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Concordia University

Silvia Mayoral
University of Navarra

Manuel Morales §

University of Montreal

September 26, 2006

Abstract
We introduce a general binomial model for asset prices based on

the concept of random maps. The asymptotic stationary distribution
for such model is studied using techniques from dynamical systems.
In particular, we present a technique to construct a general binomial
model with a predetermined stationary distribution. This technique is
independent of the chosen distribution making our model potentially
useful in financial applications. We briefly explore the suitability of
our construction as an implied binomial tree.
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2 RANDOM DYNAMICS AND FINANCE

1 Introduction

Random dynamical systems are believed to be a useful framework for mod-
eling and analyzing of economic phenomena with stochastic components
Schenk-Hoppe (2001). We are interested in developing techniques in theory
of dynamical systems which can be implemented in finance. Here we present
one possible application that uses the concept of random maps.

A position dependent random map is a discrete time random dynamical
system consisting of a collection of transformations that, at each iteration,
are selected and applied randomly by means of position dependent proba-
bilities. Such a structure could be used as a generalized binomial model as
those discussed in Cox, Ross and Rubinstein (1979), Rubinstein (1994) and
Derman and Kani (1994).

In the early years of modern financial mathematics, Cox, Ross and Ru-
binstein (1979) proposed a binomial approximation to option pricing. This
binomial approach has become a favorite among practitioners since it yields
approximations for a wide variety of options that cannot be approached
otherwise [see for instance Cakici and Foster (2002) or Hui (2005)]. Bino-
mial option pricing models and their convergence to continuous time models
have been extensively studied eversince. For instance, Rachev and Ruschen-
dorf (1997) explores the question of which continuous time models arise as
limits of generalized binomial models. Hubalek and Schachermayer (1998)
explores the conditions needed to ensure that convergence of a general bino-
mial prices imply convergence of option prices for general binomial models.
And Diener and Diener (2004) explores the nature of the convergence of
binomial models.

Here we use dynamical systems techniques to construct a generalized
binomial model as those previously studied in the financial literature [see
Hubalek and Schachermayer (1998), Nelson and Ramaswamy (1990), Jack-
werth (1999) and references therein]. One appealing feature of this model is
the existence of an invariant asymptotic density. This mimics the motivation
behind the use of stationary diffusion models in finance. Continuous time
diffusion models with stationary densities have been proposed in the litera-
ture as appealing asset returns models, for instance Rydberg (1999) intro-
duces a family of an ergodic diffusion with a predetermined stationary distri-
bution. Binomial models as approximations to diffusions have been studied
in Nelson and Ramaswamy (1990), in view of which, our model can be natu-
rally interpreted as the discretization of a diffusion.The novelty of our model
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lays in the fact that Theorem 6.9 allows us to construct a binomial tree that
has any given desired distribution as its invariant density. Our techniques
are based on the position dependent random map model and its Perron-
Frobenius operator. We prove our results theoretically and we produce a pro-
gram which computes the components of a binomial model whose stationary
density is the desired one. A pedagogical version of this program, that con-
structs a stationary binomial model from any desired lognormal distribution,
is available at http://www.mathstat.concordia.ca/pg/Economics200s.zip

Our construction might be of interest to practitioners as well since our
method can be used to extract an implied binomial tree from a given risk-
neutral density previously inferred from option prices, i.e. our model can
produce a stochastic model from a set of option prices (provided we know
how to extract a risk-neutral density from these prices). Implied binomial
trees were introduced in Rubinstein (1994), Derman and Kani (1994) and
Dupire (1994) as a mean to empirically study option prices and to price
less-traded options in a market-consistent way. Eversince, there has been
a substantial amount of articles discussing further the construction of bi-
nomial trees from observed option prices. Relevant articles in the late 90’s
are Jackwerth (1997), Derman and Kani (1998), Barle and Cakici (1998),
Dumas, Fleming and Whaley (1998), Brown and Toft (1999) and Britten-
Jones and Neuberger (2000). More recent articles are Jackwerth and Ru-
binstein (2001) and Li (2001). They all analyze the problem of extracting,
from observed option prices, information on the stochastic process behind
the underlying asset. Such implied trees were consistent with the volatility
smile and were risk-neutral at each step. Since our construction starts from
any given density, our model can be very well used to construct an implied
binomial tree.

The main purpose of this note is to introduce a novel construction of a bi-
nomial tree using random maps. The key feature of this model is that it can
be built to have any desired stationary density. As an application, we argue
that this construction could be use to produce implied binomial trees. This
paper is organized as follows. In Section 2 we present some preliminaries
from stochastic analysis. In Section 3 we formulate the definition of a po-
sition dependent random map and introduce its Perron-Frobenius operator.
In Section 4 we prove an ergodic theorem that will be needed in our appli-
cation. In Section 5, we build a binomial model from a position dependent
random map and present an illustration. In Section 6, we first address the
inverse problem of the Perron-Frobenius operator of position dependent ran-
dom maps. Then we present a method and a computer program to construct
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binomial models from any density suitable for financial applications. In Sec-
tion 7, we discuss some interesting features of our construction. We argue
that our binomial tree can be considered as an implied binomial tree since
this can be built up from a risk-neutral distribution potentially extracted
from option opices. This would produce a binomial tree that is consistent
with the market in an stationary way. Section 8 presents a method of ap-
proximating the invariant density of any given binomial model. In Section
9, we present an interesting modification to our model that causes random
arbitrage opportunities but still allows it to accept a stationary density. We
construct such model using a perturbed random map.

2 Preliminaries

In this section we present some definitions and notions that will be needed
to construct our model. In particular, we state the definition of stationary
probability for a Markov process.

Definition 2.1 Let (X,B, λ) be a probability space. A function P : X ×
B → [0, 1] is called a stochastic transition function if it has the following
properties:

(i) for any A ∈ B, P(·, A) : X → [0, 1] is a B-measurable function;
(ii) for any x ∈ X, P(x, ·) : B → [0, 1] is a measure.

We can define a Markov process by a transition function P. Let λ be
a probabilistic measure on B called initial probability. Then we define all
probabilities related to the Markov process {Xn}n≥0 using λ and P:

P(X0 ∈ A) = λ(A);
P(X1 ∈ A|X0 = x) = P(x,A);

P(X1 ∈ A) =
∫

X
P(x,A)dλ(x);

(2.1)

and in general:

P(Xn+1 ∈ A|Xn = x) = P(x,A);

P(Xn+1 ∈ A) =
∫

X
· · ·

∫

X︸ ︷︷ ︸
(n+1)−times

dλ(x0)P(x0, dx1)P(x1, dx2) . . . P(xn−1, dxn)P(xn, A).

(2.2)
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The n-step transition probability function Pn is

Pn(x,A) = P{Xn ∈ A|X0 = x}

=
∫

X
· · ·

∫

X︸ ︷︷ ︸
(n−1)−times

P(x0, dx1)P(x1, dx2) . . . P(xn−2, dxn−1)P(xn−1, A).

(2.3)

Equivalently, Markov process can be understood as a measure on the
product space X+ = XN∪{0} given by:

P(A0 × A1 × · · · × An) = P(X0 ∈ A0,X1 ∈ A1, . . . ,Xn ∈ An),

for all n ≥ 1 and A0, A1, . . . , An ∈ B.
The following two notions will be crucial in our application.

Definition 2.2 A measure µ on B is called a stationary (or invariant)
probability measure for a Markov process with transition probability function
P if

µ(A) =
∫

X
dµ(x)P(x,A), (2.4)

for all A ∈ B. Then, obviously µ(A) =
∫
X dµ(x)Pn(x,A).

Definition 2.3 A Markov process with stationary density µ is ergodic if
and only if, when P(x,A) = 1 for all x ∈ A implies µ(A) = 0 or µ(Ac) = 0.

Definition 2.4 A set A ∈ B is ergodic with respect to a stationary measure
µ of a Markov process if and only if P(x,A) = 1 for all x ∈ A implies
µ(A) = 0 or µ(Ac) = 0.

Now, we state a theorem for Markov processes concerning its stationary
distribution. It is taken from Doob (1953) and it requires the following
hypothesis.
Hypothesis: There is a finite measure φ on B with φ(X) > 0, an integer
j ≥ 1, and a positive ε such that

φ(A) ≤ ε =⇒ P(j)(x,A) ≤ 1 − ε,

for all x ∈ X.
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Theorem 2.5 If the hypothesis holds, then the limit

µ(A) = lim
n→∞

Pn(x,A),

exists for any A ∈ B and is independent of the initial point x. The measure
µ is a stationary measure for the Markov process.

Moreover, for any B-measurable function f with

E{|f(X1)|} =
∫

Ω
|f(ξ)|µ(dξ) < ∞,

the limit

lim
n→∞

1
n

n∑

m=1

f(Xm)

exists with probability one. In particular, under the above hypothesis, if there
is only one ergodic set,

lim
n→∞

1
n

n∑

m=1

f(Xm) =
∫

X
f(ξ)µ(dξ)

with probability one.

