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ABSTRACT

We propose in this article the use of a testing procedure due to Robinson (1994) for testing
deterministic seasonality versus seasonal fractional integration. A new statistic, based on
the score principle, is developed to simultaneously test both the order of integration of the
seasonal component and the need of seasonal dummies. Both tests have standard null and
local limit distributions. However, finite-sample critical values of the tests are computed,
and experiments based on Monte Carlo show that the sizes of the asymptotic tests are too
large, these larger sizes being also associated with some superior rejection frequencies
compared with the finite-sample-based tests. Using quarterly data for real consumption and
income in Canada, the UK and Japan, the results show that both variables are seasonally
fractionally integrated for the three countries without need of deterministic seasonal
dummies. We also find evidence that the series may be seasonally fractionally cointegrated.
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1. INTRODUCTION

Modelling the seasonal component of macroeconomic time series has been a major focus of

attention in recent years. Deterministic models based on seasonal dummy variables were

initially adopted. Later on, it was observed that the seasonal component of many series

changed over time and stochastic approaches based on seasonal differencing (see e.g. Box

and Jenkins, 1970) were proposed. In recent years, seasonal-difference models have been

extended to allow for other types of long memory behaviour, in particular, allowing seasonal

fractional integration. For the purpose of the present paper, we assume that {ut, t = 0, �1,…}

is an I(0) process, defined as a covariance stationary process with spectral density function,

which is bounded and bounded away from zero at any frequency on the interval [0, �].1 We

can consider the model:
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where s is the number of time periods in a year, Ls is the seasonal lag operator (Lsxt = xt-s)

and where d can be any real number. Note that the fractional polynomial can be expressed in

terms of its Binomial expansion:
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for any real d. Clearly, if d = 0 in (1), xt = ut, and a weakly autocorrelated process is allowed

for. However, for d > 0 in (1), xt is said to be a seasonal long memory process, so-called

because of the strong association (in the seasonal structure) between observations widely

                                                          
1  In other words, 0 < f(�) < �, where f(�) is the spectral density function of ut.



separated in time.2 The notion of fractional processes with seasonality was initially

suggested by Abrahams and Dempster (1979) and Jonas (1981), and extended in a Bayesian

framework by Carlin et al. (1985) and Carlin and Dempster (1989). Porter-Hudak (1990)

applied a seasonally fractionally integrated model like (1) to quarterly US monetary

aggregates and other recent empirical applications can be found, for example, in Silvapulle

(1995), Ooms (1997) and Gil-Alana and Robinson (2001).

The outline of the paper is as follows: Section 2 describes a version of the tests of

Robinson (1994) for testing the order of integration of the seasonal component in raw time

series, with the possibility of including seasonal dummy variables in the original model.

Section 3 presents a joint test statistic, based on Robinson (1994), for simultaneously testing

the order of integration and the need of seasonal dummy variables. Finite-sample critical

values of tests of Sections 2 and 3 are also computed in this section and Monte Carlo

experiments are conducted to check the sizes and the power properties of the tests in finite

samples. In Section 4 the tests are applied to the real consumption and income series of the

UK, Canada and Japan while Section 5 contains some concluding comments and extensions.

2. THE TESTS OF ROBINSON (1994) AND SEASONALITY

Let’s suppose we have quarterly data, (i.e., s = 4), and assume that {yt, t = 1, 2, …, T} is the

time series we observe. Let’s consider the following model,
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2  A seasonal long memory process is defined as a process with a singulatiry in the spectral density function at
one or more seasonal frequencies on the interval (0, �].



where � = (�0, �1, �2, �3)’ is a (4x1) vector of unknown parameters; D1t, D2t  and D3t are the

seasonal dummy variables, i.e., Dit =1I(t�quarter i)3 and ut is I(0). Based on (3) and (4),

Robinson (1994) proposed a Lagrange Multiplier (LM) test of 

   oo ddH �: (5)

for any real value do. Specifically,  the test statistic is given by
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I(�j) is the periodogram of tû  defined as:
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evaluated at �j = 2�j/T and g is a known function coming from the spectral density function

of tû : ),;(
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���� gf �  with �̂   =  arg min� � �* �2(�), with T* as a compact

subset of the Rq Euclidean space. Note that these tests are purely parametric and therefore,

they require specific modelling assumptions to be made regarding the short memory

specification of ut. Thus, if ut is an AR process of form �(L)ut = 	t, g = 
�(ei�)
-2, with �2 =

                                                          
3 I(x) is the indicator function: I(x) = 1 if t � x, 0 otherwise.



V(	t), so that the AR coefficients are function of �. Also, if ut is white noise, g � 1 and Â  in

(5) becomes:
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*
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which can be approximated, for large T, by �2/6 � 1.645. Finally, the summation on *  in the

above expressions are over � � M where M = {�: -� < � < �, �  (�l - �1, �l + �1), l = 1, 2,

