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1. Introduction

In parallel with the literature on economic growth, recent years have witnessed an

emerging body of empirical literature on convergence in per capita output across different

economies. The interest on this subject may be explained, at least in part, as a test of the

prediction of the neoclassical growth model (Solow, 1956) as opposed to the “new”

endogenous growth models (Romer, 1986, Lucas, 1988). As it is well known, the

neoclassical model predicts (under some assumptions) that per capita output in an economy

will convergence to each country’s steady-state (conditional convergence) or to a common

steady-state (unconditional convergence), regardless of its initial per capita output level.

On the contrary, in endogenous growth models there is no tendency for income levels to

converge, since divergence can be generated by relaxing some of the neoclassical

assumptions (e.g., incorporating nonconvexities in the production function).

Empirical testing of the convergence hypothesis provide several definitions of

convergence and thus, different methodologies to test it. In a cross-section approach, a

negative (partial) correlation between growth rates and initial income is interpreted as

evidence of unconditional (conditional) beta-convergence. In this context, one of the most

generally accepted result is that while there is not evidence of unconditional convergence

among a broad sample of countries, the conditional convergence hypothesis holds when

examining more homogenous group of countries (or regions) or when conditioning for

additional explanatory variables. Examples in this context are Baumol (1986), De Long

(1988), Dowrick and Nguyen (1989), Grier and Tullock (1989), Barro (1991), Barro and

Sala-i-Martin (1991, 1992, 1995), Mankiw, Romer and Weil (1992), etc. Using cross-

sectional regressions, Dowrick and Nguyen (1989) found evidence of absolute

convergence among OECD countries during the period 1950-1985. This result is

reinforced when some conditioning variables are included in the regression model. For
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instance, Barro (1991) find a negative partial correlation between the growth rate of real

per capita GDP of 98 countries in the period 1960-85 when controlling for some variables

such as human capital, physical investment or different measures of political instability.

Additionally, Barro and Sala-i-Martin (1992) and Mankiw, Romer and Weil (1992) used

respectively 20 and 22 OECD countries from 1960 to 1985 and found evidence of

conditional convergence holding population growth and capital accumulation constant.

In a time series approach, stochastic convergence asks whether permanent

movements in one country’s per capita output are associated with permanent movements in

another countries’ output, that is, it examines, whether common stochastic elements matter,

and how much persistent the differences among countries are. Thus, stochastic

convergence implies that output differences between economies cannot contain unit roots

or time trends. Using this methodology, Bernard and Durlauf (1991) find that they can only

reject the presence of a unit root in the difference for the pair France-Italy, among the G7.

Bernard and Durlauf (1995) and Cellini and Scorcu (2000) also find little evidence of

income convergence, the first one when analyzing convergence among 15 OECD countries

over the period 1900-1987, while the second one can only reject the non-convergence

hypothesis for the pairs US-Germany, US-Japan and France-Italy. However, Carlino and

Mills (1993) and Lowey and Papell (1996) find support for convergence among the US

regions, a result that might be explained due to the more homogenous nature of the

economies studied by these authors.

When the convergence tests take into account the possibility of structural breaks,

the evidence of convergence is reinforced. Greasley and Oxley (1997) found evidence of

bivariate convergence between Belgium and Netherlands, France and Italy, Australia and

the UK, and Sweden and Denmark. St. Aubyn (1999) finds evidence of convergence

between US and each of the UK, Australia and Japan, using the Kalman filter
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methodology. Cellini and Scorcu (2000) detect stochastic convergence only for the US and

Canada, and the US and UK when they allow for structural breaks. Strazicich, Lee and Day

(2001) examine the differences in per capita incomes of fifteen OECD countries with the

US economy over the period 1870-1994 allowing for two structural breaks and they reject

the unit root null hypothesis in eleven of the fifteen countries, thus supporting the

stochastic convergence hypothesis.

In this paper, we define real convergence as mean reversion in the differences in

per capita output among countries and we test this hypothesis using a methodology based

on fractional integration. The fractional integration approach has already been applied to

test real convergence in Michelacci and Zaffaroni (2000), Silverberg and Verspagen (2001)

and Dolado, Gonzalo and Mayoral (2002a). Michelacci and Zaffaroni (2000) use a log-

periodogram regression estimate, initially proposed by Geweke and Porter-Hudak (1983)

and modified later by Robinson (1995a) which is highly biased in small samples. To avoid

this small sample bias problem, Silverberg and Verspagen (2001) employ the

nonparametric FGN estimator due to Beran (1994) and the Sowell’s (1992) parametric

maximum likelihood estimation method. Dolado, Gonzalo and Mayoral (2002a) use the

Fractional Dickey- Fuller test proposed by the authors in Dolado et al (2002b). In this

study, we use both parametric and semiparametric techniques which have some advantages

compared with other procedures. When the convergence hypothesis is analyzed by means

of these methodologies based on fractional integration, the results are mixed. Michelacci

and Zaffaroni could not reject the hypothesis that all the OECD countries are non-

stationary and mean reverting (0.5 < d < 1). Therefore, according to these authors, the

convergence hypothesis cannot be rejected, and thus, convergence takes place, although at

an hyperbolic very slow rate. However, Silverberg and Verspagen (1999) find significant

long memory (with d > 1) in the time series of GDP per capita relative to the US, and thus,
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no evidence of convergence, although their overall conclusion depends on the application

of the FGN model. Dolado, Gonzalo and Mayoral (2002a) show that, after dealing with

small sample bias and a deterministic trend, there is strong evidence in favor of an

integration order between 0 and 1 in most of the countries in the sample. Therefore, and

similarly to Michelacci and Zaffaroni, their results support evidence that convergence

among OECD countries occurs according to a long memory process. The outline of this

paper is as follows. In Section 2, we describe alternative methods that will be employed in

this article. Section 3 covers the empirical analysis and Section 4 offers some conclusions.

2. Long memory processes and convergence

For the purpose of the present paper, we define an I(0) process {ut, t =  0, ±1, ...} as a

covariance stationary process with spectral density function that is positive and finite at the

zero frequency. In this context, we say that a given raw time series {xt, t =  0, ±1, ...} is I(d)

if

...,2,1,)1( ==− tuxL tt
d , (1)

,0,0 ≤= tx t

where ut is I(0) and where L means the lag operator (Lxt = xt-1). Note that the polynomial
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The macroeconomic literature has stressed the cases of d = 0 and 1, however, d can be any

real number. Clearly, if d = 0 in (1), xt = ut, and a ‘weakly autocorrelated’ xt is allowed for.