3 Position Dependent Random Maps

In this section we define a position dependent random map as a Markov
process and discuss the existence of its stationary density. This is formulated
via the Perron-Frobenius operator of the random map.

Let τk : X → X, k = 1, ...,K, be piecewise one-to-one, non-singular
transformations on a common partition P of X : P = {I1, ..., Iq} and let
τki

= τk |Ii , i = 1, ..., q, k = 1, ...,K be their restrictions to the sets I1, ..., Iq .

Definition 3.1 We define the position dependent random map

T = {τ1, . . . τk; p1(x), . . . pk(x)}

as Markov process {Tn}n≥0 with transition function

P(x,A) =
K∑

k=1

pk(x)χA(τk(x)), (3.1)

where A is any measurable set and {pk(x)}K
k=1 is a set of position dependent

measurable probabilities, i.e.,
∑K

k=1 pk(x) = 1, pk(x) ≥ 0, for any x ∈ X
and χA denotes the characteristic function of the set A.
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The structure of such defined Markov process {Tn}n≥0 can be understood
from its state probabilities.

P(T0 ∈ A) = λ(A);
P(T1 = τk(x)| T0 = x) = P (x, τk(x)) = pk(x) , k = 1, ...,K ;

(3.2)

and in general:

P(Tn+1 = τk(x)| Tn = x) = P (x, τk(x)) = pk(x) , k = 1, ...,K . (3.3)

At each step n + 1 and given a previous state Tn = x, the process Tn+1 can
take K different possible states τ1(x), . . . τK(x) with probabilities p1(x), . . . , pK(x)
respectively. Notice that the states as well as the probabilities depend on
the previous state x through the functions τk and pk. In other words, they
are position dependent.

After n steps and given an initial value T0 = x, the Marvov process can
take one of the Kn possible different ordered ways in which K transforma-
tions can be iterated n times. We denote by T n(x) = τkn ◦τkn−1 ◦ · · · ◦τk1(x)
one of such n-order iterations. Then, the n-step transition probability func-
tion Pn of the random map is

Pn (x, T n(x)) = P{Tn = T n(x)| T0 = x}
= pkn(T n−1(x)) · pkn−1(T

n−2(x)) . . . pk2(T
1(x)) · pk1(x).

(3.4)

In other words, at each step we are defining T (x) = τk(x) with probabil-
ity pk(x). The steps of size n are defined as T n(x) = τkn ◦ τkn−1 ◦ · · · ◦ τk1(x)
with probability pkn(τkn−1 ◦ · · · ◦τk1(x)) ·pkn−1(τkn−2 ◦ · · · ◦τk1(x)) · · · ·pk1(x).

The transition function P induces an operator P∗ on measures on (X,B)
defined by

P∗µ(A) =
∫

P(x,A)dµ(x)

=
K∑

k=1

∫
pk(x)χA(τk(x))dµ(x)

=
K∑

k=1

q∑

i=1

∫

τ−1
ki

(A)
pk(x)dµ(x).

(3.5)

The standard notion of a measure invariant (stationary) for a Markov
process gives the following definition of the T -invariant measure:
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Definition 3.2 T preserves a measure µ if and only if

µ(A) =
K∑

k=1

∫

τ−1
k (A)

pk(x)dµ,

for any A ∈ B.

If µ has density f with respect to λ, the P∗µ has also a density which
we denote by PT f . By change of variables, we obtain

∫

A
PT f(x)dλ(x) =

K∑

k=1

q∑

i=1

∫

τ−1
ki

(A)
pk(x)f(x)dλ(x)

=
K∑

k=1

q∑

i=1

∫

A
pk(τ−1

ki
x)f(τ−1

ki
x)

1
Jki

(τ−1
ki

)
dλ(x),

(3.6)

where Jki
is the Jacobian of τki

with respect to λ. Since this holds for
any measurable set A we obtain an a.e. equality:

(PT f)(x) =
K∑

k=1

q∑

i=1

pk(τ−1
ki

x)f(τ−1
ki

x)
1

Jki
(τ−1

ki
)
χτk(Ii)(x) (3.7)

or

(PT f)(x) =
K∑

k=1

Pτk
(pkf) (x), (3.8)

where Pτk
is the Perron-Frobenius operator corresponding to the trans-

formation τk Boyarsky and Góra (1997). We call PT the Perron-Frobenius
operator of the random map T . The properties of PT resemble the proper-
ties of the traditional Perron-Frobenius operator. Obviously, PT f∗ = f∗ if
and only if f∗λ is T -invariant. In particular, µ = f∗λ is unique if and only
if f∗ is the unique fixed point of PT .

4 Ergodic Theorem

In this section X = [a, b]. To prove that T admits a finite number (at least
one) of ergodic absolutely continuous invariant measure on [a, b], it is enough
to prove that for any f ∈ BV (X) there exist an n ∈ N, and real numbers
A,B such that
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||P n
T f ||BV ≤ A||f ||BV + B||f ||1, (4.1)

where 0 < A < 1 and 0 < B < ∞ (See Boyarsky and Góra (1997) for (4.1)
and Dunford and Schwartz (1964) for BV ).

Following Elton (1978), let

Ω = K∞ = {(k1, k2, . . . ) : 1 ≤ kj ≤ K and kj is an integer for each j} .

Let A be the σ-algebra generated by the cylinders in Ω. For each x ∈ X,
let Px be the probability measure on A defined on cylinders by

Px((k1, k2, . . . , kn)) = pkn(τkn−1◦· · ·◦τk1(x))·pkn−1(τkn−2◦· · ·◦τk1(x)) . . . pk1(x) .

This is the probability measure for realizations of the Markov process start-
ing at x. For instance, if we consider a Markov process {Zn, n = 0, 1, . . . }
with state space X and transition probability P as defined above, then

P (Z0, Z1, . . . ) ∈ B|Z0 = x) = Px{(k1, k2, . . . ) : (x, τk1(x), τk2(τk1(x)), . . . ) ∈ B}

for any B ∈ B.

Theorem 4.1 If µ is T -invariant, µ is absolutely continuous and unique
among absolutely continuous invariant measures, PT satisfies (4.1), then
for almost every µ point x with probability 1:

1
n

n−1∑

i=0

f(T i(x)) → µ(f)

for any f ∈ L1(X,µ).

Proof
Let {Zn} be the Markov process with transition probability P such that

Z0 has distribution µ. Then the process is stationary since µ is an invariant
measure and it is ergodic by (4.1). Let f ∈ L1(X,λ). Define

Λ = {(x0, x1, . . . ) ∈ X∞ :
1
n

n−1∑

j=0

f(xj) →
∫

fdµ}.

By Theorem 2.5,
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P ((Z0, Z1, . . . ) ∈ Λ) = 1. (4.2)

Observe that

P ((Z0, Z1, . . . ) ∈ Λ) =
∫

P ((Z0, Z1, . . . ) ∈ Λ|Z0 = x)dµ(x)

=
∫

Px((k1, k2, . . . ) : (x, τk1(x), τk2(τk1(x)), . . . ) ∈ Λ)dµ(x).

(4.3)

Then by (4.2) and (4.3) we have

Px0((k1, k2, . . . ) : (x0, τk1(x0), τk2(τk1(x0)), . . . ) ∈ Λ)) = 1

for some x0 ∈ X.
Let H = {(k1, k2, . . . ) : x0, τk2(τk1(x0)), . . . ) ∈ Λ)}. Thus, Px0(H) = 1

and for (k1, k2, . . . ) ∈ H,

1
n

n−1∑

j=0

f(τkj
◦ · · · ◦ τk1(x0)) →

∫
fdµ.

Thus, for almost every µ point x with probability 1:

1
n

n−1∑

i=0

f(T i(x)) → µ(f)

for any f ∈ L1(X,µ).

5 Generalized Binomial Models

In a now classical paper, Cox, Ross and Rubinstein (1979) proposed a bi-
nomial model for asset prices that has played an important role in modern
mathematical finance. The binomial model is a simple yet very important
model for the price of a single risky security, it is easy to implement and it
can be use to price options in a very straigth-forward manner. It has been
largely studied in the context of option pricing [He (1990), Hubalek and
Schachermayer (1998), Rachev and Ruschendorf (1997), Jackwerth (1999)
and references therein]. Its simple structure makes it suitable to approxi-
mate option prices when other methods are not available. In this section,
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we present a generalized binomial model that has not been explored before
in the literature. We use the concept of random maps to introduce position
dependent jumps and probabilities. The generalization discussed in this sec-
tion stems from our previous discussion on random maps. At each step, our
binomial model will branch out to new states, that depend on the current po-
sition, with probabilities that also depend on the current position. In other
words, the probability of our price going down (or up) in the next period,
is price dependent. This also applies to the price changes, prices decrease
(or increase) at each period at different rates that depend on the current
price. This is an interesting feature, one would expect that as information
becomes available the sizes and chances of certain up-or down-movements
change from one instant to another. As an extra feature, this model has
asymptotic properties that could be of interest in financial applications.

