
Facultad de Ciencias Económicas y Empresariales
Universidad de Navarra

Working Paper nº 09/03

Testing of Fractional Cointegration in
Macroeconomic Time Series

Luis A. Gil-Alana

Facultad de Ciencias Económicas y Empresariales
Universidad de Navarra



Testing of Fractional Cointegration in Macroeconomic Time Series
Luis A. Gil-Alana
Working Paper No.10/03
May 2003
JEL Codes: C15, C22.

ABSTRACT

We propose in this article a two-step testing procedure of fractional cointegration in
macroeconomic time series. It is based on Robinson’s (1994) univariate tests and is
similar in spirit to the one proposed by Engle and Granger (1987), testing initially the
order of integration of the individual series and then, testing the degree of integration
of the residuals from the cointegrating relationship. Finite-sample critical values of the
new tests are computed and Monte Carlo experiments are conducted to examine the
size and the power properties of the tests in finite samples. An empirical application,
using the same datasets as in Engle and Granger (1987) is also carried out at the end
of the article.
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1. Introduction

Nelson and Plosser (1982) showed, using tests of Dickey and Fuller (1979), that many

US macroeconomic time series contained a unit root. These tests, however, were shown

to have very low power against certain types of alternatives, and other unit-root tests

were proposed in the following years (e.g., Phillips, 1987; Phillips and Perron, 1988;

Kwiatkowski et al., 1992, etc.). All these unit-root tests are nested in autoregressive

(AR) alternatives. However, the AR model is merely one of the many models that nest a

unit root. Robinson (1994) proposes tests for unit roots and other hypotheses, which are

embedded in a fractional model of form:

...,2,1,)1( ��� tuxL tt
d (1)

where ut is I(0), (defined as a covariance stationary process with spectral density

function which is positive and finite at the zero frequency), and where the unit root null

corresponds to d = 1.

In a multivariate framework, Engle and Granger (1987) noticed that many series

may have a common trend and suggested a technique called cointegration, which

implies that several series which are I(d) may be related such that there exists at least

one linear combination which is I(d-b) with b > 0.  If d = b = 1, they proposed a two-

step strategy based on Dickey and Fuller (1979). More robust tests in this context of

integer d and b were later proposed by Johansen (1988, 1995). The literature on

fractional cointegration is relatively new. Kim and Phillips (2000) and Robinson and

Hualde (2000) have concentrated on the estimation of the parameters in the

cointegrating relationship, while Robinson and Marinucci (1998, 2001) and Robinson

and Hualde (2002) have examined the estimation of the orders of integration. In this

paper, we take a simpler approach, and propose a two-step procedure, based on

Robinson’s (1994) tests, for testing the null hypothesis of no cointegration against



fractional cointegration. That is, we extend Engle and Granger’s (1987) procedure to the

case where d and b can be real numbers. The outline of the paper is as follows: Section

2 describes the tests of Robinson (1994). Section 3 presents the procedure for testing

fractional cointegration, along with finite-sample critical values obtained by simulation.

Section 4 uses Monte Carlo to examine the size and the power properties of the tests.

Several examples are carried out in Section 5 and Section 6 contains some concluding

comments.

2. The tests of Robinson (1994)

Let’s suppose that {xt, t = 1,2,…, T} is the time series we observe and consider the

model given by (1), with ut with spectral density function given by f(�; �2; �) =

(�2/2�)g(�; �), where �2 = V(�t)  and � are unknown but g is known. Robinson (1994)

proposes an LM test of:

,: oo ddH �  (2)

in (1) for any real value do. Specifically, the test statistic is given by:
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where I(�j) is the periodogram of ,)1(ˆ t
d

t xLu o
��  evaluated at �j = 2�j/T, and �̂   is

obtained by minimising �2(�).  Robinson (1994) showed that under certain regularity

conditions:

   .)1,0(ˆ ��� TasNr d (4)

Thus, a one-sided 100�%-level test of (2) against H1: d > do (d < do) is given by the

rule: ‘Reject Ho if  r̂  >  z�  ( r̂  < -z�)’, where the probability that a standard normal

variate exceeds z� is �. 

