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ABSTRACT

In this article we analyse the monthly structure of the Brazilian inflation rate by means of
using fractionally integrated techniques. This series is characterized by strong government
interventions to bring inflation to a low level. We use a testing procedure due to Robinson
(1994) which permits us to model the underlying dynamics of the series in terms of an I(d)
statistical model, with the government interventions being specified in terms of dummy
variables. The results show that the series can be well described in terms of an I(0.75)
process with some of the interventions having little impact on the series.
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1. Introduction

Modelling the nonstationarity in macroeconomic data is a matter that still remains

controversial. Deterministic models based on linear (or quadratic) functions of time were

shown to be inappropriate in many cases and, stochastic models based on first (or second)

differences of the data were proposed, especially after the seminal paper by Nelson and

Plosser (1982). Nevertheless, unit roots and linear time trends, each constitute extremely

specialized models for nonstationarity, but each has the advantage of conceptual and

computational simplicity, and they are naturally thought of as rival models, because a unit

root without or with a drift implies a constant or linear trend function, the distinction being

then in the disturbance terms. Following that work, a battery of test statistics were developed

for testing unit roots (e.g., Said and Dickey, 1984; Phillips and Perron, 1988; Kwiatkowski

et. al., 1992; etc.). Robinson (1994) also proposed tests of unit roots but, unlike the previous

ones, which are embedded in autoregressive (AR) alternatives, they are nested in a fractional

model of form:

...,,2,1,)1( ��� tuxL tt
d

where ut is I(0), (properly defined in Section 2), and where the unit root null corresponds to

d = 1. 

On the other hand, Perron (1989, 1993) found that the 1929 crash shock and the 1973

oil price shock were a cause of nonrejection of the unit-root hypothesis, and that when these

were taken into account, deterministic models were preferable. This question has been

pursued by several authors (e.g., Christiano, 1992, Zivot and Andrews, 1992, etc.) arguing

that the date of the break should be treated as unknown. This problem is somewhat related to

the analysis of Franses and Haldrup (1994) who showed how unit root tests have liberal size

distortions when a series with a unit root is contaminated by additive outliers. In another



recent paper, Vogelsang (1999) proposes several procedures for testing unit roots in the

presence of outliers.

In this article we try to connect both of these issues, testing unit and fractional roots

in the presence of abrupt changes in the data. Fractional integration in the context of

structural breaks is a topic that has been scarcely investigated. Beran (1994) proposes a class

of M-estimators for long memory models, which is robust to the presence of outliers. He

suggests that occasional outliers can force the estimate of the fractional differencing

parameter to be close to 0 although there might be strong long memory in the data. Diebold

and Inoue (2001) provide both theoretical and Monte Carlo evidence that structural breaks-

based models and long memory processes are easily confused. Similarly, Granger and

Hyung (1999) also developed a theory relating both types of models and Gil-Alana (2001a)

shows that the order of integration of some series may be reduced by the inclusion of

dummy variables for structural breaks in the regression model.

The analysis in this article is directly motivated by the time series properties of the

Brazilian inflation rate. This series is characterized by a period of hyperinflation, starting by

the end of the 1980s, and followed by government interventions to bring inflation to a low

level for a short period of time. We use the same dataset as in Cati et al. (1999), i.e., the

Brazilian monthly inflation rate (1974:1 – 1993:6). In that article, they show that the

presence of outliers leads to a bias in the standard unit root tests in favour of stationarity

where in fact the series is integrated of order one. In this article, we show, however, that the

series is nonstationary but mean-reverting, with an order of integration smaller than one. The

outline of this paper is as follows: Section 2 briefly describes a version of the tests of

Robinson (1994) for testing I(d) statistical models, which allows us to include dummy

variables to incorporate the government interventions. Section 3 applies different versions of



Robinson’s (1994) tests to the Brazilian inflation rate while Section 4 contains some

concluding comments.

2. Testing of I(d) models with the tests of Robinson (1994)

For the purpose of the present article, we define an I(0) process {ut, t = 0, �1,…} as a

covariance stationary process with spectral density function that is positive and finite at the

zero frequency. In this context, we say that xt is I(d) if:

...,,2,1,)1( ��� tuxL tt
d (1)
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where the polynomial in (1) can be expressed in terms of its Binomial expansion such that

for all real d,
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where �(x) means the gamma function. Clearly, if d = 0 in (1), xt = ut, and a ‘weakly

autocorrelated’ xt is allowed for. However, if d > 0, xt is said to be long memory, so-called

because of the strong association between observations widely separated in time.

