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1 Introduction

The concept of Expectational stability (E-stability hereafter) proposed and developed by

George Evans and Seppo Honkapohja in a series of papers has been one of the major

contributions to the literature on convergence to a Rational Expectations equilibrium

(REE) under adaptive learning. Based on the results by Marcet and Sargent (1989),

Evans and Honkapohja (1998, 1999, 2001) have extensively analyzed the relation between

E-stability and least-squares learnability of REEs. It is now well-known that there is a

tight relation between them, known as the E-stability Principle. E-stability has been

popular in the literature because it is much easier to implement E-stability than to

implement least-squares learnability.

Evans and Honkapohja (2001) provide a general treatment of E-stability for multivari-

ate models and several authors have applied E-Stability in this framework.1 In this paper,

we show that the concept of E-stability in a multivariate framework is inherently model-

dependent. Consequently, the E-stability property is not directly comparable across

models. We show both theoretically and through several examples that one may draw

different conclusions on E-stability of the REEs to a model at hand under alternative

representations of the model and the REE.

The reason can be understood in terms of overparameterization of the perceived law of

motion (PLM) relative to an REE of interest. To build up some intuition, it is instructive

to first recall the implications of the well-known overparameterization associated with

different PLM classes in a univariate framework. “Weak” E-stability applies when an

REE (solution) and the PLM have the same functional form. For each coefficient of a

state variable in an REE, an unrestricted PLM parameter is assigned to that variable.

This implies that the number of PLM parameters is the same as that of the REE. When

a more general functional form of the PLM relative to the REE is postulated, the PLM

is overparameterized relative to the REE because the PLM has more state variables,

and thus more parameters than the REE. In this case, a different concept, “strong”

E-stability, applies. As such, weak and strong E-stability are associated with different

learning rules. Intuitively, when economic agents postulate different types of PLMs, their

implications on the REE may well be different and it is not surprising that they can lead

1A selected list of papers includes Bullard and Mitra (2002), Gauthier (2002), Adam (2003) and Evans
and Honkapohja (2003b). Recently, the relation between determinacy, learnability and E-stability has
also been explored by Woodford (2003a,b), Giannitsarou (2005), McCallum (2007) and Bullard and
Eusepi (2008).
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to different conclusions on E-stability for the same solution. For future reference, we

define this type of overparameterization as the between-PLM overparameterization.

In this paper, we show that the concept of E-stability in a multivariate framework

is in general also subject to a very different type of overparameterization and that the

extents of this kind of overparameterization are model-specific. For ease of exposition, let

the fundamental (non-fundamental) PLM denote the PLM that has the same functional

form as the class of fundamental (non-fundamental) solutions.2 For instance, consider a

fundamental solution to a multivariate model and suppose that the fundamental PLM is

postulated. Conceptually, E-stability in this case would be analogous to weak E-stability

in a univariate framework because the PLM and the REE are of the same functional

form. Indeed, the E-stability conditions described in chapter 10 of Evans and Honkapohja

(2001) nest those of the univariate cases so that they are direct generalizations of the

weak E-stability conditions from a technical point of view. However, it turns out that the

concept of E-stability in multivariate models differs from weak E-stability in univariate

models, just as weak and strong E-stability are different.

The reason is that virtually every macroeconomic model imposes model-specific re-

strictions on the parameters of the REE, and thus not all the coefficients of the state

variables in an REE are free in general. In contrast, a PLM is postulated a priori with-

out such restrictions and, as Evans and Honkapohja (2001) show, an unrestricted PLM is

the most natural benchmark because agents are not likely to know the exact restrictions

implied by the model. Hence, the PLM is in general overparameterized relative to the

solution even within the same class of PLMs as the REEs. We call this type of over-

parameterization the within-PLM overparameterization.3 Since different models impose

different restrictions on their REEs, the extents of the within-PLM overparameterization

vary across models. Moreover, they also vary across different representations of the same

2By fundamental solutions, we mean the REEs that depend on the minimal set of state variables. Non-
fundamental (bubble or sunspot) solutions are the REEs that typically depend on additional variables to
the minimal set of state variables, plus some other variables outside the model at hand. The fundamental
solutions are also known as the minimal state variable (MSV) solutions in the literature. However, the
solution obtained via the MSV criterion of McCallum (1983) is also often called the MSV solution. To
avoid confusion throughout the paper, we use the fundamental solutions to denote the solutions that
depend on the minimal set of state variables and do not use the term MSV solutions.

3Evans and Honkapohja (2003a) and Evans and McGough (2005) also examine different representa-
tions of sunspot equilibria and show that the stability properties depend on the solution representations.
However, they postulate different classes of REEs and PLMs to a given representation of the model,
rather than the same PLM to different representations of the model. Therefore, they study the implica-
tions of the between-PLM overparameterization, not the within-PLM overparameterization.
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model and the same solution. Consequently, the concept of E-stability of the solution

depends on each model and its representation.

This is clearly undesirable because E-stability results cannot be comparable across

models and various representations of a model on the same ground. Henceforth, a model-

independent concept of E-stability in a multivariate framework needs to be developed.

In this paper we do not pursue this goal, but briefly discuss the potential avenue for

it. Notice that the well-established concepts, weak and strong E-stability, are model-

independent in univariate models, because the PLM in a univariate framework is not

in general subject to the within-PLM overparameterization. Consequently, one way to

derive the model-independent E-stability in a multivariate framework would be to re-

duce a given multivariate model into a univariate framework and subsequently apply the

concepts of weak and strong E-stability. We also discuss some pros and cons of this

approach.

For the purpose of this paper, it is sufficient to show that the concept of E-stability is

model-dependent in the context of the fundamental class of solutions and the fundamental

PLMs. One may show that it is also model-dependent for the non-fundamental class of

solutions and the non-fundamental PLMs. When a class of solutions and a broader class

of PLMs are considered, analogously to strong E-stability in univariate models, then the

PLM would be subject to both the within-PLM and between-PLM overparameterization

and hence, E-stability would again be model-dependent. While we do not discuss the

issue of underparameterization, E-stability associated with underparameterized PLMs

would also be model-dependent in multivariate models.

This paper is organized as follows. In Section 2, we show that a modified version

of the Dornbusch model considered by Evans and Honkapohja (1994) and Evans and

Honkapohja (2001) can be represented differently and that the E-stability results are

different across model representations. Section 3 derives the E-stability conditions in

general linear RE models and show that E-stability is subject to the within-PLM overpa-

rameterization in a multivariate framework. Section 4 provides several examples where

different representations lead to different conclusions on E-stability. We also show that

our results are independent of the information structure. Section 5 outlines an avenue to

solve the problem of model-dependent E-stability. It also discusses the potential difficul-

ties of doing so. Section 6 concludes.
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2 The Dornbusch (1976) Model

Evans and Honkapohja (1994) and Evans and Honkapohja (2001) (EH hereafter) examine

E-stability of fundamental solutions to the Dornbusch (1976) model under a univariate

representation in terms of the log of the price level. The Dornbusch model considered

by EH consists of a Phillips curve, an open economy IS curve, an LM curve and the

open-economy parity condition. The model is reproduced as follows:

pt = pt−1 + πEt−1dt (1a)

dt = −γ(rt − Et−1pt+1 + pt) + η(et − pt) (1b)

rt = λ−1(pt − ϑpt−1) (1c)

et = Et−1et+1 − rt (1d)

where pt is the (log) price level, dt is (log) aggregate demand, rt is the nominal interest rate

and et is the (log) nominal exchange rate. While EH use contemporaneous expectations

in equations (1b) and (1d), we use lagged expectations in order to avoid complications

regarding mixed dating of expectations.

The model can be represented in several forms as:

xt = β0Et−1xt + β1Et−1xt+1 + β2Et−1xt+2 + δxt−1 (2)

where xt is defined in table 1 for the 5 representations of the model. For instance, R4

is the original model itself and R1 is the univariate representation considered by EH.

Definitions of β0, β1, β2, and δ for each representation are given in Appendix A.