3. Testing of fractional cointegration

The components of a (nx1) vector Xt are fractionally cointegrated of order d,b, (Xt �

CI(d,b)) if a): all components of Xt are integrated of order d (Xit � I(d)), and b): there

exists a vector r (r � 0) such that Nt = r’Xt is integrated of order d-b (Nt�I(d-b)) with b >

0. The vector r is called the cointegrating vector and r’Xt represents an equilibrium

constraint operating on the long-run component of Xt. If n is higher than two, then there

may be more than one cointegrating vector r, though in what follows we will assume

that Xt does have only two components, so that Xt = (X1t, X2t)’, where X1t and X2t

correspond to the variables to be analysed later. 

First, we test that both individual series are integrated of the same order, (let’s

say, e.g.,	d). This can be done using Robinson’s (1994) univariate tests described in

Section 2. Then, we can estimate the cointegrating parameters from the cointegrating

regression. Since all linear combinations of X1t and X2t except the one defined by the

cointegrating relation will be integrated of order	d, the least squares (LS) estimate from

the regression of X1t on X2t, under cointegration, will produce a good estimate of it. In

standard cointegration analysis (in which d =  b = 1), Stock (1987) showed that the LS



estimate of the cointegrating parameter was consistent and converged in probability at

the rate T1-� for any 
 > 0. Cheung and Lai (1993), Robinson and Marinucci (1998) and

others extended the analysis to the fractional case, and showed that the LS estimate was

also consistent though with possible different convergence rates. A problem with this

estimator is that suffers from second-order bias which may make it inaccurate in finite

samples. In that respect, other estimates like the fully-modified proposed by Kim and

Phillips (2000) or the frequency-domain one of Robinson and Hualde (2000) may be

preferred. For related results on fractionally cointegrated models, see also Dolado and

Marmol (1997) and Jeganathan (1999). However, in order to have exact comparisons in

the application below with the results in Engle and Granger (1987), we have decided to

use the OLS estimator. Given the consistency of this estimate, we can use Robinson’s

(1994) tests for testing the order of integration in the equilibrium errors et, where

,ˆ 21 ttt XXe ���  with �̂  as the OLS estimate of the cointegrating parameter, and the

test statistic will still remain with the same standard limit distribution. Thus, we could

consider the model:

...,2,1,)1( ��� tveL tt
d (5)

with I(0) vt, and test the null hypothesis: Ho: d = d against the alternative: Ha: d < .d

Rejections of Ho against Ha will imply that X1t and X2t are fractionally cointegrated,

given that the equilibrium errors display a smaller degree of integration than that of the

individuals series. However, since the equilibrium errors are not actually observed but

obtained from minimizing the residual variance of the cointegrating regression, the

residuals might be biased toward stationarity, and thus, we would expect the null to be

rejected more often than suggested by the nominal size of Robinson’s (1994) tests. A

similar problem arises in Engle and Granger (1987) and Cheung and Lai (1993) when



testing cointegration. In order to cope with this problem, the empirical size of the tests

in finite samples is obtained using a simulation approach.

(Table 1 about here)

Table 1 reports finite-sample critical values of Robinson’s (1994) tests for

cointegration, with T = 50, 100, 200 and 300. We use the Monte Carlo method in

50,000 replications, assuming that the true system is of two I(d) processes with

Gaussian independent white noise disturbances that are not cointegrated, and take

values of d = 0.6, (0.1), 1.5. We assume that vt is white noise, though we could have

extended the analysis to cover the case of autocorrelated disturbances. We see that the

critical values are similar across d. They have a negative mean and the values

corresponding to the left-hand side distribution, (which is the one required to test

cointegration), are smaller than those of the normal distribution, which is consistent

with the earlier discussion that, when testing Ho against d < ,d  the use of the standard

values will result in the cointegration tests rejecting the null hypothesis of no

cointegration too often. We also see that the empirical distributions are positively

skewed with kurtosis greater than 3, though increasing T, the three statistics (mean,

skewness and kurtosis) approximate to the values of the normal distribution.