…, s}, such that �l, l = 1, 2, …, s < � are the distinct poles of �(�) on (-�, �].4

Based on (5), Robinson (1994) established that under certain regularity conditions,

,ˆ 2
1 ��� TasR d � (8)

and this holds independently of the type of I(0) disturbances used for ut in (4). Thus, we are

in a classical large-sample testing situation by reasons described in Robinson (1994). A

100�%-level test of (5) against Ha: d � do will reject Ho (5) if 2
,1

ˆ
�

��R , where
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2
1ob . Furthermore, he also showed that the test is efficient in the Pitman

sense, i.e., that against local alternatives of form: Ha: d = do + �T-1/2, for � � 0, R̂  has a limit

distribution given by a )(2
1 �� , with a non-centrality parameter, �, which is optimal under

Gaussianity of ut. An empirical application of this version of Robinson’s (1994) tests can be

found in Gil-Alana and Robinson (2001).

Let’s suppose now that we want to investigate if the seasonal component of a given

time series is deterministic or alternatively, stochastically specified in terms of integrated

processes. We can test Ho (5) with do = 0 in (3) and (4). Then, the model becomes

exclusively (3) and the non-rejections of Ho (5) will imply, in this case, that the seasonal

component is deterministic and thus, based exclusively on the seasonal dummy variables.

On the other hand, testing Ho (5) for values of do > 0 and imposing �i = 0 for i = 1,2 and 3 a



priori in (3), the non-rejection values will indicate that the seasonal component is stochastic,

either with unit roots (if do = 1) or with fractional ones (if do � 1). Furthermore, we can also

test for seasonal fractional integration incorporating the seasonal dummies in (3), as well as

including stationary autoregressions for the seasonal component. In the following section,

we present a joint test statistic for testing simultaneously the need of the seasonal dummies

and the order of integration of the seasonal component of the series.

3. A JOINT TEST OF SEASONALITY AND THE ORDER OF INTEGRATION

Gil-Alana and Robinson (1997) propose a joint test for testing the need of a linear time trend

and the order of integration in a given time series at the zero frequency. In this section, a

similar test is proposed but, instead of looking at the long run or zero frequency, we

concentrate on the seasonal component of the series.

We can consider the model given by (3) and (4) and test the null hypothesis:

,3,2,10: ��� iandddH ioo � (9)

against the alternative:

.3,2,10: ��� ianyfororddH ioo � (10)

To be slightly general, consider the regression model (3) with � = (�0, �D’)’, where �D is a

(3�1) vector of coefficients corresponding to the seasonal dummies, and we want to test: Ho:

d = do and �D =  �Do. Then, a Lagrange Multiplier (LM) statistic may be shown to be:
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4  Note that in the special case of d = 1, wit = 0 for t > 4. However, w0t = ( 1 – L4)1t = 1 for t = 1, …, 4, and
w11= w22 = w33 = 1.
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and R~  as in (6) but using the tu~  just defined. (The derivation of the statistic is a simple

exercise based on the score principle and using Appendix A in Robinson, 1994, and Gil-

Alana and Robinson, 1997). Then, under Ho (9), 2
4

~
�dS �  as T � �, and we would

compare (11) with the upper tail of the 2
4�  distribution. However, we know that in finite

samples, the empirical distribution of the tests of Robinson (1994) can vary substantially

from the asymptotic results, (see e.g. Gil-Alana, 2000). Thus, we have computed, in Table 1,

finite-sample critical values of both statistics, R̂  in (6) and S~  in (11).

(Table 1 about here)

In both cases we generate Gaussian series obtained by the routines GASDEV and RAN3 of

Press, Flannery, Teukolsky and Vetterling (1986) with 50,000 replications each case,

computing R̂  in (6) and S~  in (11) in a model given by (3) and (4). Due to the inclusion of

the seasonal dummies in (3), the critical values will be affected by the order of integration in

(4). Thus, we calculate the critical values for d = 0, 0.25, …, (0.25), …, 1.75 and 2, with

sample sizes equal to 48, 96 and 120 and nominal sizes of 5% and 1%.

We see in Table 1 that for both statistics, the finite-sample critical values are much

higher than those given by the 2
� distributions, especially if the sample size is small. This

implies that when testing the nulls (5) and (9) against the alternatives: Ha: d � do and (10)

with the asymptotic critical values, the tests will reject the null more often than with the

finite-sample ones. We went deeper into the examination of these results and observed that

the large numbers obtained for the finite-sample critical values were due to the fact that the

quantity (7) required in (6) and (11) converges to its asymptotic value (1.645) very slowly.

This quantity is 0.989 if T = 48; it is 1.216 if T = 96; it becomes 1.293 if T = 120, and only



approximates 1.645 when T is higher than 300. (e.g., 1.624 if T = 360). Thus, the large

numbers observed for the finite-sample values when T is small are due in large part to the

small convergence of Â  to its asymptotic value.