Table 1: Five Representations of the Dornbusch Model

Representation R1 R2 R3 R4 R2′

xt pt (pt et)
′ (pt dt rt)

′ (pt dt rt et)
′ (pt dt)

′

We consider a class of fundamental solutions as:

xt = b̄xt−1 (3)
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where b̄ must satisfy the following restriction imposed by the model:

β0b̄+ β1b̄
2 + β2b̄

3 + δ = b̄. (4)

Since the definitions of β0, β1, β2, and δ are representation-dependent, so is b̄. For R1,

xt = pt and the solution to this equation is given by pt = b̄pt−1 where b̄ = b̄p is a scalar.

The remaining variables are solved as dt = −(1 − b̄p)/πpt−1, rt = [(b̄p − ϑ)/λ]pt−1 and

et = −[(b̄p−ϑ)/(λ(1− b̄p))]pt−1. Therefore, they are completely characterized by a single

solution parameter, b̄p. For the other representations, b̄ can also be defined corresponding

to b̄p as we show in Appendix A. Consequently, while different researchers may analyze

different representations of the model and a solution, and there is no “right” or “wrong”

representation, they in fact analyze an identical model and solution.

Since we consider a class of fundamental PLMs, this has the same functional form as

(3):

xt = bxt−1 (5)

where b is unrestricted for each representation. Therefore, E-stability of a fundamental

REE with respect to the fundamental PLM should be conceptually equivalent across dif-

ferent representations. In R1, E-stability of a fundamental solution is defined as “weak”

E-stability because the same PLM class is postulated. E-stability in multivariate models

shown in chapter 10 of EH may also be analogously interpreted as “weak” E-stability

precisely because of the same reason. Furthermore, the conditions of E-stability in mul-

tivariate models nest those in univariate models. That is, the conditions in multivariate

models are a direct generalization of those in univariate models.

Consequently, it is natural to expect that the E-stability results of the REEs to the

model would be the same across different representations of the model and the solutions.

However, it turns out that different representations lead to different conclusions on E-

stability. The numerical parameter values considered by EH are π = 1.5, γ = 1.5,

λ = 10. When ϑ = 1.1 and η = −0.1, there are three stationary fundamental solutions

for b̄. When ϑ = 0.5 and η = 0.2, there is a unique stationary fundamental solution

and two non-stationary solutions. All the technical details can be found in the following

section where we generalize the E-stability conditions outlined in chapter 10 of EH. Table

2 summarizes the E-stability results. In both cases of indeterminacy and determinacy,

the first solution associated with the smallest root is E-stable for all representations.4

4Even though in this example, the REE associated with the smallest root is E-stable across all
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Table 2: E-stability of REEs to Five Representations of the Dornbusch Model

Three stationary solutions Unique stationary solution
Representation b̄ =0.716 b̄ =0.772 b̄ =0.990 b̄ =0.384 b̄ =1.043 b̄ =1.250

R1 Yes No Yes Yes No Yes
R2 Yes No No Yes No No
R3 Yes No Yes Yes No Yes
R4 Yes No No Yes No No
R2′ Yes No Yes Yes No Yes

However, the solution associated with the largest stationary root is E-stable only in R1,

R3 and R2′.5 The results for R1 are those reported in Evans and Honkapohja (1994) and

EH. From the table, it is clear that the concept of E-stability must be in fact different

across different model representations of the same model and REE.

What leads to different conclusions on E-stability across different representations

of the model and REE? The reason can be understood in terms of the within-PLM

overparameterization. Whereas b̄ in (3) as a fundamental solution is subject to (4), b in (5)

as the fundamental PLM is postulated without restrictions. Specifically, the solution can

be completely characterized by a single solution parameter b̄p as shown in table 3. Across

Table 3: b̄ in Five Representations of the Dornbusch Model

Representation R1 R2 R3 R4 R2′

b̄ b̄p

[
b̄p 0
b̄e 0

]  b̄p 0 0
b̄d 0 0
b̄r 0 0



b̄p 0 0 0
b̄d 0 0 0
b̄r 0 0 0
b̄e 0 0 0

 [
b̄p 0
b̄d 0

]

all representations, the solution (3) has only one free parameter while there are 4, 9, 16

and 4 free PLM parameters in R2, R3, R4 and R2′, respectively. Consequently, the PLMs

representations, this is not always true, as we show in section 4.
5In case of determinacy, the unique stationary solution, b̄ = 0.384, is E-stable in all representations.

However, as Bullard and Mitra (2002) and recently McCallum (2008) show, a determinate but E-unstable
REE can exist, so that the REE under determinacy may not be always E-stable across different rep-
resentations. It is also interesting to see that the non-stationary solution b̄ = 1.250 can be E-stable or
E-unstable depending on representations, although little attention is typically paid to such a solution
(an exception is Cochrane (2007)).
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are overparameterized relative to respective REEs in multivariate representations, and

the concept of E-stability precisely reflects these representation-dependent extents of the

within-PLM overparameterization. In addition, the within-PLM overparameterization

does not just depend on the dimension of the model representation, but also on the

variables with which the model is represented, as E-stability results for R2 and R2′ are

also different. Furthermore, E-stability of the REE in a larger dimensional representation

is not “strong” relative to that in a smaller dimensional representation. For instance,

E-stability of the solution b̄ associated with b̄p = 0.99 in R3 does not imply E-stability

of the same solution in R2. This is clearly undesirable because the same class of PLMs

delivers different conclusions on E-stability of a model solution simply because this is

represented differently.

More importantly, regardless of the E-stability results, the extents of the PLM overpa-

rameterization depend on model representations, implying that the concept of E-stability

should be distinguished across model representations, just as we distinguish between weak

and strong E-stability across the different PLMs. For instance, while R2 and R4 yield

the same E-stability results, the results in fact reflect different concepts of E-stability.

In the following section, we present E-stability conditions for general multivariate

linear macro models and show that the type of E-stability varies not just across different

representations of a given model, but also across different models. We also point out

critical differences in the economic implications associated with the within and between-

PLM overparameterization.

3 Characterizing E-Stability in a General Framework

We present two classes of models under lagged and contemporaneous expectations that

nest most of the models considered by EH and their series of papers, and derive E-

stability conditions for the fundamental class of REEs. Then we show that the concept

of E-stability differs across alternative representations of the same model.6

6Some models may include mixed dating of expectations as in Adam, Evans, and Honkapohja (2006)
and Evans, Honkapohja, and Marimón (2007). While it is straightforward to derive E-stability conditions
for such class of models, we do not consider them here for simplicity.
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3.1 Lagged Expectations Models

Consider a linear model:

yt = β0Et−1yt + β1Et−1yt+1 + β2Et−1yt+2 + δyt−1 + εt, (6)

where yt is an n × 1 vector of variables observed at time t for a natural number n

including 1. β0, β1, β2 and δ are n × n matrices of parameters.7 Et is the expectation

operator conditional on information available at time t. εt is an error term such that

Et(εt+1) = 0. The class of fundamental RE solutions is given by:

yt = b̄yt−1 + εt, (7)

where the n× n matrix b̄ must solve the following restrictions implied by the model:

β2b̄
3 + β1b̄

2 + β0b̄+ δ = b̄. (8)

In order to study learnability of the REE of the form (7) in terms of E-stability, a

particular functional form of the PLM must be specified. In this paper, we restrict our

interest to the fundamental PLM and it is given by:

yt = byt−1 + εt, (9)

where b is free and not subject to the parameter restrictions in (8). By evaluating

the model (6) with the PLM (9), we can derive the actual law of motion (ALM). The

mapping from the PLM to the ALM and its derivative with respect to the unrestricted

PLM parameters are respectively given by:

T (b) = β2b
3 + β1b

2 + β0b+ δ (10)

DT (b) ≡ ∂vec(T (b))

∂(vec(b))′
= I ⊗ (β0 + β1b+ β2b

2) + b′ ⊗ (β1 + β2b) + (b2)′ ⊗ β2. (11)

Let DT (b̄) ≡ DT (b)|b=b̄ be DT (b) when b is evaluated with an REE b̄. Following EH, a

fundamental solution (7) is said to be E-stable if all the eigenvalues of DT (b̄) have real

parts less than 1.8

7Throughout the paper, we ignore constants and persistent exogenous variables for ease of exposition.
8It is straightforward to compute DT (b) using the simple formula, d(XY ) = X(dY ) + d(X)Y , where
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It is crucial to understand that the PLM coefficient matrix b in (9) is unrestricted

whereas the REE coefficient matrix b̄ is restricted to satisfy (8). The number of pa-

rameters in b̄ is at most n2 for the identification of the model while b has exactly n2.