4. The power of the tests in finite samples

We next examine the power properties of the tests described in Section 3 relative to the

ADF and Geweke and Porter-Hudak (GPH, 1983) tests for cointegration. We consider a

bivariate system, claimed to be non-cointegrated under the null hypothesis. The ADF

unit-root test recommended by Engle and Granger (1987) is given by the usual t-statistic

for b0 in:

,)1(....)1()1( 1110 tptpttt eLbeLbebeL ���������
���



where et are the equilibrium errors and the lag parameter p can be selected using some

model-selection procedures. The GPH test for cointegration proposed by Cheung and

Lai (1993) is based on the estimation of the fractional differencing parameter d, in the

linear regression:
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where �j = 2�j/T and I(�j) is the periodogram of et evaluated at the ordinate j. Given that

the LS estimate of �1 provides a consistent estimate of 1-d (see Robinson, 1995),

hypothesis testing concerning the value of d is based on the t-statistic of the regression

coefficient.

Table 2 reports results of the power function of the three tests (ADF, GPH and

Robinson) for cointegration against fractional and AR alternatives. Results for ADF and

GPH tests have been taken from Cheung and Lai (1993). The power of a test is

measured as the percentage of the time the test can reject a false null hypothesis of no

cointegration, and the Monte Carlo experiment is described in Appendix I. We perform

Robinson’s (1994) statistic, assuming that the differenced series are white noise and AR

processes of orders 1, 2 and 3, for 5% and 10% significance levels.

(Table 2 about here)

When testing against fractional alternatives, Robinson’s (1994) tests perform

better than the ADF and the GPH tests, and this is observed for white noise disturbances

but also if they follow AR processes. The highest rejection frequencies are obtained

with white noise disturbances if the integration order ranges between 0.05 and 0.75. but

when this parameter approximates to 1, better results are obtained for weakly

autocorrelated disturbances. 



When testing against AR alternatives, again better statistical power properties

are observed in Robinson (1994) relative to ADF and GPH tests, with higher rejection

frequencies obtained at all values of the AR parameter.  If this parameter ranges

between 0.05 and 0.55, results are better when the disturbances are white noise, but if it

ranges between 0.55 and 0.95, the tests behave better for autocorrelated disturbances.

The relative pronounced difference in power between Robinson’s (1994) and the ADF

and GPH tests for cointegration should not be surprising given that the ADF test

assumes a strict I(0) and I(1) distinction and the GPH test requires estimation of the

differencing parameter, whereas Robinson (1994) tests do allow fractional differencing

and do not require estimation of the fractional differencing parameter. 

5. Illustrative examples

We analyse the common behaviour between consumption and income, wages and

prices, and nominal GNP and money, using the same dataset as in Engle and Granger

(1987), and stock prices and dividends, using the data in Campbell and Shiller (1987).

The description of the data is given in Appendix II. All these pairs of variables have

been analysed by many authors using classical techniques. However, in the context of

fractional models, the literature is scarce. Robinson and Marinucci (1998, 2001) employ

a semiparametric method on the consumption and income and the stock prices and

dividends relationships and come to the conclusion that both are cointegrated, the order

of integration of the residuals being higher than 0.5 but smaller than 1. Robinson and

Hualde (2002) also examine these variables along with GNP and money and similarly to

the previous works, conclude that the residuals posess long memory with d smaller than

1.



Table 3 reports the results of Robinson’s (1994) tests for cointegration. The first two

lines of each pair of variables correspond to the analysis of the individual series while

the other two correspond to the results based on the OLS regressions in both directions.

We look at r̂  given by (3), testing Ho (2) for values do = 0.6, (0.1), 1.5, with white noise

disturbances.

(Table 3 about here)

Starting with consumption and income, we observe that for the individual series,

Ho (2) cannot be rejected when do = 0.9, 1 and 1.1. However, looking at the residuals,

these hypotheses are rejected in favour of alternatives with smaller orders of integration.