We next examine the sizes and the power properties of the tests in finite samples,

comparing the results using the finite-sample critical values obtained in Table 1 with those

based on the asymptotic results. Tables 2 and 3 report the rejection frequencies of R̂  and S~

first, supposing that there is no need of seasonal dummies (i.e., imposing �1 = �2 =�3 = 0 a

priori, in Table 2), then including the dummy variables in the regression model (3), (i.e.,

with all coefficients unknown, in Table 3).

In Table 2, we assume that the true model is given by

,)1(;1 4
tttt xLxy �����

with white noise 	t and look at the rejection frequencies of R̂  and S~  in a model given by

(3), (4), testing (5) and (9) with do = 0, 0.25, …, (0.25), …, 1.75 and 2 for a nominal size of

5% and the same sample sizes as in Table 1. Thus, the rejection frequencies corresponding

to do = 1 will indicate the sizes of the tests since the true model contains seasonal unit roots

and, in case of R̂  in (6), the estimated �’s should be around 0. We observe that for both test

statistics the sizes of the asymptotic tests are too large in all cases, especially for the joint

statistic ,~S  though they improve slightly as we increase the number of observations. The

higher sizes of the asymptotic tests compared with the finite-sample ones are also associated

with some superior rejection frequencies, being higher the differences when we are close to

the null d = 1. Looking at the results with T = 48, we see that the power of R̂  is extremely

low, especially when using the finite-sample critical values. This is not at all surprising

noting that R̂  assumes the inclusion of seasonal dummy variables which are not present in

the true model. In that respect, the power of S~  (which assumes no dummies under the null)



is higher, though inferior with the finite-sample values than with the asymptotic results.

Increasing the sample size (e.g. T = 120), the results of both tests for both types of critical

values improve considerably, the rejection probabilities being competitive in all cases when

the alternatives are far away from the null. It may finally be remarkable the fact that the

power of the tests is not symmetric, especially for the case of R̂ . For example, when do is

below 1, the rejection probabilities of R̂  are much smaller than when do is above 1 by the

same magnitude. This happens for all sample sizes and the same occurs with the joint test

,~S  though the differences are here smaller.

(Tables 2 and 3 about here)

Table 3 assumes that the true model is given by:

,)1(;321 4
321 ttttttt xLxDDDy �������� (12)

and we perform the same experiment, i.e., computing R̂  and S~  for the same type of

alternatives as in Table 2. Thus, the rejection frequencies of R̂  with do = 1 will indicate the

size of the test while the rejection probabilities of R̂  for do � 1 and of S~  for any do will give

us information about the power of the tests. Surprisingly, the results for R̂  are practically

the same as in Table 2. That means that Robinson’s (1994) tests have not much power in

relation to the seasonal dummy variables, which makes the joint test statistic S~  in (11)

useful when describing these situations. Looking at the rejection frequencies of ,~S  we see

that they are very high when using the asymptotic critical values even if the sample size is

small. Using the finite-sample ones, they are small for T = 48 if do is around 1, however,

increasing T, they improve considerably, being higher than 0.900 if do � 0.50 or if do � 1.50

with T = 120. The same experiment was also conducted allowing different coefficients for



the dummy variables in (12) and the same conclusions as those reported here were

obtained.5

4. AN EMPIRICAL APPLICATION

We analyse in this section quarterly, seasonally unadjusted data,6 corresponding to the

consumption and income series for the UK, Canada and Japan. For the UK, the time period

is 1955q1-1984q4;  for Canada 1960q1-1994q4; and for Japan, 1961q1-1987q4. The data for

Canada were retrieved from the CANSIM Statistics Canada database, and the UK and

Japanese series were taken from Gil-Alana and Robinson (2001). Consumption is measured

as the log of the total real consumption while income is in all cases the log of the total

personal disposable income. The series for the UK and Japan were respectively analysed in

Hylleberg, Engle, Granger and Yoo (HEGY, 1990) and in Hylleberg, Engle, Granger and

Lee (HEGL, 1993) studying the seasonal integrated and cointegrated structure. The same

series for the two countries were also examined in Gil-Alana and Robinson (2001),

extending the analysis of HEGY (1990) and HEGL (1993) to the fractional case. The latter

paper, however, does not consider deterministic dummy variables for describing the

seasonal component and thus, this paper improves Gil-Alana and Robinson (2001) in that

respect.

Denoting any of the series yt, we employ throughout model (3) and (4) with white

noise ut, testing initially Ho (5) for values do = 0.00, 0.25, …, (0.25), …, 1.75 and 2.00.