Throughout this paper, we assume that b̄ strictly has less free parameters than n2 in

multivariate models, as virtually every structural macro model has parameter restrictions

on its REE. Then, the PLM is overparameterized relative to the REE in multivariate

(representations of these) models. In addition, the coefficient matrices (β0, β1, β2, δ) are

model-specific and b̄ is restricted by them. Therefore, while the PLM is not model-

dependent by itself, the extents of overparameterization of the PLM relative to an REE

are model-dependent. Furthermore, as we showed in the previous section, the degrees of

overparameterization differ across different representations of a given model and its REE.

This type of overparameterization is what we call the within-PLM overparameterization.

Therefore, E-stability must be defined with respect to a model, its representation and

the class of PLM considered. Consequently, E-stability is not comparable across different

models as well as different representations of a given model.

In the literature, however, E-stability is defined with respect to a particular PLM form,

without an explicit reference to a model and its representation. For ease of exposition,

let us classify RE models depending on the dimension of yt and the values of β2 as in

table 4: E-stability conditions of fundamental solutions for the LU1 and LM1 models

Table 4: Classes of RE Models under Lagged Expectations

β2 = 0 β2 6= 0
n = 1 n > 1 n = 1 n > 1

Class LU1 LM1 LU2 LM2

with respect to the fundamental PLM are given in pages 196 and 231 of EH, respectively.

E-stability of LU2 is also discussed on page 215 of EH. Although E-stability in LM2

is not discussed in their book, it is straightforward to derive the E-stability condition

as in (11). Since LM2 nests LU2, LM1 and LU1 as special cases, it seems natural to

interpret E-stability of a fundamental REE with the corresponding fundamental PLM

as the same kind for all classes of models as “weak” E-stability for univariate models.

However, the concept of E-stability differs across multivariate models because it is defined

X = b and Y = b2.
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with respect to the model-dependent within-PLM overparameterization. An immediate

consequence is that one may draw different conclusions on E-stability of REEs to a given

model when researchers use different representations of the same model. An example of

this kind is given in the previous section: The representations R1 through R4 and R2′

of the Dornbusch model belong to LU2, LM1, LM2, LM1 and LM2, respectively.

We now compare the implications of the within-PLM and between-PLM overparam-

eterizations on E-stability. When a more general functional form of the PLM relative

to the solution of interest is postulated, E-stability is subject to the between-PLM over-

parameterization, as different classes of PLMs represent different ways in which agents

forecast the economic variables at hand. Consequently, it is natural for E-stability to

have different economic implications on the REE across different PLMs. An example of

this kind is strong E-stability of REEs to univariate models. For a given PLM, strong E-

stability is model-independent.9 In contrast, E-stability associated with the within-PLM

overparameterization in multivariate models is model-specific in spite of the fact that the

PLM and the solution have the same functional form. Weak E-stability in multivariate

models is such an example. Another example is strong E-stability in multivariate models,

which is subject to both the within-PLM and between-PLM overparameterizations. As

EH argue, unrestricted PLMs are the most natural ones because agents with imperfect

information are unlikely to know the existence of these equilibrium restrictions. Unfor-

tunately, the specification of unrestricted PLMs is precisely the source of the E-stability

mismatch across representations in multivariate models.

As a result, a concept of model-independent E-stability in a multivariate framework

is called for, so that it be comparable across models and yield the same E-stability results

independently of the representations of a given model. To do so, one may have to impose

the model specific restrictions on the PLM parameters. However, imposing such restric-

tions directly on the PLM is not so natural as we discussed above. Furthermore, if agents

were able to impose such restrictions on the PLM, they would directly compute the RE

solution. Instead, note that only E-stability in a univariate framework, such as LU1 and

LU2, is in general comparable across models. Therefore, if a given multivariate model can

be reduced into a univariate representation, then E-stability would be model-independent

in general. We sketch this idea and discuss the pros and cons of this suggested approach

9Strictly speaking, however, strong E-stability must also be defined with a particular PLM because
different general PLMs imply different extents of overparameterization, leading to different concepts of
E-stability.
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in section 5. Now we turn to the class of models with contemporaneous expectations.

3.2 Contemporaneous Expectations Models

Consider a linear model where expectations are taken contemporaneously:

yt = β1Etyt+1 + β2Etyt+2 + δyt−1 + εt. (12)

The class of fundamental solutions and the restrictions satisfied by the REE are given

by:

yt = b̄yt−1 + εt (13)

β2b̄
3 + β1b̄

2 + δ = b̄. (14)

The fundamental PLM has the same functional form as (13) but without the parameter

restriction (14):

yt = byt−1 + εt. (15)

The T-mapping from the PLM to the ALM and the derivative of the mapping with

respect to the unrestricted PLM parameters are respectively given by:

T (b) = (I − β1b− β2b
2)−1δ (16)

DT (b) = [F (b)−1δ]′ ⊗ F (b)−1(β1 + β2b) + (bF (b)−1δ)′ ⊗ F (b)−1β2 (17)

where F (b) = (I − β1b− β2b
2). For ease of exposition, we classify RE models depending

on the dimension of yt and the values of β2 as in table 5, analogously to table 4: The

Table 5: Classes of RE Models

β2 = 0 β2 6= 0
n = 1 n > 1 n = 1 n > 1

Class CU1 CM1 CU2 CM2

E-stability conditions for CU1 and CM1 are given in pages 202 and 238 of EH. The E-

stability conditions for CU2 and CM2 are not explicitly discussed. However, once again,

it is straightforward to derive the E-stability conditions for CU2 and CM2. All the argu-
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ments laid out in models with lagged expectations are preserved under contemporaneous

expectations.

4 Examples

In this section, we present several models that can be represented in two forms and

derive the conditions under which a particular REE to a model can be E-stable or E-

unstable, depending on the representation. First, we present a bivariate model composed

of two independent univariate equations under lagged expectations. Then we show that

a solution to the bivariate model consisting of individually E-stable solutions to each

univariate model can be E-unstable. We also show that exactly the same results are

obtained when a two-variable model has a recursive structure, where the second variable

is independent of the first one but the first variable depends on the second one. Second,

we present a bivariate model that has no E-stable REE. Then we show that when the

model is represented in a univariate form, it has one or more E-stable solutions. By

comparing the extents of the PLM overparameterization in the two models, we show

that E-stability is not just representation-dependent, but also model-dependent. We

perform analogous exercises under the models with contemporaneous expectations.

4.1 Models with Lagged Expectations

4.1.1 Model A: Combination of Independent Univariate Equations

We consider a model that can be represented in LU1 and LM1 forms.

LU1 Representation: Consider two completely unrelated univariate equations belong-

ing to LU1. The (representation of the) model, the fundamental solutions, the solution

restrictions, the fundamental PLM, the T-map and its derivative corresponding to equa-

12



tions (6) through (11) are respectively given by:

yi,t = β0,iEt−1yi,t + β1,iEt−1yi,t+1 + δiyi,t−1 + εi,t (18a)

yi,t = b̄iyi,t−1 + εi,t (18b)

b̄i = β1,ib̄
2
i + β0,ib̄i + δi (18c)

yi,t = biyi,t−1 + εi,t (18d)

T (bi) = β1,ib
2
i + β0,ibi + δi (18e)

DT (bi) = β0,i + 2β1,ibi (18f)

for i = 1, 2. Suppose that there are two real-valued but not necessarily stationary solu-

tions, with b̄i(1) < b̄i(2) (without loss of generality) in each equation.

