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1. INTRODUCTION

Economic theories in dynamic contexts usually impose certain restrictions on the conditional mean

function of the underlying economic variables. Omnibus speci�cation tests are the primary tools to

test such restrictions when there is no information on the possible alternative. They are intended

to have some power against all alternatives. However, in econometric applications practitioners are

sometimes interested in knowing if the rejection of onmibus tests has been caused by departures

in the direction of some speci�c alternatives. For instance, in a simple linear regression model the

econometrician might not be worried about a misspeci�cation of the linear model as long as the

errors are uncorrelated with the regressors. When particular alternatives are in mind optimal tests

are possible. The �rst main purpose of this paper is to proposed optimal tests when there is only

one speci�c alternative in mind and when there is a �nite set of them (more than one). We call these

optimal procedures optimal directional test and optimal smooth test, respectively. Our second target

is to study in detail the asymptotic power properties of omnibus speci�cation tests for dynamic

regressions. As a result of this study, we show that all omnibus tests have a preference for a �nite-

dimensional space of alternatives. Apart from this "preferred" space the power of the omnibus test

is almost �at. This fact motivates the use of smooth tests against the preferred space instead of the

omnibus test. Directional and smooth tests are not only useful because they focus their power on

the desired alternatives, but also because they provide information on an alternative model in the

case of rejection, see Rayner and Best (1989). The asymptotic power properties of omnibus tests

and the design of directional and smooth tests in the context of classical goodness-of-�t tests for

distributions functions are now well-developed and have been a large �eld of study since the initial

work by Pearson (1900). This fact contrasts with that of the speci�cation tests for conditional mean

functions, or more generally, with the literature on conditional moment restrictions, where there

have been few works focused on these problems. The main purpose of this paper is to help to �ll

this gap.

More concretely, we consider the so-called integrated-based tests that provide a large family

of omnibus speci�cation tests for dynamic regression models, see Bierens (1982, 1984, 1990), de

Jong (1996), Stute (1997), Bierens and Ploberger (1997), Koul and Stute (1999), Whang (2001),

Domínguez and Lobato (2003) or Escanciano (2004a), among many others. In the integrated ap-

proach tests are based on a general class of residual marked processes (RMP). All tests considered

in this paper, omnibus, smooth and directional, are continuous functionals of these RMP. Therefore,

we show that the RMP are the building-blocks for a uni�ed theory of a large class of speci�cation

tests for parametric conditional means with di¤erent power properties and di¤erent purposes.

We �rst study in some detail the asymptotic local power function (ALPF) of the omnibus integrated-
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based tests. Omnibus tests are capable of detecting every misspeci�cation asymptotically, i.e., they

are consistent. But such as assertion is only useful, if one knows which types of deviations can be

detected with a reasonable sample size, and for which other alternatives its power is rather poor. In

addition, since there may be several competing omnibus tests with di¤erent power properties that

are usually unknown a priory, the practitioner faces the problem of which test to use. To overcome

these two problems, we de�ne asymptotic local relative e¢ ciency (ALRE) measures between di¤erent

tests that can be used for comparison purposes. These e¢ ciency measures may help to practitioners

to choose the best test when a particular direction is in mind and to check which deviations are

well detected and which are bad detected for a speci�c integrated-based test. We show that all the

omnibus integrated-based tests have reasonable power only against a set of alternatives belonging

to a �nite-dimensional subset. Apart form this space the power is almost �at. We characterize such

"preferred" space for the Cramér-von Mises (CvM) tests and propose a candidate for it in the case

of a general omnibus integrated-based tests.

In the second part of the paper we propose optimal directional and smooth tests in the context

of speci�cation tests for dynamic regressions. These optimal procedures are very convenient when

particular alternatives are in mind. By applying the smooth methodology to the preferred space

of the omnibus tests we obtain smooth versions of the omnibus tests that are optimal against

such preferred space, and therefore, compare very well with the omnibus tests. Contrary to the

omnibus tests, these smooth versions are asymptotically distribution-free, so critical values can be

tabulated. To compute the smooth versions of the omnibus tests we need estimations of the principal

components of the RMP. We provide such estimations and show their consistency. These estimations

are also useful for computing the ALRE.

Since the fundamental work by Pearson (1900) there has been a large body of statistical literature

devoted to the study of the goodness-of-�t tests for distributions functions and the power properties

of such tests. In this framework the asymptotic behavior of the well-known CvM test has been

investigated in Anderson and Darling (1952), Durbin and Knott (1972) and Neuhaus (1976), among

others. Hájek and �idák (1967) and Milbrodt and Strasser (1990) studied the one-sided and two-

sided Kolmogorov-Smirnov (KS) test, respectively. See also Janssen (1995). It is well-known that

the CvM and KS tests are omnibus. The literature on smooth tests began with the seminal work

by Neyman (1937). See Rayner and Best (1989) for a monograph on smooth tests for distributions.

Neyman�s (1937) test has been studied and generalized by numerous authors, see, e.g., Kallenberg

and Ledwina (1997) and references therein.

The literature on the asymptotic power properties of tests and the design of directional and smooth

tests in the context of speci�cation tests for regressions is scarce. Stute (1997) proposed omnibus,

smooth and directional tests for regression models using the nonparametric principal components
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of the underlying RMP, see also Stute, Thies and Zhu (1998). The smooth tests considered by

these authors are smooth versions of the CvM test for univariate regressions. Fan and Huang (2001)

consider data-driven smooth tests using Fourier transforms for linear models with Gaussian errors,

extending previous work by Fan (1996) to regressions. These works assume independent and identi-

cally distributed (iid) observations. In a time series framework, Bierens and Ploberger (1997) study

the power properties of some integrated-based tests under conditional homoscedasticity. However,

they restricted the analysis to the CvM tests and their main interest was to prove the asymptotic

admissibility of the CvM test. Our results extend these works in several aspects. We consider a

much larger class of directional and smooth tests, not only smooth versions of the CvM tests but

also smooth tests against any �nite set of alternatives. Furthermore, even for the smooth versions

of the CvM tests our proposal uses new estimators of the principal components di¤erent and more

general than those considered in Stute (1997). Our study of the power properties of omnibus tests

considers a general continuous functional, including but not restricting to CvM tests. In particular,

our analysis covers KS-type functionals. Also, here we are concerned with the development of mea-

sures for comparing di¤erent tests and the computation of such measures in practice. Finally, our

assumptions are very weak; they are valid for time series processes with multivariate regressors and

under higher conditional moments of unknown form, in particular under conditional heteroskedas-

ticity. Note that this is very important for econometric applications. We would like to stress at this

point that the arguments used in our theory are not exclusive of the speci�cation tests for conditional

means and that they hold for more general conditional moment restrictions under additional mild

assumptions. However, to make the exposition simpler, we have restricted ourselves to speci�cation

tests for time series regressions.

The paper is organized as follows. In Section 2 we review the integrated methodology for speci�-

cation tests of regression functions and we introduce the assumptions. In Section 3 we study some

analytical properties of the ALPF of the integrated-based tests as a function of the distance and the

direction to the null. We �nd the directions of maximum power for the CvM tests:We show that all

omnibus integrated-based tests have a preference for a �nite-dimensional space of alternatives. We

characterize such space for CvM tests. We also compute the slope of the ALPF of general function-

als, that allows us to de�ne an ALRE concept very useful for comparing di¤erent tests. We de�ne

a large class of optimal directional tests in Section 4. Section 5 is devoted to the design of smooth

tests against a �nite-set of alternatives and for the smooth versions of CvM tests. In Section 6 we

propose new estimators of the principal components of the RMP and show their consistency. These

estimations are necessary to put some previous theory into practice. A Monte Carlo experiment

in Section 7 shows that the previous asymptotic theory is an acceptable approximation for �nite

samples. Finally, an empirical application to some exchange rates in Section 8 highlights the merits
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of our approach and illustrates the relevance of our results for practitioners. Proofs are deferred to

Section 9.

In the sequel C is a generic constant that may change from one expression to another. Throughout,

A0; Ac and jAj denote the matrix transpose; the complex conjugate and the Euclidean norm of A;

respectively. Rd denotes the extended d-dimensional Euclidean space, i.e., Rd = [�1;1]d: In what

follows, �c will denote a compact subset of � � R
q
; and let `1(�) be the space of all complex-valued

functions that are uniformly bounded on �c; for all compact subsets of � � Rq: Let =) denote

weak convergence on compacta in `1(�); i.e., weak convergence on `1(�c) for any compact subset

�c of �; see De�nition 1.3.3 and Chapter 1.6 in van der Vaart and Wellner (1996, hereafter VW).

Note that if � is compact (e.g., Rq), then =) reduces to the classical weak convergence concept

of Ho¤mann-Jørgensen (see Chapter 1.5 in VW). Also P�
�! and as��! denote convergence in outer

probability and outer almost surely, respectively, see De�nition 1.9.1 in VW. All limits are taken as

the sample size n!1:

2. INTEGRATED-BASED TESTS FOR MODEL CHECKS

To begin with, let us consider the dependent variable Yt 2 R; and the information set at time

t � 1; It�1 2 Rd; d 2 N; say, that is given by It�1 = (W 0
t�1; Z

0
t�1)

0; where Zt�1 2 Rm; m 2 N; is

a m-dimensional observable random variable (r.v) and Wt�1 = (Yt�1; :::; Yt�s) 2 Rs, so d = s+m:

We shall assume throughout the paper that f(Yt; I 0t�1)0 : t = 0;�1;�2; :::g is a strictly stationary

and ergodic time series process de�ned on the probability space (
;F ; P ) and such that Yt is P -

integrable. Under the assumed conditions, we can write the tautological expression

Yt = f(It�1) + "t;

where f(z) := E[Yt j It�1 = z]; z 2 Rd; is the conditional mean function of Yt given the information

set It�1 and "t := Yt�E[Yt j It�1]. Then, in parametric time series models one assumes the existence

of a parametric family of functionsM = ff(�; �) : � 2 � � Rpg and proceeds to test the hypothesis

f 2 M: Parametric time series regression models continue to be attractive among practitioners

because the parameter � together with the functional form f(It�1; �) describe, in a concise way, the

relation between the response Yt and the information set It�1: Examples of speci�cationsM include

linear and nonlinear autoregressive models, such as Markov-switching, exponential or threshold

autoregressive models among many others, see, e.g., Fan and Yao (2003). We say that f(It�1; �) is

correctly speci�ed for f(It�1) when there exists some �0 in � � Rp such that f(It�1; �0) = f(It�1)

almost surely (a.s.). The correct speci�cation of the conditional mean is important in order to avoid

wrong conclusions in statistical inferences based on the parametric model f(It�1; �0): Our target is
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then to test the hypothesis that f 2M; i.e.,

H0 : E[Yt j It�1] = f(It�1; �0) a:s:; for some �0 2 � � Rp;

against the nonparametric alternatives

HA : P (E[Yt j It�1] 6= f(It�1; �)) > 0 ; for all � 2 � � Rp;

or against the local alternatives

HA;n(c) : Yt;n = f(It�1; �0) +
ca(It�1)

n1=2
+ "t; a.s.; (1)

where a 2 A; and A is the space of all measurable functions a(�) : Rd �! R that are P -measurable,

with zero mean, bounded variance and satisfy P (a(It�1) = 0) < 1: In the local alternatives (1), c

represents the distance from the alternative to H0 and a the direction of the alternative:

Let us de�ne the parametric error et(�) := Yt � f(It�1; �); t 2 Z: It is easy to see that H0 is

tantamount to

E[et(�0) j It�1] = 0 a:s:; for some �0 2 � � Rp: (2)

The literature on testing the correct speci�cation of regression models is huge. A partial list of works

can be found in Escanciano (2004a). This extensive literature can be divided in two approaches.