In fact, the null hypothesis cannot be rejected now when do = 0.6, 0.7 and 0.8, the

lowest statistic appearing in both cases when do = 0.7. Thus, we find evidence of

fractional cointegration between consumption and income, with the deviations from an

equilibrium following a nonstationary fractional process with the order of integration

smaller than one. Engle and Granger (1987) tested the null of nonstationarity I(1) in the

estimated residuals from the OLS regressions. Using the Cointegration Regression

Durbin-Watson (CRDW) test, the null was rejected at 5% significance level but hardly

at 1%, and using the ADF tests, it was rejected for the regression of consumption on

income but hardly for the reverse.

The results for prices and wages clearly indicate a lack of cointegration. In fact,

Ho (2) cannot be rejected when do = 1 and 1.1 for the individual series, and the same

result is obtained when testing on the estimated residuals. This result is completely in

line with the findings in Engle and Granger (1987). The third example illustrates the

relation between nominal GNP and nominal money. This is upon the quantity theory

equation: M � V = P � Y, and most empirical applications stem from the assumption that

velocity is constant or at least stationary. Under this general condition, log M, log P and



log Y should be cointegrated with known unit parameters, and similarly, nominal GNP

and nominal money should also be cointegrated. Engle and Granger (1987) failed to

find cointegration using M1 as the monetary aggregate.  The results show that a certain

degree of fractional cointegration may appear, with the orders of integration of the

individual series ranging between 0.9 and 1.1, but ranging between 0.7 and 0.9 for the

residuals.

Finally, we examine the relationship between stock prices (SP) and dividends

(D). The idea follows from a present value model, which asserts that an asset price is

linear in the present discounted value of future dividends. Campbell and Shiller (1987)

applied the ADF tests on both individuals series and their results suggested that both

were integrated of order 1. Using DF and ADF tests on the residuals, their results were

mixed: the former test rejected the null of no cointegration at the 5% level while the

latter narrowly failed to reject it at the 10%. Our results again indicate that this pair of

variables may be fractionally cointegrated.  Looking at the individual series, the orders

of integration range between 0.9 and 1.1 for the stock prices and between 0.9 and 1.3 for

dividends, with the lowest statistics appearing in both series at the unit root case (i.e, do

=  1). However, the results for the estimated residuals suggest that the orders of

integration are between 0.6 and 0.9, with the lowest statistics appearing in both cases at

do = 0.7, and thus, implying mean reversion in the long run equilibrium relationship. In

view of all this, we can conclude by saying that there is some evidence of fractional

cointegration between consumption and income, GNP and money and stock prices and

dividends, with the equilibrium relationships possessing long memory. Thus, the

equilibrium errors are mean reverting, with shocks affecting to them disappearing in the

long run.

6. Concluding comments



We have presented a procedure for testing the null hypothesis of no cointegration

against fractional cointegration. It is based on Robinson’s (1994) tests and it follows the

same methodology as in Engle and Granger (1987). We initially test the order of

integration of the individual series and, if all them have the same order, we test the

degree of integration on the residuals from the cointegrating regression. There will be a

cointegrating relationship if the order of integration of these residuals is smaller than

that of the individual series. Finite-sample critical values were computed and

experiments conducted via Monte Carlo show that they have better power properties

against both fractional and AR alternatives than other existing tests for cointegration. 

The tests were employed to analyse the relationship between consumption and

income, CPI and wages, nominal GNP and money, and stock prices and dividends. The

results indicate that all variables may be individually I(1), and testing the order of

integration of the residuals from the OLS regressions, the results show that all pairs of

variables (except CPI and wages) may be fractionally cointegrated, with the order of

integration of the residuals being greater than 0.5 but smaller than 1. Note that the tests

rejected Ho (2) with do = 0.5 against d > 0.5 for all residuals in all series. Thus, the

equilibrium errors are non-stationary but display mean reversion, unlike the individual

series where shocks seem to persist forever. These results are interesting in that they

seem to overcome the mixing conclusions in Engle and Granger (1987) and Campbell

and Shiller (1987), the reason being that they only concentrated on I(0) and I(1)

specifications and did not consider other possible fractional possibilities. Also, these

results are completely in line with those obtained by Robinson and Marinucci (1998,

2001) and Robinson and Hualde (2002). In the first two papers, they use a narrow-band

frequency domain least squares estimate to detect the order of integration of the

residuals in the relationships between consumption and income and stock prices and



dividends. Robinson and Hualde (2002) use a root-n-consistent estimator for the same

purpose and extent the analysis to the case of money and GNP. All these papers

conclude that there exists some degree of fractional cointegration with d higher than 0.5

but smaller than 1.

