
Facultad de Ciencias Económicas y Empresariales
Universidad de Navarra

Working Paper nº 03/02

Is the US fiscal deficit sustainable?

A fractionally integrated and cointegrated approach

J. Cunado, L. A. Gil-Alana and F. Perez de Gracia

Facultad de Ciencias Económicas y Empresariales
Universidad de Navarra

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Research Papers in Economics

https://core.ac.uk/display/9316476?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


1

Is the US fiscal deficit sustainable? A fractionally integrated and
cointegrated approach
J. Cunado, L.A. Gil-Alana and F. Perez de Gracia
Working Paper No.03/02
May 2002
JEL No. C32; E62; H60

ABSTRACT
The sustainability of fiscal deficits has received in recent years
increasing attention from economists. Empirical work has concentrated
on both the univariate properties of debt and the cointegration
properties of public revenues and expenditures. In this paper, we
examine if sustainability of the US fiscal deficit holds by means of
studying the univariate properties of the difference between public
revenues and expenditures. However, instead of using classical
approaches based on I(1) or I(0) integration techniques, we use a
methodology based on fractional processes. The results show that the
public deficit in the US is an I(d) process with d slightly smaller
than 1, implying that fiscal deficit is mean reverting, and thus,
sustainable, though the adjustment process towards equilibrium will
take a very long time.

J. Cunado L.A. Gil-Alana
Universidad de Navarra Universidad de Navarra
Depto. de Métodos Cuantitativos Depto. de Métodos Cuantitativos
Campus Universitario Campus Universitario
31080 Pamplona 31080 Pamplona
jcunado@unav.es alana@unav.es

F. Perez de Gracia
Universidad de Navarra
Depto. de Economía
Campus Universitario
31080 Pamplona
fgracia@unav.es



2

1. Introduction

The sustainability of fiscal deficits has been receiving increasing attention from economists,

since it will determine the need for future discretionary policy actions. On the one hand, the

concept of sustainability relies on the fact that governments need enough resources to ensure

their ability to carry out their functions, so that its analysis helps to determine whether a

current fiscal policy can be maintained in the long run with the ongoing ability to generate

financial resources. On the other hand, it has clear implications for other macroeconomic

variables, since a non-sustainable fiscal policy involves the risk of future interest rate rises

leading to a slowdown in economic growth.

Many papers have studied the issue of fiscal policy sustainability and they have

empirically tested the present value borrowing constraint. Examples of such a growing

literature are Hamilton and Falvin (1986), Trehan and Walsh (1988), Kremers (1988), Wilcox

(1989), Hakkio and Rush (1991), Tanner and Liu (1994), Quintos (1995), Haug (1991),

Ahmed and Rogers (1995), Uctum and Wickens (1997) and Martin (2000). In most of these

papers the main tools used to analyse the sustainability of budget deficit are stationarity tests

for the stock of public debt and cointegration tests between public expenditures and revenues.

A sustainable fiscal policy is one that would cause the discounted value of debt to go

to zero at the limit so that the present-value borrowing constraint would hold. According to

the literature, this condition holds when there is a long-run cointegrating relationship between

public expenditures and public revenues. However, depending on the cointegrating vector, we

can define two different degrees of sustainability: ‘strong’ and ‘weak’ sustainability (see, e.g.,

Quintos, 1995). In this paper, we re-examine the issue of ‘strong’ sustainability of the fiscal

deficit, since as is shown in the following section, the ‘weak’ sustainability condition is

inconsistent with the government’s ability to market its debt in the long-run. For this purpose,
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we study in detail the order of integration of real tax revenues and real government spending

in the US economy, and the difference between these two variables, by means of using a

procedure due to Robinson (1994a) for testing I(d) statistical models. This method has several

distinguishing features compared with other procedures for testing unit and/or fractional roots.

In particular, the tests have a standard null limit distribution and they are the most efficient

ones when directed against the apropiate alternatives.

The paper is organized as follows. Section 2 contains some economic foundations of fiscal

deficit sustainability. Section 3 presents the testing procedure of Robinson (1994a). In Section

4, the tests are applied to the US economy. Finally, Section 5 contains some concluding

comments.