The �rst class of tests uses nonparametric smoothing estimations of E[et(�0) j It�1] and proceeds

to test condition (2), see Wooldridge (1992), Yatchew (1992), Horowitz and Härdle (1994) or Zheng

(1996), to mention a few. This "local approach" requires smoothing of the data in addition to

the estimation of the �nite-dimensional parameter vector �0; and leads to less precise �ts; see Hart

(1997) for a review of the local approach when d = 1.

The second class of tests avoids smoothing estimation by means of reducing the conditional mo-

ment restriction in (2) to an in�nite number of unconditional moment restrictions over a parametric

family of functions, i.e.,

E[et(�0) j It�1] = 0 a:s:() E[et(�0)w(It�1; x)] = 0; almost everywhere (a:e:) in � � R
q
; (3)

where � � Rq; q 2 N; is a properly chosen space and the parametric family fw(�; x) : x 2 �g is

such that the equivalence (3) holds, see Stinchcombe and White (1998) and Escanciano (2004b)

for primitive conditions on the family fw(�; x) : x 2 �g to satisfy this equivalence. We call the

approach based on (3) the "integrated approach", because it uses integrated (or cumulative) mea-

sures of dependence. In the integrated approach, test statistics are based on a distance from the

sample analogue of E[et(�0)w(It�1; x)] to zero. See Fan and Li (2000) for a comparison between the

integrated and local approaches.

Since the initial work by Bierens (1982) there has been a large body of literature using the inte-

grated approach. Bierens (1982) considered the exponential weight function w(It�1; x) = exp(ix0It�1)
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in (3), where i =
p
�1 denotes the imaginary unit, whereas Stute (1997) used the indicator function

w(It�1; x) = 1(It�1 � x). Bierens and Ploberger (1997) proposed a general class of weight func-

tions including w(It�1; x) = sin(x0It�1) or w(It�1; x) = 1=(1 + exp(c � x0It�1)) with c 2 R, c 6= 0;

among many others: Recently, Escanciano (2004a) has considered w(It�1; x) = 1(�
0It�1 � u); with

x = (�0; u)0 2 �pro = Sd � [�1;1]; where Sd is the unit ball in Rd; i.e., Sd = f� 2 Rd : j�j = 1g;

as a combination of Bierens-Stute weights. See Stinchcombe and White (1998) for other families

fw(�; x) : x 2 �g: Note that di¤erent families w deliver di¤erent power properties of the integrated-

based tests. However, a question that remains unsolved is which weight function is the optimal,

in the sense of asymptotic power properties of the associated integrated test, for testing H0. The

results of Bierens and Ploberger (1997) show that there does not exist an optimal weight function

uniformly over the whole space of alternatives A.

In view of a sample f(Yt; I 0t�1)0 : 1 � t � ng; the standardized sample version of E[et(�0)w(It�1; x)]

is given by the residual marked empirical process

R1n;w(x; �n) � R1n;w(x) = n�1=2
nX
t=1

et(�n)w(It�1; x);

where �n is a
p
n-consistent estimator for �0. Because of (3), test statistics are based on a norm of

R1n;w, say �(R
1
n;w). The most used norms are the CvM and KS functionals

CvMn;w :=

Z
�

��R1n;w(x)��2	(dx)
and

KSn;w := sup
x2�c

��R1n;w(x)�� ;
respectively, where 	(x) is an integrating function satisfying some mild conditions. The integrated-

based tests reject the null hypothesis H0 for "large" values of �(R1n;w).

Now, we discuss the asymptotic null and local distribution for the test based on �(R1n;w). To derive

the asymptotic theory we consider the following assumptions. First, let us de�ne the semimetric

dw(x1; x2) :=
�
E["21 fw(I0; x1)� w(I0; x2)g

2
]
�1=2

and the score g(It�1;�0) := (@=@�
0)f(It�1; �0): Let

Ft := �(I 0t; I
0
t�1; :::; I

0
0) be the �-�eld generated by the information set obtained up to time t: Let

F (�) be the joint cumulative distribution function (cdf) of (Yt; I 0t�1); and let FY (�) and FI(�) be

their marginal distributions; respectively. Let �2(y) be the conditional error variance, i.e., �2(y) :=

E["2t j It�1 = y]: Given two points x1 and x2 on R
q
, the bracket [x1; x2] is the set of all points x

with x1 � x � x2: An "-bracket is a bracket [x1; x2] with dw(x1; x2) < ": The bracketing number

N(�c; dw; ") is the minimum number of "-brackets needed to cover �c:

Assumption A1:

A1(a): f(Yt; I 0t�1)0 : t = 0;�1;�2; :::g is a strictly stationary and ergodic process with E jY1j < C:
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A1(b): E["t j Ft�1] = 0 a.s. for all t � 1; E j"1j2 < C and �2(y) � C > 0 for all y 2 Rd:

A1(c): dw(x1; x2) is continuous on �c ��c; for any compact subset �c � � � R
q
:

Assumption A2: f(�; �) is twice continuously di¤erentiable in a neighborhood of �0 2 �: There

exists a functionM(It�1) with jg(It�1;�)j �M(It�1); 8� 2 �; such thatM(It�1) is FI(�)-integrable.

Assumption A3: The parametric space � is compact in Rp: The true parameter �0 belongs to the

interior of �: The estimator �n satis�es the following asymptotic expansion under H0

p
n(�n � �0) =

1p
n

nX
t=1

"tk(It�1; �0) + oP (1);

where k(�) is such that L(�0) = E["21k(I0; �0)k
0(I0; �0)] exists and is positive de�nite:Whereas under

HA;n(c)

p
n(�n � �0) = �a +

1p
n

nX
t=1

"tk(It�1; �0) + oP (1);

where �a = cE[a(I0)k(I0; �0)]:

Assumption A4:

A4(a): The weighting function w(�) is such that the equivalence in (3) holds. For any compact

set �c of �; w(It�1; x) is uniformly bounded (a.s.) on �c, satis�es

1Z
0

p
log(N(�c; dw; "))d" <1;

and the uniform law of large numbers (ULLN)

sup
x2�c

�����n�1
nX
t=1

�tw(Xt; x)� E[�tw(Xt; x)]

����� as��! 0

holds whenever f(�t; X 0
t)
0; t = 0;�1; :::g is a strictly stationary and ergodic process with E j�1j < C:

A4(b): The integrating function 	(�) is a probability distribution function which is chosen ab-

solutely continuous with respect to Lebesgue measure.

Conditions A1 to A4 are considered in Escanciano (2004a) and are discussed in detail there.

Note that Assumption A1 is very mild and allows for conditional higher moments of unknown

form, such as conditional heteroskedasticity or time varying conditional kurtosis. In A3(b) we

assume that the estimator �n satis�es a Bahadur linear representation under the null and under local

alternatives: This condition is satis�ed for a large class of estimators resulting from a martingale

estimating equation, see Heyde (1997). In particular, it is satis�ed under mild conditions by the

nonlinear conditional least squares estimator (NLSE) with k(It�1; �) = A�1(�)g(It�1; �); where

A(�) = E[g(I0;�)g
0(I0;�)], see Tjøstheim (1986). Assumption A4(a) restrict the "size" of the family
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fw(�; x) : x 2 �g: Escanciano (2004a) shows that A4(a) holds for all weight functions w considered

in the literature. We are now in position to establish the asymptotic distribution of R1n;w under

the null and local alternatives. To this end, let us de�ne the functions Gw(x) � Gw(x; �0) :=

E[g(I0;�0)w(I0; x)] and �w(s; x; �0) � �w(s; x) := w(s; x)�G0w(x; �0)k(s; �0); x 2 � � R
q
, s 2 Rd:

Theorem 1: (Escanciano 2004a, Theorem 3) Under the null hypothesis H0 and Assumptions A1-A3

and A4(a), uniformly in x on compacta

R1n;w(x) = n�1=2
nX
t=1

"t�w(It�1; x; �0) + oP (1):

Furthermore

R1n;w(�) =) R11;w(�);

where R11;w is a zero mean Gaussian process with covariance function

Kw(x1; x2) = E["21�w(I0; x1; �0)�
c
w(I0; x2; �0)]:

Theorem 2: (Escanciano 2004a, Theorem 5) Under the local alternatives HA;n(c), Assumptions

A1-A3 and A4(a)

R1n;w =) R11;w + cDw;a;

where R11;w is the process de�ned in Theorem 1 and Dw;a(�) = E[a(I0)�w(I0; �; �0)]:

Next, using the last theorems and the Continuous Mapping Theorem (CMT), see, e.g., Theorem

1.3.6 in VW, we obtain the asymptotic distribution of continuous functionals CvMn;w and KSn;w

under the null and local alternatives.