The classical binomial model studies one risky security price s1. At
each period there are two possibilities: the security price may go up by a
factor u or it may go down by a factor d; i.e., s1(n) = u · s1(n − 1) or
s1(n) = d ·s1(n−1); n = 1, 2, . . . is the time. The probability of an up move
during a period is equal to the parameter pu, and the probability of going
down is pd = 1 − pu. The random maps discussed in previous sections lead
to a natural extension of this model.

We define a multiperiod multinomial model as follows:

1. t+1 trading dates: n = 0, 1, . . . , t, T = {0, 1, . . . , t}, where the trading
horizon t is treated as the terminal date of the economic activity being
modeled.

2. A finite probability space Ω with K < ∞ elements:

Ω = {ω1, ω2, . . . , ωK}.

3. A probability measure P on Ω with a P (ω) > 0 for all ω ∈ Ω.

4. A bank account (or riskless asset) process B = {Bn;n = 0, . . . , t},
where B is a stochastic process with B0 = 1, Bn(ω) > 0 for all n
and Bn is the value of the bank account at time n. The quantity
rn ≡ Bn−Bn−1

Bn−1
≥ 0, n = 1, . . . , t is the interest rate in the interval

(n−1, n). We suppose that the interest rate is constant over time and
in some situations, without loss of generality, we suppose it is equal to
1.
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5. A risky security process s = (s1(n), . . . , sL(n)), n = 0, 1, . . . , t, where
sl is a Markov process for l = 1, . . . , L. sl(n) is the price of the risky
security l at time n. For example, sl is the price of one share of
common stock of a particular corporation. In our discussion, we deal
with L = 1.

6. Let F = {Fn;n = 0, . . . , t} be a filtration defined on [0, 1], with the
Lebesgue measurable sets B, where Fn is the smallest sub-σ-algebra
generated by

(s1(0), . . . , s1(n)).

The measure we consider is the invariant measure for the transition
function of Markov process s1.

We assume that the price of the sl risky security is an adapted, i.e.
s1(n) is Fn measurable, stochastic process. Thus, the investors will have
full knowledge of the past and present prices. For instance , at time n sl(n)
will be known.

The prices of the securities are assumed to be smaller than a finite
number (see Remark 5.1); i.e., the prices have an upper bound M ∈ R,
0 < M < ∞, such that 0 < sl(n) < M . We normalize the prices over M so
that

0 < sl(n) < 1

for 1 ≤ l ≤ L and n = 0, . . . , t.

Remark 5.1 Discrete time models are used to estimate continuous times
models over a finite period of time. Thus, the above assumption is natural.

Without loss of generality, we focus our attention on the one-asset bino-
mial model. Now, we start to depart from the classical approach, we assume
that the factors u and d are functions of the prices, u(x) : (0, 1) → (1,∞)
and d(x) : (0, 1) → (0, 1); i.e., at time n, u and d depend on the price of
the risky security s1 at time n − 1. The examples of u and d are: u and d
are constant over subsets of (0, 1); u and d are piecewise linear or piecewise
non-linear over (0, 1). Similarly, the probabilities pu and pd can be constant
or price dependent. Price dependent probabilities are more general and,
perhaps, more realistic. One can argue that the probability of an actual
asset price going up or down in a trading market is not constant in time
and may depend on current price. This could be explain by the fact that,
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as market prices unfold, certain up- or down-movements become more likely
than others.

Another interesting feature of this model is that the functions u, d, and
the probabilities pu and pd can be explicitely obtained from any stationary
density we specify for the model. In other words, if we know (or assume) the
stationary density that our asset price should have, then we can recuperate
the correct functions and probabilities. This feature makes our model some-
how similar to those ergodic diffusion processes proposed in the literature
as asset models [see Rydberg (1999)]. This is discussed in Section 7.

Given the functions u(x), d(x) and the probabilities pu and pd at time
n = 0, we can construct the random map T which consists of the trans-
formations τu, τd and the position dependent probabilities pu and pd. The
subscript u for τu illustrates that the transformation τu is the law which
moves the price up and the subscript d for τd illustrates that the transfor-
mation τd is the law which moves the price down. The construction of the
random map T is straight forward. At time n+1, consider the up price to be
τu(s1(n)) and the down price to be τd(s1(n)). Also s1(n+1) = u(s1(n))·s1(n)
or s1(n) = d(s1(n)) · s1(n). Therefore, the transformations τu and τd are
given by the following formulas:

τu(x) = u(x) · x and τd(x) = d(x) · x. (5.1)

Moreover, we extend τu and τd from (0,1) to the closed interval [0, 1]
continuously. For the probabilities, we assume pu = pu and pd = pd.

We now give a first example to help illustrate the structure of our model.
One interesting property of our construction is that the functions u and d are
defined piece-wise. This could be used to mimic features actually observed in
asset prices like the negative correlation between stock returns and volatility.
For instance, in our toy example we choose the functions u and d, which are
the derivatives of τu and τd, in such a way that when the price increases the
variability decreases and viceversa. The full consequence of this choice can
be observed in Figure 1 where the stationary density is depicted. Recall that
prices are set to lie in the interval [0, 1]. In Figure 2 we show one possible
trajectory of the binomial tree in this example.

Example 5.2 Suppose u(x), d(x), pu and pd are given:

u(x) =





2, 0 < x < 1
2

5
4 + 1

10x , 1
2 ≤ x ≤ 2

3
3
4 + 1

4x , 2
3 < x < 1

, (5.2)
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d(x) =





1
2 , 0 < x < 1

2
3
4 − 1

8x , 1
2 ≤ x ≤ 2

3
3
2 − 1

2x , 2
3 < x < 1

, (5.3)

and

pu(x) =





0.8, 0 ≤ x < 1
2

0.725, 1
2 ≤ x ≤ 2

3
0.4, 2

3 < x ≤ 1
, (5.4)

pd(x) = 1 − pu(x).

Observe that u(x) ≥ 1 and d(x) ≤ 1. From u(x), d(x), pu(x) and pd(x),
we construct a random map T = {τu(x), τd(x); pu(x), pd(x)},

τu(x) =





2x, 0 ≤ x < 1
2

5
4x + 1

10 , 1
2 ≤ x ≤ 2

3
3
4x + 1

4 , 2
3 < x ≤ 1

, (5.5)

τd(x) =





1
2x, 0 ≤ x < 1

2
3
4x − 1

8 , 1
2 ≤ x ≤ 2

3
3
2x − 1

2 , 2
3 < x ≤ 1

, (5.6)

pu(x) = pu(x) and pd(x) = pd(x). For example, if the price of the risky
security at time n = 0 is 0.25, then the orbit of the price at times n = 1, 2
is given by:

pu=0.725,u=1.45−→ τu(0.5) = 0.725
↗

pu=0.8,u=2−→ τu(0.25) = 0.5
↗ ↘

pd=0.275,d=0.5−→ τd(0.5) = 0.25

s1(0) = 0.25

↘ ↗ pu=0.8,u=2−→ τu(0.125) = 0.25
pd=0.2,d=0.5−→ τd(0.25) = 0.125

↘
pd=0.2,d=0.5−→ τd(0.125) = 0.0625

(5.7)

Notice that for each starting value we have one binomial tree as the
one showed in (5.7). Given a starting value x, this tree describes all the
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Figure 1

The invariant density of T in Example 5.2, histogram after 2 000 000 iterations.

possible paths the asset price might take in very much the same way as
the classical binomial model does. Unlike the classical model, these trees
expand or contract as the starting value changes (the structure of the tree
remains unchanged for all starting values in the classical binomial model).
The classical model can be obtained by setting all functions u, d and p to
be constant.

What makes this model interesting is the fact that it accepts a stationary
density. The following theorem is the existence theorem of Bahsoun and
Góra (2005):

Theorem 5.3 Let T be as above. If
∑K

k=1
pk(x)
|τ ′

k|
≤ α < 1, and pk(x)

|τ ′
k|

∈
BV (I) (BV (I) is the space of functions of bounded variation, see Dunford
and Schwartz (1964) for detalis) then T admits a finite number (at least
one) of ergodic absolutely continuous invariant measure.

Remark 5.4 The condition
∑K

k=1
pk(x)
|τ ′

k|
≤ α < 1 in Theorem 5.3 simply

requires that the tree expands in average as it branches out and it does not
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Figure 2

One trajectory of the binomial tree in Example 5.2.

concentrate in a single point. This is a natural condition to ask from a
financial binomial tree.

Now, observe that

sup
x

pu(x)
|τ ′

u(x)|
+ sup

x

pd(x)
|τ ′

d(x)|
= 0.58 + 0.4 = 0.98 < 1.