LM1 Representation: The LU1 representation of the model can be written in a

bivariate LM1 form with xt = (y1,t y2,t)
′ and vt = (ε1,t ε2,t)

′. The analogous equations to

(18) are as follows:

xt = β0Et−1xt + β1Et−1xt+1 + δxt−1 + vt (19a)

xt = b̄xt−1 + vt (19b)

b̄ = β1b̄
2 + β0b̄+ δ (19c)

xt = bxt−1 + vt (19d)

T (b) = β1b
2 + β0b+ δ (19e)

DT (b) = I ⊗ (β0 + β1b) + b′ ⊗ β1 (19f)

where

β0 =

[
β0,1 0

0 β0,2

]
, β1 =

[
β1,1 0

0 β1,2

]
, δ =

[
δ1 0

0 δ2

]
. (20)

(18a)-(18c) and (19a)-(19c) are just different representations of the same model, solution

and solution restrictions. Specifically, the solution b̄ is given by:

b̄ =

[
b̄1 0

0 b̄2

]
(21)

where b̄i is identical to that in (18b) subject to (18c) for i = 1, 2. Consequently, it

is natural to expect that (18f) and (19f) deliver the same conclusions on E-stability.

13



(19f) is the condition stated by Proposition 10.1 of EH in a multivariate context, which

generalizes the E-stability condition in univariate models. Indeed, when the model is

univariate, (19f) is identical to (18f). The latter condition is stated in Proposition 8.2 of

EH.

However, it turns out that E-stability defined in (19f) differs from that defined in (18f).

When evaluated with b̄ in (21), it is straightforward to show that DT (b̄) is diagonal (so

that its eigenvalues are the diagonal elements) and can be analytically expressed as:

diag(DT (b̄)) = [ β0,1 + 2β1,1b̄1 β0,2 + β1,2(b̄1 + b̄2) β0,1 + β1,1(b̄1 + b̄2) β0,2 + 2β1,2b̄2 ]
′
.

(22)

Here is where the discrepancy between the E-stability conditions in the LU1 and LM1

representations arises. The off-diagonal elements of b̄ are in fact zeros and thus are not

free. However, b is postulated without such restrictions and DT (b) produces non-zero

second and third diagonal elements. For example, the second diagonal element contains

the parameters of the second equation, β0,2 and β1,2, and the completely unrelated pa-

rameter of the first equation, b̄1. Note that the first and fourth diagonal elements are just

the E-stability conditions of each equation in (18f). Hence, the second and third roots are

the additional conditions induced by the overparameterized PLM in the LM1 representa-

tion. Therefore, (18f) and (19f) are conditions for different types of E-stability, implying

that the concept of E-stability of an REE to a given model is representation-dependent.

If the E-stability results were the same across different representations, then the fact

that the concept of E-stability is model-dependent would not pose a problem in practice.

However, the results on E-stability may actually differ across representations. We now

derive a condition under which the solution b̄ consisting of the E-stable solutions b̄1(1)

and b̄2(1) in the LU1 form is not E-stable in the LM1 representation. Suppose that all

the parameter values are positive. Then, one such condition is given by:

b̄1(1) > b̄2(2). (23)

That is, whenever the two solutions of the first equation are larger than those of the

second equation in LU1 form, the solution consisting of individually E-stable solutions

to both equations turns out to be E-unstable in the LM1 representation.10

10To see this, note that β0,i = 1 − β1,i(b̄i(1) + b̄i(2)), for i = 1, 2. Therefore, the second diagonal
element of DT (b̄) can be written as β0,2 + β1,2(b̄1(1) + b̄2(1)) = 1 + β1,2(b̄1(1)− b̄2(2)). Therefore, it is
greater than 1 as long as b̄1(1) > b̄2(2). By symmetry, the other case is b̄2(1) > b̄1(2).
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As a numerical example, suppose that β1,1 = 0.4, β0,1 = 0.32, δ1 = 0.288, β1,2 = 0.5,

β0,2 = 0.35 and δ2 = 0.21. Table 6 shows the two solutions of each equation and the four

Table 6: DT (b̄) of the LU1 and LM1

LM1
LU1

b̄1 b̄2 DT11 DT44 DT22 DT33

b̄1(1) = 0.8 b̄2(1) = 0.6 0.96 0.95 1.05 0.88
b̄1(1) = 0.8 b̄2(2) = 0.7 0.96 1.05 1.1 0.92
b̄1(2) = 0.9 b̄2(1) = 0.6 1.04 0.95 1.1 0.92
b̄1(2) = 0.9 b̄2(2) = 0.7 1.04 1.05 1.15 0.96

diagonal elements of DT (b̄). As can be seen from the table, while b̄1(1) and b̄2(1) are

E-stable in LU1, the solution b̄ corresponding to b̄1(1) and b̄2(1) is not E-stable in LM1.

Note also that the results are independent of the stationarity of the solutions; as long as

(23) holds, the same outcome is obtained.

While we provide this example in order to clearly show that the concept of E-stability

depends on the representation of a given model, there is no reason why we should put

the two independent equations in one bivariate framework. A less trivial example would

be a recursive two-equation-two-variable (y1,t, y2,t) model where y2,t is an autonomous

process and also influences y1,t. Thus, consider the following model:

y1,t = f(y2,t) + β0,1Et−1y1,t + β1,1Et−1y1,t+1 + δ1y1,t−1 + ε1,t

y2,t = β0,2Et−1y2,t + β1,2Et−1y2,t+1 + δ2y2,t−1 + ε2,t

where f(y2,t) can adopt any form such as κy2,t, κEt−1y2,t, κEt−1y2,t+1 and κy2,t−1. Then, it

can be analytically shown that none of the previous results is altered.11 This is because

the solution b̄ would be upper triangular and DT (b̄) would be block-recursive (upper

triangular) with the same diagonal elements as those in equation (22). An economic

example of this kind would be a two-country model where the home country is a small

open economy depending on a foreign country, which is a relatively large closed economy.

11There is however, one additional E-stability condition for the first equation. For example, suppose
f(y2,t) = κy2,t. Then the PLM of the first equation would be y1,t = b1y1,t−1 + cy2,t. Therefore, E-
stability must also be examined with respect to c. In our example, the conclusions on E-stability are
not affected by this additional condition.
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4.1.2 Model B: Bivariate Model and its Univariate Representation

Consider a model that can be represented in LU2 and LM1 forms:

yt = β0,yEt−1yt + β1,yEt−1yt+1 + Et−1zt+1 + δyyt−1 + εt (24)

zt = β2,yEt−1yt+1 (25)

LU2 Representation: The model can be represented in a univariate form in terms

of yt by substituting out zt. This LU2 representation of the model, the fundamental

solutions, the solution restriction, the fundamental PLM, the T-map and its derivative,

corresponding to equations (6) through (11), are respectively given by:12

yt = β0,yEt−1yt + β1,yEt−1yt+1 + β2,yEt−1yt+2 + δyyt−1 + εt (26a)

yt = b̄yyt−1 + εt (26b)

b̄y = β2,y b̄
3
y + β1,y b̄

2
y + β0,y b̄y + δy (26c)

yt = byyt−1 + εt (26d)

T (by) = β2,yb
3
y + β1,yb

2
y + β0,yby + δy (26e)

DT (by) = 3β2,yb
2
y + 2β1,yby + β0,y (26f)

LM1 Representation: In matrix form, the model can also be written as:

xt = β0Et−1xt + β1Et−1xt+1 + δxt−1 + vt (27)

where xt = (yt zt)
′, vt = (εt, 0)′, β0, β1 and δ are given by:

β0 =

[
β0,y 0

0 0

]
, β1 =

[
β1,y 1

β2,y 0

]
, δ =

[
δy 0

0 0

]
. (28)

13 Since the functional form of the LM1 representation of this model is identical to

12Once the fundamental REE to the first equation is obtained and E-stability is examined, the fun-
damental solutions to the zt equation can be obtained. Since this equation does not involve its own
expectational term, we do not need to examine E-stability for the solutions to this equation. We also
ignore innovations to this equation for simplicity.