Corollary 1: Under the assumptions of Theorem 1, for any continuous (with respect to the sup

norm) functional �(�) it holds that

�(R1n;w)
d�! �(R11;w):

Whereas under the assumptions of Theorem 2

�(R1n;w)
d�! �(R11;w + cDw;a):

To end this section, we shall �nd conditions that guarantee that the test based on �(R1w;n) is

asymptotically unbiased. Let us de�ne the asymptotic local power function (ALPF) as

�w;�(�; c; a) := Lim
n!1

P
�
�(R1n;w) � c�;� j HA;n(c)

�
;
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where a 2 A; c 2 R and where c�;� is such that Lim
n!1

P
�
�(R1n;w) � c�;� j H0

�
= �: Then, we �nd

conditions under which �w;�(�; c; a) > � holds for c 6= 0. Theorem 2 yields that for continuous

functionals �(�)

�w;�(�; c; a) = P0(�(R11;w + cDw;a) > c�;�);

where P0 the probability measure associated to R11;w under the null hypothesis. If �(�) is an

even functional, we have that �w;�(�; c;�a) = �w;�(�; c; a): Anderson�s Lemma, cf. Anderson

(1955), yields that �w;�(�; c; a) is a nondecreasing function of jcj : Furthermore, it can be shown, see

Theorem 6 below, that the derivative of �w;�(�; c; a) at c = 0 is zero and that the second derivative

is strictly positive provided that Dw;a 6= 0: These arguments show that for c 6= 0; �w;�(�; c; a) > �

holds. Obviously, if �w;�(�; c; a) > � then Da 6= 0: Therefore, the test based on a continuous even

functional � is unbiased if and only if Da 6= 0 with positive measure. Note that the latter condition

is true if and only if a(It�1) 6= Cg(It�1;�0) with positive probability. To our knowledge this result

has not been established previously in the literature under such generality.

3. ASYMPTOTIC LOCAL POWER FUNCTION OF OMNIBUS TESTS

In this section we study in some detail the asymptotic local power properties of the integrated-

based tests for testing H0 against HA;n(c), that is, we study the ALPF �w;�(�; c; a) as a function

of a 2 A and c 2 R: In particular, we are interested in the analytical behavior of �w;�(�; c; a) for

�xed � and a; as a function of c, and for �xed � and c; as a function of a. We shall start studying

�w;�(�; c; a) as a function of a. In what follows, the subscript w in some quantities that depend on

the weighting family chosen, as well as on 	; will be dropped whenever there is no confusion.

3.1 Asymptotic local power function as a function of the direction.

In this section we are interested in studying �w;�(�; c; a) as a function of the direction a 2 A: For

simplicity we shall start with the CvM tests. That is, we are now concerned with the ALPF

�w;	(�; c; a) := Lim
n!1

P (CvMn;w � c� j HA;n(c)) ;

where c� is such that Lim
n!1

P (CvMn;w � c� j H0) = �: We need some further notation. Let H1 :=

L2(�;	) be the Hilbert space of all 	-square integrable complex-valued functions on �; furnished

with the inner-product

hf; giH1
=

Z
�

f(x)gc(x)	(dx);

and the induced norm khkH1
= hh; hi1=2H1

: H1 is endowed with the natural Borel �-�eld induced

by the norm k�kH1
; see, e.g., Chapter VI in Parthasarathy (1967) for random variables (r.v�s) with

10



values on Hilbert spaces. Similarly, we de�ne H2 := L2(Rd; G); where G(dy) := �2(y)FI(dy); h�; �iH2

and k�kH2
: Here, we restrict the directions to a 2 A\H2: Note that R1n;w can be viewed as a random

element with values in H1 instead of `1(�): In fact, CvMn;w =


R1n;w

2H1

.

As a mapping in H1; R
1
1;w is a Gaussian random element and has characteristic functional �(h) =

exp(� 1
2 hCwh; hiH1

); h 2 H1; where Cw is its covariance operator, which is given by

Cw(h)(x) = E[


R11;w; h

�
H1
R11;w(x)]

= E["21 h�w(I0; �); hiH1
�w(I0; x)] h 2 H1:

Under our assumptions, the covariance operator Cw has the singular decomposition Cw = L�w �Lw;

where � stands for composition of operators, Lw : H1 �! H2 is the compact linear operator given

by

Lwh(s) = h�w(s; �); hiH1
s 2 Rd; h 2 H1

and L�w : H2 �! H1 is de�ned by

L�wa(x) = h�w(�; x); aiH2
x 2 �; h 2 H1:

L�w is the adjoint (dual) operator of Lw and therefore, they satisfy

ha; LwhiH2
= hL�wa; hiH1

:

The singular decomposition of Cw plays a crucial role in the power properties of �w;	(�; c; a): Let

H0
1 be the nullspace of Cw; and H

1
1 its orthogonal complement in H1: Because Cw is a compact linear

operator, we have that f�i;w; 'i;wg1i=1 is a complete sequence of eigenelements of it, i.e., f�i;wg1i=1
are real-valued and positive, and the corresponding eigenfunctions f'i;wg1i=1 form a complete or-

thonormal basis for H1
1 : Hence any H

1
1 -valued random element has a Fourier expansion in terms of

f'i;wg1i=1: In particular, we have the so-called Kac-Siegert representations (in distribution)

R1n;w =

1X
i=1

p
�i;w�n;i'i;w,

R11;w =
1X
i=1

p
�i;w�i'i;w,

where �i := �
�1=2
i;w



R11;w; 'i;w

�
H1
and �n;i := �

�1=2
i;w



R1n;w; 'i;w

�
H1
: Note that by Theorem 1, f�ig1i=1

are iid. N(0; 1) r.v�s and f�nig1i=1 are, at least, uncorrelated with unit variance. Then, Parseval�s

identity yields

CvM1;w =

1X
i=1

�i;w�
2
i : (4)

Therefore, the asymptotic null distribution of CvMn;w can be expressed as a weighted sum of

independent �21 r.v�s with weights depending on the data generating process (DGP). As we shall
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see, the principal components f�ig1i=1 play a central role in the power properties of the CvM tests.

Although the CvM tests are consistent against all alternatives in HA; in practice they are not able

to detect speci�c alternatives one might have in mind. In particular, it is possible to show that there

exist directions a(�) for which the asymptotic local power function is as near to � as desired, cf.

Theorem 3 below. This can be immediately seen from (4), since possible high-frequency deviations

from H0 are downweighted by �i;w and �i;w # 0 given the compactness of Cw:

Again, by Parseval�s identity we have that for each h 2 H1

P (


R11;w + h



2
H1
� c�) = P

( 1X
i=1

�i;w(�i + �i)
2 + �20 � c�

)
;

with �i = �
�1=2
i;w



h; 'i;w

�
H1
; i = 1; 2; :::, and �20 = khk2H1

�
1P
i=1

�2i : Accordingly, Theorem 2 yields

that

�w;	(�; c; a) = P (


R11;w + cDw;a



2
H1
� c�):

First, note that for directions a such that Dw;a = 0 a.e. the power �w(�; c; a) is minimum, i.e.,

�w(�; c; a) = �: From (3), this is the case if and only if a(It�1) = Cg(It�1;�0) a.s. for some C 2 R:

By de�nition of Lw we have that f i;wg1i=1; de�ned by  i;w := �
�1=2
i;w Lw'i;w; forms a complete

orthonormal system of Lw(H1); the closure of the image of H1 by Lw: Then, we are now in position

to establish the �rst main result of the paper. We �nd the directions of maximum local power of the

CvM tests. The analogous result for goodness-of-�t tests of distributions functions was proved in

Neuhaus (1976, Theorem 2.2). Intuitively, given the orthonormality of f i;wg1i=1 and the equality

Dw;a = L�w�
�2(�)a(�) we have that the direction with maximum local power is the maximizer of

�1 = �
�1=2
1;w



Dw;a; '1;w

�
H1
=


��2(�)a;  1;w

�
H2
; which is �2(�) 1;w(�):

Theorem 3: Assume A1 to A4. Then, the limiting power �w;	(�; c; a) of the CvM test has for the

vectors  i;w; i � 1; and every c � 0 the properties

maxf�w;	(�; c; a) : a 2 Lw(H1) \ A; kakH2
= 1g = �w;	(�; c; �2(�) 1;w(�));

�w;	(�; c; �
2(�) i;w(�)) � �w;	(�; c; �2(�) j;w(�)) for 1 � j � i;

lim
i!1

�w;	(�; c; �
2(�) i;w(�)) = �:

Furthermore, for each value � 2 (�;�w;	(�; c; �2(�) 1;w(�))); there exists a direction a 2 Lw(H1)

such that � = �w;	(�; c; a):

The theorem shows that there is one direction, namely �2(�) 1;w(�); with the highest asymptotic

local power that is possible. In each other direction, the power is smaller, and for bad directions,

the power is about �: Note that the best direction �2(s) 1;w(s) = �2(s)�
�1=2
1



�w(s; �); 'i;w

�
H1
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depends on the family fw;	g and, in general, on the true model and DGP. In Section 6 we provide

estimations for f i;w(�)g; see (11).

Example 1: Consider an iid sequence of r.v�s f"tgnt=1 distributed as F" with E"21 = 1: De�ne

Yt = "t and It�1 = Yt�1 = "t�1: Then, f(It�1) = 0 a.s. Consider the model f(It�1; �0) = �0; with

�0 unknown. It can be shown that the process

Rn;ind(t) = n�1=2
nX
t=1

("t � "n)1(F"(It�1) � t) t 2 [0; 1];

with "n = n�1
Pn
i=1 "t; converges weakly to a standard Brownian bridge B(t) on [0; 1]: The eigenele-

ments of the covariance operator associated to B are, for t 2 [0; 1] and i � 1,

'i(t) =
p
2 sin (i�t) �i =

1

i2�2
:

Then, the direction of maximum power of the CvM test based on Rn;ind with the integrating func-

tion d	(t) = dt is given by a�(Yt�1) =  1(Yt�1) = �
p
2 cos (F"(Yt�1)�=2) : If "t � U [0; 1]; then

a�(Yt�1) = �
p
2 cos (Yt�1�=2) and the CvM test based on Rn;ind is specialist in detecting low

frequency alternatives, i.e., alternatives that do not oscillate very much.

We now return to the problem of studying �w;�(�; c; a) as a function of a for a general con-

tinuous functional �: A consequence of Theorem 3 above is that for CvM tests the power function

�w;�(�; c; a) is �at on balls of alternatives except for alternatives coming from the �nite-dimensional

subspace generated by f�2(�) 1;w(�); :::; �2(�) m;w(�)g for a su¢ ciently large m 2 N: An extension of

this result to a general functional � is proved in the following theorem which is based on Theorem

2.1 of Janssen (2000). Let V ? � H2 denote the orthogonal complement of the linear subspace V of

H2:

Theorem 4: Assume A1 to A4. Let � be any continuous functional and � 2 (0; 1): For each " > 0

and K > 0 there exists a linear subspace V � H2 of �nite dimension with

supf�w;�(�; c; a) : a 2 V ?; kakH2
� Kg � ":

Morever the following upper bound:

dim(V )� 1 � "�1�(1� �)
�
exp(K2)� 1

�
holds for the dimension of V .