Remark 5.5 The random map T of Example 5.2 satisfies the assumptions
of Theorem 5.3. Thus, it admits an absolutely continuous invariant measure.
In Figure 1, the histogram approximating the invariant density of T is shown
after 2,000,000 iterations of random map T . The invariant density allows
us to find the following probability: µ{x : T (x) ∈ (δ1, δ2)} = µ(δ1, δ2), where
µ = f∗λ, f∗ is the invariant density. Notice that it is concentrated toward
relatively large values but small values are still fairly possible. In other words,
our price process will more likely have an upward trend but if and when it
goes down, it can do so by a significant percentage.

One key feature of our model is that it can be constructed from any
given discretized density as we will see in the next section.
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6 Constructing Binomial Models with a Predeter-
mined Stationary Density

Binomial trees have always played an important role in financial modeling.
In the early days, Cox et al. (1979) showed how binomial trees provided a
simple way of undertsanding the Black-Scholes option pricing model. Later,
Rubinstein (1994), Derman and Kani (1994) and Dupire (1994) showed how
an implied binomial tree could be extracted from actual option prices. Under
certain assumptions, a large set of option prices would contain all informa-
tion on the stochastic process driving the underlying. Implied binomial trees
can be seen as a discrete version of the stochastic process behind the behav-
ior of the underlying asset price. Recovering such a random process from
actual option prices seem to be a recurrent topic in the financial literature.
Jackwerth and Rubinstein (2001) and Li (2001) are some recent examples.

One important problem in the literature is the search for a model that
can explain the relationship among option prices of different strikes and
maturities as described by the implied volatility surface. Among all existing
models capable of doing that, binomial trees seem to occupy an important
place because of their simplicity [empirical studies can be found in Dumas,
Fleming and Whaley (1998) and Jackwerth and Rubinstein (2001)]. In this
context, the search of an algorithm for constructing an implied binomial is
highly desirable. Since our model can be easily constructed from any given
density, we believe that it can be of interest.

In the following we assume that we have a suitable density for our asset
price and from which we can recover one binomial tree having that den-
sity as its stationary law. As we will see, this density could be chosen to
be a suitable distribution within a parametric model [Rydberg (1999) for
instance]. It can also be chosen to be a risk-neutral probability density ob-
tained from option prices. The problem of extracting risk-neutral densities
from option prices has also been a subject of study in the recent years. Jack-
werth and Rubinstein (1996), Bahra (1997), Ait-Sahalia and Lo (1998) and
Constantinides, Jackwerth and Perrakis (2005) are some examples.

We first address the inverse problem of the Perron-Frobenius operator of
position dependent random maps. Then we introduce the notion of ℵ-band
random map and explain how these are related to our problem. Using these
matrices we produce a computer program which approximates the binomial
model of a given probability density function. As discussed before, this is
relevant for our model since it will allow us to construct a binomial model
(through the specification of the functions τ and p) with a predetermined
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stationary density.

Let P = {I1, . . . , IN} be a partition of I = [a, b] = [0, 1] into intervals.
We put [a, b] = [0, 1] to unify the notation in our exposition.

Definition 6.1 A transformation τ : I → I is called P-Markov if, for any
i = 1, . . . , N , τ |Ii is monotonic and τ(Ii) is a union of intervals of P.

In the following result we characterize the shape of all possible invariant
densities of our random map binomial model. It turns out that the invariant
density for our model are piecewise constant functions. This is a nice feature
since it will allow us to easily approximate any continuous density with the
invariant density of a random map binomial model.

Theorem 6.2 Let T = {τ1, . . . , τK ; p1(x), . . . , pK(x)}. Suppose that τk is
P-Markov and piecewise linear, pk is piecewise constant over P; k = 1 . . . K.
We also assume that

K∑

k=1

sup
x

pk(x)
|τ ′

k(x)| ≤ α < 1.

Then any T -invariant density is constant on intervals of P.

Proof
By the existence result of Bahsoun and Góra (2005), there exists a T -

invariant density f , i.e., PT f = f , and it is of bounded variation on I.
Moreover,

PT f(x) =
K∑

k1=1

N∑

i=1

f(τ−1
k1,i(x))

pk(τ−1
k1,i(x))

| τk1,i
′ | χτk1,i(Ii)(x) = f(x).

Note that |τ ′
k1,i| and pk1 are constants on Ii, pk1,i = pk1 |Ii

, and that f is
identically zero outside the range of τk1 , k1 = 1, . . . ,K. Let Iq ∈ P. Then
Iq ⊂ τk1(Ii), with i depending on k1. Let x, y ∈ Iq be distinct points. Then
χτk1,i(Ii)(x) = χτk1,i(Ii)(y) for all i. Thus,
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f(x) − f(y) = PT f(x) − PT f(y)

=
K∑

k1=1

N∑

i=1

pk1,i

| τ ′
k1,i |

[f(τ−1
k1,i(x)) − f(τ−1

k1,i(y))]χτk1 ,i(Ii)(x)

=
K∑

k1=1

∑

i1(k1)

pk1,i1(k1)

| τ ′
k1,i1(k1) |

[f(τ−1
k1,i1(k1)

(x)) − f(τ−1
k1,i1(k1)(y))]

≤
K∑

k1=1

sup
x

pk1

| τ ′
k1

|
∑

i1(k1)

[f(τ−1
k1,i1(k1)(x)) − f(τ−1

k1,i1(k1)
(y))],

(6.1)

where, for notational convenience, we let the index i1(k1) run through all
the integers i ∈ {1, . . . , N} such that x ∈ τk1,i(Ii). Similarly, for each i1(k1),

f(τ−1
k1,i1(k1)

(x)) − f(τ−1
k1,i1(k1)(y)) =

K∑

k2=1

∑

i2(k2)

pk2,i2(k2)

| τ
′
k2,i2(k2) |

·

[f(τ−1
k2,i2(k2)

τ−1
k1,i1(k1)(x)) − f(τ−1

k2,i2(k2)
τ−1
k1,i1(k1)(y))],
(6.2)

and so on. Therefore,

| f(x) − f(y) |≤
K∑

k1=1

sup
x

pk1

| τ ′
k1

|
∑

i1(k1)

[f(τ−1
k1,i1(k1)

(x)) − f(τ−1
k1,i1(k1)

(y))]

≤
K∑

k1=1

K∑

k2=1

sup
x

pk1

| τ ′
k1

|
sup

x

pk2

| τ ′
k2

|
∑

i1(k1)

∑

i2(k2)

[f(τ−1
k2,i2(k2)τ

−1
k1,i1(k1)

(x))

− f(τ−1
k2,i2(k2)τ

−1
k1,i1(k1)(y))]

...

≤
K∑

k1=1

· · ·
K∑

kn=1

sup
x

pk1

| τ ′
k1

|
· · · sup

x

pkn

| τ ′
kn

|
∑

i1(k1)

· · ·
∑

in(kn)

[f(τ−1
kn,in(kn) · · · τ

−1
k1,i1(k1)(x))

− f(τ−1
kn,in(kn) · · · τ

−1
k1,i1(k1)(y))].

(6.3)
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Now, since all τk’s are piecewise monotonic on the same partition, for each
fixed sequence (k1, . . . , kn)

{τ−1
kn,in(kn) · · · τ

−1
k1,i1(k1)(x), τ−1

kn,in(kn) · · · τ
−1
k1,i1(k1)(y)}

is a finite collection of at most Nn non-overlapping intervals for each n.
Therefore, each multiple sum over in(kn), . . . , i1(k1) in (6.3) is bounded
above by variation of f , VIf . Thus,

| f(x) − f(y) |≤
K∑

k1=1

· · ·
K∑

kn=1

sup
x

pk1

| τ ′
k1

| · · · sup
x

pkn

| τ ′
kn

|VIf ≤ αn · VIf < ε

(6.4)
for n large enough. Therefore, f(x) = f(y), and f is constant on Iq.

Now we define the class of P–semi-Markov transformations.

Definition 6.3 A transformation τ : I → I is called P–semi-Markov if
there exist disjoint intervals Q

(i)
j , such that for any i = 1, . . . , N , we have

Ii = ∪q(i)
j=1Q

(i)
j , τ |

Q
(i)
j

is monotonic and τ(Q(i)
j ) ∈ P.

It is easy to see that any P-Markov transformation is P-semi-Markov and
that there exist P-semi-Markov transformations that are not P-Markov.

The following theorem generalizes Theorem 6.2

Theorem 6.4 Let T = {τ1, . . . , τK ; p1(x), . . . , pK(x)}. Suppose that τk is
P-semi-Markov and piecewise linear on Q

(i)
j , such that for any i = 1, . . . , N ,

pk is piecewise constant over P; k = 1 . . . K. We also assume that

K∑

k=1

sup
x

pk(x)
|τ ′

k(x)|
≤ α < 1.

Then any T -invariant density is constant on intervals of P.

Proof
It is easy to see that τk’s are Q-Markov, where Q = {Q(i)

j : 1 ≤ j ≤
q(i), 1 ≤ i ≤ N}. Let f be a T -invariant density. By Theorem 6.2 , f is
constant on intervals Q

(i)
j . Let f

(i)
j be the value of f on Q

(i)
j .

