.6 1.1 1.1 27 27 31

Germany Italy 1.8 3.6 −1.8 1.8 −69 −67 50

Germany UK 6.6 3.9 2.7 2.7 53 51 69

Italy France 3.3 1.5 1.8 1.8 79 75 120

Italy Germany 3.4 1.4 2.0 2.0 89 83 143

Italy UK 3.6 1.2 2.4 2.4 110 100 200

UK France 5.7 4.8 0.9 0.9 17 17 19

UK Germany 7.5 9.1 −1.6 1.6 −19 −19 18

UK Italy 2.9 7.0 −4.1 4.1 −88 −83 59

Total 46.4 47.9 −1.5 24.3

Source: OECD Statistics on International Trade in Services

5.2 Estimates of the variance model and the use of the estimates

Results table 5.2 gives the total reported exports and reported imports per reporter country, the

total abs discrepancy and the percentage ratio of these two.

The estimated variance parameters are also given, based on the discrepancy between the log

values, according to the method LS (least squares) and ML (maximum likelihood), as discussed

in the preceding subsections 2.2 and 2.3, respectively. Each zero estimate is at the lower bound.

It is interesting to compare the estimation results with the columns labelled “rel|∆|” in table

5.2, which show the sum of the abs discrepancies as a percentage of the export or import. The

UK has the largest import discrepancy percentage (67%); this is also larger than the export

6 Throughout this paper, all numbers which are a difference between logs are presented as percentage by merely

multiplying them with 100, without first transforming them with “exp(. . .)−1”.
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Table 5.2 Estimates of the variance model

export reporting import reporting
√

Vexp
√

V imp

total |∆| rel |∆| LS ML total |∆| rel |∆| LS ML

billion USD % billion USD %

France 6.9 5.9 86 62 0 9.9 3.8 38 8 0

Germany 13.1 5.6 43 27 40 15.3 7.1 46 71 83

Italy 10.3 6.2 60 81 101 14.3 7.8 55 67 71

UK 16.1 6.6 41 0 17 8.4 5.6 67 38 14

Total 46.4 24.3 47.9 24.3

discrepancy percentage of Italy (60%). However, both estimates of the import reporting error of

the UK (38% and 14%) are much smaller than both export reporting error estimates of Italy

(81% and 101%). Hence, in the published export from Italy to the UK the latter’s report should

have the largest weight.

These estimates can be used according the recipe of Stone et al. (1942), discussed above at

page 3. If one of the two variances is estimated as zero then use the “lim” of this formula for that

variance approaching zero; this amounts to the use of the report of that country only. This makes

the first lines in table 5.1 useless as an example because one of the two partner countries

involved has a zero for the relevant estimated variance. For instance France has a zero estimated

variance as export reporter, making the first three lines of table 5.1 useless as an example.

Consider then the fifth line of the data table 5.1: the trade flow from Germany to Italy,

reported by these countries as 1.8 and 3.6 billion USD, respectively. Using the ML estimate

from table 5.2, we have:

exp
log(1.8)/402 + log(3.6)/712

1/402 +1/712 = 2.1 billion USD (5.1)

5.3 An estimate of the bias model and the use of the estimate

Table 5.3 shows the results for the illustration data for the bias model. The−1.5 and+1.5 are

(apart from sign) the same as the−1.5 in the Total row in the data table 5.1. The+2% and−2%

reflect the symmetry equation (4.2).

How are these estimated biases to be used? The recipe of Stone et al. (1942), discussed

above at page 3, is not applicable here. We combine the equations (3.1) and (3.2) as follows. For

k = 1,2:

yk = Yi jt + εk (5.2)
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Table 5.3 Estimate of the bias model

export import

+∆ µ
exp −∆ µ

imp

billion USD % billion USD %

France −4.9 −56 −3.8 −22

Germany 2.0 −4 3.1 22

Italy 6.2 75 7.8 52

UK −4.8 −12 −5.6 −54

Total −1.5 +2 +1.5 −2

Not all columns add up to the total, due to rounding.

with

y1 ≡Yexp
i jt − µ

exp
i (5.3)

y2 ≡Yimp
i jt − µ

imp
j (5.4)

Consider (5.2) as a regression model with one regression coefficient:Yi jt . The least squares

estimate of this coefficient is the mean of theyk. Hence the recipe is: correct the two reports for

their estimated bias and then take their unweighted mean, or correct the mean of the reports with

the mean bias:

Ŷi jt =

(
Yexp

i jt − µ
exp
i

)
+
(
Yimp

i jt − µ
imp
j

)
2

=
Yexp

i jt +Yimp
i jt

2
−

µ
exp
i + µ

imp
j

2
(5.5)