A consequence of Theorem 4 is that any integrated-based test has a preference for a �nite-

dimensional space of alternatives. For CvM tests this space is given by the space generated by

f�2(�) 1;w(�); :::; �2(�) m;w(�)g for m large enough. For other functionals � this �nite dimensional

set is much more di¢ cult to characterize, see Theorem 6 below for a possible candidate.
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3.2 Asymptotic local power function as a function of the distance to the null.

We now study �w;�(�; c; a) for a �xed direction a and varying in c; c � 0. More speci�cally, we

are interested in the analytical behavior of �w;�(�; c; a) for small and large c�s. The �rst theorem

considers the case c ! 1: This result extends Theorem 4 of Bierens and Ploberger (1997) to

a general functional � and the conditional heteroskedastic case. Note that this extension is far

from being trivial. In fact, their proof depends crucially on the structure of the CvM test and

the homoscedastic assumption. Theorem 4 of Bierens and Ploberger (1997) relies on the principal

component decomposition of the CvM tests. For a general functional such a spectral representation

is no longer available. However, we shall show in this section that a similar analysis is still possible

using the likelihood ratio of the limit process R1w;1 under the null and under local alternatives (see

6). Henceforth we assume the normalization E[a2(It�1)��2(It�1)] = 1:

Theorem 5: Assume A1 to A4. For any continuous functional �; for all � 2 (0; 1) and a 2

Lw(H1) \ A with E[a2(It�1)��2(It�1)] = 1; it holds that

lim
c!1

c�2 ln(1��w;�(�; c; a)) = �
1

2
:

Theorem 5 implies that if the test has nontrivial local power, that is, if a(It�1) 6= Cg(It�1;�0) with

positive probability, then �w(�; c; a) approaches 1 at an exponential rate as c ! 1: See Bierens

and Ploberger (1997) for further implications of this result. For the case in which c ! 0 we have

the next theorem.

Theorem 6: Under the assumptions of Theorem 5

�w;;�(�; c; a) = �+
c2

2
Aw;�(�; a) + o(c

2); (5)

where

Aw;�(�; a) =
1X
i=1

�i


a; ��2(�)ai

�2
H2
;

with faig1i=1 � H2 a suitable orthonormal system and the positive sequence �i # 0.

The coe¢ cient of c2 in (5) constitutes the curvature of the ALPF at the origin of the the integrated

test based on �(R1n;w). Since in the case of an arbitrary (unknown) unconditional variance �
2 the

test is based on R1n;w(x)=�n rather than R
1
n;w(x); with �n a consistent estimate for �; we have to

replace c2 in (5) by c2=�2: This features the loss of power if the noise variance increases. In Section

6 we propose a bootstrap approximation for computing Aw;�(�; a) for general functionals �. Stute

(1997) found a similar expansion to (5) for a CvM test for testing linear regressions under iid data.

Thus, Theorem 6 extends Stute�s (1997) expansion to a general continuous functional � and a time

14



series framework. In Theorem 6 the sequence f�i; aig1i=1 depends on the functional � used. In the

CvM case this sequence is related to the spectral representation of the covariance operator Cw by

the relations, 8i � 1;

�i = 1� ��
Z
�2i 1(



R11;w



2
H1
� c�)dP0

and

ai =  i;w(�):

This allows us to conjecture that the role played by  i;w(�) in Theorem 3 is played by ai for a general

functional �: In particular, the candidate for V in Theorem 4 for general functional � is of the form

f�2(�)a1(�); :::; �2(�)am(�)g for large enough m: However, we are only able to prove formally such

claim locally (c! 0).

Theorems 5 and 6 provide two di¤erent methods for comparing two tests based on (w1;�1) and

(w2;�2) in the direction a. The �rst method consists in comparing the level points of the tests. The

level point of the test based on (w;�) is the smallest distance jcj from the null hypothesis where the

power � 2 (�; 1) is attained, namely

lpw;�(�; a) := inffjcj : �w;�(�; c; a) � �g:

The quotient
lpw1;�1(�; a)

lpw2;�2(�; a)

provides a way to compare the two tests. The second method of comparison uses the expansion

(5) of Theorem 6. The slopes Aw;�(�; a) can be used to de�ne asymptotic relative e¢ ciencies for

comparing the asymptotic power behavior of di¤erent tests. We de�ne the asymptotic local relative

e¢ ciency (ALRE) measure between the tests based on (w1;�1) and (w2;�2) as

ALRE(�; a; (w1;�1); (w2;�2)) =
Aw1;�1(�; a)

Aw2;�2(�; a)
:

Both kind of measures have been proposed and used in the literature of goodness-of-�t tests for

distributions functions, see, for instance, Neuhaus (1976) or Janssen (2000). The measure based on

slopes is more operative than the measure based on level points due to its local character. Neuhaus

(1976) and Milbrodt and Strasser (1990) provide numerical methods for computing Aw;�(�; a) for

CvM and KS functionals, respectively. In this paper we extend the use of these measures to goodness-

of-�t tests for time series regressions and we propose much simpler bootstrap approximations of

Aw;�(�; a) for general continuous functionals in Section 6.

4. OPTIMAL DIRECTIONAL TESTS

In this section we shall construct a large class of asymptotically optimal directional tests for testing

H0 against HA;n(c : c 6= 0): All the tests we consider are continuous functionals of the RMP R1w;n:
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First, we shall employ the principal components of R1n;w in order to construct asymptotically optimal

directional tests. To establish the asymptotic theory of these optimal inference procedures we need

to consider estimation and consistency results of such principal components of the RMP R1n;w, which

is postponed to Section 6. After this initial approach, we shall generalize the class of directional

tests to a larger class of tests based on combinations of generalized orthogonal components.

We have seen that for directions a such that Dw;a 6= 0 in a subset of positive measure, the change

from H0 to HA;n(c : c 6= 0) delivers in a non-random shift in the mean function of the Gaussian

process R11;w: Therefore, tests for H0 against HA;n can be viewed as tests for eH0 : E
�
R11;w

�
= 0

against eHA;n : E
�
R11;w(�)

�
= cDw;a(�): In a fundamental work, Grenander (1952) generalized the

optimal Neyman-Pearson theory to this framework. In particular, we can deduce optimal directional

tests for testing H0 against HA;n by means of the Neyman-Pearson Lemma in its functional form.

As was previously commented, under the null �i � iid N(0; 1); whereas under the local alternatives

�i � iid N(c�i; 1); with �i = �
�1=2
i;w



Dw;a; 'i;w

�
H1
: The likelihood ratio of (�1; :::; �m); m 2 N; under

the null and under the local alternative is then

dPm1a
dPm0

:= exp

 
c

mX
i=1

�1�i �
1

2
c2

mX
i=1

�2i

!
:

The condition E[a2(It�1)��2(It�1)] = 1 and Bessel�s inequality imply that

1X
i=1

��1i;w


Dw;a; 'i;w

�2
H1
=

1X
i=1

��1i;w


��2a; Lw'i;w

�2
H2
� E[a2(It�1)�

�2(It�1)] = 1:

Therefore, using the results of Grenander (1952, p. 215) we have that the last display ensures that

the distribution of R11;w under the alternatives HA;n; P1a say, is absolutely continuous with respect

to the distribution of R11;w under the null, P0; that is, the likelihood ratio dPm1a=dPm0 is well-de�ned

as m!1. The limit being

dP1a
dP0

(h) = exp

�
cZa(h)�

1

2
c2
�

h 2 H1; (6)

where Za(h) =
P1
i=1 �

�1
i;w



h; 'i;w

�
H1



Dw;a; 'i;w

�
H1
: Thus, by the Neyman-Pearson�s Lemma we

obtain that the asymptotic optimal directional test for testing H0 against HA;n(c : c 6= 0) has critical

region f
��Za(R1n;w)�� � z�=2g; where z� is the �-quantile of the standard N(0; 1)-distribution.

Note that, in the general case, the eigenfunctions 'i;w(�) and eigenvalues �i;w are unknown, and

therefore, have to be estimated from the sample f(Yt; I 0t�1)0 : 1 � t � ng. Here, we consider

estimations f(�n;i;w; 'n;i;w) : 1 � i � ng; which will be de�ned in Section 6. For a �nite sample

size n; the (approximated) Neyman-Pearson �-level test for H0 against HA;n(c : c 6= 0) has critical

region ��� bZa;m(R1n;w)��� � z�=2;
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where bZa;m(R1n;w) = mX
i=1

b�ib�n;ib
 ; (7)

b�n;i and b�i are estimations of the principal component �i and components of the shift �i, respectively,
given by b�n;i = (�n;i;w)�1=2 
R1n;w; 'n;i;w�H1

1 � i � m;

b�i = (�n;i;w)�1=2 D bDw;a; 'n;i;w

E
H1

1 � i � m;

and the shift is estimated by

bDw;a(x) =
1

n

nX
t=1

a(It�1)�w(It�1; x; �n);

where �w(s; x; �n) = w(s; x) � bG0w(x; �n)k(s; �n); bGw(x; �n) = n�1
Pn
t=1 g(It�1;�n)w(It�1; x); b
2 =Pm

i=1 b�2i ; and m is a user-chosen parameter, usually small because of the weights �i;w. The asymp-

totic theory for these optimal directional tests will be given in Section 6.

The asymptotic local power function of the optimal directional test for testing H0 against HA;n(c :

c 6= 0) is independent of the direction a, and it is given by

�(�; c) = 1� �(c+ z�=2) + �(c� z�=2);

where �(�) is the cdf of a standard N(0; 1). Simple algebra shows that the slope in the local

representation (5) of the optimal directional test is

Ad(�; a) = 2z�=2�(z�=2);

where � is the density of �(�). Then, we can de�ne the asymptotic local e¢ ciency (ALE) of a test

based on (w;�) as

ALE(�; a; w;�) =
Aw;�(�; a)

Ad(�; a)
;

which satis�es 0 � ALE(�; a; w;�) � 1 due to the optimality of the directional test.