This article can be extended in several directions. The finite-sample critical

values can be extended to permit more than two variables and also to allow

autocorrelated disturbances. Other semiparametric methods of estimating and testing d

may also be applied on the residuals from the cointegrating regressions. However, these

methods may be too sensitive to the choice of the bandwidth parameter and, in that

respect, a fully parametric model like this may be more appropriate. Extensions of the

multivariate version of the tests of Robinson (1994) which permit us to test fractional

cointegration in a system-based model is also of interest. There exists a reduced-rank

procedure suggested by Robinson and Yajima (2000), However, it is not directly

applicable here, neither in the simulation study nor in the empirical application since

that method assumes I(d) stationarity (d < 0.5) for the individual series while we

consider I(1) nonstationary processes. 
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Appendix I

To illustrate the potential difference in power between the tests of Robinson (1994) and

the GPH and the ADF tests of cointegration, a Monte Carlo experiment, similar to that

in Engle and Granger (1987) and Cheung and Lai (1993) is conducted. We consider a

bivariate system where X1t and X2t are given by

     ...,2,1,121 ��� tUXX ttt (A1)

....2,1,2 221 ��� tUXX ttt , (A2)

where (1 – L) U1t = �1t, and U2t is generated, alternatively, as an autoregressive process

...,2,1,)1( 22 ��� tUL tt �� (A3)

or as a fractional white noise process

...,2,1,)1( 22 ��� tUL tt
d

� , (A4)

where the innovations �1t and �2t are generated as independent standard normal variates.

Thus, if 
 = 1 in (A3) or d = 1 in (A4), the two series are I(1) and non-cointegrated; if

U2t is generated by (A3) and �
� < 1, X1t and X2t are cointegrated, and (A2) is their

cointegrating relationship; alternatively, if U2t is generated by (A4) and d < 1, X1t and

X2t are fractionally cointegrated. As in Engle and Granger (1987) and Cheung and Lai

(1993), we used samples os size T = 76, and sample series of X1t and X2t were generated

setting the initial values of U1t and U2t equal to zero, creating 126 observations, of

which the first 50 were discarded to reduce the effect of the initial conditions. 



Appendix II

Ct:  US quarterly real per capita consumption on non-durables from 1947.I to 1981.II

Yt:  US quarterly real per capita disposable income from 1947.I to 1981.II.

CPIt:  Log of the US monthly Consumer Price Index from 1950.1 to 1979.12.

Wt:  Log of the US monthly production worker wage in manufacturing from 1950.1

to 1979.12.

GNPt:  Log of the US quarterly nominal Gross National Product from 1959.I to 1981.II

M1t: Log of the US quarterly nominal M1 from 1959.I to 1981.II

SPt: US real annual stock prices from 1871 to 1986.

Dt: US real annual dividends from 1871 to 1986.

The first six series has been taken from Engle and Granger (1987) and the remaining

two from Campbell and Shiller (1987).



TABLE 1
Finite-sample critical values of Robinson (1994) tests for cointegration*

T  =  50
Perc ./ d 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5

0.1% -2.94 -2.94 -2.95 -2.93 -2.93 -2.93 -2.93 -2.92 -2.93 -2.92
0.5% -2.65 -2.66 -2.66 -2.67 -2.66 -2.66 -2.66 -2.66 -2.65 -2.65
1% -2.51 -2.52 -2.53 -2.52 -2.52 -2.52 -2.52 -2.51 -2.50 -2.50

2.5% -2.29 -2.30 -2.31 -2.30 -2.30 -2.30 -2.29 -2.29 -2.28 -2.27
5% -2.09 -2.10 -2.11 -2.11 -2.10 -2.09 -2.08 -2.08 -2.07 -2.07