Consider for example again the fifth line of the data table 5.1: the flow from Germany to Italy,

reported by these countries as 1.8 and 3.6 billion USD, respectively. The result is:

exp

(
log(1.8)+0.04

)
+
(

log(3.6)−0.52
)

2
= 2.0 billion USD (5.6)

Finally, note that with this model the estimate is not always closest to the most accurate

reporter. If a reporter with a positive bias reports nevertheless the lowest value of the two (or a

reporter with a negative bias reports the highest value) then this pulls the estimate to that

reporter. As an extreme example, imagine that reporteri has no bias at all, while partnerj has,

say, a positive biasµ but reportsµ less thani. Then the best estimate is exactly equal to the

report of the reporterj , who is not the accurate reporter.

5.4 Empirical comparison of unbiased versus biased reporting

It is possible to judge empirically the two main models of this paper: the unbiased reporting

versus the biased reporting. We give the results for the four country illustration data.
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As noted above, the degree to which the models fit the data is not dependent on the chosen

way out of the non-uniqueness problem of section 4: this problem consist of the fit being the

same for a range of solutions. Thus, residual sum of squares andR2 values and loglikelihoods

are unique even when the parameter estimates are not.

First, as a rough measure, we used a statistical computer program and obtainedR2 values

from OLS, by arbitrarily fixing one of the parameters to zero. We ignored here the non-negativity

restrictions on the parameters of the variance model, which increases the fit of the variance

model. Nevertheless theR2 values from OLS are 45 and 89 per cent for the variance model of

unbiased reporting with equation (2.9) and for the biased reporting model with equation (3.6),

respectively. Hence, here the bias model shows a considerably better fit. (Note however that an

R2 for the variance model near 100% would be a questionable result, since here the regression

error variance must be about twice the variance of the discrepancy; see equation (2.15) above.)

Also the models are compared on the basis of their likelihoods from the estimates of the

previous subsections. We assume normally distributed reporting in both models. See appendix B

for details. The result is again a much better fit of the bias model.

Additional support for one of the two models might come from more data, for instance data

for more years. We have compared the data over 2002 in table 5.1 with the same data7 over

2001. The signs of the discrepancies are the same, and the correlation between the discrepancies

in the two years is 0.96. This seems to support the bias model.

Finally, one might consider the two reporting models as special cases of a general model

which contains the variance formulas (2.3) and (2.4), with (4.1), and the bias formulas (3.1) and

(3.2), with (4.2). Then one might apply the standard tests for nested hypotheses. This would tell

us for each of the sub models if they can be rejected when considered as a restriction on the

general model. However, it would not tell us more about the relative position of the two models.

To be precise, in the variance model we must add a generalµ term to the right hand side of

(2.1) and (2.2). Theseµ terms cancel each other in equation (2.5). Then the variance model is

obtained from the general model by assuming that all biases are equal, and the bias model is

obtained by assuming that all variances are equal.

6 Conclusion and remaining questions

In this paper we have explored models and estimation techniques for the analysis of

discrepancies in bilateral data (“mirror values”). Including also the appendices below, this

7 The discrepancies in 2001 are, in the same order as in table 5.1, and from the same source: -3.7, -1.6, 1.3, 0.9, -2.1,

2.1, 1.5, 1.2, 2.6, 1.1, -2.9, -3.3 billion USD.
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seemingly simple problem proves to contain a surprisingly large amount of technical details,

both statistical and numerical.

Solving discrepancies between mirror values requires a choice between two models. First:

the traditional model for making macro-economic statistics, based on Stone et al. (1942), where

the discrepancies are caused by unbiased reporting errors. Second: the model of Tsigas et al.

(1992) where the reporting errors have a non-zero bias, either negative or positive.

Although the choice between the two models is not affected by it, both models suffer from

the fundamental problem discussed (but not solved) by Tsigas et al. (1992): the estimates of the

reporting error parameters are not unique. A way out of this problem is presented for each

model, based on thea priori symmetry between export reporting and import reporting.

The empirical choice between these models has been discussed. A small illustrative data set

on international trade in services fits best to the bias model. A method has been derived how to

the use the estimated biases in combining mirror values: first correct the two reports individually

for their bias, then take their unweighted mean. We have shortly discussed a general model

which encompasses both.

Some methodological questions are still to be answered:

• Are there better methods than the symmetry equations (4.1) and (4.2) to find a way out of the

fundamental problem of non-uniqueness?