In econometrics the simplest and well-known speci�cation tests are those based on lack of correla-

tion between the residuals and the regressors, see, for instance, the well-known Ramsey-RESET-type

tests, cf. Ramsey (1969). These tests are based on rejecting the null hypothesis when

1p
n

nX
t=1

et(�n)w(It�1);

is large, for suitable transformations w of the information set. Tests based on correlations have

power whenever E [et(��)w(It�1)] 6= 0; where �� is the probabilistic limit of �n under the alternative

HA: Therefore, within this class of tests the optimal is the one that uses the transformation w�

solving (under the normalization E[e2t (��)] = 1) the optimization problem

max
w; E[w2(It�1)]=1

jE [et(��)w(It�1)]j2 :

17



Under our notation this is equivalent to

max
w; kwkH2=1



��1(�)m(�; ��); w

�2
H2
;

where m(�; ��) := E[et(��) j It�1] is normalized such that


��1(�)m(�; ��)

H2

= 1: The solution of

the previous optimization problem is attained at w�(�) = ��1(�)m(�; ��): Therefore, among the tests

based on correlations the optimal for testing H0 against HA;n(c : c 6= 0) is that with critical region����� 1pn
nX
t=1

et(�n)a(It�1)�
�2(It�1)

����� > c�;

for some suitable choice of c�. Moreover, it can be shown that the latter test is an asymptotically

optimal directional test, that is, it is the asymptotic uniformly most powerful test for testing H0

against HA;n(c : c 6= 0): To prove this result note that, as expected, if ��2a 2 Lw(H1)

Za(R
1
n;w) =

1p
n

nX
t=1

et(�0)

1X
i=1

��1i;w


�w(It�1; �); 'i;w

�
H1



L�w�

�2a; 'i;w
�
H1
+ oP (1)

=
1p
n

nX
t=1

et(�0)
1X
i=1

 i;w


��2a;  i;w

�
H2
+ oP (1)

=
1p
n

nX
t=1

et(�0)a(It�1)�
�2(It�1) + oP (1): (8)

Now we generalize the previous directional tests to a larger class of optimal directional tests. Note

that Za(R1n) can be written as a linear combination of the principal components f�n;ig as

Za(R
1
n;w) =

1X
i=1

�i�n;i;

�n;i =
1p
n

nX
t=1

et(�n)di;w(It�1)

and

di;w(It�1) = �
�1=2
i;w

Z
w(It�1; x)'

c
i;w(x)	(dx):

In fact, we shall show that there exists an in�nite number of optimal directional tests constructed

in such a way. We can call these tests asymptotically optimal directional tests based on linear com-

binations of generalized orthogonal components. These tests are similar in spirit to those proposed

in the goodness-of-�t tests literature for distributions by Schoenfeld (1977, 1980). Let fd1; d2; :::g

and orthonormal basis of Lw(H1). Then, we de�ne the generalized component as

b�i := 1p
n

nX
t=1

et(�n)di(It�1);

and we consider the test statistic based on linear combinations of such components

mX
i=1

bib�i;
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where fbig is any sequence such that
P1
i=1 b

2
i <1: We have the following result.

Theorem 7: Let m!1 as n!1: Then, the following holds:

(i) Under the local alternatives HA;n(c : c 6= 0) the asymptotic distribution of c
mP
i=1

bib�i is that of
a normal r.v with mean

1P
i=1

biai and variance
1P
i=1

b2i ; where

ai :=

Z
a(x)di(x)FI(dx):

(ii) The test with critical region

���� mP
i=1

aib�i���� > c�; where c� is such that lim
n�!1

P (

���� mP
i=1

aib�i���� � c� j

H0) = �; is the asymptotic uniformly most powerful test for testing H0 against HA;n(c : c 6= 0):

Remark 1: Note that the test based on Za(R1n;w) is a particular test based on linear combinations

of generalized orthogonal components. More concretely, it is the one associated to the orthonormal

basis fd1; d2; :::g = f 1;  2; :::g.

5. OPTIMAL SMOOTH TESTS

Omnibus tests are designed for cases in which the practitioner does not know the alternative

at hand and she/he needs of consistent tests. However, sometimes she/he is interested in some

particular alternatives and in tests that direct their power against such desired alternatives. For

instance, in a dynamic regression model the econometrician might not be worried about a misspec-

i�cation as long as some (of all) parameters in the regression are identi�ed. Smooth tests represent

a compromise between directional and omnibus tests. Optimal smooth tests are specially design to

detect, in an optimal way, a �nite number of speci�c alternatives. On the other hand, we have seen

before that each omnibus test has a preference for a �nite-dimensional space of alternatives. Apart

from this space, the power function is almost �at. Such a preferred space is usually unknown to

the practitioner. However, we have shown in previous sections how the practitioner can analyze the

omnibus test to get some knowledge about its preferences (see Section 3). Because the omnibus tests

are in fact concentrated on the preferred space, it seems natural to consider optimal tests against

such �nite-dimensional space instead of applying the omnibus test. The latter fact provides further

motivation for the use of smooth tests in econometrics. In this section we consider the general

problem of how to construct an optimal test when a �nite-set of alternatives are in mind, that is,

how to construct optimal smooth tests. We call the latter tests optimal smooth tests because they

are in spirit similar to Neyman�s (1937) smooth test for densities. Like with the directional tests, we

are interested in constructing a large class of such optimal smooth tests as functionals of the RMP
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R1n;w: Consider the functionals of the form

kzk2N;m =
mX
i=1

0@Z
�

hi(x)z
c(x)	(dx)

1A2

;

where m 2 N; and fh1; :::; hmg � H1. We shall discuss in detail the asymptotic local power function

of the tests based on


R1n;w

2N;m : Simple algebra shows that


R1n;w

2N;m = mX

i=1

0@Z
�

hi(x)
�
R1n;w(x)

�c
	(dx)

1A2

=
mX
i=1

b�2i;w;
where now

b�i;w = 1p
n

nX
t=1

et(�n)

Z
�

hi(x)w
c(It�1; x)	(dx) :=

1p
n

nX
t=1

et(�n)di(It�1); (9)

and where the di�s are implicitly de�ned. Tests based on


R1n;w

2N;m are called smooth tests. In the

case that fd1; d2; :::; dmg is an orthonormal system in Lw(H1) we call the test based on


R1n;w

2N;m

an optimal smooth test. Smooth tests are a compromise between the omnibus tests and directional

tests because they have only power against those alternatives for which E[et(��)di(It�1)] 6= 0 for

some i, 1 � i � m; where �� is the probabilistic limit of �n under the alternative.

It is easy to show that the asymptotic null distribution of


R1n;w

2N;m is, in general, that of a

weighted sum of dependent �21 r.v�s. To obtain a �
2
m asymptotic null distribution is su¢ cient to

choose fd1; d2; :::; dmg as an orthonormal system in Lw(H1): That is, an optimal smooth tests has

�2m asymptotic null distribution. Many speci�cation tests considered in the econometric literature

are smooth tests. The best well-known examples are the speci�cation tests proposed by Ramsey

(1969), Hausman (1978) or the overidenti�ed restrictions tests of the generalized method of moments

(GMM) literature, see Hansen (1982). Other important example is the Pormanteau-type tests, cf.

Box y Pierce (1970). The test for overidenti�ed restrictions based on fd1; d2; :::; dmg with m > p

rejects the null hypothesis for large values of

b�0wCn;wb�w
where b�w = (b�1;w; :::;b�m;w)0; �n is the GMM estimator and Cn;w is a suitably chosen positive de�nite

weighting matrix. Under the orthonormality assumption of fd1; d2; :::; dmg it turns out that the

optimal choice of Cn;w is the identity matrix and in that case b�0wCn;wb�w is an optimal smooth test.
For the optimality of smooth tests in the context of goodness-of-�t tests for distributions functions

see Neyman (1937).

One of the possible choices of fh1; :::; hmg is f��1=21;ind'1;ind; :::; �
�1=2
m;ind'm;indg which corresponds

with Stute�s (1997) smooth version of the CvM test for testing the correct speci�cation of a linear
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regression with iid observations. It is worth to note that the terminology for smooth tests that we

are using here is much more general than that considered in Stute (1997) in the sense that we are

concerned with general �nite sets of alternatives, not only those that correspond with the preferred

space of the CvM test. In addition, even for the choice fh1; :::; hmg = f��1=21;ind'1;ind; :::; �
�1=2
m;ind'm;indg

our construction of the smooth test di¤ers from that of Stute (1997) because we consider di¤erent

nonparametric estimations of the directions f��1=21;ind'1;ind; :::; �
�1=2
m;ind'm;indg, see Section 6 for details.

Note also that our smooth versions of the CvM tests are valid for general dynamic regressions

under possibly conditional heteroskedasticity of unknown form and general RMP R1n;w: The limit

distribution of


R1n;w

2N;m for the latter choice is



R11;w



2
N;m

=
mX
i=1

�2i :

Therefore, we observe that, contrary to the CvM tests, these smooth tests may be able to detect

"high-frequency" alternatives that are heavily downweighted by �i;w in (4), see in Section 7 the

empirical application to the Canadian Dollar exchange rate for a revealing example. Smooth versions

of other functionals are possible by using as fd1; :::; dmg the functions fa1; :::; amg of Theorem 6.

We know apply previous theory to the Neyman�s functional. It is easy to prove that if fd1; d2; :::; dmg

are orthonormal in Lw(H1); the asymptotic local power function of test based on


R1n;w

2N;m is

�N (�; c; a) = 1� �2m;des(cm� );

where cm� is the �-quantile of a �2m distribution and des is the noncentrality parameter of the �2m

given by

des =
mX
j=1

hhj ; Dw;ai2H1
:

On the other hand, analogously to the proof of Theorem 6 it can be shown that as c! 0

�N (�; c; a) = �+ �(m)
des

2
c2 + o(c2);

where the coe¢ cients �(m) are �(m) = �2m(c
m
� )��2m+2(cm� ); see Lemma 2.7 in Milbrodt and Strasser

(1990).

The name "optimal" for optimal smooth tests is partly justi�ed by the following arguments.