However, if d > 0, xt is said to be a long memory process, also called ‘strongly

autocorrelated’, so-named because of the strong association between observations widely

separated in time and as d increases beyond 0.5 and through 1, xt can be viewed as
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becoming “more nonstationary”, in the sense, for example, that the variance of partial sums

increases in magnitude. These processes were initially introduced by Granger (1980,

1981), Granger and Joyeux (1980) and Hosking (1981), (though earlier work by Adenstedt,

1974, and Taqqu, 1975 shows an awareness of its representation), and were theoretically

justified in terms of aggregation of ARMA processes with randomly varying coefficients

by Robinson (1978),  Granger (1980). Similarly, Croczek-Georges and Mandelbrot (1995),

Taqqu et. al. (1997), Chambers (1998) and Lippi and Zaffaroni (1999) also use aggregation

to motivate long memory processes, while Parke (1999) uses a closely related discrete time

error duration model. Empirical applications based on fractional models like (1) are among

others Diebold and Rudebusch (1989), Baillie and Bollerslev (1994), Gil-Alana and

Robinson (1997) and Gil-Alana (2000).

To determine the appropriate degree of integration in a given raw time series is

important from both economic and statistical viewpoints. If d = 0, the series is covariance

stationary and possesses ‘short memory’, with the autocorrelations decaying fairly rapid. If

d belongs to the interval (0, 0.5), xt is still covariance stationary, however, the

autocorrelations take much longer time to disappear than in the previous case. If d ∈ [0.5,

1), the series is not longer covariance stationary, but it is still mean reverting, with the

effect of the shocks dying away in the long run. Finally, if d ≥ 1, xt is nonstationary and

non-mean reverting. Thus, the fractional differencing parameter d plays a crucial role in

describing the persistence in the time series behaviour: higher d is, higher will be the

association between the observations.

There exist many approaches of estimating and testing the fractional differencing

parameter d (see, eg. Geweke and Porter-Hudak, 1983, Dahlhaus, 1989, Sowell, 1992,

etc.). In this article we will make use of both parametric and semiparametric methods.

First, we will present a parametric testing procedure due to Robinson (1994a) that pemits
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us to test I(d) statistical models in raw time series. Then, several other (semiparametric)

methods will be described.

2.1 A parametric testing procedure

Robinson (1994a) proposed a Lagrange Multiplier (LM) test of the null hypothesis:

oo ddH =: .   (2)

in a model given by

    ...,2,1,' =+= txzy ttt β ,   (3)

and (1), for any real value do, where yt is the time series we observe; β  = (β1, …, βk)’ is a

(kx1) vector of unknown parameters; and zt is a (kx1) vector of deterministic regressors

that may include, for example, an intercept, (eg. zt ≡ 1), or an intercept and a linear time

trend, (in case of zt = (1,t)’).  Specifically, the test statistic is given by:
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and the function g above is a known function coming from the spectral density function of

ut,

.),;(
2

);;(
2

2 πλπτλ
π

στσλ ≤<−= gf

Note that these tests are purely parametric and therefore, they require specific modelling

assumptions to be made regarding the short memory specification of ut. Thus, if ut is white

noise, g ≡ 1, and if ut is an AR process of form φ(L)ut = εt, g = |φ(eiλ)|-2, with σ2 = V(ε t), so

that the AR coefficients are function of τ.

Based on the null hypothesis Ho (2), Robinson (1994a) established that under

certain regularity conditions:

 ,)1,0(ˆ ∞→→ TasNr d (5)

and also the Pitman efficiency theory of the tests against local departures from the null.

Thus, we are in a classical large sample-testing situation: an approximate one-sided 100α%

level test of Ho (2) against the alternative: Ha: d > do (d < do) will be given by the rule:

“Reject Ho if  r̂  > zα ( r̂   < - zα)”, where the probability that a standard normal variate

exceeds zα is α. This version of the tests of Robinson (1994a) was used in empirical

applications in Gil-Alana and Robinson (1997) and Gil-Alana (2000) and, other versions of

his tests, based on seasonal, (quarterly and monthly), and cyclical data can be respectively

found in Gil-Alana and Robinson (2001) and Gil-Alana (1999, 2001a).

A problem with the parametric procedures is that the model must be correctly

specified. Otherwise, the estimates are liable to be inconsistent. In fact, misspecification of

the short run components of the process may invalidate the estimation of the long run

parameter d. This is the main reason for using also in this article a semiparametric

procedure that we are now to describe.
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2.2 A semiparametric estimation procedure

There exist several methods for estimating the fractional differencing parameter in a

semiparametric way. Examples are the log-periodogram regression estimate (LPE),

initially proposed by Geweke and Porter-Hudak (1983) and modified later by Kunsch

(1986) and Robinson (1995a), the average periodogram estimate, (APE, Robinson, 1994b)

and the quasi maximum likelihood estimate (QMLE, Robinson, 1995b). In this article we

use the QMLE of Robinson (1995b) which we are now to describe.

It is basically a local “Whittle estimate” in the frequency domain, considering a

band of frequencies that degenerates to zero. The estimate is implicitly defined by:

,log12)(logminarg
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Under finiteness of the fourth moment and other conditions, Robinson (1995b) proves the

asymptotic normality of this estimate, while Lobato (1999) extended it to the multivariate

case.

The other methods also based on semiparametric models (like the APE and the

LPE) have been successfully applied to economic time series (see, eg. Gil-Alana, 2001b),

however, recent empirical finding (Gil-Alana, 2002), based on Monte Carlo simulations

show that the QMLE of Robinson (1995b) outperform the others in a number of cases.

3. Data and test results

The data used in this section are annual log real GDP per capita in 1990 Geary-

Khamis PPP-adjusted dollars. The series runs from 1870 to 2001 for 14 OECD countries

(Australia, Austria, Belgium, Canada, Denmark, Finland, France, Germany, Italy, The
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Netherlands, Norway, Sweden, UK, US) and from 1885-2001 for Japan. The data for the

period 1870-1994 have been obtained from Maddison (1995) and these series have been

updated using the GGDC (Groningen Growth and Development Center) Database 2002.

As indicator of real convergence, we use the differences of the per capita GDP of each of

the 15 countries with respect to the US economy, used as the benchmark country. This

indicator has been widely used in other empirical works based on convergence (e.g., St.

Aubyn, 1999, Silverberg and Verspagen, 2001, etc.) 1.

The first  thing that we do here is to peform the tests of Robinson (1994a) described

in Section 2.1 to the individual series as well as to their differences with respect to the US.

Denoting each of the the time series yt, we employ throughout the model given by (1) and

(3), with zt = (1,t)’, t ≥ 1, zt = (0,0)’. Thus, under the null hypothesis Ho (2):

...,2,1,10 =++= txty tt ββ    (7)

           .....,2,1,)1( ==− tuxL tt
d o    (8)

and we treat separately the cases β0 = β1 = 0 a priori; β0 unknown and β1 = 0 a priori; and

β0 and β1 unknown, i.e., we consider respectively the cases of no regressors in the

undifferenced regression (7), an intercept, and an intercept and a linear time trend. We will

model the I(0) process ut to be both white noise and to have parametric autocorrelation.