13When a model is given in LU2 form (equation (26a)), it is sometimes easy to examine determinacy of
the model and solve for the REEs by transforming the model into LM1 using an auxiliary expectational
variable, zt in equation (25). This kind of model transformation is not uncommon in the literature and
in his study of E-stability and determinacy, McCallum (2007) generalizes models by employing such
transformation. George Evans and Seppo Honkapohja pointed out to us that representing (24) with (25)
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(19a), the fundamental solution, the solution restriction, fundamental PLM, T-map and

its derivative with respect to the unrestricted PLM parameters are exactly of the same

form as (19b) through (19f). However, the extents of the restrictions on b̄ are of course

different from those in the LM1 representation of the Model A, shown in the previous

subsection. This is simply because the definitions of β0, β1, and δ are different, and b̄ is

given by:

b̄ =

[
b̄y 0

β2,y b̄
2
y 0

]
. (29)

In Appendix B, we show that the E-stability conditions are given by:

3β2,y b̄
2
y + 2β1,y b̄y + β0,y < 1, β0,y + 2β1,y b̄y + β2,y b̄

2
y < 2, β0,y + β1,y b̄y + β2,y b̄

2
y < 1. (30)

Note that the first condition is the LU2 E-stability condition for b̄y. Therefore, one can

reject E-stability of b̄ in LM1 and accept E-stability of the same solution in LU2 if the

first condition is met but either the second or the third, or both conditions are violated.

We replicate the example in section 9.5.1 of EH in order to show that the finding

of representation-dependent E-stability is independent of the uniqueness of a stationary

fundamental solution. With β0,y = −0.4, β1,y = 1.9, β2,y = −1 and δy = 0.45, there exists

a unique stationary fundamental solution, b̄y = 0.9 and a pair of complex conjugates.14

With b̄y = 0.9, the three values in (30) are (0.59, 2.21, 0.5). Since the first condition holds,

the solution must be E-stable in LU2, but not in LM1 because the second condition is

violated. Indeed, when b̄y = 0.9, DT (b̄y) = 0.59 so that b̄y is E-stable, but the eigenvalues

of DT (b̄) are 1.1050± 0.6316i, 0 and 0.5, implying a rejection of E-stability in LM1.

For a comparison with contemporaneous expectations models below, we also consider

a numerical example with multiple stationary solutions. EH show that a model in the

LU2 form with β0,y = −3.53968254, β1,y = 6.66666667, β2,y = −3.17460318 and δy = 1

has two E-stable solutions. But when it is represented in LM1 form, none of the REEs

becomes E-stable, as table 7 shows.

into the form of (27) may not be appropriate for the purpose of examining E-stability because zt is itself
a forecasting variable for agents. However, the opposite directional transformation from the LM1 into
LU2 form would pose no such problem as we do here.

14Since the absolute values of the complex roots are less than 1, the model is still indeterminate
although the real-valued fundamental solution is unique. We thank Evans and Honkapohja for pointing
this out.
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Table 7: DT (b̄) of the LU2 and LM1

LU2 LM1
b̄y DT (b̄y) Eigenvalues of DT (b̄)
0.5 0.75 1.17− 0.48i 1.17 + 0.48i 0 −1
0.7 1.13 3.29 0.94 0 −0.43
0.9 0.75 4.82 1.07 0.750 −0.11

4.1.3 Comparison between Model A and Model B

We have shown that E-stability of fundamental REEs to models A and B is representation-

dependent. Here we show that E-stability is in general model-dependent as well when

models are represented in multivariate form. In the LM1 representation of both models

A and B, the fundamental PLM is given by b =

[
b11 b12

b21 b22

]
. However, the RE solutions

are restricted by b̄A =

[
b̄1 0

0 b̄2

]
and b̄B =

[
b̄y 0

β2,y b̄
2
y 0

]
for models A and B, respec-

tively. That is, while the PLM is model-independent, the REEs differ across models.

b̄A has two independent parameters on its diagonal position. b̄B has two non-zero ele-

ments on the first column, but they are not independent. As such, the way the PLM is

overparameterized relative to the respective REE is different. This difference is reflected

in the E-stability conditions: The E-stability condition for the LM1 representation of

Model A is that all the elements of (22) be less than one. In contrast, it is given by

(30) for Model B. Therefore, the extents of the within-PLM overparameterizations dif-

fer across multivariate models in general and, consequently, the concept of E-stability is

model-dependent.

Univariate representations of the models are, however, in general not model-dependent.

In both the LU1 representation of Model A and the LU2 representation of Model B, the

PLM has one unrestricted parameter b and the REE has also only one solution param-

eter. Therefore, E-stability is not subject to the within-PLM overparameterization.15

15Even in univariate models, the fundamental PLM could potentially be overparameterized relative to
the fundamental solutions. For instance, suppose that a univariate model has n state variables so that
the REE has n solution parameters. If the number of structural parameters of the model is less than
n, then the number of independent solution (reduced-form) parameters would be less than n as well.
Then, the PLM would be technically overparameterized as well. We do not investigate this issue in the
present paper.
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The concept of E-stability applied in these univariate representations is precisely “weak”

E-stability. Consequently, E-stability in the LU1 or LU2 representations can be inter-

preted as “weak” E-stability conditions in a multivariate framework in the sense that

the functional form of the PLM is identical to that of the REE, and the model-specific

restriction (19c) is taken into account. We discuss this issue further in section 5.

In models A and B, the E-stability conditions in LM1 are “stronger” than those in the

univariate representation of each model because the former are sufficient for the latter.

However, it is not known whether the concept of E-stability in any arbitrary multivari-

ate representation of a model is stronger than that in the univariate representations in

general. Also, E-stability in higher dimensional representations is neither necessary nor

sufficient for that in a lower dimensional representation, as the numerical example of the

Dornbusch model showed in section 2.

4.2 Models with Contemporaneous Expectations

In this section, we show that all the findings of the previous section are not altered in

models with contemporaneous expectations.

4.2.1 Model C: Combination of Independent Univariate Equations

We consider a model that can be represented in CU1 and CM1 forms.

CU1 Representation: Consider two completely unrelated univariate equations belong-

ing to CU1. The model, solutions, the solution restriction, the PLM, the T-map and its

derivatives corresponding to equations (12) through (17) are, respectively, given by:

yi,t = β1,iEtyi,t+1 + δiyi,t−1 + εi,t (31a)

yi,t = b̄iyi,t−1 + c̄iεi,t (31b)

b̄i = (1− β1,ib̄i)
−1δi, c̄i = (1− β1,ib̄i)

−1 (31c)

yi,t = biyi,t−1 + ciεi,t (31d)

T (bi) = (1− β1,ibi)
−1δi, T (ci) = (1− β1,ibi)

−1 (31e)

DT (bi) = (1− β1,ibi)
−2δiβ1,i = β1,ib

2
i /δi, (31f)

for i = 1, 2. Suppose that there are two real-valued but not necessarily stationary so-

lutions, and b̄i(1) < b̄i(2) (without loss of generality) in each equation. Note that the
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E-stability condition for ci is not required as it does not appear in the T-mapping.

CM1 Representation: The CU1 representation of the model can be written in a

bivariate CM1 form with xt = (y1,t y2,t)
′ and vt = (ε1,t ε2,t)

′. The corresponding equations

to (31) are as follows:

xt = β1Etxt+1 + δxt−1 + vt (32a)

xt = b̄xt−1 + c̄vt (32b)

b̄ = (I − β1b̄)
−1δ, c̄ = (I − β1b̄)

−1 (32c)

xt = bxt−1 + cvt (32d)

T (b) = (I − β1b)
−1δ, T (c) = (I − β1b)

−1 (32e)

DT (b) = [(I − β1b)
−1δ]′ ⊗ (I − β1b)

−1β1 (32f)

where β1 and δ are identical to those in equation (20). As in Model A under lagged

expectations, (31a)-(31c) and (32a)-(32c) are just different representations of the same

model, solution and solution restrictions. The solution b̄ is given by b̄ =

[
b̄1 0

0 b̄2

]
. It is

straightforward to derive the eigenvalues of DT (b) analytically when b = b̄:

diag[DT (b̄)] = [ β1,1b̄
2
1/δ1 β1,2b̄1b̄2/δ2 β1,1b̄1b̄2/δ1 β1,2b̄

2
2/δ2 ]

′
.