Assume the class of alternative models

E[et(�0) j It�1] = �1d1(It�1) + �2d2(It�1) + � � �+ �mdm(It�1); (10)

where fd1; d2; :::; dmg is an orthonormal system in Lw(H1): Suppose that we would like to test

Hm
0 : �1 = �2 = � � � = �m = 0
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against

Hm
1 : �j 6= 0 for some j = 1; :::;m:

Then, the Lagrange Multiplier (LM) test constructed with a quasi-likelihood function (that is,

assuming that et(�0) j It�1 � N(0; �2(It�1))) is asymptotically equivalent to the optimal smooth

test


R1n;w

2N;m : Moreover, each component b�2i;w is a LM test for testing Hm

0;h : �h = 0 against

Hm
1;h : �h 6= 0; h = 1; :::;m: Because fb�i;wgmi=1 are asymptotically independent, this shows that eachb�2i;w is a detector for �i and no other. Then, the optimality of the smooth tests follows from the

well-known optimality properties of LM tests.

Two remarks at this point are important. First, in the general case in which the practitioner is in-

terested in a particular set fa1; :::; amg � H2 of alternatives, the natural candidate for fd1; :::; dmg is

the Gram-Schmidt orthonormalization of fea1; :::;eamg; where fea1; :::;eamg is the orthogonal projection
of fa1; :::; amg onto Lw(H1). And secondly, an attractive feature of optimal smooth tests is that when

Hm
1 is rejected, E[Yt j It�1] = f(It�1; �0) + b�1;wd1;w(It�1) + b�2;wd2;w(It�1) + � � � + b�m;wdm;w(It�1)

provides an alternative model for the conditional mean f(It�1): In this sense, smooth tests are more

informative than omnibus tests when the null hypothesis is rejected, see our application to exchange

rates in Section 7.

An important problem is the choice of the parameter m in


R1n;w

2N;m : A large body of literature

in the goodness-of-�t testing for distributions has considered data-driven Neyman�s smooth tests,

i.e., has considered the case in which m is chosen from the data; see, e.g., Eubank and LaRiccia

(1992), Ledwina (1994), Fan (1996), Inglot and Ledwina (1996) or Kallenberg and Ledwina (1997),

among others. Some of these works allow for m ! 1 as n ! 1: Similar ideas can be considered

in our framework but this is beyond the scope of this paper. Interestingly enough, in the case of

m ! 1 as n ! 1 the optimal smooth test is equivalent to a L2-distance test based on a series

expansion estimator of E[et(�0) j It�1] using the basis fd1; d2; :::g: Optimal smooth tests become

local tests in the latter case, cf. Hong and White (1995).

6. ESTIMATION OF THE PRINCIPAL COMPONENTS

In this section we are concerned with the estimation of the eigenelements f(�i;w; 'i;w) : i = 1; 2; :::g

of Cw: These estimators are important in order to estimate the directions of maximum power, to

estimate the ALRE measures and to develop directional and optimal smooth tests related to the

CvM tests. Note that the empirical counterpart of Cw under the null hypothesis is given by

Cn;wh(�) =
1

n

nX
t=1

e2t (�n)�w(It�1; �)
Z
�

�w(It�1; x)h
c(x)	(dx);
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where �n is any
p
n-consistent estimator of �0: Note that, contrary to Cw; the operator Cn;w has

a �nite dimensional closed range (that is spanned by the functions �w(It�1; �); t = 1; :::; n). There-

fore, the number of eigenvalues and eigenfunctions of Cn;w is �nite and bounded by n, and they

can be computed by solving a linear system. Let �n;i;w and 'n;i;w; 1 � i � n; be an eigen-

value and eigenfunction of Cn;w; respectively. The eigenfunction 'n;i;w necessarily has the form

n�1
Pn
t=1 �i;t�w(It�1; �); for some coe¢ cients �i;t; t = 1; :::; n; and the equation to solve becomes

1

n

nX
t=1

e2t (�n)�w(It�1; �)

24 1
n

nX
s=1

�i;s

Z
�

�w(It�1; x)�
c
w(Is�1; x)	(dx)

35 = �n;i;w
1

n

nX
t=1

�i;t�w(It�1; �):

Here �i;t; t = 1; :::; n, and �n;i;w are the solutions of the system of n equations

1

n

nX
s=1

�i;sats = �n;i;w�i;t 1 � i; t � n;

with ats =
R
�

e2t (�n)�w(It�1; x)�
c
w(Is�1; x)	(dx): The solutions �i = (�i;1; :::; �i;n)

0 and �n;i;w are

the eigenelements of the n � n matrix A of elements (1=n)ats: From now on, 'n;i;w will be an

orthonormalized eigenfunction associated to �n;i;w; with f�n;i;w : 1 � i � ng ranked in decreasing

order. Next result shows the consistency of these estimators. First, let us denote by k�k the usual

norm for linear bounded operators on H1; i.e.,

klk = sup
khkH1�1

klhkH1
:

Theorem 8: Assume A1-A4. Then, under H 0

kCn;w � Cwk �! 0 a.s..

Note that the following inequalities hold

sup
i�1

j�n;i;w � �i;wj � kCn;w � Cwk

and 

'n;i;w � e'i;w

H1
� ci kCn;w � Cwk ; i � 1;

where ci is a real number that depends only on �i;w and e'i;w = sgn
�

'n;i;w; 'i;w

�
H1

�
'i;w (sgn is

the sign function, i.e., sgn(x) = 1(x > 0)�1(x < 0)). The last inequalities and Theorem 8 imply the

consistency of the estimated eigenelements. Given the consistency of f(�n;i;w; 'n;i;w) : 1 � i � ng it

is not di¢ cult to show the following corollary. For the optimal smooth tests based on fh1; :::; hmg =

f��1=21;w '1;w; :::; �
�1=2
m;w 'm;wg the situation is analogous, and then, it is omitted.

Corollary 2: (Asymptotic theory of directional tests) Under the assumptions of Theorem 1 for a

�xed m 2 N bZa;m(R1n;w) �! N(0; 1):
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Whereas under the assumptions of Theorem 2

bZa;m(R1n;w) �! N(�; 1);

where

� =
mX
i=1

��1i;w


Dw;a; 'i;w

�2
H1
:

With the estimation of the principal components we can approximate the slope of the ALPF of CvM

tests at the origin, i.e., Aw;�(�; a) in (5), by

A�m;w(�; a) =
mX
i=1

��1n;i;w�
2
n;i;w�

�
i ;

where �n;i;w = �
�1=2
n;i;w

D bDw;a; 'n;i;w

E
H1

and ��i is a bootstrap approximation of �i := 1 � � �R
�2i 1(



R11;w



2
H1
� c�)dP0 given by

��i = 1� ��
1

B

BX
j=1

�b�jn;i�2 1(

R1;j1;w



2
H1
� c��);

where b�jn;i = �
�jn;i;w

��1=2 D
R1;jn;w; '

j
n;i;w

E
H1

, R1;jn;w for j = 1; :::; B are �xed design wild bootstrap

realizations of R1n;w and c�� is the bootstrap critical value, see Escanciano (2004a) for details on

this bootstrap approximation. Alternatively �i can be calculated numerically using expansions of

distributions of quadratic forms in Gaussian variables into series of central �2-distribution functions

or Laguerre polynomials, see Jonhson and Kotz (1970), Chapter VI for details.

For other functionals the situation is much more involved. In the proof of our Theorem 6 we show

that f�i; aig1i=1 appearing in the slope Aw;�(�; a) in (5) are the eigenelements of a Hilbert-Schmidt

operator T� from Lw(H1) to Lw(H1) given by

T�a =
1X
i=1

e�i 
a;  i;w�H2
 i;w;

where

e�i := 
 i;w(�); T� i;w(�)�H2
= 2�1=2

�Z �
Z2 i;w(R

1
1;w)� 1

� �
1(�(R11;w) � c�)� �

�
dP0
�
:

Under conditional homoscedasticity, Z2 i;w(R
1
1;w) reduce to �

2
i : In the latter case a simple bootstrap

approximation of e�i is given by
e��i = 2�1=2

0@ 1

B

BX
j=1

��b�jn;i�2 � 1��1(�(R1;j1;w) � c��;�)� �
	1A :

A simple approximation of T� is then

Tm;�a(�) =
mX
i=1

e��i
 
1

n

nX
t=1

a(It�1) n;i;w(It�1)

!
 n;i;w(�);

24



where  n;i;w(�) is an estimator of  i;w(�) given by

 n;i;w = �
�1=2
n;i;w

Z
�

�w(It�1; x)'
c
n;i;w(x)	(dx): (11)

The estimator Tm;� of T� is new in the literature. T� plays a crucial role in the asymptotic local

power properties of general continuous functionals �: Note that as the operator Cn;w; Tm;� has a

�nite dimensional closed range (that is spanned by the functions  n;i;w(�); i = 1; :::;m). Therefore,

the number of eigenvalues and eigenfunctions of Tm;� is �nite and bounded by m, and they can be

computed by solving a linear system. For the general heteroskedastic case the situation is the same

but with a more involve bootstrap approximation for e�i: We do not discuss this further for the sake
of space.

7. MONTE CARLO SIMULATIONS

In this section we put some of the previous theory into practice. We compare in terms of local

power the omnibus tests with the optimal smooth and directional tests against some alternatives.

We also study how performs in �nite samples the estimation of the principal components and the

estimation of the directions of maximum asymptotic local power for omnibus tests.

7.1 Empirical local power properties of tests.

We brie�y describe our simulation setup. Let It�1;P = (Yt�1; :::; Yt�P ) the information set at time

t� 1. We denote by PCvMn;P the Cramér-von Mises test based on 1(�
0It�1;P � u). Let Fn;�;P (u)

be the empirical distribution function of the projected information set f�0It�1;P : 1 � t � ng.

Escanciano (2004a) proposed the CvM test

PCVMn;P =

Z
�pro

(R1n;pro;P (�; u))
2Fn;�;P (du)d�;

where

R1n;pro;P (�; u) =
1b�epn

nX
t=1

et(�n)1(�
0It�1;P � u)

and b�2e = 1

n

nX
t=1

e2t (�n):

For a simple algorithm to compute PCVMn;P see Appendix B in Escanciano (2004a).