We start with the assumption that ut in (8) is white noise. Thus when d = 1, for

example, the differences (1–L)yt behave, for t > 1, like a random walk when β1 = 0, and a

random walk with drift when β1 ≠ 0. However, we report test statistics not merely for the

null do = 1 in (2) but for do = 0, (0.25), 2, thus including also a test for stationarity (do =

0.5) and for I(2) (do = 2), as well as other fractionally integrated possibilities.

                                                                
1  There are alternative measures for convergence in the literature. Strazicich, Lee and Day (2001), for
example, use the differences of per capita GDP of each of the countries with an average of the analyzed
economies as an indicator of convergence.
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The test statistic reported across Table 1 (and also in Tables 2 – 4), is the one-sided

one corresponding to r̂  in (4), so that significantly positive values of this are consistent

with orders of integration higher than do, whereas significantly negative ones are consistent

with alternatives of form: d < do.  A notable feature observed in Table 1(i), in which ut is

taken to be white noise (when the form of r̂  significantly simplifies) and βo = β1 = 0 a

priori, is the fact that we cannot reject the unit-root hypothesis in any of the countries,

while in three of them (Finland, Germany and Italy) we cannot reject d = 1.25. However, in

some of the countries, we observe also some lack of monotonic decrease of r̂ as do

increases. Such monotonicity is a characterisitc of any reasonable statistic, given correct

specification and adequate sample size, because for example, we would wish that if Ho (2)

is rejected with do = 1 against alternatives of form: Ha: d > 1, an even more significant

result in this direction should be expected when do = 0.75 or do = 0.50 are tested. However,

in the event of misspecification (which in this specialized model can be due to a departure

from white noise in ut, to yt having a drift, or to both) monotonicity is not necessarily to be

expected: frequently misspecification inflates both numerator and denominator of r̂  to

varying degrees, and thus affects r̂  in a complicated way. Computing r̂  for a range of do

values is thus useful in revealing possible misspecification, though monotonicity is by no

means necessarily strong evidence of correct specification.

(Insert Table 1 about here)

Tables 1(ii) and (iii) give results with, respectively, β1 = 0 a priori (no time trend in

the undifferenced regression) and both β0 and β1 unrestricted, still with white noise ut. In

every case in both tables, r̂  is monotonic, and moreover, while there are sometimes large

differences in the value of r̂  across Tables 1(ii) and (iii) for the same series/do

combination, the conclusions suggested by both seem very similar, that on the whole the

extreme nonstatochastic trends are inappropriate. The most nonstationary series seem to be



12

those corresponding to Belgium, Sweden and the UK, where d = 1 is rejected and d = 1.25

cannot be rejected. For the remaining countries the unit root null hypothesis cannot be

rejected though in some countries (Canada, Finland, France, Germany and the US), Ho (2)

cannot be rejected with do = 1.25.

In connection with the power properties of Robinson’s (1994a) tests, it must be

stressed that it is only in a local sense that they are optimal, and doubtless they could be

bettered against nonlocal departures of interest by some point optimal procedure. In view

of this, there is some satisfaction in the fact that d < 1 and d > 1.25 are always decisively

rejected in Table 1. On the other hand, this significant result might be due in large part to

un-accounted for I(0) autocorrelation in ut, even bearing in mind the monotonicity of r̂  in

do achieved in Tables 1(ii) and (iii). Thus, we also fitted AR models to ut. The results are

not reported in this article though is important to stress that we observed a lack of

monotonicity in r̂  with respect to do in practically all series. This  could be explained in

terms of model misspecification as it was argued above. However, it may also be due to the

fact that the AR coefficients are Yule-Walker estimates and thus, though they are smaller

than one in absolute value, they can be arbitrarily close to 1. A problem then may occur in

that they may be capturing the order of integration of the series by means, for example, of

a coefficient of 0.99 in case of using AR(1) disturbances.

In order to solve this problem, we have decided to use other less conventional

forms of I(0) processes. One that seems especially relevant and convenient in the context

of the present tests is that proposed by Bloomfield (1973), in which the spectral density

function is given by:

.)(cos2exp
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The intuition behind this model is the following. Suppose that ut follows an ARMA

process of form

∑ ∑
= =

−− −+=
p

r
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1 1
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where ε t is a white noise process and all zeros of φ(L) lying outside the unit circle and all

zeros of θ(L) lying outside or on the unit circle. Clearly, the spectral density function of

this process is then
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where ϕ corresponds to all the AR and MA coefficients and σ2 is the variance of ε t.

Bloomfield (1973) showed that the logarithm of an estimated spectral density function is

often found to be a fairly well-behaved function and can thus be approximated by a

truncated Fourier series. He showed that (9) approximates (10) well where p and q are of

small values, which usually happens in economics. Like the stationary AR(p) model, the

Bloomfiled (1973) model has exponentially decaying autocorrelations and thus we can use

a model like this for ut in (8). Formulae for Newton-type iteration for estimating the τl are

very simple (involving no matrix inversion), updating formulae when m is increased are

also simple, and we can replace Â  below (4) by the population quantity

∑ ∑
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−− −=
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π

which indeed is constant with respect to the τj (unlike what happens in the AR case). The

Bloomfield (1973) model, confounded with fractional integration has not been very much

used in previous econometric models, (though the Bloomfield model itself is a well-known

model in other disciplines, e.g., Beran, 1993), and one by-product of this work is its
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emergence as a credible alternative to the fractional ARIMAs which have become

conventional in parametric modelling of long memory.3

(Insert Table 2 about here)

The results based on the Bloomfield (1973) exponential model (with m = 1) are

displayed in Table 2. We see that monotonicity is achieved for all series and all values of

do. Starting with the case of no regressors (Table 2(i)), we observe that the unit root null

hypothesis cannot be rejected in any series except for Finland, Ho (2) being rejected in this

case in favour of smaller orders of integration. We also observe that for some countries, the

null cannot be rejected with do = 0.75 and do = 1.25. Including an intercept and a linear

time trend, the results are similar and the non-rejection values of d take place when do is

equal to 9.75, 1 and 1.25. The most nonstationary series appear to be Australia and Japan

(do = 1 and 1.25) whereas the less nonstationary ones are Finland, Germany, the

Netherlands and the US, with values of d smaller than 1 when an intercept and/or a linear

trend is included.

In view of all this, we can conclude the analysis of these two tables by saying that

unit root models are plausible ways of modelling these series, though fractional degrees of

integration (with d smaller than or greater than 1) may also be plausible alternatives ways

of modelling their behaviour.