Let us fix 1 ≤ i0 ≤ N , and let 1 ≤ j1, j2 ≤ r(i0).
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The Frobenius–Perron equations for a τ–invariant density yield

f
(i0)
j1

=
K∑

k=1

∑

(i,j)

pk(τ
(i)
k,j)

−1)|(τ (i)
k,j)

′|−1f
(i)
j ,

f
(i0)
j2

=
K∑

k=1

∑

(i,j)

pk(τ
(i)
k,j)

−1)|(τ (i)
k,j)

′|−1f
(i)
j ,

where τ
(i)
k,j = τk|Q(i)

j

, and the sums are over all pairs (i, j) such that τk(Q
(i)
j ) =

Pi0 . Since both sums on the right-hand side of the equations are equal,
f

(i0)
j1

= f
(i0)
j2

.

Now we define a Frobenius–Perron matrix associated with a random
map. As we mentioned before, this will allow us to estimate the stationary
density for our binomial model and later to solve the inverse problem of
finding a random map with a predetermined stationary density.

Definition 6.5 Let τk be a P-semi-Markov piecewise linear transforma-
tion. We define the Frobenius–Perron matrix associated with τk by Mτk

=
(ak

ij)1≤i,j≤N , where

ak
ij =

{
|(τ (i)

k,q)
′|−1 if τ(Q(i)

q ) = Ij

0 otherwise
. (6.5)

Mτk
can be identified with the Frobenius–Perron operator Pτk

of τk, re-
stricted to the space of functions constant on intervals of P. The Frobenius–
Perron operator PT of T is then represented by

MT =
K∑

k=1

ΠkMτk
, (6.6)

where Πk is the diagonal matrix of pk(x).

Proposition 6.6 Let P be an N×N stochastic matrix. Let R be a partition
of I = [a, b] into N equal intervals. Then there exists a random map T whose
transformations are R-semi-Markov transformations and their associated
probabilities are piecewise constant over R, and such that MT = P.
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Proof
Let P = (πij)1≤i,j≤N . Let e

(i)
0 = a+ i−1

N (b−a), and let Ri = [e(i)
0 , e

(i+1)
0 ],

i = 1, . . . , N . Fix 1 ≤ i ≤ N . We will construct τk|Ri . Let πij1 , . . . , πijq > 0,
πij1 + · · · + πijq = 1, with

πij1 + · · · + πijq = p1,i(a1
ij1 + · · · + a1

ijq
) + · · · + pK,i(aK

ij1 + · · · + aK
ijq

),

where ak
ij and pk,i are as defined above. Let

e(i)
s = a +

(i − 1) + πij1 + · · · + πijs

N
(b − a)

for s = 1, . . . , q. We define Q
(i)
s = [e(i)

s−1, e
(i)
s ] and τk|Q(i)

s (x)
= 1

ak
ijs

(x −

e
(i)
s−1) + e

(js)
0 . It easy to see that τk is an R-semi-Markov, piecewise linear,

the random map T is expanding on average, and that MT = P.

6.1 ℵ-Band Matrices

Definition 6.7 An R-semi-Markov piecewise linear transformation is said
to be a ℵ-band transformation, ℵ = 2s + 1, s ≤ N − 1, if its Frobenius–
Perron matrix Mτ = (pij) satisfies the condition: pij = 0 if |i − j| > s,
1 ≤ i, j ≤ N . We call a position dependent random map ℵ-band random
map if its transformations are ℵ-band and the probabilities associated with
them are piecewise constant on R.

Having characterized random maps in terms of its associated Frobenius–
Perron matrix we now need the concept of ℵ-band transformation in order
to construct a random map with a stationary density described by a vector
f . The following theorem and the algorithm immediately below describe
how this construction can be achieved.

Theorem 6.8 Let T be a ℵ-band transformation on an N -element uniform
partition R, ℵ = 2s + 1, with Frobenius–Perron matrix Mτ = (πij).

Let f = (f1, . . . , fN ) be any probabilistic vector with fi > 0, i = 1, . . . , N .
If

fiπi,j = fjπj,i, (6.7)

for any 1 ≤ i, j ≤ N , then the density corresponding to the vector f is
T - invariant.
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Proof
It is enough to show that fM = f , or

f1π1,j + f2π2,j + · · · + fNπN,j = fj,

1 ≤ j ≤ N . By equalities (6.7) this is equivalent to

fjπj,1 + fjπj,2 + · · · + fjπj,N = fj,

which holds by stochasticity of matrix M.

Below we present one of many possible constructions of an ℵ − band
matrix, ℵ = 2s + 1, s ≤ N − 1, preserving a given vector f = (f1, . . . , fN )
with fi > 0, i = 1, . . . , N .

Let ℵ = 2s+1, s ≤ N−1. Let us fix s nonnegative constants c1, c2, . . . , cs

such that c1 + c2 + · · ·+ cs ≤ 1 and other s constants d1, d2, . . . , ds such that
0 < di < 1, 1 ≤ i ≤ s. In the whole construction, all elements with indices
larger than N should be ignored.

We start by the construction of the first row and the first column of the
matrix.

• If c1/(f2/f1) < 1, then we set π1,2 = c1, else we set π1,2 = d1(f2/f1).
Note that in either case π1,2 ≤ c1.

• For each 1 ≤ i ≤ s, if ci/(f1+i/f1) < 1, then we set π1,1+i = ci, else we
set π1,1+i = di(f1+i/f1). Note that we always have that π1,1+i ≤ ci.

• Now, we define π1,1 = 1−(π1,2+· · ·+π1,1+s) and π1+i,1 = π1,1+i/(f1+i/f1),
i = 1, . . . , s. Note that 0 ≤ π1+i,1 ≤ 1, i = 0, . . . , s.

• We set π1,j = 0 and πj,1 = 0 for j > 1 + s.

Now, we construct the second row and the second column of the matrix.

• The element π2,1 has already been defined.

• As for the elements π2,2+i for i = 1, 2, . . . , s − 1:

If ci(1− π2,1)/(f2+i/f2) < 1− π2+i,1, then we set π2,2+i = ci(1− π2,1),
else we set π2,2+i = di(f2+i/f2)(1 − π2+i,1). Note that π2,2+i ≤ ci(1 −
π2,1) for considered i’s.

• Now, we define π2,2+s: If cs(1 − π2,1)/(f2+s/f2) < 1, then we set
π2,2+s = cs(1 − π2,1), else π2,2+s = ds(f2+s/f2). Again, π2,2+s ≤
cs(1 − π2,1).
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• Now, we define π2,2 = 1 − (π2,1 + π2,3 + · · · + π2,2+s) and π2+i,2 =
π2,2+i/(f2+i/f2), i = 1, . . . , s. Note that again 0 ≤ π2+i,2 ≤ 1, i =
0, . . . , s.

• We set π2,j = 0 and πj,2 = 0 for j > 2 + s.

Let us assume that the rows and the columns with indices ≤ k − 1 have
been defined.

Now we construct the kth row and the kth column of the matrix.

• The elements πk,j has already been defined for j < k.

• As for the elements πk,k+i for i = 1, 2, . . . , s:

If ci(1−
∑k−1

j=1 πk,j)/(fk+i/fk) < 1−
∑k−1

j=1 πk+i,j, then we set πk,k+i =
ci(1 −

∑k−1
j=1 πk,j). Else, we set πk,k+i = di(fk+i/fk)(1 −

∑k−1
j=1 πk+i,j).

Note that πk,k+i ≤ ci(1 −
∑k−1

j=1 πk,j) for i = 1, 2, . . . , s.

• Now, we define πk,k = 1 −
∑k+s

j=1
j 6=k

πk,j and πk+i,k = πk,k+i/(fk+i/fk),

i = 1, . . . , s. Note that again 0 ≤ πk+i,k ≤ 1, i = 0, . . . , s.

• We set πk,j = 0 and πj,k = 0 for j > k + s.

This construction in N steps creates an ℵ-band probabilistic matrix sat-
isfying conditions (6.7). In other words, given a piecewise density f , this
algorithm gives a way to construct an ℵ-band probabilistic matrix that pre-
serves f . In the following theorem we link this up to a random map binomial
model.

Theorem 6.9 Let f = (f1, . . . , fN ) be a piecewise constant density on a
partition R of I = [a, b] into N equal intervals. Then there exists an ℵ-band
random map T = {τu, τd; pu(x); pd(x)} such that

sup
x

pu(x)
|τ ′

u(x)| + sup
x

pd(x)
|τ ′

d(x)| ≤ α < 1 (6.8)

with τu(x) ≥ x, τd(x) ≤ x and f being T -invariant.