10% -1.84 -1.85 -1.85 -1.84 -1.84 -1.84 -1.83 -1.82 -1.82 -1.81
Mean -0.70 -0.72 -0.72 -0.72 -0.71 -0.70 -0.70 -0.69 -0.68 -0.68

Skewness 0.59 0.59 0.59 0.59 0.58 0.57 0.56 0.56 0.55 0.54
Kurtosis 3.67 3.68 3.69 3.70 3.68 3.64 3.60 3.59 3.53 3.50

T  =  100
Perc ./ d 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5

0.1% -2.96 -2.95 -2.95 -2.97 -2.96 -2.94 -2.95 -2.96 -2.96 -2.96
0.5% -2.64 -2.65 -2.64 -2.63 -2.63 -2.62 -2.62 -2.61 -2.60 -2.60
1% -2.48 -2.49 -2.48 -2.48 -2.47 -2.47 -2.46 -2.45 -2.45 -2.44

2.5% -2.23 -2.24 -2.24 -2.23 -2.23 -2.22 -2.21 -2.21 -2.20 -2.20
5% -2.01 -2.00 -2.00 -2.01 -2.00 -2.00 -1.99 -1.99 -1.99 -1.98

10% -1.74 -1.75 -1.75 -1.74 -1.74 -1.72 -1.71 -1.71 -1.71 -1.70
Mean -0.56 -0.57 -0.58 -0.57 -0.56 -0.56 -0.55 -0.54 -0.54 -0.53

Skewness 0.46 0.46 0.46 0.45 0.45 0.45 0.45 0.44 0.44 0.45
Kurtosis 3.41 3.40 3.39 3.39 3.40 3.40 3.38 3.35 3.34 3.34

T  =  200
Perc ./ d 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5

0.1% -3.04 -3.08 -3.07 -3.14 -3.19 -3.20 -3.12 -3.12 -3.10 -3.06
0.5% -2..71 -2.73 -2.70 -2.70 -2.66 -2.64 -2.62 -2.61 -2.63 -2.64
1% -2.50 -2.48 -2.47 -2.46 -2.45 -2.46 -2.45 -2.44 -2.44 -2.43

2.5% -2.21 -2.20 -2.20 -2.21 -2.20 -2.20 -2.20 -2.19 -2.18 -2.18
5% -1.95 -1.97 -1.97 -1.97 -1.97 -1.96 -1.94 -1.94 -1.93 -1.93

10% -1.64 -1.65 -1.67 -1.66 -1.66 -1.65 -1.63 -1.62 -1.62 -1.61
Mean -0.44 -0.46 -0.46 -0.46 -0.46 -0.45 -0.44 -0.43 -0.43 -0.42

Skewness 0.31 0.30 0.30 0.31 0.32 0.32 0.33 0.34 0.35 0.36
Kurtosis 3.18 3.17 3.18 3.23 3.26 3.27 3.28 3.28 3.30 3.31

T  =  300
Perc. / d 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5

0.1% -2.96 -2.96 -3.04 -3.12 -3.19 -3.22 -3.19 -3.17 -3.17 -3.15
0.5% -2.52 -2.56 -2.63 -2.61 -2.60 -2.59 -2.60 -2.59 -2.61 -2.61
1% -2.41 -2.42 -2.44 -2.45 -2.44 -2.44 -2.44 -2.44 -2.44 -2.44

2.5% -2.17 -2.18 -2.19 -2.20 -2.18 -2.17 -2.16 -2.14 -2.13 -2.13



5% -1.90 -1.91 -1.92 -1.92 -1.91 -1.90 -1.89 -1.88 -1.87 -1.87
10% -1.59 -1.60 -1.60 -1.61 -1.60 -1.60 -1.60 -1.59 -1.58 -1.58

Mean -0.37 -0.39 -0.39 -0.39 -0.39 -0.38 -0.38 -0.37 -0.37 -0.36
Skewness 0.31 0.29 0.28 0.28 0.29 0.29 0.30 0.30 0.30 0.30
Kurtosis 3.07 3.08 3.10 3.13 3.15 3.15 3.15 3.14 3.13 3.13

*: The empirical distribution has been obtained using 50,000 replications in simulation, assuming that
the true system is of two non-cointegrated I(d) processes. The test statistic is r̂  in (3).