2. Deficit sustainability model

Following Quintos (1995) and Martin (2000), the government budget constraint is the starting

point to derive the present value of budget constraint,

ttt RGB −=∆ , (1)

where Bt is the real market value of federal debt, Gt is real interest rate inclusive expenditure,

Rt is real tax revenues and ∆ = (1 – L) is the first difference operator. The quantity in (1) thus

defines the real interest inclusive deficit. Defining it as the real interest rate and assuming to

be stationary around a mean i, and GEt as real expenditure exclusive of interest payments, we

can write down

Gt = GEt + itBt-1, (2)

where the second term in the right hand side of (2) represents interest payments on the level of

debt accumulated at the end of the previous period. Further, defining

1)( −−+= tttt BiiGEEXP , (3)
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we can express debt as

tttt REXPBiB −++= −1)1( , (4)

or alternatively as
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Defining Et (.) as an expectation conditional on information at time t, intertemporal budget

balance, or deficit sustainability, holds if and only if
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since this implies that the current value of outstanding government debt is equal to the present

value of future budget surpluses. In other words, the deficit is sustainable if and only if the

stock of debt held by the public is expected to grow no faster on average than the mean real

interest rate, which can be viewed as a proxy for the growth rate of the economy.

The econometric literature for testing this type of models has focused on cointegrated

methods (see, e.g., Trehan and Walsh, 1988). Quintos (1995) proceeds by taking first

differences in (6), yielding
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Sustainability is then associated with the condition
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which, in turn, imposes conditions on the statistical properties of the interest inclusive deficit.

Condition (9) can be tested by means of using stationary tests on ∆Bt, or alternatively, by

testing stationarity on Gt-Rt. In other words, assuming that Gt and Rt are I(1) variables and

given the cointegrating vector (1,-1), we can test if Gt and Rt are cointegrated in the sense that

the cointegrating residuals are I(0) stationary. Quintos (1995) shows that defining the equation

ttt uGR ++= 11 βα ,           (10)

the deficit is ‘strongly’ sustainable if the I(1) processes Rt and Gt are cointegrated and β1 = 1,

while it is ‘weakly’ sustainable if Rt and Gt are cointegrated and 0 < β1 < 1. However, he also

argues that the weak sustainability condition has serious policy implications because a

government that continues to spend more than it earns has a high risk of default and would

have to offer higher interest rates to service its debt, that is, this condition is inconsistent with

the government’s ability to market its debt in the long run. Thus, in this paper, we will only

test for the ‘strong’ sustainability condition looking at the univariate properties of Rt - Gt.

The above approach of testing sustainability assumes that the individual series, Rt and

Gt are both I(1) nonstationary. We start our analysis by examining this hypothesis. However,

instead of using classical approaches based on autoregressive (AR) models, we use new

statistical methods developed by Robinson (1994a) for testing I(d) statistical models. For the

purpose of the present paper, we define an I(0) process {ut, t = 0, ±1, …} as a covariance

stationary process, with spectral density function that is positive and finite at the zero

frequency. In this context, we say that {xt, t = 0, ±1, …} is I(d) if

...,2,1,)1( ==− tuxL tt
d ,           (11)

where the polynomial in (11) can be expressed in terms of its Binomial expansion such that
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for all real d. Clearly, the unit root case corresponds to d = 1 in (11). If d > 0, xt is said to be

long memory, so-named because of the strong association between observations widely

separated in time. This type of processes was initially introduced by Granger (1980) and

Hosking (1981), (though earlier work by Adenstedt, 1974, and Taqqu, 1975, shows an

awareness of its representation) and they were theoretically justified in terms of aggregation

of ARMA series by Robinson (1978) and Granger (1980). Similarly, Croczek-Georges and

Mandelbrot (1995), Taqqu et. al. (1997) and Lippi and Zaffaroni (1999) also use aggregation

to motivate long memory processes, while Parke (1999) uses a closely related discrete time

error duration model. The fractional differencing parameter d plays a crucial role from both

theoretical and empirical viewpoints. Thus, if d < 0.5, xt is covariance stationary and mean-

reverting, with the effect of the shocks dying away in the long run. If d ∈ [0.5, 1), xt is not

longer covariance stationary but it is still mean reverting, while d ≥ 1 implies nonstationarity

and non-mean-reversion.  In the following section, we present a testing procedure due to

Robinson (1994a) for testing this type of models.