Table 4 reports values of the test statistic R̂  in (6). We see that for the UK series, Ho (5)

cannot be rejected if do ranges between 1 and 2, the lowest statistic being achieved in both

                                                          
5  A similar experiment was conducted, testing the null do = 1 & �D = (1, 2, 3)‘ in model (12). Finite-sample
critical values were obtained and they were very similar to those reported in the right hand side of Table 1, and
the rejection frequencies were relatively high (with T = 120) even for alternatives of form d = 0.75 (0.754) and
d = 1.25 (0.889).
6  By “quarterly“, we mean 4 observations per year, and “seasonally unadjusted data“ means that the data have
not been adjusted using seasonal statistical procedures.



series at do = 1.50. For the Canadian consumption and income, the only values of do where

Ho cannot be rejected are do = 1.75 and 2, while for Japan, Ho (5) cannot rejected with do  =

1.75 and 2 for consumption and with do  = 1.50 and 1.75 for income. On the other hand, we

also observe that Ho (5) always results in a rejection when do = 0, implying that at least for

this simple case of white noise disturbances, the deterministic seasonal models are

inappropriate for these series.

(Tables 4 and 5 about here)

In Table 5 we present the statistic S~  in (11) for the same do values as before. We see

a few more non-rejection cases than in Table 4 and in all them the non-rejection do’s in that

table form a proper subset of those in Table 5, suggesting that the seasonal dummies were

unnecessary when modelling these series. The results in these two tables seem to indicate

that a seasonal unit root is present in the UK consumption and income, while for Canada and

Japan, higher orders of integration are observed. However, the significance of these results

might be due in large part to unaccounted-for I(0) autocorrelated disturbances. Thus, Tables

6 and 7 report respectively the same statistics as in Tables 4 and 5 but allowing a seasonal

autoregressive structure on ut.  We consider a seasonal AR(1) process of form:

   ,4 ttt uu �� ��
�

(13)

with white noise 	t, and though higher order seasonal and non-seasonal AR processes were

also performed, the results were very similar to those reported in the tables. A problem here

with the estimated AR’s coefficients appears in that, though they entail roots that cannot

exceed one in absolute value, they can be arbitrarily close to it, thus the disturbances being

possibly non-significantly different from a seasonal unit root model. In order to solve this

problem,  we perform Dickey, Hasza and Fuller (DHF, 1984) tests on the residuals of the

differenced regressions, and in those cases where the unit roots cannot be rejected, we do not

report the statistics but mark with ‘—‘ in the tables. We see across Tables 6 and 7 that all of



these cases occur when do is a very low number and close to 0. This is not at all surprising if

we take into account that a model like (4) with d = 1 and white noise ut is a very similar

process, (though with very different statistical properties) to (13) with � close to 1. The

critical values for the AR(1) case with T = 120 were computed and though we do not report

the values here, they were slightly higher than those given in Table 1. Starting with R̂  in

(6), we see in Table 6 that the non-rejection values occur at the same values of do for each

series as in Table 4 with only two extra non-rejected do’s corresponding to do = 1.50 for the

Canadian income and do = 2 for the Japanese income.

(Tables 6 and 7 about here)

Similarly for the joint test, in Table 7, the non-rejections also coincide with those in

Table 5 for the case of white noise disturbances, again with two extra non-rejected values,

this time corresponding to do = 0.75 for the UK consumption and income series. In view of

the results in these two tables, we have further evidence against the need of seasonal dummy

variables for all the series in the three countries considered.7

As a final remark and following HEGY (1990), HEGL (1993) and Gil-Alana and

Robinson (2001), we also investigate if consumption and income may be cointegrated.

Using a very simplistic version of the “Permanent Income Hypothesis Theory” as discussed

for example by Davidson, Hendry, Srba and Yeo (1978), we can consider a given

cointegrating vector (1, -1) and look at the degree of integration of the difference between

consumption and income. Thus, in Tables 8 and 9 we again perform R̂  in (6) and S~  in (11)

this time on the differenced series, using both white noise and seasonal AR(1) disturbances.

Starting with the case of white noise disturbances (in Table 8) we see that the non-rejection

values of R̂  take place when do ranges between 0.75 and 1.25. Thus, they are smaller by

                                                          
7  In connnection with the short memory specification of ut, the fact that the non-rejection values of do are the
same whether ut is white noise or AR may suggest that the former model for the disturbances is an adequate



about 0.50-0.75 than those given in Table 4. Similarly, using the joint statistic ,~S  the non-

rejection values of do also are smaller by approximately the same magnitude as before

compared with Table 5 and, apart from the case of do = 0.50 where Ho (9) cannot be rejected

now, all the remaining non-rejections occur at the same values of do as when using R̂ . Thus,

we also find in this table evidence against deterministic seasonality as well as evidence of

fractional cointegration at least for this case of white noise disturbances.

(Tables 8 and 9 about here)

Table 9 extends the results of Table 8 to the case of AR(1) disturbances. We see that

the non-rejection values of do are smaller for both statistics, ranging between 0.50 and 1.50.

Comparing the results here with those in Tables 6 and 7, we see that the orders of integration

are again smaller for the differenced series, suggesting further evidence in favour of seasonal

fractional cointegration.