Proof
Let M = (πi,j)1≤i,j≤N be an ℵ-band matrix preserving the vector f .
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It is enough to construct nonnegative vectors pu, pd, pd(i) = 1 − pu(i),
i = 1, . . . , N , upper triangular ℵ-band probabilistic matrix Mu and lower
triangular ℵ-band probabilistic matrix Md such that

M = Diag(pu)Mu + Diag(pd)Md, (6.9)

where Diag(v) is a diagonal matrix with the elements of the vector v on the
diagonal.

Let us introduce numbers m+(i) =
∑i+s

j=i+1 πi,j and m−(i) =
∑i−1

j=1 πi,j,
i = 1, . . . , N (the sum over an empty set is equal to 0). Since M is a
probabilistic matrix the intervals [m+(i), 1 − m−(i)] are all nonempty.

Let us define vector pu in such a way that

pu(i) ∈ [m+(i), 1 − m−(i)] (6.10)

and set pd(i) = 1 − pu(i), i = 1, . . . , N . Note that pd(i) ≥ m−(i), for all i’s.
Now, for any 1 ≤ i ≤ N we define

Mu(i, j) =





πi,j/pu(i), for j > i ,

0, for j < i ,

and Mu(i, i) = 1 −
∑

j 6=i Mu(i, j). Similarly

Md(i, j) =





πi,j/pd(i), for j > i ,

0, for j < i ,

and Md(i, i) = 1−
∑

j 6=i Md(i, j). In view of conditions (6.10) both matrices
are probabilistic. The condition (6.9) holds by construction. The condition
(6.8) is satisfied since the matrices Mu and Md are probabilistic, thus the
piecewise linear maps corresponding to them are piecewise expanding on
average.

Now, Theorem 6.9 allows us to construct a random map with a pre-
determined stationary density f . Recall that stationary densities for these
random map binomial models are piecewise constant so they can be de-
scribed by a vector f . Using our construction we can produce matrices M ,
Mu, Md and the vectors pu, pd for any given vector f . In order to produce
a random map, we need to extract the functions τu and τd.
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Let Mu = (aij), i = 1, . . . q; j = 1, . . . , q be a stochastic matrix repre-
senting the Frobenius-Perron operator of a piecewise linear Markov trans-
formation τu : [0, 1] → [0, 1] with respect to a partition of disjoint open
intervals I1, . . . , Iq. We construct τu by using the nonzero entries of Mu. If
aij 6= 0 then

aij = |(τu,i)′|−1and τu(Ii) = Ij.

Of course the above construction does not produce a unique τu. However,
our algorithm provides a matrix Mu which produces a particular class of
transformations

τu(x) ≥ x ∀x ∈ [0, 1].

Moreover, our algorithm may produce a continuous τu.
The construction of τd from Md is done in the same way with the algo-

rithm providing us with a matrix Md which produces a transformation

τd(x) ≤ x ∀x ∈ [0, 1].

We provide a Maple program which produces matrices M , Mu, Md and
the vectors pu, pd for any given vector f . The program is posted at:
http://www.mathstat.concordia.ca/pg/nband.zip

Note that in the above described algorithm we can freely choose the con-
stants s ≤ N−1, c1, c2, . . . , cs such that c1+c2+· · ·+cs ≤ 1 and d1, d2, . . . , ds

such that 0 < di < 1, 1 ≤ i ≤ s. These constants have a direct effect on the
resulting tree. Constant s is the number of adjacent intervals that can be
reached from any given position in either direction in one step. The larger
it is, the larger the jumps that can be obtained in one step. Constants c’s
and d’s are related to the probabilities of jumping accross intervals from
any given position. So, small values of c’s and d’s imply lower probabilities
of reaching a faraway interval in one step. Then, small value s along with
small values of c’s and d’s make for less variable trajectories whereas large
values s, c’s and d’s make for more fluctuation in the trajectories. We have
produced a program that allows to empirically see these effects. It is posted
at http://www.mathstat.concordia.ca/pg/Economics200s.zip

6.2 The Starting Density

In this section we have assumed as given the initial density from which we
build up our model. The choice of such density could be done in a parametric
or in a nonparametric way.

Within a parametric framework, in the recent financial literature continuous-
time stochastic processes are used to model asset prices. A benchmark model
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is described in terms of the following stochasitic differential equation

dSt = µ(St, t) St dt + σ(St, t) St dWt , t > 0 , (6.11)

where St is the asset price at time t, µ is the instantaneous drift function, σ is
the local volatility function and Wt is a Wiener process. Models described by
(6.11) can be approximated by a binomial tree [see Nelson and Ramaswamy
(1990)]. In view of this, our binomial tree can be used to approximate
stationary models of the form (6.11) where the asymptotic stationary density
has been predetermined. In this sense, our model is one of many possible
discrete processes that have the desired stationary density.

Among recent popular choices distributions, that seem to better capture
many features of market rate of returns, we find members of the general-
ized hyperbolic family (for instance Barndorff-Nielsen (1998), Eberlein and
Keller (1995) and Eberlein (2001)). We can envision constructing a random
map having approximately a stationary generalized hyperbolic density. We
can always discretize the desired density over a finite interval and produce a
piecewise constant density f for which Theorem 6.9 applies. The algorithm
described in this section would produce a random map with a stationary
density that can be arbitrarily close (in the L1 distance) to a generalized
hyperbolic density or to any continuous density for that matter. The re-
sulting tree is, in a stationary sense, an approximation to a generalized
hyperbolic diffusion process, or to any stationary process of the form (6.11)
depending on the chosen density.

Within a nonparametric setting, we could find our starting density from
actual option prices. Our model would then be a stationary implied bi-
nomial tree whose stationary density is the one implied in a set of option
prices. The problem of extracting risk-neutral probability densities from
option prices has been studied in the last decade [see for instance Jackwerth
and Rubinstein (1996)]. A recent discussion of this type of constructions
can be found in Jackwerth and Rubinstein (2004). In these studies, such a
risk-neutral density is then used to construct a binomial tree to recover a
market-consistent stochastic process for the underlying [see Cakici and Fos-
ter (2002) and Skiadopoulos (2001)]. Since our binomial tree can easily be
constructed from this implied risk-neutral density, our model provides a way
of constructing an implied binomial tree having the risk-neutral probability
density as its stationary distribution. We call it an implied binomial tree in
the sense that it is consistent with a set of option prices through the inferred
stationary risk-neutral density. It remains yet to explore if our construction
can lead to a binomial tree consistent with the implied volatility surface.
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In other words, it seems to be desirable to have a binomial tree that not
only has the risk-neutral density as its stationary distribution, but that is
also consistent with the volatility smile. This would be the topic of further
research.

6.3 Example

We have shown that our binomial tree can be constructed from any given
discrete density. Here, we give an illustration of such a construction. We
had briefly discussed that this starting density could be either a paramet-
ric density, chosen because of certain desirable features, or it could be a
risk-neutral density extracted from actual option prices. The second choice
deserves a more detailed study that would include the ability of our con-
struction to produce trees consistent with the volatility smile and not only
with a terminal stationary risk-neutral density. This will be the object of
further research.

Figure 3

Lognormal density (µ = ln 10 and σ = 1) and its discretizations. 20, 100 and 200 intervals.

Instead, in our example we assume that a parametric density is given.
We have chosen a lognormal density since it is a benchmark model for finan-
cial prices. We start with a lognormal density (parameters for illustrative
purposes are: µ = ln 10 and σ = 1) which is then discretized over a finite
interval [0, 20]. We then apply our algorithm that produces a set of τu , τd

and pu functions. We show empirically how such a tree follows a discrete
stationary density close to the original desired lognormal.

In Figure 3 we have the original lognormal and its discretized version
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Figure 4

Down and up functions over the interval [0, 0.03].

with twenty, a hundred and two hundred intervals. Notice that already a
hundred intervals is very close to the continuous density. For two hundred
intrevals the discretization coincides with the continuous plot in the picture.

Our algorithm is then applied producing the functions depicted in Figure
4. These graphs show the up- and down- maps over a small interval and
not over the whole domain. Recall that these functions are piece-wise with
as many pieces as intervals in the discretization, this means that in order
to have a meaningful picture we need to zoom in into a small interval. In
Figure 3, this interval is chosen to be [0, 0.03].

Some trajectories of this implied binomial tree are shown in Figure 5.
We can see how this trajectories resemble those of a stationary lognormal
diffusion of the form (6.11).

An empirical distribution after 100, 000 iterations is shown Figure 6. We
can see how the empirical distribution is very close to the original lognormal.

These graphs can be obtained with our program posted at:
http://www.mathstat.concordia.ca/pg/Economics200s.zip

This program also illustrates the effect of the parameters s, c’s and d’s
in the resulting trajectories.

In the following section we discuss further some relevant features of our
model that make it potentially useful in financial applications.
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Figure 5

Trajectories of the binomial tree in Example 6.3.