3. Testing for fractional integration and cointegration

There exist many different ways of testing unit-root models. Perhaps, the most

common ones are the tests due to Fuller (1976), Dickey and Fuller (1979). They consider

processes of form:

,)1( tt uyL +=− µρ          (12)

which, under the null hypothesis:

     ,1: =ρoH          (13)

becomes the random walk model if ut is white noise. The tests are based on the auxiliary

regression of form:
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,)1( 1 ttt uyyL ++=− − µπ          (14)

and the test statistic is the “t-value” corresponding to π in (14). Due to the non-standard

asymptotic distributional properties of the “t-values” under the null hypothesis: Ho: π = 0,

Dickey and Fuller (1979) provide the fractiles of simulated distributions which give us the

critical values to be applied when testing the null against the alternatives: Ha: π < 0. The tests

can be extended to allow for autocorrelated disturbances and then, the auxiliary regression

(14) may be augmented by lagged values of (1-L)yt, and also with other deterministic paths,

like a linear time trend, though this unfortunately changes the distribution of the test statistic.

Another limitation of these tests is that they lose validity if the disturbances are not white

noise or AR processes. This was observed by Schwert (1987) who found that Dickey-Fuller

critical values can be misleading even for large sample sizes in case of a mixed ARIMA

process. He proposed the use of tests of Said and Dickey (1984), which approximate the

ARMA structure by an AR. Also, Phillips (1987) and Phillips and Perron (1988) consider

tests which employ a nonparametric estimate of the spectral density of ut at the zero

frequency, for example, a weighted autocovariance estimate. More recently, Kwiatkowski et

al. (1992) observed that taking the null hypothesis to be I(1) rather than I(0) might itself lead

to a bias in favour of the unit root hypothesis; they proposed an I(0) test which formulates the

null as a zero variance in a random walk model, while Leybourne and McCabe (1994)

extended the tests to the case where the null was an AR(k) process and the alternative was an

integrated ARMA (ARIMA) model with AR order k and unit MA order. Their test differs

from that of Kwiatkowski et al. (1992) in its treatment of autocorrelation under the null

hypothesis, its critical values appearing more robust to certain forms of autocorrelation.

Conspicuous features of the above methods for testing unit roots are the non-standard

nature of the null asymptotic distributions which are involved, and the absence of Pitman
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efficiency theory. However, these properties are not automatic, rather depending on what

might be called a degree of “smoothness” in the model across the parameters of interest, in the

sense that the limit distribution do not change in an abrupt way with small changes in the

parameters. Thus, they do not hold in case of unit root tests against AR alternatives such as

(12). This is associated with the radically variable long run properties of AR processes around

the unit root. Under (12), for |ρ| > 1, yt is explosive; for |ρ| < 1, yt is covariance stationary; and

for ρ = 1, it is nonstationary but non-explosive. In view of these abrupt changes, the literature

on fractional processes have become a rival class of alternatives to the AR model in case of

unit-root testing. Thus, Robinson (1994a) proposes a Lagrange Multiplier (LM) test of the

null hypothesis:

,: oo ddH =         (15)

in a model given by

                     ,)1( tt
d uxL =−         (16)

where do can be any real number and where ut is I(0). The xt in (16) can be the time series we

observe, though it may also be the errors in a regression model of form:

,' ttt xzy += β          (17)

where β = (β1, …, βk)’ is a (kx1) vector of unknown parameters, and zt is a (kx1) vector of

deterministic regressors that may include, for example, an intercept, (e.g., zt ≡ 1), or an

intercept and a linear time trend, (in case of zt = (1,t)’).  Specifically, the test statistic

proposed by Robinson (1994a) is then given by:
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Note that these tests are purely parametric and therefore, they require specific modelling

assumptions to be made regarding the short memory specification of ut. Thus, for example, if

ut is white noise, g ≡ 1, and if ut is AR(1) of form: ,1 ttt uu ετ += −  ,1);(
2−

−= ji
j eg λττλ

with σ2 = V(εt), so that the AR coefficients are function of τ.

Robinson (1994a) showed that under certain regularity conditions,

.)1,0(ˆ ∞→→ TasNr d           (19)

Thus, we are in a classical large-sample testing situation and the conditions on ut in (19) are

far more general than Gaussianity, with a moment condition only of order 2 required. An

approximate one-sided 100α%- level test of Ho (15) against the alternative: Ha: d > do (d < do)

will reject Ho (15) if r̂  > zα ( r̂  < -zα), where the probability that a standard normal variate

exceeds zα is α. Furthermore, he shows that the above test is efficient in the Pitman sense, i.e.,
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that against local alternatives of form: Ha: d = do + δT-1/2, with δ ≠ 0, the limit distribution is

normal with variance 1 and mean which cannot (when ut is Gaussian) be exceeded in absolute

value by that of any rival regular statistic. Empirical applications based on this version of

Robinson’s (1994a) tests can be found in Gil-Alana and Robinson (1997) and Gil-Alana

(2000).