Exactly the same problem arises here as in the lagged expectations models. The second

and the third diagonal elements of DT (b̄) are not zeros. The PLM (32d) is overparame-

terized relative to the solution (32b). Therefore, E-stability for the fundamental solutions

hinges on the model representation and the PLM.

One can show that the condition for the mismatch of the E-stability conditions in

CU1 and CM2 forms is identical to the condition (23) with lagged expectations models:16

b̄1(1) > b̄2(2).

A numerical example can be illustrated as follows. The parameter values β1,1 = 0.5882,

δ1 = 0.4235, β1,2 = 0.7692 and δ2 = 0.3231 yield the same solutions as those to Model

A. Table 8, analogously to Table 6, reports the eigenvalues of DT (b̄). Again, while b̄1(1)

16To see this, note that δ2 = b̄2(1)b̄2(2)β1,2. With b̄1 = b̄1(1) and b̄2 = b̄2(1), the second diagonal
element of DT (b̄) is then b̄1(1)/b̄2(2).
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Table 8: DT (b̄) of the CU1 and CM1

CM1
CU1

b̄1 b̄2 DT11 DT44 DT22 DT33

b̄1(1) = 0.8 b̄2(1) = 0.6 0.89 0.86 1.14 0.67
b̄1(1) = 0.8 b̄2(2) = 0.7 0.89 1.17 1.33 0.78
b̄1(2) = 0.9 b̄2(1) = 0.6 1.13 0.86 1.29 0.75
b̄1(2) = 0.9 b̄2(2) = 0.7 1.13 1.17 1.50 0.88

and b̄2(1) are E-stable in CU1, the solution b̄ corresponding to b̄1(1) and b̄2(1) is not

E-stable in CM1. This example together with the one under lagged expectations shows

that the discrepancies of E-stability across model representations do not stem from the

information structure. One can also show that the analysis of the recursive models with

lagged expectations is isomorphic to those with contemporaneous expectations.

4.2.2 Model D: Bivariate Model and its Univariate Representation

We consider a model that can be represented in CU2 and CM1 forms:

yt = β1,yEtyt+1 + Etzt+1 + δyyt−1 + εt (33)

zt = β2,yEtyt+1 (34)

CU2 Representation: The model can be represented in a univariate form in terms of yt

by substituting out zt. This CU2 representation of the model, the fundamental solutions,

the solution restriction, the PLM, the T-map and its derivative are given by:

yt = β1,yEtyt+1 + β2,yEtyt+2 + δyyt−1 + εt (35a)

yt = b̄yyt−1 + εt (35b)

b̄y = β2,y b̄
3
y + β1,y b̄

2
y + δy (35c)

yt = byyt−1 + εt (35d)

T (by) = β2,yb
3
y + β1,yb

2
y + δy (35e)

DT (by) = 3β2,yb
2
y + 2β1,yby. (35f)

CM1 Representation: In matrix form, the model can also be written as the following
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bivariate CM1 form:

xt = β1Etxt+1 + δxt−1 + vt (36)

where xt = (yt zt)
′ and vt = (εt, 0)′, and β1 and δ are identical to those in equation (28).

The fundamental solution, the solution restriction, the fundamental PLM, the T-map

and its derivative with respect to the unrestricted PLM parameters are exactly of the

same form as (32b) through (32f). However, the extents of the restrictions on b̄ are again

different from those in the CM1 representation of Model C in the previous subsection.

The reason is simply that the definitions of β1 and δ are different, and b̄ as an REE is

given by b̄ =

[
b̄y 0

β2,y b̄
2
y 0

]
.

In Appendix C, we show that the E-stability conditions for CM1 are given by:

(δy − β1,y b̄
2
y − 2β2,y b̄

3
y)/δy > 0, (β1,y b̄

2
y + β2,y b̄

3
y)/δy < 2 (37)

and the first condition is identical to the E-stability condition in CU2.

A numerical example analogous to that in Model B can be illustrated as follows. For

the LU2 representation of Model B, b̄y must solve β2,y b̄
3
y + β1,y b̄

2
y + β0,y b̄y + δy = b̄y. Note

that this equation divided by (1 − β0,y) becomes the solution restriction for the CU2

representation of the present Model D. Using the values in section 4.1.2, we redefine

β1,y = 1.4685, β2,y = −0.6993 and δy = 0.2203. Therefore we obtain the same solutions

with b̄y = 0.5, 0.7 and 0.9. Table 9 shows the univariate and multivariate E-stability

conditions. Therefore, while the solutions with b̄y = 0.5 and 0.9 are E-stable in CU2, the

Table 9: DT (b̄) of the CU2 and CM1

CU2 CM1
b̄y DT (b̄y) Eigenvalues of DT (b̄)
0.5 0.87 0.71 0.56 0 0
0.7 1.09 1.40 0.78 0 0
0.9 0.77 1.80 1.29 0 0

multivariate solution b̄ associated with b̄y = 0.9 is not, implying that E-stability results

differ across representations. These results are however, not exactly the same as those in

Model B under lagged expectations. In Model B and Model D, the solutions with b̄y = 0.5

and 0.9 are E-stable in univariate representations. However, no solution was E-stable in
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the multivariate representation of the Model B. This is because the E-stability conditions

(37) for models under contemporaneous expectations are not the same as those in (30)

for models under lagged expectations.

5 Model-independent E-stability

We have shown that the concept of E-stability varies across multivariate models or multi-

variate representations of a given model and this finding is independent of the information

structure or the stationarity of solutions. Naturally, a model-independent concept of E-

stability would be desirable. We argue that the source of model-dependent E-stability is

the within-PLM overparameterization. Consequently, it is tempting to directly impose

the model-specific restrictions on the PLM in a given multivariate model. However, this

approach would not be economically sensible in a learning setting, where the unrestricted

PLM is naturally consistent with bounded rationality and imperfect information, which

are central concepts in the learning literature. If agents knew the precise restrictions im-

plied by the RE model, then they would directly compute the REE, rather than specify

a plausible PLM and examine the learning dynamics over time.

As we hinted from several examples in the previous section, E-stability is not model-

dependent in a univariate representation in general. Therefore, a straightforward way to

make a PLM not subject to within-PLM overparameterization would be to recursively re-

duce a multivariate system into a univariate representation for each variable and examine

the standard weak E-stability in a univariate framework sequentially. However, such a

recursive system reduction comes at the cost of notational and analytical complications.

In general, the resulting univariate representation would involve different dates at which

expectations are formed and more lagged state variables than the original multivariate

representation. In addition, the same procedure must be carried out for the remaining

variables recursively.

We illustrate the recursive system reduction into a univariate representation with a

simple bivariate model. Consider the following model:

x1,t = β11Etx1,t+1 + β12Etx2,t+1 + δ11x1,t−1 + δ12x2,t−1, (38)

x2,t = β21Etx1,t+1 + β22Etx2,t+1 + δ21x1,t−1 + δ22x2,t−1. (39)

For simplicity, we abstract from exogenous disturbances. In Appendix D, we show that
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the model can be represented in a univariate form for x1,t as:

x1,t = f1Etx1,t+1 + f2Etx1,t+2 + f3Et−1x1,t + f4Et−1x1,t+1 + f5x1,t−1 + f6x1,t−2

where f1 through f6 are very complicated functions of the structural parameters in the

original model. The fundamental solution is of the following form:

x1,t = b̄1x1,t−1 + b̄2x1,t−2. (40)

The fundamental PLM is given by x1,t = b1x1,t−1+b2x1,t−2 without parameter restrictions.

Then the T-mapping from the fundamental PLM to the ALM is given by:

T1(b1, b2) = (F−1((f1 + f2b1)b2 + (f3 + f4b1)b1 + f4b2 + f5), F−1((f3 + f4b1)b2 + f6)).

where F = 1− (f1 +f2b1)b1−f2b2. A standard weak E-stability condition can be derived

by constructing the Jacobian matrix of T1(b1, b2) and obtaining its eigenvalues.