(Insert Tables 3 and 4 about here)

Tables 3 and 4 correspond respectively to Tables 1 and 2 but based on the

differences with respect to the US. Starting with the case of white noise disturbances

(Table 3) we observe that most of the non-rejection values take place at d = 1 and 1.25, that

is, the same values as in Table 1. The two exceptions here are Australia and Canada where

                                                                
3 Amongst the few empirical applications found in the literature are Gil-Alana and Robinson (1997), Velasco
and Robinson (2000) and more recently Gil-Alana (2001c).
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Ho (2) cannot be rejected with do = 0.75. Thus, the analysis of this table suggest that real

convergence do not take place for most countries in this context of white noise

disturbances. However, a very different picture is obtained in Table 4 where ut is allowed

to be weakly autocorrelated. Here, do = 1.25 is rejected in practically all cases, and the non-

rejection values of d oscillate between 0.5 and 1. Comparing these results with those in

Table 2, we generally observe a smaller degree of integration. Thus, for Canada, Denmark,

France, the Netherlands, Sweden and the UK, Ho (2) cannot be rejected with do = 0.5, this

hypothesis being rejected in favour of higher values of d in case of Table 2. In view of this,

there is some evidence of real convergence for some of the countries.

In order to be a bit more precise about the appropriate order of integration of each

series, we recompute the tests of Robinson (1994a), but this time for values of do = 0,

(0.01), 2. Tables 5 and 6 report for each time series and each type of regressors, the

confidence intervals of those values of do where Ho (2) cannot be rejected at the 95%

significance level. Table 5 corresponds to the case of white noise ut, while Table 6 reports

the results based on Bloomfield (1973) disturbances. We mark in bold in the tables those

intervals where the lowest and the highest values of each interval are smaller with the

differenced series. Using white noise ut, we observe smaller intervals in case of Austria,

Australia, Canada, Finland, Germany, Japan and the UK. However, using the Bloomfield

(1973) exponential spectral model for the disturbances, we observe at least one smaller

interval for each series with the only exceptions of Finland and Germany.

(Insert Tables 5 – 8 about here)

Finally, Tables 7 and 8 reports again for each series and each type of regressors, the

values of do (do
*) which produces the lowest statistic in absolute value across do. The most

interesting feature observed here is that if ut is autocorrelated (Table 8), the values of do
*

are smaller with the differenced series in all cases with the only exception of Germany,

where the values of d are higher in case of the undifferenced series.



16

Next, we perform the semiparametric procedure described in Section 3.2. Figure 1

reports the results based on the QMLE of Robinson (1995b), i.e., 1d̂  given by (5) for a

range of values of m from 50 to 100. Since the time series are clearly nonstationary, the

analysis will be carried out based on the first differenced data, adding then 1 to the

estimated values of d to obtain the proper orders of integration of the series. We see that

for Austria, Australia, Canada, Gemany and the UK, the estimated values of d are strictly

higher in case of the individual series. On the other hand, the values of d in Belgium,

Denmark, France, Italy, the Netherlands and Norway are higher for the differenced data.

Finally, Finland, Sweden and Japan present similar values in both cases. The results here

are consistent with those in Tables 5 and 7 for the case of white noise disturbances,

observing smaller orders of integration in these five countries and thus, supporting the real

convergence hypothesis.

(Insert Figure 1 about here)

4. Concluding remarks

In this article we have examined the real convergence hypothesis by means of using

fractionally integrated techniques. In particular, we have examined the order of integration

of the log real GDP per capita series in Austria, Australia, Belgium, Canada, Denmark,

Finland, France, Germany, Italy, Japan, the Netherlands, Norway, Sweden and the UK as

well as their differences with respect to the US which is used as a benchmark country. For

this purpose we have used a parametric testing procedure due to Robinson (1994a) and a

semiparametric estimation method (QMLE, Robinson, 1995b). We have used these

procedures, firstly because of the distinguishing features that they make them particular

relevant in comparison with other methods. Thus, Robinson’s (1994a) tests allow us to

consider unit and fractional root tests with no effect on its standard null limit distribution
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which is also unaffected by the inclusion of deterministic trends and of different types of

I(0) disturbances. In addition, the tests are the most efficient ones when directed against the

appropriate (fractional) alternatives. The reason for using the QMLE of Robinson (1995b)

is based on its computational simplicity along with the fact that it just requires a single

bandwidth parameter, unlike other procedures where a trimming number is also required.

A FORTRAN code with the programs is available from the author upon request. Using the

parametric procedure of Robinson (1994a), the results support the view that all them may

be specified in terms of unit root models, though fractional degrees of integration, with d

smaller than or greater than 1 may also be plausible in some cases. Performing the same

tests on the differenced data, the results substantially vary depending on how we specify

the I(0) disturbances. Thus, if they are white noise, we observe smaller degrees of

integration, (and thus, evidence of real convergence) in the cases of Austria, Australia,

Canada, Finland, Germany, Japan and the UK. However, if the disturbances are weakly

autocorrelated, real convergence seems to be satisfied for all countries except for Germany.

In view of this lack of robutness in the results depending on the structure on the

disturbances, we also performed a semiparametric procedure of Robinson, namely, the

quasi maximum likelihood estimation (QMLE, Robinson, 1995b) method. The results here

were consistent with the parametric ones in Robinson (1994a) for the case of white noise

disturbances, finding thus conclusive evidence of real convergence in Austria, Australia,

Canada, Finland, Germany, Japan and the UK. For the remaining seven countries,

(Belgium, Denmark, France, Italy, the Netherlands, Norway and Sweden), we find strong

evidence against real convergence.

Several other lines of research are under progress which should prove relevant to

the anlaysis of these and other macroeconomic and financial data. Multivariate versions of

the tests of Robinson (1994a) are being developed and this would lead to an alternative

approach to the study of cointegration. The Bloomfield model for the I(0) components is
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also being developed in a multivariate set-up.  Other issues such as the potential presence

of structural breaks on the data and the effect that this may have on the above results will

be addressed in future papers.
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TABLE 1. Testing the order of integration with white noise disturbances

i):   with no regressors
0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00

Austria 25.12 24.38 14.29 4.32 -0.10 -2.28 -3.54 -4.35 -4.89
Australia 25.47 25.64 12.54 4.53 -0.40 -3.00 -4.27 -4.95 -5.36
Belgium 25.24 27.07 15.49 5.16 0.04 -2.53 -3.87 -4.62 -5.10
Canada 25.61 25.28 15.01 4.05 0.51 -1.68 -3.16 -4.12 -4.75

Denmark 25.60 26.65 16.70 3.29 -0.85 -2.90 -4.03 -4.69 -5.12
Finland 26.32 26.37 23.30 10.35 1.42 -1.24 -2.60 -3.48 -4.09
France 25.62 25.56 15.85 5.22 0.54 -1.92 -3.36 -4.24 -4.79