4. Empirical results on US fiscal sustainability

The existence of US fiscal sustainability is examined in this section by means of using

fractionally integrated and cointegrated techniques. In particular we use the methodology

described in Section 3.

We produce results based on the same data set as in Martin (2000) and Quintos (1995).

The data set comprises quarterly US data on real revenues (Rt) and real government

expenditure (Gt), inclusive of interest paid on debt, over the period 1947(2) to 1992(3).

(Insert Figures 1 and 2 about here)

Figures 1 and 2 contain respectively plots of the original series and their first

differences, along with their corresponding correlograms and periodograms. We see in Figure

1 that the original series increase both with the sample, and the nonstationary nature of the

series seem to assess themselves in view of the correlograms, with values decaying very

slowly, and throughout the periodograms, with a large peak around the smallest frequency.

Looking at the plots based on the first differenced data, in Figure 2, we observe that they may

be both now stationary, though the correlograms still show significant values even at some

lags relatively far away from zero, which may be an indication that fractional orders of

integration, smaller than or higher than 1, may be more appropriate than first differences.
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Denoting the original series yt, we employ throughout model (16) and (17), with zt =

(1, t)′, t ≥ 1, (0, 0)′, otherwise, i.e.,

...,2,1, =++= txty tt βα          (20)

 ...,,2,1,)1( ==− tuxL tt
d          (21)

testing Ho (15) for values do = 0, (0.25), 2, and different types of disturbances. Initially, we

assume that α = β = 0 a priori, (i.e., we do not include any regressors in the regression model).

Then, we also consider the cases of an intercept, (α unknown and β = 0 a priori), and an

intercept and a linear time trend, (α and β unknown). Thus, for example, if ut is white noise

and do = 1, the differences (1 – L)yt behave, for t > 1, like a random walk when β = 0, and a

random walk with a drift when β ≠ 0. However, we also consider the possibility of the

disturbances being weakly autocorrelated. In particular, we take AR(1), AR(2), and the

Bloomfield’s (1973) exponential spectral model. This is a non-parametric approach of

modelling the I(0) disturbances in which ut is exclusively specified in terms of its spectral

density function, which is given by:
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The intuition behind this model is the following. Suppose that ut follows an ARMA process of

form:
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where εt is a white noise process and all zeros of φ(L) lying outside the unit circle and all

zeros of θ(L) lying outside or on the unit circle. Clearly, the spectral density function of this

process is then
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where ϕ corresponds to all the AR and MA coefficients and σ2 is the variance of εt.

Bloomfield (1973) showed that the logarithm of an estimated spectral density function is often

found to be a fairly well-behaved function and can thus be approximated by a truncated

Fourier series. He showed that (22) approximates (23) well where p and q are of small values,

which usually happens in economics. Like the stationary AR(p) model, the Bloomfiled (1973)

model has exponentially decaying autocorrelations and thus we can use a model like this for

ut in (16). Formulae for Newton-type iteration for estimating the τl are very simple (involving

no matrix inversion), updating formulae when m is increased are also simple, and we can

replace Â  below (18) by the population quantity

∑ ∑
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−− −=
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2
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2 ,
6ml

m
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ll
π

which indeed is constant with respect to the τj (unlike what happens in the AR case). The

Bloomfield (1973) model, confounded with fractional integration has not been very much

used in previous econometric models, (though the Bloomfield model itself is a well-known

model in other disciplines, e.g., Beran, 1993), and one by-product of this work is its
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emergence as a credible alternative to the fractional ARIMAs which have become

conventional in parametric modelling of long memory.1

(Insert Tables 1 and 2 about here)