5. CONCLUDING COMMENTS AND EXTENSIONS

A version of the tests of Robinson (1994) for testing the order of integration of the seasonal

component in raw time series with the possibility of including seasonal dummy variables has

been proposed in this article. Also, a joint test statistic for testing the order of integration and

the presence of the dummy variables (i.e., d = do  & � = 0) was developed. Both tests have

standard limit distributions under both the null and local alternatives. However, finite-

sample critical values were computed and the values were much higher than those given by

the 2
�  distributions. Monte Carlo experiments conducted across the paper showed that the

tests based on the asymptotic results have much larger sizes than their corresponding

nominal values, these larger sizes being also associated with some superior rejection

frequencies compared with the finite-sample-based tests.

                                                                                                                                                                                  
way of specifying ut. In fact, most of the AR coefficients in those cases where Ho (6) could not be rejected



The tests were applied to the consumption and income series of the UK, Canada and

Japan. The results based on the tests of Robinson (1994) show that the orders of integration

of the UK consumption and income widely fluctuate between 1 and 2 while the orders of

integration of the Japanese and Canadian series are much higher than 1, in many cases being

superior to 1.50. The joint test statistic was also performed on the series to see if the

seasonal dummy variables were in fact required and the results showed that for all of them,

the deterministic seasonals were inappropriate. Finally, we also performed the tests on the

differenced series, ct – yt, to check if a seasonally fractionally cointegrated relationship

might exist between consumption and income. The results here showed that the degree of

integration of the differenced series was smaller than that of the original series, with the

orders of integration fluctuating between 0.5 and 1.5, and thus supporting a very simplistic

version of the Permanent Income Hypothesis. (Davidson et al., 1978).

The results obtained in this article are not directly comparable with those in Gil-

Alana and Robinson (2001), the reason being that the latter paper does not include seasonal

dummy variables in its regression model. In that respect, we found in this article certain

evidence against the deterministic dummies and thus, the conclusions obtained in Gil-Alana

and Robinson (2001) remains valid. HEGY (1990) and HEGY (1993) looked respectively at

the UK and Japanese series exclusively in terms of seasonally integrated and cointegrated

processes, and though they allow deterministic seasonality, they do not consider the

possibility of seasonal fractional integration. Our results support the idea that the UK

consumption and income may both be quarterly I(1) process (as in HEGY, 1990), however,

unlike HEGL (1993) we found evidence against this hypothesis for the Japanese case.

Finally, and similarly to all these authors, we also found support of the Permanent Income

Hypothesis for the three countries considered.

                                                                                                                                                                                  
were insignificantly different from zero.



We should also mention that the test statistics presented in this article have nothing

to do with the estimation of the fractional differencing parameter but simply generates

computed diagnostics for different values of d. In this context, Ooms (1997) suggests Wald

tests based on Robinson’s (1994) model, using for the estimation a modified periodogram

regression procedure of Hassler (1994), whose distribution is evaluated under simulation.

Similar methods based on this and other procedures (e.g., Hosoya, 1997) can be applied to

these and other macroeconomic time series.

The frequency domain set-up of the tests used in this article may result cumbersome

for the practitioners. There also exist time domain versions of Robinson’s (1994) tests (cf.,

Robinson, 1991, Silvapulle, 1995, Tanaka, 1999). However, the preference here for the

frequency domain approach is motivated by the somewhat greater elegance that it affords

especially if the disturbances are weakly autocorrelated.8 The FORTRAN code used in this

application is available from the author upon request.

This article can be extended in several directions. Clearly, we could have extended

the tests to consider the case where the slope coefficients of some general regressors are 0 as

well as the case where only a subset of the regression coefficients is tested. However, in the

context of seasonality examined in this paper, we have considered more convenient to

particularize the case of seasonal dummies to analyse the importance of these deterministic

components. The seasonal differenced structure (1 – L4)d can be decomposed (as in Gil-

Alana and Robinson, 2001) into its long run component ((1 – L)d) and the remaining

seasonal structures ((1 + L)d and (1 + L2)d) and thus, we could test separately each of these

components in the presence of seasonal dummies. For example, we can consider a model

like (3) with

          ,...,2,1,)1( ��� tuxL tt
d



or alternatively

          ,...,2,1,)1( ��� tuxL tt
d

or

          ,...,2,1,)1( 2
��� tuxL tt

d

and test Ho (9) against (10) with the joint test described in Section 3. Note that the functional

form of the test statistics will be the same as S~  in (11) except for the differenced

polynomial required to obtain w1t, wwt and the tu~ . In addition, we can also test the

significance of the dummies along with the orders of integration at each of the frequencies,

i.e., testing Ho (9) in (3) and

...,2,1,)1()1()1( 321 2
����� tuxLLL tt

ddd

with d = (d1, d2, d3)’ though here the limit distribution will be .2
6�  Also, the seasonality can

be extended to the monthly case, (see, Gil-Alana, 1999), and similarly to the quarterly

structure, we can consider a model of form:

�
�

����

11

1
0 ...,,2,1,

i
titit txDy ��

,...,2,1,)1( 12
��� tuxL tt

d

performing a similar version of Robinson’s (1994) tests or alternatively the joint test of

Section 3. Note that now the polynomial (1 – L12) can be decomposed into

������ )...1()1( 112 LLLL

),31()31()1()1()1()1()1( 22222 LLLLLLLLLLL �����������

implying respectively the presence of unit roots at

)3(
2
1);3(

2
1);31(

2
1);31(

2
1;;1;0 iiiii ��������

                                                                                                                                                                                  
8  Seasonal long memory in the frequency domain has also been examined in Ooms and Hassler (1997) and
Arteche (2002).



and then, more test statistics can de developed to test for the presence of unit and fractional

roots at each of these frequencies. Cyclical roots as in Gil-Alana (2001) can also be

considered in this context with deterministic components. Finally, in order to investigate if

consumption and income are fractionally cointegrated, we could have applied Robinson’s

(1994) tests on the estimated residuals from the cointegrating regression instead of imposing

a given vector as is the case in this paper. A problem here would appear in that the residuals

would not actually be observed but obtained from the cointegrating regression, being

possibly biased towards stationarity and thus, finite-sample critical values should be

computed in this case. Work in all these directions is now under progress.
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TABLE 1
Finite-sample critical values of R̂  in (6) and S~ in (11)

Model: �
�

�����

3

1

4
0 .)1(;

i
tt

d
titit xLxDy ���

R̂  (Ho: d = do) S~  (Ho: d = do & �1 = �2 =�3 = 0)do

5% 1% 5% 1%
0.00 6.82 9.31 13.91 19.03
0.25 7.02 9.42 13.88 19.01
0.50 7.40 9.96 13.81 18.69
0.75 8.10 10.88 13.37 17.65
1.00 8.40 11.43 13.10 17.33
1.25 8.26 11.39 13.16 17.30
1.50 8.15 11.44 13.14 17.41
1.75 8.04 11.39 13.33 17.47

T   =  48

2.00 7.94 11.18 13.42 17.69

R̂  (Ho: d = do) S~  (Ho: d = do & �1 = �2 =�3 = 0)do

5% 1% 5% 1%
0.00 5.72 8.20 12.19 16.44
0.25 5.84 8.37 12.23 16.58
0.50 6.28 8.90 11.97 16.30
0.75 6.68 9.38 11.76 15.76
1.00 6.74 9.33 11.65 15.51
1.25 6.57 9.13 11.77 15.46
1.50 6.46 9.05 11.78 15.63
1.75 6.37 8.96 11.79 15.67

T   =  96

2.00 6.25 8.93 11.87 15.75

R̂  (Ho: d = do) S~  (Ho: d = do & �1 = �2 =�3 = 0)do

5% 1% 5% 1%
0.00 5.37 8.05 11.59 16.35
0.25 5.50 8.13 11.59 16.11
0.50 5.95 8.60 11.54 15.53
0.75 6.36 8.99 11.37 15.40
1.00 6.23 8.95 11.30 15.35
1.25 6.03 8.75 11.36 15.26
1.50 5.92 8.66 11.38 15.42
1.75 5.87 8.60 11.39 15.72

T   =  120

2.00 5.77 8.64 11.36 15.71
            The critical values of a 2

1�  distribution are 3.84 at the 5% significance level and 6.63 at the 1%
level. For the 2

4�  distribution are 9.49 and 13.28 respectively.



TABLE 2
Rejection frequencies of R̂  and S~ in (6) and (11)

True model: .1;)1(;1 4
����� ott

d
tt dxLxy o

�

Alternative:   .)1(; 4
3322110 tt

d
ttttt xLxDDDy o ����� �������

R̂  (Ho: d = do) S~  (Ho: d = do & �1 = �2 =�3 = 0)do

FSCV ASYMPTOTIC FSCV ASYMPTOTIC
0.00 0.297 0.477 0.975 0.996
0.25 0.089 0.246 0.868 0.967
0.50 0.020 0.099 0.496 0.797
0.75 0.044 0.234 0.122 0.514
1.00 0.052 0.365 0.050 0.486
1.25 0.092 0.534 0.103 0.665
1.50 0.208 0.745 0.250 0.844
1.75 0.380 0.879 0.439 0.944

T   =  48

2.00 0.542 0.954 0.627 0.982

R̂  (Ho: d = do) S~  (Ho: d = do & �1 = �2 =�3 = 0)do

FSCV ASYMPTOTIC FSCV ASYMPTOTIC
0.00 0.959 0.973 0.999 1.000
0.25 0.869 0.909 0.996 0.999
0.50 0.367 0.510 0.784 0.941
0.75 0.037 0.110 0.117 0.406
1.00 0.050 0.213 0.050 0.366
1.25 0.314 0.678 0.230 0.750
1.50 0.771 0.957 0.599 0.968
1.75 0.960 0.997 0.875 0.997