Germany 25.33 24.31 13.37 4.54 0.73 -1.45 -2.85 -3.78 -4.41
Italy 25.94 26.20 20.93 7.82 1.05 -1.60 -3.02 -3.91 -4.52

Japan 23.26 22.76 18.81 8.50 1.00 -2.01 -3.43 -4.22 -4.70
The Netherlands 25.20 24.29 11.83 3.78 -0.31 -2.51 -3.72 -4.44 -4.91

Norway 26.13 26.86 25.28 10.46 0.02 -2.65 -3.83 -4.52 -4.97
Sweden 26.64 28.10 22.68 6.25 0.39 -2.24 -3.73 -4.58 -5.07

U.K. 25.17 25.77 11.66 4.52 0.16 -2.29 -3.63 -4.41 -4.92
U.S. 25.18 24.19 9.28 3.43 0.07 -2.15 -3.50 -4.33 -4.87

ii):   with an intercept
0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00

Austria 25.12 22.20 15.31 4.95 -0.09 -2.26 -3.52 -4.34 -4.89
Australia 25.47 22.76 17.37 7.33 0.16 -2.60 -3.95 -4.73 -5.24
Belgium 25.24 22.92 18.78 10.10 1.85 -1.30 -2.79 -3.68 -4.26
Canada 25.61 22.72 17.10 6.90 1.50 -0.94 -2.60 -3.74 -4.51

Denmark 25.60 22.98 18.44 7.96 -0.67 -2.79 -3.76 -4.36 -4.75
Finland 26.32 24.09 20.23 10.90 1.64 -1.09 -2.42 -3.31 -3.93
France 25.62 22.92 17.13 6.91 1.06 -1.46 -2.92 -3.82 -4.41

Germany 25.33 22.24 15.47 5.86 1.49 -0.59 -1.98 -2.97 -3.68
Italy 25.94 23.85 19.88 10.22 1.99 -1.09 -2.64 -3.61 -4.28

Japan 23.26 21.21 17.32 8.52 1.00 -1.95 -3.37 -4.17 -4.66
The Netherlands 25.20 22.04 14.97 4.66 -0.11 -2.13 -3.30 -4.05 -4.56

Norway 26.13 23.97 20.63 12.79 0.61 -2.50 -3.63 -4.31 -4.76
Sweden 26.64 24.34 20.57 12.74 2.01 -1.38 -2.94 -3.87 -4.46

U.K. 25.17 22.46 17.65 9.10 2.41 -0.12 -1.69 -2.88 -3.78
U.S. 25.18 21.67 14.10 4.73 1.10 -0.78 -2.24 -3.33 -4.12

iii):   with an intercept and a linear time trend
0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00

Austria 25.81 20.01 11.31 3.98 -0.09 -2.24 -3.51 -4.33 -4.89
Australia 27.42 23.16 14.96 5.80 0.15 -2.57 -3.95 -4.70 -5.18
Belgium 28.06 24.67 17.46 8.21 1.85 -1.24 -2.79 -3.68 -4.26
Canada 18.60 13.82 9.12 4.88 1.48 -0.93 -2.60 -3.73 -4.50

Denmark 25.07 19.20 11.01 3.57 -0.70 -2.73 -3.76 -4.36 -4.74
Finland 26.77 21.87 14.80 6.85 1.61 -0.98 -2.41 -3.31 -3.93
France 24.73 19.42 12.18 5.44 1.07 -1.44 -2.92 -3.83 -4.41

Germany 23.09 16.82 9.92 4.72 1.48 -0.58 -1.98 -2.97 -3.68
Italy 26.21 21.89 15.32 7.61 1.97 -1.01 -2.63 -3.64 -4.28

Japan 24.13 20.47 14.17 6.53 0.99 -1.99 -3.36 -4.15 -4.64
The Netherlands 24.27 18.21 10.12 3.58 -0.12 -2.12 -3.29 -4.05 -4.56

Norway 28.56 24.72 17.80 7.60 -0.57 -2.33 -3.61 -4.32 -4.77
Sweden 25.80 22.44 17.00 8.61 2.02 -1.31 -2.96 -3.88 -4.47

U.K. 27.05 22.34 14.55 7.01 2.46 -0.04 -1.66 -2.84 -3.74
U.S. 14.60 10.07 6.39 3.46 1.09 -0.78 -2.24 -3.32 -4.11
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TABLE 2. Testing the order of integration with Bloomfield (1) disturbances

i):   with no regressors
0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00

Austria 12.60 12.26 6.58 1.16 -1.13 -2.29 -2.89 -3.27 -3.67
Australia 12.69 14.28 6.62 3.09 0.42 -1.19 -2.32 -3.05 -3.59
Belgium 12.65 13.95 7.58 2.45 -0.10 -1.71 -2.66 -3.19 -3.62
Canada 13.46 12.97 6.04 0.22 -1.19 -1.90 -2.55 -2.95 -3.38

Denmark 12.95 12.68 8.20 1.42 -0.87 -2.14 -2.90 -3.45 -3.82
Finland 13.59 12.73 8.54 2.56 -1.71 -2.88 -3.32 -3.69 -3.97
France 12.92 11.15 6.37 1.32 -0.87 -1.97 -2.60 -3.14 -3.56

Germany 12.62 9.86 4.23 0.18 -1.52 -2.46 -3.04 -3.49 -3.79
Italy 13.62 13.70 9.36 2.69 -0.90 -2.35 -3.03 -3.53 -3.81

Japan 11.86 11.28 8.79 4.00 0.31 -1.50 -2.35 -3.03 -3.51
The Netherlands 12.75 10.79 4.65 0.99 -1.03 -2.33 -3.03 -3.52 -3.92

Norway 13.63 13.50 12.25 5.62 -0.46 -2.21 -2.93 -3.44 -3.75
Sweden 14.17 15.20 11.43 2.85 -0.03 -1.29 -2.24 -2.81 -3.31

U.K. 13.06 13.28 5.00 1.54 -0.55 -2.02 -2.82 -3.37 -3.75
U.S. 12.93 11.64 3.01 0.37 -1.00 -2.01 -2.75 -3.30 -3.60

ii):   with an intercept
0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00

Austria 12.60 10.78 6.95 1.74 -1.12 -2.25 -2.88 -3.24 -3.54
Australia 12.69 10.79 7.93 4.07 0.28 -1.46 -2.33 -2.97 -3.36
Belgium 12.65 10.41 7.74 2.95 -0.85 -2.44 -3.20 -3.71 -4.02
Canada 13.46 11.09 7.90 1.90 -0.88 -1.82 -2.40 -2.85 -3.22

Denmark 12.95 10.87 7.88 3.09 -1.47 -2.88 -3.48 -3.96 -4.25
Finland 13.59 11.59 8.88 2.55 -1.80 -3.01 -3.50 -3.82 -4.00
France 12.92 10.36 6.47 1.24 -1.35 -2.36 -2.94 -3.35 -3.70