The test statistic reported across Table 1 (and also in Tables 2 and 3) is the one-sided

statistic given by r̂  in (18). Thus, for a given do, significantly positive values of r̂  are

consistent with orders of integration higher than do, whereas significantly negative ones imply

orders of integration smaller than that hypothesized under the null. A noticeable feature

observed across the table is the fact that if the disturbances are white noise, the values of r̂

monotonically decrease with do, as we should expect in view of the previous discussion since

they are one-sided statistics. Thus, for example, we would wish that if Ho (15) is rejected with

d = 0.75 in favour of alternatives of form d > 0.75, an even more significant result in this

direction should be obtained when d = 0.50 or 0.25 are tested. However, we observe in the

table that, if we impose AR ut, there is a lack of this property for small values of d. This lack

of monotonicity could be explained in terms of model misspecification as is argued, for

example, in Gil-Alana and Robinson (1997). However, it may also be due to the fact that the

AR coefficients are Yule-Walker estimates and thus, though they are smaller than one in

absolute value, they can be arbitrarily close to 1. A problem then may occur in that they may

be capturing the order of integration by means, for example, of a coefficient of 0.99 in case of

using AR(1) disturbances. Imposing Bloomfield (1973) ut, monotonicity is again achieved for

all type of regressors.

Starting  with the real revenues, in Table 1, we see that if ut is white noise, the only

non-rejection value of d takes place when do = 1, and this happens for the three cases of no

regressors, an intercept, and an intercept and a linear time trend. Similarly, allowing weakly

                                                          
1 Amongst the few empirical applications found in the literature are Gil-Alana and Robinson (1997).
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autocorrelated disturbances, the unit root cannot be rejected, and if they follow the

Bloomfield’s (1973) exponential spectral model, there are also non-rejections with d = 0.75.

The last column of the table reports the confidence intervals of those values of do where Ho

(15) cannot be rejected at the 95% significance level. We see that they are generally large and

include the unit root in all cases. Table 2 reports the results for the government expenditure

and they are similar to those given in Table 1. Thus, the unit root null hypothesis cannot be

rejected for any type of disturbances and independently of the inclusion or not of

deterministic components in (20). The only difference observed in this table, compared with

Table 1 occurs in case of the Bloomfield disturbances. Thus, if we do not include regressors,

Ho (15) cannot be rejected if d = 1 and 1.25; with an intercept, the only non-rejection value

takes place at d = 1; and including an intercept and a linear trend, Ho (15) cannot be rejected

for d = 0.75 and 1. In view of all this, it seems clear that both individual series posses a unit

root. Moreover, several other unit root tests based on autoregressive alternatives (such as the

ones suggested by Dickey and Fuller, 1979, and Phillips and Perron, 1988) were also

performed on these series, obtaining in all cases evidence in favour of a unit root.

Next, we examine the order of integration of the difference between the revenues and

the government expenditures. In doing so, we can determine if fiscal deficits are stationary or

nonstationary, and more importantly, if there exists mean reversion in its behaviour.

(Insert Figure 3 about here)

Figure 3 contains the plots of the differenced series (Rt – Gt), and the first differences,

again with their corresponding correlograms and periodograms. These plots seem to indicate

that the original series is nonstationary. However, the correlogram of the first differences

show significant values and the periodogram has a value close to zero at the zero frequency,

suggesting that the series may be now overdifferenced.
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(Insert Table 3 about here)

Table 3 reports values of the same statistic as in Tables 1 and 2 but based on the Rt –

Gt series. Once more, it was observed a lack of monotonicity in the value of r̂  with respect to

d in case of AR disturbances. Thus, we only report across the table, the results based on white

noise and Bloomfield disturbances. Starting with white noise ut, we see that the only non-

rejection value takes place with d = 1, implying that, in this context of white noise

disturbances, the order of integration is similar to that of the individual series and thus, there

is no cointegration for a given vector (1, -1). However, a very different picture is obtained in

case of autocorrelated disturbances. If ut is Bloomfield (1), Ho (15) cannot be rejected with d

= 1 but also with d = 0.75, and the confidence intervals widely oscillates between 0.54 and

1.20. Imposing Bloomfield (2) disturbances, the degree of integration seems to be smaller and

the confidence intervals range between 0.18 and 0.68. Therefore, the order of integration of

the series substantially vary depending on if the disturbances are or not autocorrelated, and we

find some evidence of fractional cointegration if ut is autocorrelated.

In view of the mixed conclusions obtained in Table 3, it might also be of interest to

estimate the order of integration of the series by means of using semiparametric procedures.

In doing so, we do not have to take care about the underlying I(0) disturbances. In other

words, we just consider a process like (16) with I(0) disturbances. We propose in this article

the use of the Quasi Maximum Likelihood Estimate (QMLE) of Robinson (1995a), which we

are now to describe.