7 Arbitrage Opportunities and Implied Binomial
Trees

One important feature to be considered when looking at potential models
for asset prices is its suitability to be used in option pricing. In this section
we explore the conditions needed for our model s1 to be arbitrage free,
which implies the existence of an equivalent martigale measure, so that
derivatives on this asset can be priced. We also discuss informally, and as
a motivation for further study, some features of our model that make it an
implied binomial tree in the sense of Rubinstein (1994), Derman and Kani
(1994) and Dupire (1994).

7.1 Arbitrage Opportunities

Let (B, s) be the finite market defined on the filtered probability space
(Ω,Ft, P , F, T) as defined in Section 5.
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Figure 6

Empirical distribution of the binomial tree in Example 6.3 after 100, 000 iterations.

We define a trading strategy H = (H0,H1 . . . HL) as a vector of stochas-
tic processes Hl = {Hl(n);n = 0, . . . t}, l = 0, 1, . . . , L. Hl(n), l = 1, . . . L,
is the number of units of security with price sl that the investors owns from
time n − 1 to time n, whereas H0(n)Bn−1 is the amount of money invested
in the bank account at time n − 1. Negative values indicate short posi-
tions. We also define a value process associated with a trading strategy H
by V = {Vn;n = 0, . . . , t}:

V0 = H0(1)B0 +
L∑

l=1

Hl(1)sl(0) (7.1)

Vn = H0(n)Bn +
L∑

l=1

Hl(n)sl(n) n ≥ 1. (7.2)

A trading strategy H is said to be self-financing if

Vn = H0(n + 1)Bn +
L∑

l=1

Hl(n + 1)sl(n), n = 1, . . . , t − 1,

i.e., the time n values of the portfolio just before and just after any time
n transactions are equal. Intuitively, if no money is added to or withdraw
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from the portfolio between times n = 0 and time t, then any change in the
portfolio’s value must be due to a gain or loss in the investments.

Definition 7.1 An arbitrage opportunity in the case of a multiperiod securi-
ties market is some trading self-financing strategy H such that its associated
value process V satisfies:

1. V0 = 0, a.s.

2. Vs ≥ 0, for all s ∈ T,a.s.

3. E[Vt] > 0, a.s.

Definition 7.2 A risk-neutral (or equivalent martingale) probability mea-
sure is a probability measure Q on (Ω,Ft, F) such that the discounted price
process

s∗l (n) ≡ sl(n)
Bn

n = 0, . . . , t l = 0, . . . , L

is a F-martingale with respect to Q for every l = 0, . . . , L.

In other words, a risk-neutral probability measure Q satisfies

EQ[s∗l (n + t)|Fn] = s∗l (n), n ≥ 0, t ≥ 1. (7.3)

One of the principal results in finance is the first fundamental asset
pricing theorem (see Elliot and Kopp (1999) or Pliska (1994)):

Theorem 7.3 In a finite market model (B, sl), there are no arbitrage op-
portunities if and only if there exists an equivalent martingale measure Q
for sl.

In our case, there are no arbitrage opportunities if and only if the process
s1 satisfy

EQ[
s1(n + 1)

Bn
|Fn] =

s1(n)
Bn

, n ≥ 0. (7.4)

If we suppose that the interest rate, r, is constant over time, then by
using (5.1) and (7.4) we obtain

q(x)
[
u(x) − 1 − r

1 + r

]
+ (1 − q(x))

[
d(x) − 1 − r

1 + r

]
= 0 (7.5)
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for all x.

Following Cox, Ross and Rubinstein (1979) we can easily see that the
one-step equivalent martingale measure at k is given by

qk(s1(k)) =
1 + r − d(s1(k))

u(s1(k)) − d(s1(k))
, k = 0, 1, 2, . . . t − 1 .

Observe that the probabilities qk depend on s1(k) because the functions
u and d depend on the price as well.

Since q’s are probabilities, it is easy to see that:

u(x) > 1 + r > d(x) for all x. (7.6)

Thus, as long as u(x) and d(x) satisfy (7.6) there is a unique equivalent
martingale measure under which s∗1(n) is a martingale and s1 is an arbitrage
free price.

If the interest rate changes with the time, the we require the functions
u and d to satisfy a more general condition:

u(x) > 1 + rn > d(x) for all x and n = 0, . . . , t. (7.7)

As far as the existence of equivalent martingale measure is concerned, our
random map behaves in very much the same way as the classical binomial
model. Option prices can then be computed for our random map binomial
model.

7.2 Implied Binomial Trees

Rubinstein (1994), Derman and Kani (1994) and Dupire (1994) introduced
implied binomial trees in order to study option prices as quoted in the mar-
ket. Given a discretized density function for the asset returns they give a
backward construction of a binomial model that is price dependent. Their
construction extracts a risk-neutral density from actual option prices. Such
a discretized density can be obtained in an involved way from actual mar-
ket quotes for a set of options with similar strike prices and maturities
[Jackwerth and Rubinstein (1996), Bahra (1997), Cakici and Foster(2002),
Jackwerth and Rubinstein (2004)]. Some of the features that these im-
plied binomial trees posses are: risk-neutral steps and price dependent local
volatilities [we refer to Dumas, Fleming and Whaley (1998) for an empirical
study of this latter feature]. We will briefly discuss how our binomial model
behaves in very much the same way as an implied binomial tree.
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An implied binomial model constructed as in Rubinstein (1994) is a finite
market model (B, s1) on a probability space (Ω,Ft, P , F, T). It is constructed
in a backward fashion such that the asset price s1(k) remains risk-neutral
with respect to the up- and down-probabilities and the local volatilities are
fitted to reproduce the volatility smile. Our model has these two features
by construction.

From the expression for the one-step equivalent martingale probability,
we can see that at each step

1+r = [qk(s1(k))] u(s1(k))+[1−qk(s1(k))] d(s1(k)) , k = 0, 1, . . . , t−1 ,

and our implied binomial tree is risk-neutral at each branch in the sense of
Rubinstein (1994) when the up- and down-probabilities are set to be qk and
1 − qk.

As for the local volatility at the kth step, this is defined as

σ2(k) = [qk(s1(k))] [lnu(s1(k)) − (µ(k))2]

+[1 − qk(s1(k))] [ln d(s1(k)) − (µ(k))2] , k = 0, 1, . . . , t − 1 ,

where

µ(k) = [qk(s1(k))] lnu(s1(k)) + [1 − qk(s1(k))] ln d(s1(k)) .

We can see that this local volatility depends on the current price s1(k) and
our implied binomial tree has state-dependent volatilities in the sense of
Rubinstein (1994).

In summary, our construction produces a binomial tree from an input
distribution. If this distribution is a somehow inferred risk-neutral distri-
bution, then the resulting tree could be thought of as an implied binomial
tree consistent with the market smile in a stationary way. This consistency
can be seen as inherited from the original risk-neutral distribution and the
stationarity of the process. In other words, our binomial tree follows the
desired distribution after a large number of steps. Therefore, if the time
window in question is long enough, we can consider the tree to be in the
stationary state and in consequence risk-neutral for sufficiently long time
windows. It remains to explore the question of whether the tree can be
constructed in such a way that it is consistent with the volatility smile at
each branch. This is, we would like that all (or most) local volatilities are
consistent with a given volatility smile. This is subject of future research
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Figure 7

On the left: The histogram of invariant density of T of Example 5.2.
On the right: The density of Markov random map TM .

8 Approximation of the Invariant Density

In this section we look at the problem of finding the stationary density of
a given random map. This could be useful to find estimates of stationary
densities in the classical binomial model and its generalizations, in particular
those in Nelson and Ramaswamy (1990). For this purpose, u(x), d(x), pu(x)
and pd(x) are assumed to be given, however, the invariant density f∗ is
unknown. We present a method for approximating f∗. This will endow
us with a way of estimating probabilities of the form µ{x ; T (x) ∈ (a, b)}
for any interval. Note that, if the transformations τu and τd are Markov,
and the probabilities pu and pd are piecewise constant, we can find the
exact unique invariant density f∗ using the methods of Boyarsky and Góra
(1997). When the transformations are not Markov, the invariant density
can be approximated by using invariant vectors of matrix operators Góra
and Boyarsky (2003). Example 5.2 is one such transformation. Now, we are
going to approximate the invariant density of T in Example 5.2. First, we
find two Markov transformations τum and τdm which approximate τu and τd

respectively. Let

τum(x) =





2x for 0 ≤ x < 0.5
2x − 0.3 for 0.5 ≤ x < 0.6
x + 0.1 for 0.6 ≤ x < 0.7

x for 0.7 ≤ x ≤ 1

, (8.1)
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and

τdm(x) =





x for 0 ≤ x < 0.1
x − 0.1 for 0.1 ≤ x < 0.3
x − 0.2 for 0.3 ≤ x < 0.5
2x − 0.9 for 0.7 ≤ x < 0.9
2x − 0.1 for 0.9 ≤ x ≤ 1

. (8.2)