Germany 12.62 10.03 5.28 -0.23 -1.29 -2.92 -3.43 -3.83 -4.09
Italy 13.62 11.93 9.28 3.74 -0.56 -2.32 -3.02 -3.50 -3.84

Japan 11.86 10.25 7.99 4.06 0.16 -1.56 -2.47 -3.10 -3.53
The Netherlands 12.75 9.94 5.66 0.58 -1.88 -2.81 -3.34 -3.71 -3.93

Norway 13.63 11.57 9.67 5.84 -0.30 -2.57 -3.20 -3.56 -3.86
Sweden 14.17 12.24 9.97 5.47 -0.22 -2.07 -2.92 -3.53 -3.89

U.K. 13.06 10.85 8.17 3.12 -0.96 -2.23 -2.77 -3.06 -3.34
U.S. 12.93 10.23 5.98 -0.05 -1.89 -2.42 -2.84 -3.21 -3.45

iii):   with an intercept and a linear time trend
0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00

Austria 13.09 9.05 4.50 1.00 -1.11 -2.20 -2.86 -3.20 -3.57
Australia 15.35 12.46 7.74 3.32 0.47 -1.38 -2.34 -2.76 -3.12
Belgium 13.92 11.11 6.61 2.04 -0.87 -2.44 -3.18 -3.71 -4.01
Canada 7.46 4.49 2.19 0.37 -0.90 -1.81 -2.40 -2.84 -3.18

Denmark 11.49 7.96 3.81 0.61 -0.54 -2.71 -3.46 -3.96 -4.24
Finland 12.29 8.63 4.49 0.65 -1.74 -2.85 -3.47 -3.82 -4.02
France 10.80 7.18 3.47 0.47 -1.36 -2.32 -2.94 -3.36 -3.71

Germany 9.29 4.88 1.43 -0.99 -2.20 -2.90 -3.43 -3.83 -4.08
Italy 13.30 9.79 5.68 2.06 -0.58 -2.19 -3.00 -3.49 -3.84

Japan 12.49 9.61 6.18 2.67 0.15 -1.42 -2.39 -2.99 -3.38
The Netherlands 10.56 6.79 2.62 -0.10 -1.88 -2.78 -3.34 -3.71 -3.92

Norway 15.33 11.84 8.21 3.32 -0.35 -2.25 -3.09 -3.56 -3.88
Sweden 13.18 10.26 6.83 2.89 -0.24 -1.94 -2.95 -3.49 -3.92

U.K. 14.21 10.02 5.41 1.34 -1.03 -2.11 -2.71 -2.91 -3.28
U.S. 4.28 1.68 0.03 -0.99 -1.90 -2.42 -2.84 -3.20 -3.42
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TABLE 3
Testing the order of integration with respect to the US with white noise disturbances

i):   with no regressors
0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00

Austria 23.20 16.28 9.26 3.24 -0.60 -2.78 -4.04 -4.80 -5.28
Australia 25.06 19.11 9.94 2.65 -1.32 -3.34 -4.43 -5.06 -5.47
Belgium 23.25 15.97 9.85 5.43 2.27 -0.01 -1.68 -2.92 -3.83
Canada 22.35 17.93 10.36 3.04 -1.25 -3.33 -4.37 -4.97 -5.36

Denmark 15.40 12.56 8.67 4.74 1.54 -0.82 -2.48 -3.61 -4.37
Finland 25.45 20.42 13.14 5.56 0.76 -1.72 -3.13 -4.03 -4.64
France 18.47 13.52 8.89 4.81 1.72 -0.49 -2.07 -3.18 -3.95

Germany 20.25 15.44 10.36 5.25 1.24 -1.37 -2.96 -3.90 -4.48
Italy 22.56 18.23 12.28 5.98 1.52 -1.10 -2.69 -3.71 -4.39

Japan 22.71 18.75 12.51 5.12 0.09 -2.45 -3.76 -4.49 -4.93
The Netherlands 18.97 12.02 7.20 3.68 1.07 -0.82 -2.21 -3.21 -3.95

Norway 23.96 19.01 12.25 5.63 1.36 -1.11 -2.67 -3.71 -4.42
Sweden 23.47 16.27 9.05 4.27 1.20 -0.91 -2.43 -3.52 -4.29

U.K. 24.30 17.60 9.38 3.89 0.50 -1.70 -3.14 -4.08 -4.70
ii):   with an intercept

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Austria 23.20 16.98 9.32 3.20 -0.57 -2.73 -3.99 -4.76 -5.25

Australia 25.06 19.15 8.50 1.27 -1.61 -3.24 -4.24 -4.89 -5.33
Belgium 23.25 16.88 10.04 5.43 2.29 0.02 -1.65 -2.87 -3.79
Canada 22.35 15.29 6.11 0.64 -2.08 -3.60 -4.49 -5.05 -5.42

Denmark 15.40 11.44 7.75 4.47 1.62 -0.66 -2.35 -3.52 -4.35
Finland 25.45 20.20 11.73 5.10 1.41 -0.87 -2.44 -3.53 -4.29
France 18.47 13.37 8.60 4.79 1.87 -0.30 -1.91 -3.06 -3.88

Germany 20.25 15.43 10.09 5.17 1.30 -1.31 -2.92 -3.89 -4.48
Italy 22.56 17.50 11.04 5.56 1.80 -0.61 -2.22 -3.30 -4.06

Japan 22.71 20.09 14.05 6.03 0.73 -2.06 -3.55 -4.39 -4.89
The Netherlands 18.97 12.77 7.31 3.67 1.08 -0.81 -2.20 -3.21 -3.94

Norway 23.96 18.45 11.02 5.54 2.28 0.04 -1.65 -2.92 -3.83
Sweden 23.47 16.27 9.05 4.27 1.20 -0.91 -2.43 -3.52 -4.29

U.K. 24.30 17.92 8.73 3.28 0.35 -1.73 -3.19 -4.13 -4.75
iii):   with an intercept and a linear time trend

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Austria 23.12 17.02 9.40 3.21 -0.57 -2.73 -3.99 -4.76 -5.25

Australia 22.90 15.71 7.23 1.41 -1.60 -3.25 -4.24 -4.86 -5.28
Belgium 21.53 16.10 10.20 5.52 2.29 0.01 -1.65 -2.87 -3.78
Canada 14.13 9.24 4.47 0.53 -2.08 -3.60 -4.50 -5.05 -5.41

Denmark 14.06 10.74 7.55 4.44 1.62 -0.66 -2.35 -3.52 -4.31
Finland 20.17 14.58 9.34 4.77 1.41 -0.86 -2.44 -3.53 -4.29
France 18.28 13.23 8.58 4.79 1.87 -0.30 -1.91 -3.06 -3.88