It is basically a local “Whittle estimate” in the frequency domain, considering a band

of frequencies that degenerates to zero. The estimate is implicitly defined by:

,log12)(logminarg
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Under finiteness of the fourth moment and other conditions, Robinson (1995a) proves the

asymptotic normality of this estimate, while Lobato (1999) extended it to the multivariate

case.

There also exist several other semiparametric procedures for estimating the fractional

differencing parameter, for example, the log-periodogram regression estimate (LPE), initially

proposed by Geweke and Porter-Hudak (1983), and modified later by Künsch (1986) and

Robinson (1995b), and the averaged periodogram estimate (APE) of Robinson (1994b).

However, we have decided to use in this article the QMLE, firstly because of its

computational simplicity and also, because several Monte Carlo experiments carried out, for

example, by Gil-Alana (2001), showed that, in finite samples, the QMLE has better statistical

properties compared with the other procedures.

(Insert Figure 4 about here)

Since the series appear to be nonstationary, we carry out the analysis based on the

first differenced data, adding then 1 to the estimated values of d to obtain the proper order of

integration. The results of d1 in (24) for the whole range of values of m are displayed in the

upper part of Figure 4. We see that the estimates are very sensitive to the choice of m,

especially if m is small. The second plot of the figure displays the results when m is

constrained between 50 and 150. We see that the values oscillate around 0, and taking a

shorter interval for m, (from 75 and 125), the values are in most cases slightly below 0,

implying that the order of integration of the original series is 1 or slightly smaller than 1. This

is consistent with the results given in Table 3, implying that there is a small degree of mean

reversion in its behaviour.
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5. Concluding comments

In this article we have examined the US fiscal deficit by means of using fractionally

integrated techniques. Using a version of the tests of Robinson (1994a) for testing unit and

fractional roots, the results show that the US real revenues and government expenditure are

both integrated of order 1 variables, which is in line with most of empirical work of deficit

models. Looking at the results based on the differences between both variables, the results are

mixed. Thus, if the underlying disturbances are white noise, the unit root null hypothesis

cannot be rejected, implying that there is no cointegration between revenues and government

expenditure for a given cointegrating vector (1, -1). From an economic point of view, this

result suggests that the US fiscal deficit is not sustainable, at least in its strong sense, and is in

line with the results obtained by Hakkio and Rush (1991) or Quintos (1995), who find

evidence of sustainability only for a sub-sample ending in 1980. However, imposing

autocorrelated (Bloomfield) disturbances, the order of integration appears to be higher than 0

but smaller than 1, suggesting that a certain degree of fractional cointegration exists between

both variables. Using a semiparametric procedure for estimating the fractional differencing

parameter d, (QMLE, Robinson, 1995a) on the differenced series, the results suggest that d is

slightly smaller than 1, implying that fiscal deficits are mean reverting, though the adjustment

process towards equilibrium will take a very long time. This finding implies a long run

equilibrium relationship between public revenues and public expenses, which we interpret as

evidence of ‘strong’ sustainability of the fiscal policy, in line with the studies by Hamilton

and Flavin (1986), Trehan and Walsh (1988) and Martin (2000).

We should mention that the parametric approach of Robinson (1994a) used in this

paper generates simply computed diagnostics for departures from any real d and thus, it is not
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surprising that, when fractional hypotheses are entertained, some evidence supporting them

appears, because this might happen even when the unit-root model is highly suitable. In that

respect, the bulk of the hypotheses presented across Tables 1-3 are rejected, suggesting that

the optimal properties of the tests may be supported by reasonable performance against non-

local departures. In addition, the use of other methods for estimating and testing the fractional

differencing parameter d, like the QMLE of Robinson (1995a) produces similar results in

terms of a small degree of mean reversion in the US deficit.

The procedures implemented in this article can also be used to estimate and test the

order of integration on the residuals from the cointegrating regression in (10). In other words,

they can be performed in a similar way as in Engle and Granger (1987), testing the null

hypothesis of no cointegration against the alternative of (fractional) cointegration. However, a

problem with this procedure appears in that the residuals used are not actually observed but

obtained from minimizing the residual variance of the cointegrating regression and, in finite

samples, the residual series might be biased towards stationarity. Thus, we would expect the

null to be rejected more often than suggested by the normal size of Robinson’s (1994a) tests.