Bierens (1982) proposed to use w(It�1; x) = exp(iI 0t�1x) as the weighting function in (3) and

considered the Cramér-von Mises test statistic

CvMn;exp;P :=

Z
�

��R1n;exp;P (x)��2	(dx);
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where

R1n;exp;P (x) =
1b�epn

nX
t=1

et(�n) exp(ix
0It�1;P );

and with 	(dx) a suitable chosen function. Here we consider the integrating function 	(dx) = �(x);

where �(x) is the probability density function of the standard normal P -variate r.v. In that case,

CvMn;exp;P simpli�es to

CvMn;exp;P = n�1b��2e nX
t=1

nX
s=1

et(�n)es(�n) exp(�
1

2
jIt�1;P � Is�1;P j2):

Escanciano (2004a) considers a multivariate bootstrap version of the RMP

R1n;ind;P (x) =
1b�epn

nX
t=1

et(�n)1(It�1 � x);

used in Koul and Stute (1999) for P = 1. His CvM and KS tests statistics are given by

CvMn;ind;P =
1b�2en2

nX
j=1

"
nX
t=1

et(�n)1(It�1;P � Ij�1;P )

#2

and

KSn;ind;P = max
1�i�n

����� 1b�epn
nX
t=1

et(�n)1(It�1;P � Ii�1;P )

����� ;
respectively. Note that, CvMn;ind;1 and PCvMn;1 are the same test statistic by de�nition.

We consider the optimal directional tests given in (7) and based on

bZa;m(R1n;w) = mX
i=1

b�ib�n;ib
 ;

and the optimal smooth tests bSa;m(R1n;w) = mX
i=1

b�2n;i;
forR1n;pro;P , R

1
n;exp;P andR

1
n;ind;P ; that is, for w(It�1; x) = 1(�

0It�1 � u); w(It�1; x) = exp(ix
0It�1),

w(It�1; x) = 1(It�1 � x); respectively.

The number of Monte Carlo experiments is 1000 and the number of bootstrap replications is

B = 500. In all the replications 200 pre-sample data values of the processes were generated and

discarded. Random numbers were generated using IMSL ggnml subroutine. For the wild bootstrap

approximation of omnibus tests we employ a sequence fVtg of iid Bernouilli variates given by P (Vt =

0:5(1�
p
5)) = (1+

p
5)=2

p
5 and P (Vt = 0:5(1+

p
5)) = 1� (1+

p
5)=2

p
5, see Escanciano (2004a)

for details of the bootstrap approximation.

We consider the null model of no-e¤ect, or as it is known in the econometric literature, the tests

for the martingale di¤erence hypothesis (MDH). The MDH is central in many areas of economics
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and �nance, see, e.g., the market e¢ ciency hypothesis or asset pricing theory. In the sequel "t is a

sequence of iid: N(0; 1): The null model is that of a martingale di¤erence sequence

E[Yt j Yt�1; Yt�2; :::] = 0 a:s:

We examine the adequacy of this model under the following data generating processes (DGP):

1. A strong white noise model: Yt = "t:

2. An autoregressive of order one local alternative model (LAR(1)): Yt;n = n�1=2Yt�1 + "t:

3. A nonlinear autoregressive local alternative model (LSIN): Yt;n = n�1=23 sin(0:7�Yt�2) + "t:

4. An autoregressive of order two local alternative model (LAR(2)): Yt;n = n�1=2(0:6Yt�1 �

0:9Yt�2) + "t:

For models 1 and 2 we consider P = 1; whereas for models 3 and 4 we take P = 2: The sample

sizes considered are n = 50; 100 and 200. For the smooth and directional tests we choose m = 3: The

critical values for smooth and directional tests against models 2 to 4 are size-corrected and are based

on 5000 replications of model 1. We report the rejection probabilities (RP) for these models and

the test statistics PCvMn;P ; CvMn;exp;P ; CvMn;ind;P , KSn;ind;P ; bZa;m(R1n;pro;P ); bZa;m(R1n;exp;P );bZa;m(R1n;ind;P ); bSa;m(R1n;pro;P ); bSa;m(R1n;exp;P ) and bSa;m(R1n;ind;P ) in Table 1 and Table 2.
Table 1 shows that the empirical size properties of tests are good even for as small sample sizes as

n = 50. Only bSa;3(R1n;exp;1) presents some underrejection for model 1. For model 2, we observe that
the directional tests outperform the rest of the tests, as expected, and that smooth tests present a

better empirical local power against this alternative than omnibus tests. One reason that may explain

the last fact is that the weights of the CvM tests undervalue the contribution of the second and

third component (e.g., for the indicator case the true weights are 0:10132; :02533; 0:01125) whereas

the smooth tests take into account such contributions. Within each class of tests (omnibus, smooth

and directional) all tests perform similarly, that is, there is not much di¤erence between indicator

and exponential based tests.

Please insert Table 1 about here

In Table 2 we present the RP for models 3 and 4. The directional tests present the best empirical

local properties against these two local alternatives. For model 3 the exponential-based omnibus

test is the best among the omnibus tests. The smooth tests are, in general, comparable to omnibus

tests for this alternative. For model 4, the test based on projections R1n;pro;P is the best among

omnibus tests, and again the smooth tests are comparable to omnibus tests. Summarizing, for these
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alternatives we see that, as expected, the optimal directional tests are superior in terms of empirical

local power, and, in general, the smooth tests present similar empirical local power properties to the

omnibus tests. In some cases, the smooth tests are better than omnibus tests, cf. model 2.

Please insert Table 2 about here

7.2 Estimation of the eigenfunctions and directions of maximum power.

In this subsection we shall investigate the properties of the proposed estimators for the eigenele-

ments f(�i;w; 'i;w) : i = 1; 2; :::g of Cw: In this section we make use of the fact that we know the

true eigenelements of the covariance operator of the null limit process of

Rn;ind(t) = n�1=2
nX
t=1

("t � "n)1("t�1 � x) x 2 R;

with "n = n�1
Pn
i=1 "t: The eigenelements are given by

'i(x) =
p
2 sin (i�F"(x)) �i =

1

i2�2
i � 1; (12)

see Example 1. Then, we can compare the estimated eigenelements with the true ones. To that end,

we de�ne the integrated mean square error (IMSE) for the estimator 'n;i;ind = n�1
Pn
t=1 �i;t�ind(It�1; �)

proposed in Section 6

IMSEn;i :=

Z
R

MSEn;i(x)F"(x);

where MSEn;i(x) is the mean square error (MSE) for 'n;i;ind(x) as an estimator of 'i(x) for a �xed

x 2 R; that is, MSEn;i(x) = E[('n;i;w(x)�'i(x))2]: IMSEn;i is approximated using the empirical

distribution function of f"tgnt=1; say Fn(x); i.e.,

IMSEn;i =

Z
�

MSEn;i(x)Fn(x) = n�1
nX
t=1

MSEn;i("t):

We have made a simple experiment with 1000 simulations of model 1 in previous section. We have

computed the IMSEn;i for the estimators f'n;i;ind : i = 1; 2; :::g proposed in Section 6 as estimators

of 'i in (12): We show the IMSEn;i in Table 3 for samples sizes n = 50; 100 and 200 and i = 1; 2; 3

and 4. We also plot the estimated eigenfunctions and the true eigenfunctions in Figure 1. From

these results we conclude that the proposed estimators perform quite well in �nite samples, even for

small sample sizes as n = 50: The IMSEn;i for 'n;i;ind decrease with the sample size, as expected,

and also increase in i: That is, high components have larger MSE than low components. The results

for the eigenvalues are similar, and then, they are not reported.

Please insert Table 3 and Figure 1 about here.
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With the estimators of the eigenfunctions 'n;i;w we can construct estimations of the directions

of maximum power of the CvM test based on w and 	 as  n;1;w(It�1)�
2
n(It�1); where �

2
n(y) is a

consistent nonparametric estimator of �2(y), for instance, a Nadaraya-Watson estimator, and

 n;1;w = �
�1=2
n;1;w

Z
�

�w(It�1; x)'
c
n;1;w	(dx)

= �
�1=2
n;1;wn

�1
nX
s=1

�1;s

Z
�

�w(It�1; x)�
c
w(Is�1; x)	(dx):

We plot the �rst and second directions of maximum local power for CVMn;exp;P and CVMn;ind;P

for the previous examples assuming that �2(y) = �2 = 1; so the directions are given by  n;1;w and

 n;2;w; respectively.

Please insert Figure 2 about here.

8. TESTING THE MDH OF EXCHANGE RATES

In this section we examine the martingale properties of some exchange rates returns studied

previously by Fong and Ouliaris (1995) or Escanciano and Velasco (2003), among others. Also

recently, Hong and Lee (2003) have studied the MDH properties of a related data set. The main

objective of this section is to show the ability of our new proposed smooth tests to �nd the information

that provides the omnibus (CvM) tests when the null hypothesis is rejected or accepted. The data

set consists in four 760 weekly exchange rate returns on the Canadian Dollar (Can), the German

Deutschmark (Dm), the French Franc (Fr) and the Japanese Yen (U), from August 14, 1974 to

March 29, 1989. The empirical results are reported in Tables 4 and 5.

Please insert Tables 4 and 5 about here.

We use the same implementation as in the Monte Carlo experiments and we show the empirical

p-values. For P = 1; all tests reject the MDH at 10% for all data sets and at 5% for Dm, Fr and U.
For P = 3 the conclusions are similar. The results for the Canadian dollar are contradictory with

the statistics CvMP and KSP . Note that for the Canadian dollar the smooth test bSa;3(R1n;ind;3)
is able to reject the MDH. A detailed study of this case may explain the contradictory results for

CvMP with this exchange rate. In Table 6 we have presented the �rst three components of the

RMP R1n;ind;3 for all data sets. We observe that for the Can data the �rst and second components

are small whereas the third component is very large. This may explain the inability of the CvMP

to detect such alternative. On the other hand, the smooth test based on bSa;3(R1n;ind;3) is able to
detect such component and rejects the MDH for this data set. This kind of behavior of indicator-

based tests have been found in other simulations studies, specially under nonlinear alternatives,

29



see Escanciano (2004a,b), and may be explained by similar reasons. Therefore, this application

shows that our new smooth tests are able to �nd nonlinear dependence in the conditional mean of

these exchange rates, in agreement with some previous studies (see Escanciano and Velasco, 2003,

and Hong and Lee, 2003). The nonlinearity in the conditional mean suggest that additional e¤ort

has to be dedicated to investigate the form of such nonlinearity before modelling the conditional

variance. Unlike omnibus tests, smooth tests are able to provide an alternative model in the case of

rejection. As an application of this principle, we consider in Figure 3 the alternative model provided

by the smooth tests bSa;3(R1n;ind;1) for P = 1 and for all data sets. The alternative model is given

by E[Yt j Yt�1] = b�1;ind n;1;ind(Yt�1) + b�2;ind n;2;ind(Yt�1) + b�3;ind n;3;ind(Yt�1); see Section 5 for
details:We observe the there are two di¤erent patterns in the predicted models, one for the Can data

and the other for the remaining exchange rates. These di¤erences are due to the di¤erent frequency

character of these alternatives of the MDH.