T   =  96

2.00 0.995 1.000 0.969 0.999

R̂  (Ho: d = do) S~  (Ho: d = do & �1 = �2 =�3 = 0)do

FSCV ASYMPTOTIC FSCV ASYMPTOTIC
0.00 0.991 0.994 1.000 1.000
0.25 0.961 0.974 0.999 0.999
0.50 0.602 0.700 0.892 0.974
0.75 0.068 0.137 0.138 0.432
1.00 0.050 0.175 0.050 0.332
1.25 0.451 0.741 0.304 0.796
1.50 0.919 0.986 0.751 0.987
1.75 0.996 0.999 0.961 1.000

T   =  120

2.00 0.999 1.000 0.994 1.000
              The nominal size is 5% in all cases. The sizes are in bold. FSCV means that we use the finite
              sample critical values obtained in Table 1.



TABLE 3
Rejection frequencies of R̂  and S~ in (6) and (11)

True model: .1;)1(;321 4
321 �������� ott

d
ttttt dxLxDDDy o

�

Alternative:   .)1(; 4
3322110 tt

d
ttttt xLxDDDy o ����� �������

R̂  (Ho: d = do) S~  (Ho: d = do & �1 = �2 =�3 = 0)do

FSCV ASYMPTOTIC FSCV ASYMPTOTIC
0.00 0.298 0.478 0.987 0.997
0.25 0.089 0.246 0.923 0.983
0.50 0.024 0.098 0.701 0.911
0.75 0.044 0.234 0.414 0.824
1.00 0.050 0.365 0.342 0.838
1.25 0.092 0.535 0.470 0.908
1.50 0.201 0.746 0.659 0.962
1.75 0.380 0.879 0.798 0.987

T   =  48

2.00 0.541 0.954 0.886 0.996

R̂  (Ho: d = do) S~  (Ho: d = do & �1 = �2 =�3 = 0)do

FSCV ASYMPTOTIC FSCV ASYMPTOTIC
0.00 0.960 0.973 1.000 1.000
0.25 0.867 0.912 0.996 0.999
0.50 0.367 0.517 0.877 0.968
0.75 0.037 0.112 0.421 0.770
1.00 0.050 0.213 0.358 0.768
1.25 0.314 0.678 0.622 0.935
1.50 0.771 0.959 0.864 0.993
1.75 0.961 0.997 0.968 0.999

T   =  96

2.00 0.995 1.000 0.993 1.000

R̂  (Ho: d = do) S~  (Ho: d = do & �1 = �2 =�3 = 0)do

FSCV ASYMPTOTIC FSCV ASYMPTOTIC
0.00 0.992 0.995 1.000 1.000
0.25 0.960 0.974 0.999 0.999
0.50 0.601 0.700 0.935 0.986
0.75 0.069 0.137 0.454 0.777
1.00 0.050 0.175 0.364 0.749
1.25 0.451 0.742 0.680 0.947
1.50 0.920 0.987 0.926 0.997
1.75 0.996 0.999 0.991 0.999

T   =  120

2.00 0.999 1.000 0.999 1.000
The nominal size is 5% in all cases. The sizes are in bold. FSCV means that we use the finite
sample critical values obtained in Table 1.



TABLE 4
Testing Ho (5) in (3) and (4) with R̂  given by (6) with white noise disturbances

Series / do 0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
UK Consumption 158.32 119.71 74.85 24.69 2.36’ 0.10’ 0.37’ 1.93’ 3.90’

UK Income 152.12 113.33 67.58 18.18 1.49’ 0.03’ 0.37’ 1.65’ 3.32’
CAN Consumption 295.10 243.65 191.62 200.61 182.89 78.61 19.76 0.24’ 4.31’

CAN Income 298.72 246.65 194.32 201.88 157.60 59.61 13.29 0.15’ 2.51’
JAP Consumption 151.97 108.73 62.42 35.52 59.53 36.30 8.63 0.16’ 1.32’

JAP Income 160.05 117.03 72.36 53.83 58.96 21.30 1.00’ 2.43’ 8.58
   ‘ and in bold: Non-rejection values at the 95% significance level. CAN and JAP mean respectively
Canadian and Japanese series.

TABLE 5

Testing Ho (9) in (3) and (4) with S~  given by (11) with white noise disturbances

Series / do 0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
UK Consumption 170.49 130.76 73.44 14.68 0.98’ 0.01’ 0.78’ 2.64’ 4.72’

UK Income 188.09 139.06 76.45 14.98 1.60’ 0.10’ 0.37’ 1.88’ 3.80’
CAN Consumption 292.60 242.38 190.38 193.84 154.38 53.28 8.98’ 0.36’ 7.67’

CAN Income 296.27 245.41 193.02 193.91 128.94 39.81 5.19’ 0.69’ 6.70’
JAP Consumption 138.95 103.42 59.70 30.42 32.64 14.10 1.30’ 0.73’ 3.83’

JAP Income 109.45 93.92 59.50 32.94 18.24 3.04’ 0.53’ 4.34’ 8.00’
   ‘ and in bold: Non-rejection values at the 95% significance level. CAN and JAP mean respectively
Canadian  and Japanese series.