TABLE 2
Power of the ADF, GDH and Robinson tests for cointegration against fractional alternatives*

Size Test 0.95 0.85 0.75 0.65 0.55 0.45 0.35 0.25 0.15 0.05
ADF (� = 4) 0.06 0.07 0.10 0.14 0.19 0.26 0.36 0.50 0.61 0.73

GPH (� = .55) 0.06 0.09 0.15 0.21 0.30 0.37 0.47 0.56 0.61 0.64
GPH (� = .575) 0.06 0.10 0.16 0.24 0.33 0.42 0.53 0.62 0.67 0.71
GPH (� = .60) 0.06 0.11 0.18 0.28 0.40 0.52 0.63 0.73 0.78 0.81
ROB (Wh. N) 0.07 0.22 0.50 0.78 0.94 0.99 0.99 1.00 1.00 1.00
ROB (AR (1) ) 0.15 0.22 0.35 0.52 0.71 0.85 0.94 0.97 0.99 0.99
ROB (AR (2) ) 0.22 0.26 0.31 0.41 0.54 0.67 0.78 0.86 0.92 0.95

5%

ROB (AR (3) ) 0.30 0.32 0.35 0.41 0.50 0.59 0.68 0.76 0.82 0.85
ADF (� = 4) 0.11 0.13 0.18 0.24 0.32 0.41 0.53 0.67 0.78 0.87

GPH (� = .55) 0.12 0.17 0.26 0.35 0.46 0.56 0.65 0.72 0.76 0.78
GPH (� = .575) 0.12 0.18 0.27 0.38 0.50 0.60 0.71 0.77 0.81 0.83
GPH (� = .60) 0.12 0.19 0.30 0.43 0.57 0.68 0.79 0.85 0.88 0.90
ROB (Wh. N) 0.16 0.37 0.66 0.88 0.97 0.99 1.00 1.00 1.00 1.00
ROB (AR (1) ) 0.26 0.36 0.51 0.69 0.84 0.94 0.98 0.99 0.99 0.99
ROB (AR (2) ) 0.32 0.37 0.45 0.57 0.69 0.81 0.89 0.94 0.97 0.98

10%

ROB (AR (3) ) 0.40 0.43 0.47 0.55 0.64 0.73 0.81 0.87 0.91 0.94

Power of the ADF, GDH and Robinson tests for cointegration against autoregressive alternatives
Size Test 0.95 0.85 0.75 0.65 0.55 0.45 0.35 0.25 0.15 0.05

ADF (� = 4) 0.07 0.16 0.29 0.42 0.53 0.61 0.66 0.73 0.75 0.77
GPH (� = .55) 0.07 0.17 0.33 0.49 0.59 0.64 0.67 0.69 0.68 0.66
GPH (� = .575) 0.07 0.17 0.35 0.52 0.63 0.69 0.73 0.75 0.74 0.72
GPH (� = .60) 0.07 0.18 0.37 0.56 0.70 0.76 0.81 0.84 0.83 0.83
ROB (Wh. N) 0.07 0.21 0.46 0.72 0.90 0.98 0.99 1.00 1.00 1.00
ROB (AR (1) ) 0.18 0.36 0.59 0.76 0.88 0.94 0.97 0.98 0.99 0.99
ROB (AR (2) ) 0.27 0.42 0.58 0.70 0.80 0.86 0.90 0.93 0.95 0.96

5%

ROB (AR (3) ) 0.37 0.49 0.60 0.69 0.75 0.80 0.83 0.86 0.87 0.88
ADF (� = 4) 0.14 0.28 0.46 0.60 0.71 0.78 0.82 0.86 0.88 0.89