Please insert Table 6 and Figure 3 about here.

To conclude, throughout this simulations and the empirical application we have shown that smooth

tests provide useful alternative modelling speci�cation tests to omnibus tests because of their good

properties. We have shown that the smooth versions of the omnibus tests present similar empirical

local power that omnibus tests, with the additional properties of being robust to higher-frequency al-

ternatives (do not downweight moderate components), being asymptotically distribution-free, avoid-

ing resampling methods that are computationally intensive, and providing alternative models to the

one speci�ed when the null hypothesis is rejected. Therefore, due to these properties and others

shown in the paper we conclude that smooth tests can play a valuable role in time series modeling.

9. PROOFS

Proof of Theorem 3: De�ne �i =


a;  i;w

�
H2
and consider the directions

bj =

 
jX
i=1

�2i

!1=2
 1;w +

1X
i=j+1

�i i;w; j � 1:

Note that a = b1: We �rst show that

�(�; c; �2b1) � �(�; c; �2b2): (13)

To this end, write

�(�; c; �2b1) = P

(
�1(�1 + �1)

2 + �2(�2 + �2)
2 � c� �

1X
i=3

�i(�i + �i)
2

)
;

�(�; c; �2b2) = P

(
�1(�1 + �)

2 � c� �
1X
i=3

�i(�i + �i)
2

)
;
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where � = (�21 + �22)
1=2: If we denote by �1 = � cos� y �1 = � sin�; we have by the symmetry of �1

and �2 that

�(�; c; b1�
2) = P

(
�1(�1 � � cos�)2 + �2(�2 � � sin�)2 � c� �

1X
i=3

�i(�i + �i)
2

)
:

Applying Proposition 2.1 of Neuhaus (1976) we obtain (13). Similarly, it can be shown

�(�; c; �2bj) � �(�; c; �2bj+1) 8j � 2:

Using that kbj �  1k
2
H1
! 0 as j !1; we obtain the �rst statement of the theorem. Also, for h > j

�(�; c; �2 j) = P

8<:�j(�j + �j)2 + �h�2h � c� �
1X

i=1;i 6=j;h
�i�

2
i

9=; ;

�(�; c; �2 h) = P

8<:�h(�h + �h)2 + �j�2j � c� �
1X

i=1;i 6=j;h
�i�

2
i

9=; :

Thus, applying the same argument as before and Proposition 2.1 of Neuhaus (1976) we obtain the

second statement of the Theorem. The last two statements follow exactly as in Theorem 2.2 of

Neuhaus (1976) and then, they are omitted. �
Proof of Theorem 4: The proof follows exactly the same lines as the proof of Theorem 2.1 in

Janssen (2000), and then, it is omitted. �
Proof of Theorem 5: From (6) we have

1���(�; c; a) =
Z

f�(R1
1;w)�c�g

exp

�
cZa(R

1
1;w)�

1

2
c2
�
dP0:

Denote B = fz 2 H1 : �(z) � c�g: Let us de�ne eB = Za(B) and denote by eB� and eB� its minimal
and maximal measurable majorant, see pg. 7 in VW. Therefore,

1���(�; c; a) �
Z
eB�

exp

�
cz � 1

2
c2
�

1p
2�
exp(�0:5z2)dz

=
1p
2�

Z
eB�

exp(�0:5 (z � c)2)dz:

By Jensen�s inequality

lim
c�!1

c�2 ln(1���(�; c; a)) � �
1

2
:

As for the other inequality, use that jZa(h)j � C khk2H1
; and therefore, by the continuity of �(�) we

have that eB� is contained in a symmetric compact interval of R; [�M;M ], M > 0, and for M > 0

and c �M > 0 or c +M < 0 it holds that �(jcj +M) � �(c +M) � �(c �M) � �(jcj �M);

where � and � are the cdf and the density of a standard normal r.v, respectively. Conclude taking

logarithms, dividing by c2 and taking limits. �
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Proof of Theorem 6: Let us de�ne the symmetric bilinear form

B� : (h1; h2) �!
Z

f�(R1
1;w)>c�g

Zh1(R
1
1;w)Zh2(R

1
1;w)dP0 � � hh1; h2iH1

h1; h2 2 H1:

From a Taylor expansion it is clear that Aw;�(�; h) = B�(h; h); h 2 H2: B� is continuous and

positive semide�nite. Thus, there is a bounded, symmetric and positive semide�nite operator T�

from H2 to H2 such that

Aw;�(�; h) = hT�h; hiH2
:

Moreover, by Lemma 4.1 in Milbrodt y Strasser (1990) T� is compact. See Theorem 2.1 in Jansen

(1995) for an alternative proof. As a consequence there is a spectral representation

T� =
1X
i=1

�i h�; aii
2
H2
;

where faig1i=1 � H2 is a orthonormal system and the sequence �i # 0. The theorem follows from

the last display. �

Proof of Theorem 7: First, we prove (i). Fix m 2 N: Since fd1; d2; :::g is an orthonormal basis

of H1
2 (orthogonal to g(It�1; �0)) we have that b�i = e�i + oP (1); i = 1; :::;m, where

e�i := 1p
n

nX
t=1

et(�0)di(It�1):

The Central Limit Theorem for stationary and ergodic martingales di¤erence sequences of Billingsley

(1961) yields that the vector e�m = (e�1; :::;e�m)0 converges under the local alternatives to a multivatiate
normal random vector with mean vector am = (ea1; :::;eam)0 and identity variance-covariance matrix.
Using Theorem 4.2 of Billingsley (1968) and that

P1
i=1 b

2
i < 1 part (i) is proved. As for part (ii),

since m!1 as n!1 and
mX
i=1

aib�i := 1p
n

nX
t=1

et(�0)g(It�1) + oP (1);

with

g(It�1) :=
1X
i=1

aidi(It�1) = ��2(It�1)a(It�1);

and where the last equality is because fd1; d2; :::g is an orthonormal basis of H1
2 and �

�2a 2 H1
2 :

Then, from (8)
mX
i=1

aib�i = Za(Rn) + oP (1):

Therefore, part (ii) follows from the optimality of Za(Rn): �
Proof of Theorem 8: The result follows from the inequality

kCw;n � Cwk �
Z
��

Z
�

"
1

n

nX
t=1

k(Yt; It�1; x; y; �n)� E[e2t (�0)�(It�1; x; �0)�c(It�1; y; �0)]
#2
	(dx)	(dy);
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where

k(Yt; It�1; x; y; �n) = e2t (�n)�(It�1; x; �n)�
c(It�1; y; �n);

and using a mean value argument, A1-A4 and the Ergodic Theorem. �
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Table 1. Local Power of 5% Tests for the MDH.

P = 1; m=3 WN LAR(1)

n 50 100 200 50 100 200

CvMn;ind;1 5.2 4.9 4.3 5.2 4.9 4.3

CvMn;exp;1 5.0 4.6 4.5 5.0 4.6 4.5

KS1 5.6 5.6 5.3 5.6 5.6 5.2bZa;3(R1n;ind;1) 4.2 4.2 5.1 23.7 25.3 26.8bZa;3(R1n;exp;1) 5.4 4.3 4.9 21.6 23.2 23.7bSa;3(R1n;ind;1) 3.0 5.0 4.5 9.9 8.2 10.0bSa;3(R1n;exp;1) 1.6 3.4 3.4 7.4 10.8 10.9

Table 2. Local Power of 5% Tests for the MDH.

P = 2; m=3 LSIN LAR(2)

n 50 100 200 50 100 200

PCVMn;2 11.0 12.2 10.9 12.8 12.6 13.8

CvMn;ind;2 9.4 10.9 10.8 7.8 5.9 7.3

CvMn;exp;2 16.3 18.3 18.0 10.8 10.5 12.7

KS2 11.5 14.3 15.2 9.8 8.7 8.3bZa;3(R1n;pro;2) 26.1 24.4 23.5 15.8 18.5 16.3bZa;3(R1n;ind;2) 33.7 29.9 25.7 16.0 15.4 14.3bZa;3(R1n;exp;2) 27.5 29.0 31.9 17.3 21.0 25.8bSa;3(R1n;pro;2) 10.4 13.1 10.3 12.1 11.3 11.6bSa;3(R1n;ind;2) 12.1 14.5 12.2 5.8 7.7 6.9bSa;3(R1n;exp;2) 13.2 13.1 11.2 10.2 10.5 8.7

Table 3. IMSE for model 1.

IMSEn;i n=50 n=100 n=200

i=1 0.06604 0.03419 0.01638

i=2 0.23881 0.13022 0.06433

i=3 0.75030 0.27731 0.13991

i=4 1.74966 0.78480 0.26303
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Fig1. Estimated eigenfunctions (dash line) and true eigenfunctions (solid line) for model 1.
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Fig.2. Estimated directions of Maximum ALPF for indicator and exponential functions.
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Table 4. P-values for the Exchange Rates Returns.

n = 760; P = 1 Can Dm Fr U

CvMn;ind;1 0.016 0.000 0.010 0.003

CvMn;exp;1 0.040 0.003 0.023 0.000

KS1 0.053 0.000 0.013 0.006bSa;3(R1n;ind;1) 0.088 0.010 0.040 0.007bSa;3(R1n;exp;1) 0.099 0.005 0.011 0.002

Table 5. P-values for the Exchange Rates Returns.

n = 760; P = 3 Can Dm Fr U

PCVMn;3 0.013 0.000 0.010 0.000

CvMn;ind;3 0.143 0.003 0.063 0.000

CvMn;exp;3 0.006 0.000 0.000 0.003

KS3 0.390 0.000 0.060 0.000bSa;3(R1n;pro;3) 0.024 0.010 0.096 0.004bSa;3(R1n;ind;3) 0.014 0.015 0.075 0.003bSa;3(R1n;exp;3) 0.003 0.000 0.000 0.000

Table 6. Individual components

n = 760; P = 3 Can Dm Fr Ub�21;ind 1.4813 10.065�� 6.0308� 10.2919��b�22;ind 1.3471 0.3422 0.8651 2.5410b�23;ind 7.704�� 0.0002 0.0000 1.0942

Note: �Signi�cative at 5%. ��Signi�cative at 1%.
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Fig.3. Alternative models for exchange rates.
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