Therefore, the empirical size of these tests for cointegration in finite samples has to be

obtained using a simulation approach. In that respect, we have preferred to use the procedures

based on observed data and test for cointegration, imposing the cointegrating vector (1, -1).

The results seem to indicate that the US deficit is nonstationary but with a small component of

mean reversion, with shocks affecting to the series dissappearing in the long run.
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FIGURE 1
US real revenues and government expenditure, with their corresponding correlograms and periodograms

Real revenues (Rt) Real government expenditure (Gt)

Correlogram Rt Correlogram Gt

Periodogram Rt Periodogram Gt

Note: The large sample standard error under the null hypothesis of no autocorrelation is 1/√T or roughly 0.074.
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FIGURE 2
First differenced series, with their corresponding correlograms and periodograms

(1 – L) Rt (1 – L) Gt

 Correlogram (1 – L) Rt Correlogram (1 – L) Gt

Periodogram (1 – L) Rt Periodogram (1 – L) Gt

Note: The large sample standard error under the null hypothesis of no autocorrelation is 1/√T or roughly 0.074.
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FIGURE 3
Plots of Rt – Gt and its first differences, with their corresponding correlograms and periodograms

 (Rt – Gt) (1 – L) (Rt – Gt)

Correlogram (Rt – Gt) Correlogram (1 – L) (Rt – Gt)

Periodogram (Rt – Gt) Periodogram (1 – L) (Rt – Gt)

Note: The large sample standard error under the null hypothesis of no autocorrelation is 1/√T or roughly 0.074.
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TABLE 1

Testing Ho (15) in (20) and (21) with r̂  given by (18) in Rt

i)  α  =  β  =  0

ut  /  do 0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 Conf. interval

White noise 33.10 32.35 12.97 2.25 -1.34 -3.43 -4.68 -5.47 -5.99 [0.79 -  1.02]

AR (1) 0.08 -1.50 -6.41 -3.16 -1.15 -1.26 -2.17 -3.13 -3.94 ***

AR (2) 0.58 1.36 -2.08 -2.69 -1.56 -0.47 -0.34 -0.92 -1.76 ***

Bloomfield (1) 19.17 18.34 6.57 0.39 -1.47 -2.34 -3.00 -3.60 -3.90 [0.66 – 1.05]

Bloomfield (2) 8.33 8.24 4.62 0.70 -0.81 -1.68 -2.64 -2.70 -2.77 [0.60 – 1.03]

ii)  α unknown and  β  =  0

ut  /  do 0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 Conf. Interval

White noise 33.10 29.59 21.65 5.65 -0.75 -3.23 -4.66 -5.53 -6.07 [0.87 -  1.07]

AR (1) 0.08 -1.72 -3.55 0.83 -0.53 -1.66 -2.74 -3.61 -4.28 ***

AR (2) 0.58 -0.73 -2.19 -0.11 -1.14 -1.71 -2.30 -2.88 -3.38 ***

Bloomfield (1) 18.17 15.34 10.83 3.02 -0.53 -1.81 -2.73 -3.29 -3.82 [0.83 – 1.21]

Bloomfield (2) 12.33 11.12 4.37 2.07 1.03 -1.90 -2.06 -2.37 -4.86 [0.81 – 1.04]

iii)  α and β  unknown

ut  /  do 0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 Conf. Interval

White noise 22.19 14.69 8.28 3.07 -0.77 -3.22 -4.66 -5.53 -6.07 [0.84 -  1.07]

AR (1) -0.16 -5.73 -3.24 1.46 -0.52 -1.67 -2.73 -3.61 -4.28 ***

AR (2) 0.08 -1.97 -2.77 -0.03 -1.13 -1.71 -2.30 -2.88 -3.38 ***

Bloomfield (1) 10.18 5.54 2.82 0.85 -0.58 -1.76 -2.73 -3.28 -3.81 [0.67 – 1.21]

Bloomfield (2) 6.32 3.22 2.26 1.46 -1.06 -1.94 -2.05 -2.36 -3.83 [0.68 – 1.05]
Note: In bold: The non-rejection values of the null hypothesis at the 95% significance level.
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TABLE 2

Testing Ho (15) in (20) and (21) with r̂  given by (18) in Gt

i)  α  =  β  =  0

ut  /  do 0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 Conf. Interval

White noise 33.64 32.67 22.27 4.29 -1.53 -4.03 -5.24 -5.87 -6.22 [0.84 – 1.01]