Germany 20.12 15.27 10.05 5.17 1.30 -1.31 -2.92 -3.88 -4.47
Italy 21.18 15.97 10.43 5.48 1.80 -0.62 -2.22 -3.30 -4.06

Japan 22.08 18.09 12.11 5.57 0.73 -2.05 -3.54 -4.38 -4.89
The Netherlands 17.42 12.18 7.39 3.72 1.08 -0.81 -2.20 -3.21 -3.94

Norway 19.65 14.24 9.33 5.28 2.28 0.04 -1.65 -2.90 -3.82
Sweden 17.16 12.59 8.20 4.20 1.20 -0.91 -2.43 -3.52 -4.29

U.K. 17.78 12.51 7.45 3.36 0.35 -1.76 -3.19 -4.13 -4.75
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TABLE 4
Testing the order of integration with respect to the US with Bloomfield (1) disturbances

i):   with no regressors
0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00

Austria 11.27 6.92 3.82 1.14 -0.55 -1.67 -2.32 -2.87 -3.19
Australia 13.52 9.51 4.98 1.70 -0.47 -1.64 -2.52 -3.09 -3.52
Belgium 11.20 5.51 2.16 0.09 -1.21 -2.07 -2.62 -3.04 -3.29
Canada 10.92 8.65 5.17 2.09 -0.38 -2.00 -2.89 -3.43 -3.76

Denmark 4.76 3.14 1.48 -0.14 -1.13 -1.88 -2.53 -2.93 -3.28
Finland 12.44 9.03 5.13 1.34 -0.93 -2.16 -2.92 -3.30 -3.59
France 6.16 3.05 0.91 -0.64 -1.74 -2.39 -2.92 -3.33 -3.58

Germany 7.85 4.53 2.26 0.39 -1.04 -2.06 -2.85 -3.40 -3.88
Italy 9.89 7.18 3.92 1.02 -0.93 -2.10 -2.83 -3.27 -3.59

Japan 11.71 9.01 5.85 2.61 0.31 -1.29 -2.37 -3.03 -3.45
The Netherlands 6.75 2.57 0.23 -1.27 -2.12 -2.76 -3.21 -3.47 -3.79

Norway 11.18 7.76 3.99 0.83 -1.00 -2.11 -2.72 -3.13 -3.44
Sweden 11.08 7.81 3.71 0.69 -1.25 -2.35 -2.92 -3.29 -3.58

U.K. 11.55 6.86 2.41 0.07 -1.16 -2.10 -2.62 -3.13 -3.54
ii):   with an intercept

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Austria 11.27 7.64 3.71 1.13 -0.67 -1.71 -2.32 -2.85 -3.18

Australia 13.52 9.60 4.30 0.14 -1.35 -2.23 -2.88 -3.26 -3.58
Belgium 11.20 6.33 2.31 -0.04 -1.29 -2.13 -2.67 -3.08 -3.33
Canada 10.92 7.07 2.62 0.02 -1.39 -2.28 -2.93 -3.28 -3.57

Denmark 4.76 2.68 0.77 -0.28 -1.28 -1.88 -2.35 -2.87 -3.22
Finland 12.44 8.19 3.60 0.24 -1.24 -2.08 -2.71 -3.09 -3.40
France 6.16 3.29 0.88 -0.64 -1.76 -2.33 -2.85 -3.26 -3.52

Germany 7.85 4.72 2.26 0.35 -0.96 -1.94 -2.75 -3.34 -7.78
Italy 9.89 6.01 2.50 0.12 -1.39 -2.25 -2.97 -3.37 -3.68

Japan 11.71 10.00 6.68 2.85 0.38 -1.11 -2.04 -2.72 -3.17
The Netherlands 6.75 2.97 0.27 -1.26 -2.10 -2.74 -3.19 -3.45 -3.78

Norway 11.18 7.05 2.63 -0.06 -1.31 -2.12 -2.55 -3.01 -3.30
Sweden 11.08 6.15 2.12 -0.16 -1.37 -2.16 -2.69 -3.12 -3.39

U.K. 11.55 7.09 2.03 -0.30 -1.27 -2.04 -2.51 -2.98 -3.38
iii):   with an intercept and a linear time trend

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Austria 11.14 7.69 3.80 1.15 -0.67 -1.72 -2.32 -2.84 -3.16

Australia 11.55 7.30 3.33 0.18 -1.35 -2.26 -2.87 -3.15 -3.27
Belgium 9.50 5.60 2.63 0.07 -1.29 -2.14 -2.68 -3.07 -3.49
Canada 4.98 2.83 1.33 -0.16 -1.39 -2.28 -2.93 -3.28 -3.57

Denmark 3.91 2.23 0.75 -0.31 -1.28 -1.88 -2.35 -2.86 -3.19
Finland 8.29 4.67 2.02 0.05 -1.25 -2.08 -2.72 -3.09 -3.40
France 6.35 3.07 0.86 -0.64 -1.76 -2.33 -2.85 -3.26 -3.53

Germany 7.67 4.61 2.21 0.34 -0.96 -1.94 -2.75 -3.32 -3.80
Italy 8.69 5.25 2.28 0.03 -1.39 -2.25 -2.97 -3.37 -3.68

Japan 11.41 8.32 5.36 2.55 0.38 -1.07 -2.01 -2.67 -3.22
The Netherlands 5.72 2.52 0.23 -1.21 -3.10 -2.74 -3.19 -3.45 -3.78

Norway 7.38 4.41 1.72 -0.13 -1.31 -2.11 -2.55 -3.01 -3.29
Sweden 6.35 3.67 1.51 -0.23 -1.37 -2.16 -2.69 -3.12 -3.38

U.K. 6.79 3.55 1.39 -0.25 -1.28 -1.92 -2.51 -2.98 -3.38
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TABLE 5

Confidence intervals for the non-rejection values of d with white noise disturbances

Individual series With respect to the US
No regressors Intercept Linear trend No regressors Intercept Linear trend

Austria [0.88 – 1.16] [0.89 – 1.16] [0.88 – 1.16] [0.84 – 1.10] [0.84 – 1.10] [0.84 – 1.10]
Australia [0.88 – 1.10] [0.93 – 1.13] [0.92 – 1.14] [0.80 – 1.02] [0.73 – 1.00] [0.74 – 1.00]
Belgium [0.91 – 1.14] [1.02 – 1.29] [1.02 – 1.30] [1.07 – 1.49] [1.08 – 1.49] [1.08 – 1.49]
Canada [0.92 – 1.24] [0.98 – 1.34] [0.98 – 1.34] [0.82 – 1.03] [0.69 – 0.94] [0.68 – 0.94]