• Do the first order conditions of the various estimation techniques of the variance model

including equation (4.1) have a unique solution, or are there multiple points satifying the first

order conditions (after solving the fundamental problem)?

• What are the standard errors of the estimates in the tables 5.2 and 5.3?

And of course the empirical questions about the most appropriate model for the bilateral data

about trade (in goods or in services), investment, aid, migration, etcetera, are still remaining.
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Appendix A The proof of equation (2.15)

The proof of equation (2.15) is given here. The following shorthand notations are used:∆ for the

discrepancy∆Yi jt (the column “∆ logs” in table 5.1),V for varianceVi j andε for regression error

termεi jt . Then:

E[∆] = 0 (A.1)

Var[∆] = V ≡ σ
2 (A.2)

E[ε ] = E
[
∆2−V

]
= 0 (A.3)

Hence:

Var[ε ] = E
[
ε

2]= E
[(

∆2−V
)2
]

= E
[
∆4]+V2−2VE

[
∆2]

= µ4 +V2−2V2 = µ4−V2 =
µ4

σ 4V2−V2

=
(

µ4

σ 4 −1
)

V2 = (γ2 +2)V2 (A.4)

whereγ2 ≡ µ4/σ
4−3 is the (excess) kurtosis of the distribution of the discrepancy∆ and

µ4 ≡ E
(
∆4
)

.

As an aside: the last member of equation (A.4) implies that the kurtosisγ2 is never smaller

than−2. This is indeed its lower limit and it is easily seen that this limit is reached by any

discrete distribution with has a nonzero probability for only two values of the stochast, with

equal probabilities. Thenx− µ =±σ andµ4 ≡ E
[
(x− µ)4

]
=E
[
σ

4
]
=σ

4. An example is the

Bernoulli distribution withp = 1/2.

Appendix B Comparing the likelihoods of non-nested
models

The loglikelihood of regression model with normally i.i.d. regression errors is:

logL =
n

∑
k=1

log

(
1
σ

exp

(
−

ε
2
k

2σ 2

))
=−n logσ − n

2σ 2 ∑
k

ε
2
k

n

= −n logσ − n
2σ 2 σ

2 =−n logσ −n/2 (B.1)

where theεk are the regression error terms andσ is the standard deviation of these error terms8.

We haven = 12 here. The last member of (B.1) is the concentrated loglikelihood, based on the

8 Again, for brevity we have omitted the irrelevant term −n log
√

2π . Of course this term must be included in the

loglikelihood when comparing with a model which is not based on the normal distribution.
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ML estimator of the error variance:σ
2 = ∑ε

2
k /n, the mean square of the residuals; it shows that

maximum likelihood is in this case the same as leastσ , or least squares.

Table B.1 shows the results. The first loglikelihood value can be found in the result file of the

GAMS program which goes with this paper, and the second value can easily be computed by

hand from the indicated equation and theσ . The last column shows the loglikelihood values

relative to the largest value: the bias model9.

Table B.1 Loglikelihood values

reporting model loglikelihood

formula σ value relative value

variance model (unbiased reporting) eq (2.16) −54.8 −5.0

biased reporting eq (B.1) 38.6 % −49.8 0

For the comparison of the likelihoods of nonnested models, we use the Likelihood Axiom (or

Likelihood Principle) which states, loosely speaking, that all the information about a model,

given the data, is contained in the likelihood function. See for instance Edwards (1976), p.31 or

Berger and Wolpert (1988). It follows that the probability distribution of the likelihood ratio

under a null hypothesis is not relevant. We use a loglikelihood difference of 2 as a benchmark.

This is the loglikelihood difference betweenµ = x and the familiar significance limits

µ = x±2σ whenx is a drawing from a normal distribution with known varianceσ
2 and

unknown meanµ . (The loglikelihood is: logL(µ)=−(µ −x)2/2σ
2 + constant.) See for instance

Edwards (1976), p.76, about the “2-unit support limits”. Hence here the bias model is

significantly more likely than the variance model.

Appendix C Regression analysis when the error variance
is related to the regression coeffcients

The first order conditions (2.21) and (2.22) contain a weighted sum of regression errors. Note

however that this differs from the minimisation of the weighted least squares

SSQW ≡∑
i

∑
j 6=i

(
1

V2
i j

∑
t

εi jt
2

)
(C.1)

9 Published loglikelihood values themselves have little meaning; it is usually not easy for the reader to appreciate their

value. They depend on such trivia as whether or not the −n log
√

2π term is included (in the case of the normal

distribution) and on the dimension of the stochast: changing this dimension with some factor shifts the loglikelihood with n

times the log of this factor and may change the sign of the loglikelihood. However, differences between loglikelihood values

(based on the same data, in the same dimension, etcetera) are meaningful; see the last paragraph of this appendix.