Observe that τum and τdm are Markov transformations on the com-
mon partition [i/10, (i + 1)/10)9i=0]. The Perron-Frobenius operator of a
Markov transformation can be represented by a matrix [Góra and Boyarsky
(2003)]. Also, the Perron-Frobenius operator of the random map TM , TM =
{τum , τdm ; pu, pd}, is represented by the following matrix

M = ΠuMu + ΠdMd, (8.3)

where Mu, Md are the matrices of Pτum
and Pτdm

respectively, and Πu,
Πd are the diagonal matrices of pu(x) and pd(x) respectively. We have

Mu =




1/2 1/2 0 0 0 0 0 0 0 0

0 0 1/2 1/2 0 0 0 0 0 0

0 0 0 0 1/2 1/2 0 0 0 0

0 0 0 0 0 0 1/2 1/2 0 0

0 0 0 0 0 0 0 0 1/2 1/2

0 0 0 0 0 0 0 1/2 1/2 0

0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 1




,
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Md =




1 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0

0 0 0 0 0 1/2 1/2 0 0 0

0 0 0 0 0 0 0 1/2 1/2 0

0 0 0 0 0 0 0 0 1/2 1/2




and

M =




0.6 0.2 0 0 0 0 0 0 0 0

0.4 0 0.2 0.2 0 0 0 0 0 0

0 0.4 0 0 0.2 0.275 0 0 0 0

0 0.4 0 0 0 0 0.275 0 0 0

0 0 0.4 0. 0 0 0 0 0 0

0 0 0.4 0 0 0 0 0.3 0 0

0 0 0 0.4 0 0 0 0.3 0 0

0 0 0 0.4 0 0.3625 0.725 0.4 0.3 0

0 0 0 0 0.4 0.3625 0 0 0.7 0.3

0 0 0 0 0.4 0 0 0 0 0.7




,

where
pu = (0.8, 0.8, 0.8, 0.8, 0.8, 0.725, 0.725, 0.4, 0.4, 0.4);, pd = 1 − pu. The

invariant density of TM is

f = (f1, f2, f3, f4, f5, f6, f7, f8, f9, f10), fi = f|Ii
, i = 1, 2, . . . , 9, (8.4)

normalized by

f1 + f2 + f3 + f4 + f5 + f6 + f7 + f8 + f9 + f10 = 10, (8.5)
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and satisfying equation fM = f . Then,

f1 = 0.11591, f2 = 0.23183, f3 = 0.48548, f4 = 0.44184, f5 = 0.19419,

f6 = 1.28694, f7 = 1.26949, f8 = 3.64250, f9 = 2.07290, f10 = 0.25892 .

The TM -invariant density is shown on the right hand side of Figure 7.
Comparing left and right parts of Figure 7, we see that the invariant den-

sity of TM approximates the invariant density of T in Example 5.2. Notice
that, had we used Markov transformations on a finer partition than that in
the above construction, we would have obtained a better approximation for
the invariant density of T in Example 5.2 [Góra and Boyarsky (2003)].

9 Perturbed Random Maps and Arbitrage Oppor-
tunities

Finally, in this last section, we discuss a perturbed random map that can be
suggested as a discrete-time binomial model that accepts arbitrage oppor-
tunities. It turns out that if we perturbed our random tree as it branches
out, under certain conditions, it still has an stationary density. Since this
new feature is not compatible with option pricing we do not advance at this
point any possible application of this perturbed model. We simply present it
here as an interesting extension of our position dependent binomial model.

We define our multiperiod model as in Section 5, the prices will then be
driven by the random map TG which is a perturbation of the random map T .
We will see that (7.6) is not always satisfied as a result of the perturbations.

Let G be a family of functions g that are piecewise C2 on the partition
P, g(x) : [0, 1] → [0, 1]. We further assume that G is endowed with a
regular probability measure η. Usually G will be a family of functions with
parameter in a bounded region of Rd having normalized Lebesgue measure.
At each iteration, to the map τk we add a function gk from G chosen at
random. This function will account for other sources of randomness that
might exist in the absence of a perfect flow of information in the market.
Thus, at each iteration, with probability pk(x), the next map is

τk,g(x) = τk(x) + g(x) (mod 1),
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where each g is chosen from G according to the probability η. The perturbed
random map is denoted by Tg if the perturbing maps {gk} are fixed and by
TG if {g}’s are chosen at random from G. The iteration of the random map
TG is performed as follows:

T n
G(x) = τkn,g ◦ τkn−1,g ◦ · · · ◦ τk1,g(x)

with probability

pkn(τkn−1,g ◦ · · · ◦ τk1,g(x)) · pkn−1(τkn−2,g ◦ · · · ◦ τk1,g(x)) . . . pk1(x),

where the perturbations are chosen in dependently at each step. TG can be
viewed as a Markov process with the transition function

P(x,A) =
K∑

k=1

pk(x)
∫

G
χA(τk,g(x))dη(g),

where A is a measurable set and χA denotes the characteristic function of
the set A.

We say that a measure µ is TG-invariant if it is invariant for the above
Markov process.

Thus, the price of stock l at time n will be given by

sl(n) = TG(sl(n − 1)),

where n = 1, . . . , t.

In this model, the g’s create the arbitrage opportunities since condition
(7.6) does not always hold. There might be steps where the value g will
violate this condition creating an atbitrage opportunity. Hence, the prices
will be really driven by the random map TG, associated with the random map
T = {τu, τp; pu(x), pd(x)}. The g’s can be considered as small perturbations
which are unknown to the investor. Moreover, since in our model we assume
τu,g(x) > x and τd,g(x) < x for all x, and we want the same properties of
the perturbed maps, the perturbation TG is slightly modified. Assume τu is
increasing. For τu we define τu,g(x) as follows. Let x ∈ (ai, ai+1]

τu,g(x) =





τu(x) + g(x), x < τu(x) + g(x) ≤ 1
τu(x) + g(x) − (τu(ai+1) + g(ai+1)), τu(x) + g(x) > 1

τu(x) + g(x) − (τu(ai) + g(ai)), τu(x) + g(x) < x
.

(9.1)
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The definitions for decreasing τu and for τd are similar. All perturbation
results from Bahsoun, Góra and Boyarsky (2003) hold for this model as well.

The following results were proved in Bahsoun, Góra and Boyarsky (2003):

Theorem 9.1 Let TG = {τu,g, τd,g; pu(x), pd(x)}, where τu,g is defined as in
equation (9.1), then PTG

admits and invariant denisty.

Theorem 9.2 Let g, G, η, TG and T be as above. Let us consider a family
of sets G : {Gε}ε>0 such that supg∈Gε

supx |g(x)| ≤ ε. Let fε be an invariant
density of PTGε

. Then, the family {f}ε≥0 is precompact in L1 and any weak
limit point f∗ of invariant densities fε as ε → 0 is an invariant density of
T .

10 Conclusions

In this note, we develop techniques in theory of dinamical systems which
can be applied in finance. We discuss the concept of position dependent
random maps and some of their properties. We believe that these objects
have properties that make them of interest in mathematical finance. We
argue how these random maps can be implemented as generalized binomial
models in ways that had not been explored before in the financial literature.
The motivation behind our presentation lies on the fact that the proposed
random maps accept a stationary density. In this respect, our model par-
allels the proposal of ergodic stationary diffusions in finance. We provide a
very simple example that illustrates the model.

A second important feature of our generalized binomial models is that
it can be constructed from a given stationary density. We explore in this
note the inverse problem of finding a generalized binomial model having a
predetermined invariant density. We present an algorithm for such a con-
struction and a program that carries it out. As it turns out, our generalized
binomial model has piecewise stationary densities. This suggests that we
can approximate any desired continuous density with a piecewise constant
function. This would endow us with a way of constructing a random map
with a piece-wise constant density that can be as close as needed to any
continuous density. This could be applied to popular choices for densities
of price returns yielding a discrete stationary model of returns. As an il-
lustration, we produce a program that constructs a binomial tree from a
lognormal distribution. This program is available at:
http://www.mathstat.concordia.ca/pg/Economics200s.zip



WAEL BAHSOUN, PAWE L GÓRA, SILVIA MAYORAL AND MANUEL MORALES 41

Our construction could also find applications as an implied binomial
tree. Implied binomial trees are constructed from historical data and then
used to price less liquid options. These trees are grown to be consistent
with the market volatility smile at every step. If the initial distribution
is a risk-neutral density inferred from option prices then our construction
yields an implied binomial tree. This tree is consistent with the market in a
stationary way, i.e. after a long time, our tree follows the risk-neutral density
previously inferred from option prices. It remains yet to be investigated
if our construction can produce implied binomial trees consistent with a
volatiliy smile at every step. Our model could be studied further in these
type of applications.

We also discuss the problem of approximating the stationary density of a
given random map. This could be used to approximate stationary densities
for some simple discrete models.

Finally, we present a modified binomial model that accepts arbitrage
opportunities. We present this as an interesting application of a perturbed
random map. No comments on applications of such a model are made,
nonetheless, the fact that it still has a stationary density makes it an inter-
esting object.
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