AR (1) -0.17 -0.10 -1.40 2.17 -0.09 -2.06 -3.60 -4.57 -5.16 ***

AR (2) 0.99 3.40 -0.88 0.29 0.33 -0.07 -0.87 -1.71 -2.34 ***

Bloomfield 17.98 17.69 11.90 3.64 0.32 -1.43 -2.76 -3.44 -3.94 [0.87 – 1.27]

Bloomfield (2) 9.46 9.29 6.47 3.78 -0.97 -1.46 -2.02 -2.76 -3.51 [0.86 – 1.26]

ii)  α unknown and  β  =  0

ut  /  do 0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 Conf. Interval

White noise 33.64 28.71 20.91 5.84 -1.37 -3.62 -4.84 -5.59 -6.07 [0.86 – 1.02]

AR (1) -0.17 0.06 -1.40 2.76 -0.72 -2.03 -3.04 -3.85 -4.49 ***

AR (2) 0.99 -0.45 -1.52 -0.06 -1.02 -1.50 -1.92 -2.34 -2.72 ***

Bloomfield (1) 17.38 14.36 10.03 3.03 -0.91 -2.14 -2.80 -3.34 -3.71 [0.82 – 1.14]

Bloomfield (2) 9.46 9.17 5.13 2.33 -1.76 -2.73 -2.91 -3.82 -4.72 [0.81 – 1.11]

iii)  α and β  unknown

ut  /  do 0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 Conf. Interval

White noise 31.59 23.16 11.59 3.00 -1.39 -3.61 -4.84 -5.60 -6.10 [0.82 – 1.02]

AR (1) -0.48 -5.54 -1.06 2.93 -0.72 -2.02 -3.03 -3.88 -4.58 ***

AR (2) 0.86 -2.03 -1.90 -0.08 -1.02 -1.50 -1.92 -2.39 -2.88 ***

Bloomfield (1) 16.53 11.06 5.70 1.50 -0.77 -2.11 -2.80 -3.38 -3.83 [0.74 – 1.13]

Bloomfield (2) 10.62 5.23 2.57 0.47 -1.83 -2.69 -2.92 -3.06 -3.39 [0.68 – 1.11]
 Note: In bold: The non-rejection values of the null hypothesis at the 95% significance level
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TABLE 3

Testing Ho (15) in (20) and (21) with r̂  given by (18) in (Rt – Gt)

i)  α  =  β  =  0

ut  /  do 0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 Conf. Interval

White noise 26.05 16.66 7.90 2.76 -0.50 -2.74 -4.22 -5.19 -5.84 [0.83 – 1.11]

Bloomfield (1) 12.37 6.67 1.88 -0.21 -1.24 -2.16 -2.69 -3.25 -3.61 [0.54 – 1.10]

Bloomfield (2) 5.97 1.93 -1.26 -2.23 -3.05 -3.63 -3.71 -3.80 -3.62 [0.30 – 0.57]

ii)  α unknown and  β  =  0

ut  /  do 0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 Conf. Interval

White noise 26.05 16.98 7.88 3.04 -0.42 -2.83 -4.34 -5.29 -5.90 [0.85 – 1.11]

Bloomfield (1) 12.37 6.67 1.85 0.25 -0.93 -1.97 -2.70 -3.21 -3.60 [0.54 – 1.18]

Bloomfield (2) 5.97 2.20 -1.30 -1.24 -1.88 -2.48 -3.06 -3.10 -4.08 [0.31 – 0.67]

iii)  α and β  unknown

ut  /  do 0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 Conf. Interval

White noise 19.14 12.97 7.66 3.13 -0.42 -2.83 -4.34 -5.30 -5.91 [0.85 – 1.11]

Bloomfield (1) 7.66 4.11 1.89 0.34 -0.93 -1.98 -2.70 -3.23 -3.55 [0.54 – 1.19]

Bloomfield (2) 2.82 0.35 -0.66 -2.11 -1.88 -2.49 -3.06 -3.12 -4.20 [0.18 – 0.68]
Note: In bold: The non-rejection values of the null hypothesis at the 95% significance level.
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FIGURE 4

QMLE(Robinson, 1995a) in (1 – L) (Rt – Gt)

QMLE (Robinson, 1995a) for a shorter range of values of m

QMLE (Robinson, 1995a) for an even shorter range of values of m
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