17



That gives the first order condition with respect toVexp
k :

∂ SSQW

∂Vexp
k

(C.2)

which is differs from the derivative with the weights held fixed:

∑
i

∑
j 6=i

(
1

V2
i j

∑
t

∂ εi jt
2

∂Vexp
k

)
=−2 ∑

j 6=k

(
1

V2
k j

∑
t

εk jt

)
(C.3)

Equating the last member of (C.3) to zero gives the first order condition (2.21) above. Compare

with Theil (1971), p.245-246 and Amemiya (1973) for an early discussion of this subject. They

discuss the minimisation of SSQW where theVi j shown in (C.1) are fixed estimates from OLS

residuals.

Appendix D Computer programming

The estimates of the model have been computed with the NLP (nonlinear programming) method

in the GAMS computer program, minimising the residual sum of squares, or maximising the

loglikelihood.

In all cases we included also the symmetry equation (4.1) or (4.2) in the GAMS model.

As starting values for the solver, we used for alli:

Vexp
i =

1
2

(
∑
j 6=i

(∆Yi jt )
2

)
/ (4−1) (D.1)

and likewise for theV imp
j . Next, the starting values forVi j were computed from the definition

(2.14).

The GAMS program code is available at www.cpb.nl, at the web page of this paper.

Finally, a critical note. GAMS was designed for efficiently minimising or maximising an

objective function with restrictions. However, we found that it is less tailored to the estimation of

statistical models by minimising a sum of squares or maximising a likelihood, compared with

statistical and econometric software such as SAS or TSP. In the first place, no distinction is made

in GAMS between zeros and missing values if an array is partly filled with data.

Second, GAMS produces without a warning an arbitrary solution of an ill-defined problem.

For example the value of two variables for which the squared sum is minimal:

Variables X,Y,S;

Equations EQ;

EQ .. S =e= sqr(X+Y);

Model M /all/;

X.L=1; Y.L=2;

Solve M minimizing S using NLP;
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This can also be the case when searching for the value of two variables for which the sum is

zero, as a square system to be solved with MCP:

Variables X,Y;

Equations EQ1,EQ2;

EQ1 .. X+Y =e= 0;

EQ2 .. X =e= -Y;

Model M /all/;

X.L=1; Y.L=2;

Solve M using MCP;

In a way, this problem is at the heart of this paper; see section 4 above about problems without a

unique solution. The model status of the NLP solution may be either “locally optimal” or just

“optimal”, depending on the solver. (We tested several solvers. The MILES solver detects the

non-uniqueness in the MCP model.) Of course this is a problem which requires care in other

software too; for instance in SAS/IML, one has to specify that convergence tests must be based

only on changes in the parameter space and not on the basis of changes of the function value, or

the size of the gradient.

Appendix E Tsigas, Hertel and Binkley, 1992

In Tsigas et al. (1992) a bias model for seven regions is estimated, like our (3.6) above. They use

the reverse definition for the discrepancy, compared with our definition of∆Yi jt in equation (1.1)

on page 3 above. An intercept term is added and hence they need two identifying country bias

restrictions. This gives for our equation (3.6), with the residual term omitted and a general

intercept termµ included:

−∆Yi jt = µ + µ
imp
j − µ

exp
i (E.1)

On page 30, at the end of their section 3, they discuss the search for finding two countries

which can be used as “base reporters”, whose bias is zero. To this end, attention is restricted to

the model estimates for which the multiple equalityµ = µ
imp
j = µ

exp
i = 0 is not rejected

statistically10 for some pair of base reportersi and j . They find 17 such estimates, reported in

their table 5 with the exp(. . .) function of theµ
exp
i andµ

imp
j coefficients. (The dashes must be

read as ones.) The two reporters in such a base reporter pair have the same bias.

10 Van Leeuwen and Lejour (2006), p.7 present the same model for other regions. They assumed that this equality holds

for i = j = the combination of Belgium plus Luxembourg, and also that this choice has little effect on the outcome, with

the large number of regions they have.
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Our symmetry equation (4.2) can be applied to this table 5, as follows. Pick any line of the

table, and take logs of all coefficients except the estimated intercept term. (The dashes now

become zeros.) Then absorb the intercept term into the bias coefficients by subtracting it from all

export bias coefficients, or adding it to all import bias coefficients. Finally, add a constant to all

bias coefficients such that they add up to zero as in our (4.2). This gives for instance for the USA

an export bias of−2.4% and an import bias of+2.0%, for any line in the table. (We might have

used a weighted sum of biases here.)