Once (40) is proven to be E-stable, we need to examine the E-stability of a solution in

the univariate representation of x2,t. Now x1,t becomes an exogenous process and, from

equation (39), the fundamental solution would have the following form:

x2,t = b̄3x2,t−1 + b̄4x1,t + b̄5x1,t−1. (41)

An analogous equation without restrictions on the parameters can be used as the funda-

mental PLM. Then the T-mapping can be easily derived as:

T2(b3, b4, b5) = (
δ22

1− β22b3

,
β22b4b1 + β21b1 + β22b5

1− β22b3

,
β22b4b2 + β21b2 + δ21

1− β22b3

)

A standard weak E-stability condition can also be derived by constructing the Jacobian

matrix of T2(b3, b4, b5) and obtaining its eigenvalues. Therefore, we may conclude that

if (40) and (41) are both weakly E-stable in a univariate framework, the solution to the

bivariate model consisting of these two equations is weakly E-stable in a multivariate

context.

We remark two more potential difficulties in the proposed recursive system reduc-

tion. First, it is not clear whether the system reduction is robust against the order of

the variables with which the model is reduced. Second, it must be proved that the co-
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efficients of the state variables are independent of each other. If not, E-stability would

still be model-dependent. Therefore, although the system reduction is a plausible way of

constructing a model-independent concept of E-stability in a multivariate framework, it

may not always be possible to do so.

6 Conclusion

This paper shows that the concept of E-stability in a multivariate framework is model-

dependent. We also show that the model-specific nature of E-stability surfaces inde-

pendently of the uniqueness of the fundamental solution, stability of the REEs and

information structure. An immediate consequence of our analysis is that it is hard to

compare the results of E-stability across models. Consequently, the development of a

model-independent concept of E-stability is called for in a multivariate framework.

We show that the source of model-dependent E-stability lies in the fact that a postu-

lated PLM is in general overparameterized relative to the REE, which is subject to the

model-specific restrictions. Therefore, developing model-independent E-stability condi-

tions requires that the PLM at hand be not subject to the within-PLM overparameter-

ization. In this paper, we propose a tentative method of recursive system reduction of

a given multivariate model into a univariate representation. However, such a procedure

comes at the cost of analytical complication, especially when the model at hand is a

large-scale model. Furthermore, the validity of the system reduction approach should be

formally examined. We leave a formal treatment of the system reduction method as a

future research topic.

Even if model-independent E-stability conditions are developed, the cost of imple-

menting such conditions can be high. As is well-known, E-stability has been extensively

used as an indirect way of exploring learnability under the E-stability principle because

implementing E-stability is technically much simpler. Therefore, one may have to di-

rectly rely on learnability conditions in studies of macroeconomic dynamics if the cost of

implementing the model-independent E-stability conditions is high.

According to our results, the concept of E-stability would also be model-dependent in

studies on the relation between determinacy, learnability and E-stability. For example,

under fairly general conditions, E-stability and learnability are shown to be equivalent.

Assuming this, Bullard and Mitra (2002) and Bullard and Eusepi (2008) study the rela-

tion between determinacy and learnability. One important finding of Bullard and Mitra
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(2002) is that determinacy does not necessarily imply learnability and indeterminacy

does not necessarily imply lack of learnability. Alternatively, Heinemann (2000) and Gi-

annitsarou (2005) show that E-stability and learnability may not be identical in some

environments. All of these studies may deal with different types of E-stability if their

models are multivariate. We leave the study of the interrelation between determinacy,

learnability and model-independent E-stability as a future research topic.
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Appendix

A. Five Representations of the Dornbusch Model

All representations of the model can be written in the following general form:

Axt = B0Et−1xt +B1Et−1xt+1 +B2Et−1xt+2 +Dxt−1. (42)

By pre-multiplying this equation by A−1, the model can be written as:

xt = β0Et−1xt + β1Et−1xt+1 + β2Et−1xt+2 + δxt−1 (43)

where β0 = A−1B0, β1 = A−1B1, β2 = A−1B2 and δ = A−1D. Since xt−1 is the only state

vector, the fundamental solution has the following form:

xt = b̄xt−1 (44)

where b̄ is subject to:

β0b̄+ β1b̄
2 + β2b̄

3 + δ = b̄. (45)

Finally, the fundamental PLM is given by:

xt = bxt−1 (46)

where b is unrestricted. xt, the parameter matrices A, B0, B1, B2, D (or β0, β1, β2, δ)

and b̄ are representation-specific and they are defined as follows:

R1. Univariate Representation with xt = pt: The fundamental solution is given by

pt = b̄ppt−1, Let α0 = 1 + π(γ + η + γ/λ + η/λ + γϑ/λ), α1 = 1 + π(2γ + η + γ/λ),

α2 = −πγ and δ0 = 1 + πϑ(γ + η)/λ. Then, β0, β1, β2, δ and b̄ are defined as:

β0 = α0, β1 = α1, β2 = α2, δ = δ0, b̄ = b̄p.

We need to solve for the remaining variables sequentially. They can be characterized

in terms of b̄p as dt = b̄dpt−1, rt = b̄rpt−1 and et = b̄ept−1 where b̄d = −(1 − b̄p)/π,

b̄r = (b̄p − ϑ)/λ and b̄e = −(b̄p − ϑ)/(λ(1− b̄p)).
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R2. Bi-variate Representation with xt = (pt et)
′:

A =

[
1 0

1/λ 1

]
, B0 =

[
−π(γ + η + γ/λ) πη

0 0

]
, B1 =

[
πγ 0

0 1

]
,

B2 = 02×2, D =

[
1 + πγϑ/γ 0

−ϑ/γ 0

]
, b̄ =

[
b̄p 0

b̄e 0

]
.

R3. Tri-variate Representation with xt = (pt dt rt)
′:

A =

 1 0 0

γ + η 1 γ + η

−λ−1 0 1

 , B0 =

 0 π 0

0 0 0

0 0 0

 , B1 =

 0 0 0

2γ + η 1 γ

0 0 1

 ,

B2 =

 0 0 0

−γ 0 0

0 0 0

 , D =

 1 0 0

0 0 0

−ϑ/λ 0 0

 , b̄ =

 b̄p 0 0

b̄d 0 0

b̄r 0 0

 .

R4. Four-variable Representation with xt = (pt dt rt et)
′:

A =


1 0 0 0

γ + η 1 γ −η
−λ−1 0 1 0

0 0 1 1

 , B0 =


0 π 0 0

0 0 0 0

0 0 0 0

0 0 −1 0

 , B1 =


0 0 0 0

γ 0 0 0

0 0 0 0

0 0 0 1

 ,

B2 = 04×4, D =


1 0 0 0

0 0 0 0

−θ/λ 0 0 0

0 0 0 0

 , b̄ =


b̄p 0 0 0

b̄d 0 0 0

b̄r 0 0 0

b̄e 0 0 0

 .