TABLE 6
Testing Ho (5) in (3) and (4) with R̂  given by (6) and seasonal AR(1) disturbances

Series / do 0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
UK Consumption -- -- 13.86 12.35 1.61’ 0.76’ 0.24’ 0.001’ 0.15’

UK Income -- -- 13.49 10.39 1.70’ 0.79’ 0.27’ 0.01’ 0.06’
CAN Consumption -- -- -- 252.13 230.04 54.08 9.41 4.08’ 0.23’

CAN Income -- -- -- 214.48 176.32 33.63 7.08’ 2.20’ 0.01’
JAP Consumption -- -- 71.22 66.72 55.08 24.34 12.60 6.37’ 1.29’

JAP Income -- -- -- 50.31 45.54 14.19 7.25’ 1.18’ 0.56’
    ‘ and in bold: Non-rejection values at the 95% significance level. ‘—‘ means that the disturbances contain 
    a seasonal unit root. CAN  and JAP mean respectively Canadian and Japanese series.

TABLE 7

Testing Ho (9) in (3) and (4) with S~  given by (11) and seasonal AR(1) disturbances

Series / do 0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
UK Consumption -- -- 12.25 9.18’ 0.89’ 0.42’ 0.09’ 0.04’ 0.36’

UK Income -- -- 12.90 9.25’ 1.32’ 0.60’ 0.18’ 0.008’ 0.11’
CAN Consumption -- -- -- 201.39 178.07 34.30 6.55’ 1.94’ 0.14’

CAN Income -- -- -- 200.22 134.75 24.11 7.22’ 2.14’ 0.07’
JAP Consumption -- -- 50.76 42.29 28.50 12.95 7.07’ 2.09’ 0.09’

JAP Income -- -- -- 21.44 13.62 6.77’ 2.84’ 0.26’ 1.29’
    ‘ and in bold: Non-rejection values at the 95% significance level. ‘—‘ means that the disturbances contain 
    a seasonal unit root. CAN  and JAP mean respectively Canadian and Japanese series.



TABLE 8

Testing Ho (5) in (3) and (4) with R̂  given by (6) with white noise disturbances

Series / do 0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
UK:             Ct - Yt 134.91 63.08 9.37 0.02’ 1.75’ 4.41’ 7.21 9.78 12.04
CANADA:  Ct - Yt 111.10 61.85 12.65 0.01’ 3.76’ 10.82 16.61 20.56 23.32
JAPAN:       Ct - Yt 108.06 69.22 23.84 2.92’ 0.32’ 4.13’ 8.22 11.15 13.16

Testing Ho (9) in (3) and (4) with S~  given by (11) with white noise disturbances

Series / do 0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
UK:             Ct - Yt 53.72 38.10 5.93’ 0.19’ 2.39’ 5.21’ 8.00’ 12.45 12.56
CANADA:  Ct - Yt 21.74 19.05 7.69’ 0.26’ 8.05’ 17.90 25.19 30.16 33.63
JAPAN:       Ct - Yt 25.93 12.86 2.26’ 1.97’ 0.09’ 2.57’ 5.87’ 18.50 20.41

    ‘ and in bold: Non-rejection values at the 95% significance level. CAN  and JAP mean respectively
Canadian and Japanese series.

TABLE 9
Testing Ho (5) in (3) and (4) with R̂  given by (6) with AR(1) disturbances

Series / do 0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
UK:             Ct - Yt -- -- 1.14’ 0.10’ 0.82’ 1.63’ 2.55’ 7.47 9.40
CANADA:  Ct - Yt -- -- 0.11’ 0.36’ 2.42’ 5.22’ 8.64 11.95 14.77
JAPAN:       Ct - Yt -- -- 0.56’ 1.46’ 0.77’ 0.04’ 1.56’ 7.95 9.09

Testing Ho (9) in (3) and (4) with S~  given by (11) with AR(1) disturbances

Series / do 0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
UK:             Ct - Yt -- 10.01 0.15’ 0.42’ 1.30’ 2.16’ 8.09’ 13.96 16.81
CANADA:  Ct - Yt -- 12.28 6.77’ 3.58’ 3.91’ 6.74’ 10.58’ 14.46 18.08
JAPAN:       Ct - Yt -- 12.95 1.92’ 0.11’ 0.46’ 0.04’ 8.80’ 12.35 14.00

   ‘ and in bold: Non-rejection values at the 95% significance level. ‘—‘ means that the disturbances contain
   a seasonal unit root. CAN and JAP mean respectively Canadian and Japanese series.
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