This is shown in formulas as follows. If for example the intercept termµ in (E.1) is absorbed

by subtracting it from all export bias coefficients then we have:

−∆Yi jt = µ
imp
j − µ̃

exp
i (E.2)

with

µ̃
exp
i ≡ µ

exp
i − µ (E.3)

We generalise our symmetry equation (4.2) by adding weights:

∑
k

wk

(
µ

imp
k + µ

exp
k

)
= 0 (E.4)

If the weighted sum of all coefficients must be zero then the weighted average must be subtracted

from each coefficient. This average, sayA, can be written as the average of two averages:

A =
1
2

(
1

∑w ∑
j

w j µ
imp
j +

1

∑w ∑
i

wi µ̃
exp
i

)
=

=
1
2

(
1

∑w ∑
j

w j µ
imp
j +

1

∑w ∑
i

wi
(

µ
exp
i − µ

))
=

1
2

(
µ

imp + µ
exp− µ

)
(E.5)

Theµ
imp andµ

exp are the weighted averages of the original coeffcients. The new set of

coefficients consist of the import coefficients

µ
imp
j −A = µ

imp
j − 1

2

(
µ

imp + µ
exp− µ

)
(E.6)

and the export coefficients

µ̃
exp
i −A = µ

exp
i − µ − 1

2

(
µ

imp + µ
exp− µ

)
= µ

exp
i − 1

2

(
µ

imp + µ
exp+ µ

)
(E.7)

It is easily seen that if, alternatively, the intercept termµ is absorbed by adding it to all import

bias coefficients then we get the same result, based on ˜µ
imp
j ≡ µ

imp
j + µ .

It is also easily seen that any other initial choice of coefficients with the same right hand side

of regression equation (E.1) will produce the same result. For instance if the import coeffcients

20



have another base reporter then allµ
imp
j are, say,δ larger andµ is δ smaller. Then (E.6)

becomes:(
µ

imp
j + δ

)
− 1

2

((
µ

imp + δ
)
+ µ

exp− (µ − δ )
)

= µ
imp
j − 1

2

(
µ

imp + µ
exp− µ

)
(E.8)

which is the same as (E.6). Equation (E.7) also stays the same:

µ
exp
i − 1

2

((
µ

imp + δ
)
+ µ

exp+(µ − δ )
)

= µ
exp
i − 1

2

(
µ

imp + µ
exp+ µ

)
(E.9)

With a change of export base reporter allµ
exp
i are, say,δ larger andµ is alsoδ larger. This also

has no effect.

Appendix F GTAP

The GTAP organisation uses a model-free method of analysing reporting errors in the

international trade of goods. The description of the method is taken from Gehlhar (1996),

pp.22-23. This method is (implicitly) based on the assumption of unbiased reporting, producing

sign-free reliability indicators. An exporting reliability indicator for countryi is computed as

follows:

∑ j 6=i ai j Ȳexp
i j

∑ j 6=i Ȳexp
i j

(F.1)

where theȲ (with the dash) arelevels, not logs. And a similar equation for the imports.

The accuracy switchai j is defined for both exporters and importers as:

ai j =

 1 if |∆Ȳi j |/Ȳimp
i j ≤ 20%

0 otherwise
(F.2)

For small discrepancies the rule in equation (F.2) is approximately equal to|∆Yi j | ≤ 20%. We

have omitted thet subscript here. For each bilateral trade flow, say fromi to j , the reported value

of the most reliable reporter is accepted as the true value, based on a comparison of the

reliabilities as computed above. The non-simultaneous nature of this method is mitigated

somewhat as follows: “Each reporter is given an opportunity to disregard the value reported by

its worst partner.” See Gehlhar (1996), p.22. There is no similar outlier correction for the

flattering value reported by its most accurate partner.

It is interesting to compare this method with the results of the variance model in table 5.2

above. Note that the variance model is also sign-free. As noted in section 5.1 above, only three

out of our 12 discrepancies are below the 20% relative discrepancy as defined in equation (F.2);

see table F.1. We ignore the “worst partner” correction. Italy does not occur in table F.1 and

hence it has a zero GTAP reliability for export reporting and for import reporting. This agrees

with the results in table 5.2, as does the good result for France and the UK. The result for

Germany differs: here it is a bad export reporter, and in table 5.2 it is a bad import reporter.
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Table F.1 Discrepancies below 20% in table 5.1

exporter importer |∆| / import

%

France UK 15

UK France 19

UK Germany 18
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