GPH (� = .55) 0.14 0.29 0.50 0.66 0.75 0.78 0.81 0.82 0.81 0.79
GPH (� = .575) 0.14 0.30 0.52 0.69 0.78 0.82 0.85 0.86 0.85 0.84
GPH (� = .60) 0.14 0.30 0.54 0.72 0.82 0.87 0.90 0.91 0.92 0.91
ROB (Wh. N) 0.16 0.38 0.65 0.87 0.97 0.99 0.99 1.00 1.00 1.00
ROB (AR (1) ) 0.30 0.54 0.76 0.89 0.95 0.98 0.99 0.99 0.99 0.99
ROB (AR (2) ) 0.39 0.58 0.74 0.84 0.90 0.94 0.96 0.97 0.98 0.98

10%

ROB (AR (3) ) 0.47 0.63 0.74 0.82 0.87 0.90 0.92 0.93 0.94 0.95



*: ADF is augmented Dickey-Fuller test statistic and p is the lag parameter selected using AIC and SIC
criteria. GPH is Geweke and Porter-Hudak test statistic and � is the value used in the sample size function
n=T�. Results for ADF and GPH have been taken from Cheung and Lai (1993), (pages 108 and 109). The
critical values of Robinson’s (1994) tests with white noise disturbances were taken from Table 1, while
those corresponding to AR disturbances were obtained by simulation. The power of each test is based on
10,000 replications.

TABLE 3
Testing fractional cointegration with the tests of Robinson (1994)*

Consumption (Ct)  and  Income (Yt)
Series / do 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5

Ct 7.13 4.81 2.74 1.00’ -0.40’ -1.49’ -2.33 -2.98 -3.50 -3.91
Yt 6.74 4.40 2.36 0.65’ -0.73’ -1.80’ -2.63 -3.27 -3.77 -4.16

Ct – 0.52 – 0.23 Yt 0.98’ -0.24’ -1.27’ -2.12 -2.83 -3.40 -3.87 -4.26 -4.58 -4.85
Yt + 0.22 – 4.30 Ct 0.95’ -0.26’ -1.27’ -2.12 -2.81 -3.39 -3.86 -4.25 -4.57 -4.84

Consumer Price Index (CPIt)  and  Wages (Wt)
Series / do 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5

CPIt 17.44 11.40 6.41 2.60 -0.17’ -1.16’ -3.60 -4.66 -5.47 -6.10
Wt 27.84 16.41 8.91 3.93 0.57’ -1.73’ -3.33 -4.47 -5.32 -5.97

CPIt – 3.91 – 0.70 Wt 35.07 24.95 15.55 8.10 1.53’ -0.68’ -2.97 -4.49 -5.52 -6.26
Wt + 5.31 – 13.6 CPIt 32.40 22.63 13.86 7.04 1.22’ -1.02’ -3.16 -4.60 -5.60 -6.31

Gross National Product (GNPt)  and  Money (M1t)
Series / do 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5

GNPt 5.48 3.72 2.10 0.70’ -0.44’ -1.35’ -2.05 -2.60 -3.03 -3.38
M1t 5.65 3.80 2.13 0.70’ -0.46’ -1.37’ -2.07 -2.62 -3.05 -3.39

GNPt +12.1–1.54 M1t 3.15 1.26’ -0.22’ -1.32’ -2.13 -2.71 -3.13 -3.44 -3.67 -3.86
GNPt +12.1–1.54 M1t 3.24 1.31’ -0.19’ -1.31’ -2.12 -2.70 -3.12 -3.43 -3.67 -3.85

Stock Prices (SPt)  and  Dividends (Dt)
Series / do 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5

SPt 6.02 4.03 2.35 0.95’ -0.19’ -1.10’ -2.03 -2.40 -2.86 -3.23
Dt 5.41 4.03 2.84 1.79’ 0.86’ -0.94’ -1.08’ -1.30’ -1.96 -2.30

SPt  +  0.12 -  30.99 Dt 1.48’ 0.21’ -0.79’ -1.58’ -2.20 -2.68 -3.06 -3.37 -3.62 -3.83
Dt –0.005–0.027 SPt 1.10’ -0.02’ -0.90’ -1.60’ -2.15 -2.60 -2.97 -3.27 -3.52 -3.74

* ’ and in bold: Non-rejection values at the 95% significance level. The critical values for the cases corresponding to
the OLS regressions are those given in Table 1.
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