R2′. Bi-variate Representation with xt = (pt dt)
′:

A =

[
1 0

(λ+1)(γ+η)
λ

1

]
, B0 =

[
0 π

−γϑ
λ

0

]
, B1 =

[
0 0

2γ + η + γ
λ

1

]
,

B2 =

[
0 0

−γ 1

]
, D =

[
δ 0

−ϑ(γ+η)
λ

0

]
, b̄ =

[
b̄p 0

b̄d 0

]
.
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Table 10: DT (b̄) for Five Representations of the Dornbusch Model

Panel A. R1 representation

ϑ = 1.1 and η = −0.1 ϑ = 0.5 and η = 0.2
b̄ DT (b̄) b̄ DT (b̄)

0.716 0.966 0.384 −0.285
0.772 1.028 1.043 1.307
0.990 0.866 1.250 0.596

Panel B. R2 Representation

ϑ = 1.1 and η = −0.1 ϑ = 0.5 and η = 0.2
b̄ DT (b̄) b̄ DT (b̄)

0.716 0.821 0.807 −0.669 −0.030 0.384 0.380 0.003 −1.944 −1.072
0.772 1.137 0.800 −0.532 −0.041 1.043 2.191 0.742 0.426 −0.884
0.990 1.999 1.134 −0.042 ±0.399i 1.250 2.854 1.218 0.304 −0.296

Panel C. R3 Representation

ϑ = 1.1 and η = −0.1 ϑ = 0.5 and η = 0.2
b̄ DT (b̄) b̄ DT (b̄)

0.716 −2.58 0.99 0.56(2) −2.87(2) 0(3) 0.384 −3.11 0.68 0.28(2) −3.09(2) 0(3)
0.772 −2.54 1.01 0.59(2) −2.90(2) 0(3) 1.043 −2.84 1.08 0.76(2) −3.57(2) 0(3)
0.990 −2.28 0.96 0.69(2) −3.00(2) 0(3) 1.250 −2.43 0.88 0.80(2) −3.61(2) 0(3)

Panel D. R4 Representation

ϑ = 1.1 and η = −0.1 ϑ = 0.5 and η = 0.2
b̄ DT (b̄) b̄ DT (b̄)

0.716 −3.29 0.97 0.72 −2.87(3) 0.56(3) 0(7) 0.384 −3.32 0.51 0.39 −3.09(3) 0.28(3) 0(7)
0.772 −3.35 1.03 0.78 −2.90(3) 0.59(3) 0(7) 1.043 −4.04 1.42 0.86 −3.57(3) 0.76(3) 0(7)
0.990 −3.53 1.1±0.13i −3.00(3) 0.69(3) 0(7) 1.250 −4.17 1.43 1.18 −3.61(3) 0.80(3) 0(7)

Panel E. R2′ representation

ϑ = 1.1 and η = −0.1 ϑ = 0.5 and η = 0.2
b̄ DT (b̄) b̄ DT (b̄)

0.716 0.990 −2.584 0.555 −2.865 0.384 0.687 −3.108 0.282 −3.087
0.772 1.008 −2.546 0.591 −2.901 1.043 1.080 −2.842 0.763 −3.568
0.990 0.959 −2.279 0.689 −2.999 1.250 0.883 −2.437 0.804 −3.609

Note: The number of repeated eigenvalues of DT (b̄) in Panels C and D is in parentheses.
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All the representations are nested in the LM2 class of RE models in section 3. E-

stability of an REE of each representation can be examined by computing the derivatives

of the T-mapping from the fundamental PLM to the ALM evaluated with the REE,

b = b̄ (DT (b̄)) in (11). In each representation of the model, there are three fundamental

solutions, b̄ corresponding to the three values of b̄p. Table 10 shows the derivatives of

the T-mapping computed for the three values of b in each representation.

B. E-stability Conditions for the LM1 Representation
of Model B in Section 4.1.2

Here we derive DT (b̄) analytically. Let P (ξ : b̄y) be the characteristic function of

DT (b̄). Then P (ξ : b̄y) = |DT (b̄)− ξI2| where

DT (b̄) = I2⊗

([
β0,y 0

0 0

]
+

[
β1,y 1

β2,y 0

][
b̄y 0

β2,y b̄
2
y 0

])
+

[
b̄y 0

β2,y b̄
2
y 0

]′
⊗

[
β1,y 1

β2,y 0

]
.

Direct computation yields:

P (ξ : b̄y) = C(ξ : b̄y)ξ(ξ − β0,y − β1,y b̄y − β2,y b̄
2
y)

C(ξ : b̄y) = ξ2 − (β0,y + 2β1,y b̄y + β2,y b̄
2)ξ − 2β2,y b̄

2
y.

In this example, the analytical solution of b̄y is not available in general. However, we can

still characterize the E-stability condition, i.e., the condition under which the real part

of all roots of P (ξ : b̄y) is less than 1, as follows:

C(1 : b̄y) > 0

ξ1 + ξ2 = β0,y + 2β1,y b̄y + β2,y b̄
2
y < 2

ξ3 = β0,y + β1,y b̄y + β2,y b̄
2
y < 1⇔ (b̄y − δy)/b̄y < 1

where ξ1 and ξ2 are the two roots of C(ξ : b̄y). C(1 : b̄y) > 0 implies that 3β2,y b̄
2
y+2β1,y b̄y+

β0,y < 1, which is precisely the E-stability condition for the LU2 representation of the

model. The second and the third conditions are the additional conditions associated with

the LM1 representation of the model.
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C. E-stability Conditions for the CM1 Representation
of Model D in Section 4.2.2

Let P (ξ : b̄y) be the characteristic function of DT (b̄). Direct computation yields:

P (ξ : b̄y) = C(ξ : b̄y)ξ
2

C(ξ : b̄y) = ξ2 −
β1,y b̄

2
y + β2,y b̄

3
y

δy
ξ −

β2,y b̄
3
y

δy
.

For the roots of C(ξ : b̄y) to have real parts less than 1, it must be that C(1 : b̄y) > 0

and ξ1 + ξ2 < 2 where ξ1 and ξ2 are the two roots of C(ξ : b̄y). These two E-stability

conditions are then given by:

(δy − β1,y b̄
2
y − 2β2,y b̄

3
y)/δy > 0, (β1,y b̄

2
y + β2,y b̄

3
y)/δy < 2.

From the definition of (17), the E-stability condition for the CU2 representation is:

δy(β1,y + 2β2,y b̄y)

(1− β1,y b̄y − β2,y b̄2
y)

2
< 1.

But (1−β1,y b̄y−β2,y b̄
2
y) = (δy/b̄y) since b̄y must solve β2,y b̄

3
y +β1,y b̄

2
y + δy = b̄y. Therefore,

a rearrangement of this condition becomes the first E-stability condition for CM1.

D. System Reduction into a Univariate Framework

Let us reproduce the general bivariate model as:

x1,t = β11Etx1,t+1 + β12Etx2,t+1 + δ11x1,t−1 + δ12x2,t−1, (47)

x2,t = β21Etx1,t+1 + β22Etx2,t+1 + δ21x1,t−1 + δ22x2,t−1. (48)

First, we eliminate Etx2,t+1 in (47) by pre-multiplying (47) and (48) by β22 and β12,

respectively, and then subtracting the second equation from the first one as:

zt = k1x2,t + k2x2,t−1 (49)

where k1 = β12, k2 = (β22δ12 − β12δ22) and

zt = β22x1,t − (β22β11 − β12β21)Etx1,t+1 − (β22δ11 − β12δ21)x1,t−1.
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Then (48) can be expressed as:

zt = β21(k1Etx1,t+1+k2Et−1x1,t)+β22(k1Etx2,t+1+k2Et−1x2,t)+δ21(k1x1,t−1+k2x1,t−2)+δ22zt−1.

(50)

From equation (49),

(k1Etx2,t+1 + k2Et−1x2,t) = Etzt+1 + (k2/k1)Et−1zt − (k2/k1)zt.

Therefore, (50) becomes:

(1 + β22(k2/k1))zt = β21(k1Etx1,t+1 + k2Et−1x1,t) + δ21(k1x1,t−1 + k2x1,t−2)

+β22Etzt+1 + β22(k2/k1)Et−1zt + δ22zt−1. (51)

Note that (51) consists of the variable x1,t only. By rearranging this equation in terms

of x1,t, we have:

x1,t = f1Etx1,t+1 + f2Etx1,t+2 + f3Et−1x1,t + f4Et−1x1,t+1 + f5x1,t−1 + f6x1,t−2,

where

f1 = ∆−1
(
β12β11 + β2

22δ12β11 − β22δ12β12β21 − β22β12δ22β11 + β2
12δ22β21 + β22β12

)
f2 = −∆−1β12 (β22β11 − β12β21)

f3 = ∆−1
(
−β12δ22β11 + δ12β12β21 + β2

22δ12 − β22β12δ22

)
f4 = −∆−1 (β22δ12 − β12δ22) (β22β11 − β12β21)

f5 = ∆−1β12 (δ11 + δ22)

f6 = −∆−1β12 (δ22δ11 − δ21δ12)

and ∆ = β12 + β2
22δ12 − β22β12δ22 + β12β22δ11 − β2

12δ21.
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