Denmark [0.83 – 1.07] [0.90 – 1.08] [0.85 – 1.09] [1.00 – 1.36] [1.00 – 1.38] [1.00 – 1.38]
Finland [0.99 – 1.31] [1.01 – 1.33] [1.00 – 1.34] [0.95 – 1.23] [0.98 – 1.33] [0.98 – 1.34]
France [0.93 – 1.21] [0.97 – 1.27] [0.96 – 1.27] [1.01 – 1.41] [1.03 – 1.44] [1.03 – 1.44]

Germany [0.93 – 1.27] [0.99 – 1.43] [0.99 – 1.43] [0.98 – 1.28] [0.98 – 1.29] [0.98 – 1.29]
Italy [0.97 – 1.25] [1.02 – 1.32] [1.03 – 1.33] [1.00 – 1.32] [1.02 – 1.39] [1.02 – 1.39]
Japan [0.98 – 1.20] [0.98 – 1.21] [0.98 – 1.21] [0.91 – 1.14] [0.95 – 1.20] [0.95 – 1.20]

Netherlands [0.87 – 1.13] [0.88 – 1.17] [0.87 – 1.17] [0.94 – 1.37] [0.94 – 1.38] [0.94 – 1.38]
Norway [0.95 – 1.12] [0.98 – 1.14] [0.96 – 1.16] [0.98 – 1.32] [1.07 – 1.50] [1.07 – 1.50]
Sweden [0.94 – 1.17] [1.01 – 1.28] [1.02 – 1.28] [0.95 – 1.27] [0.97 – 1.36] [0.97 – 1.36]

U.K. [0.91 – 1.16] [1.06 – 1.49] [1.07 – 1.49] [0.92 – 1.24] [0.90 – 1.23] [0.90 – 1.23]

TABLE 6
Confidence intervals for the non-rejection values of d with Bloomfield (1) disturbances

Individual series With respect to the US
No regressors Intercept Linear trend No regressors Intercept Linear trend

Austria [0.73 – 1.14] [0.76 – 1.08] [0.69 – 1.08] [0.69 – 1.14] [0.69 – 1.24] [0.68 – 1.24]
Australia [0.87 – 1.34] [0.90 – 1.28] [0.89 - 1.31] [0.76 – 1.24] [0.63 – 1.05] [0.61 - 1.05]
Belgium [0.83 – 1.22] [0.83 – 1.08] [0.79 – 1.11] [0.55 – 1.10] [0.56 – 1.08] [0.57 – 1.11]
Canada [0.66 – 1.16] [0.78 – 1.20] [0.57 – 1.20] [0.79 – 1.16] [0.57 – 1.06] [0.46 – 1.06]

Denmark [0.73 – 1.13] [0.81 – 1.01] [0.67 – 1.01] [0.48 – 1.13] [0.37 – 1.15] [0.35 – 1.15]
Finland [0.79 – 0.99] [0.79 – 0.98] [0.68 – 0.98] [0.73 – 1.10] [0.62 – 1.08] [0.56 – 1.08]
France [0.74 – 1.17] [0.74 – 1.05] [0.63 – 1.07] [0.43 – 0.98] [0.40 – 0.99] [0.41 – 0.99]

Germany [0.63 – 1.02] [0.65 – 0.89] [0.47 – 0.88] [0.58 – 1.13] [0.56 – 1.17] [0.56 – 1.17]
Italy [0.81 – 1.11] [0.85 – 1.13] [0.79 – 1.14] [0.70 – 1.10] [0.58 – 1.04] [0.56 – 1.04]
Japan [0.93 – 1.29] [0.89 – 1.27] [0.85 – 1.28] [0.84 – 1.29] [0.87 – 1.37] [0.85 – 1.38]

Netherlands [0.70 – 1.11] [0.69 – 0.97] [0.59 – 0.97] [0.32 – 0.87] [0.36 – 0.86] [0.34 – 0.86]
Norway [0.89 – 1.12] [0.91 – 1.09] [0.85 – 1.15] [0.69 – 1.12] [0.58 – 1.09] [0.51 – 1.10]
Sweden [0.83 – 1.34] [0.90 – 1.16] [0.85 – 1.19] [0.67 – 1.06] [0.54 – 1.05] [0.46 – 1.05]

U.K. [0.74 – 1.17] [0.81 – 1.09] [0.72 – 1.12] [0.57 – 1.13] [0.53 – 1.15] [0.47 – 1.14]
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TABLE 7
Values of d which produces the lowest statistics in absolute value with white noise u t

Individual series With respect to the US
No regressors Intercept Linear trend No regressors Intercept Linear trend

Austria 0.99 0.99 0.99 0.95 0.95 0.95
Australia 0.97 1.01 1.01 0.90 0.84 0.85
Belgium 1.00 1.12 1.13 1.25 1.25 1.25
Canada 1.05 1.14 1.14 0.91 0.80 0.79

Denmark 0.93 0.96 0.94 1.15 1.17 1.17
Finland 1.10 1.12 1.13 1.06 1.14 1.14
France 1.04 1.09 1.09 1.19 1.21 1.21

Germany 1.07 1.16 1.16 1.10 1.11 1.11
Italy 1.08 1.14 1.15 1.13 1.18 1.18
Japan 1.06 1.06 1.07 1.01 1.05 1.05

Netherlands 0.97 0.99 0.99 1.13 1.13 1.13
Norway 1.00 1.03 1.03 1.12 1.26 1.26
Sweden 1.03 1.12 1.13 1.07 1.13 1.13

U.K. 1.01 1.23 1.24 1.05 1.04 1.04

TABLE 8
Values of d which produce the lowest statistic in absolute value with Bloomfield (1) u t

Individual series With respect to the US
No regressors Intercept Linear trend No regressors Intercept Linear trend

Austria 0.86 0.87 0.84 0.81 0.87 0.88
Australia 1.06 1.03 1.04 0.95 0.77 0.78
Belgium 0.99 0.93 0.92 0.76 0.74 0.77
Canada 0.77 0.88 0.83 0.94 0.75 0.71

Denmark 0.88 0.88 0.82 0.76 0.69 0.69
Finland 0.87 0.87 0.80 0.87 0.78 0.76
France 0.88 0.83 0.79 0.65 0.62 0.62

Germany 0.77 0.72 0.63 0.80 0.79 0.80
Italy 0.91 0.94 0.93 0.87 0.77 0.75
Japan 1.03 1.03 1.03 1.02 1.03 1.03

Netherlands 0.86 0.79 0.74 0.53 0.54 0.54
Norway 0.97 0.98 0.97 0.84 0.74 0.72
Sweden 0.99 0.99 0.98 0.81 0.81 0.70

U.K. 0.91 0.90 0.87 0.76 0.69 0.71
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FIGURE 1

QMLE of Robinson (1995b) based on the first differenced data for a range of values J=50, 100
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FIGURE 1 (cont.)

QMLE of Robinson (1995b) based on the first differenced data for a range of values J=50, 100
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