Robinson (1994) proposed a Lagrange Multiplier (LM) test of the null hypothesis:

oo ddH �: (3)

for any real value do, in a model given by:

....,2,1,' ��� txzy ttt � (4)

and (1), where yt is the time series we observe; � is a (kx1) vector of unknown parameters;

and zt is a (kx1) vector of deterministic regressors that may include, for example, an

intercept (zt � 1); a linear time trend (zt = (1, t)�) or dummy variables). Specifically, the test

statistic is given by:
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where T is the sample size and
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The function g above is a known function coming from the spectral density function of ut,
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evaluated at �̂  = arg min �2(�). Note that the functional form of the test statistic will be

affected by the specification we adopt for the I(0) disturbances ut in (1). Thus, for example,

if ut is white noise, the test statistic greatly simplifies since g � 1 and Â  below (5) becomes:
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which can be asymptotically approximated by 	2/6. However, the I(0) disturbances can also

be weakly autocorrelated. If ut is an AR(p) process of form: 
p(L)ut = �t, with white noise �t,
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so that the AR coefficients are function of �, and �(�) is now a (px1) vector with lth element

given by: 



).;()cos(cos2
1

����� grll
p

r
r

�
�
�

�
�
�

�� �
�

In this article, we also make use of other less conventional forms of I(0) processes. In

particular, we also employ the Bloomfield (1973) exponential spectral model. This is a non-

parametric approach of modelling the disturbances, where ut is exclusively specified in

terms of its spectral density function, which is given by:
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Like the stationary AR(p) case, this model has exponentially decaying autocorrelations and

thus, using this specification, we do not need to rely on so many parameters as in the ARMA

processes, which always results tedious in terms of estimation, testing and model

specification.

Based on Ho (3), Robinson (1994) established that under certain regularity

conditions:

    .)1,0(ˆ ��� TasNr d (7)

The conditions on ut in (7) are far more general than Gaussianity, with a moment condition

only of order 2 required. Thus, an approximate one-sided 100�%-level test of (3) against

alternatives H1: d > do is given by the rule: “Reject Ho (3) if r̂  > z�”, where the probability

that a standard normal variate exceeds z� is �. Conversely, an approximate one-sided

100�%-level test of (3) against alternatives: H1: d < do is given by the rule: “Reject Ho (3) if

r̂  < -z�”. As these rules indicate, we are in a classical large sample testing situation for

reasons described by Robinson (1994), who also showed that the above test is efficient in

the Pitman sense, that against local alternatives H1: d = do + T-1/2 for  � 0, it has an

asymptotic normal distribution with variance 1 and mean which cannot, (when ut is

Gaussian), be exceeded in absolute value by that of any rival regular statistic. This version



of the tests of Robinson (1994) was used in empirical applications in Gil-Alana and

Robinson (1997) and Gil-Alana (2000) and, other versions of his tests, based on seasonal

(quarterly and monthly) and cyclical models can be respectively found in Gil-Alana and

Robinson (2001) and Gil-Alana (1999, 2001b). In the following section, the tests of

Robinson (1994) are applied to the Brazilian inflation rate.

3. The Brazilian inflation rate

The series used in this paper is the monthly Brazilian inflation rate for the time period

1974:1 to 1993:6, and we use the same dataset as in Cati et al. (1999). Figures 1 and 2 show

plots of the original series and its first differences respectively. Looking at the original data,

we observe that the series is characterized in the 80’s by several sudden drops that are

important in magnitude. These are the outcome of the various shock plans instituted by the

government in an attempt to stop the process of high and increasing inflation. They

correspond to the time periods 86:3, 87:7, 89:2, 90:3 and 91:2. As in Cati et al. (1999), we

stop the sample in 93:6 in order to avoid incorporating the Real Plan which is still in effect.

The plot of the first differences clearly shows the importance of the outliers corresponding to

these shock plans.

(Figures 1 and 2 about here)

Denoting the inflation series yt, we initially employ throughout the model (1), (2) and (4)

with zt = (1, t)�, t � 1, zt = (0, 0)� otherwise, so

,...,2,1,10 ���� txty tt �� (8)

      ,...,2,1,)1( ��� tuxL tt
d (9)

treating separately the cases �0 = �1 = 0 a priori, �0 unknown and �1 = 0 a priori and (�0, �1)

unknown, i.e., we consider the cases of no regressors, an intercept, and an intercept and a



linear time trend. We model the I(0) ut to be both, white noise and to have weak parametric

autocorrelation, in the latter case assuming AR(1), MA(1) and Bloomfield(1) disturbances.

The test statistic reported in Table 1 (and also in Tables 2 and 3) is the one-sided one

given by (5), so that significantly positive values of this are consistent with alternatives with

higher orders of integration, whereas significantly negative ones are consistent with smaller

values of d. We apply the tests for the time periods: 74:1 – 86:3,  86:4 – 93:6, and for the

whole sample 74:1 – 93:6. Starting with the first subsample, we observe that practically all

the non-rejection values of d oscillate between 0.25 and 0.75. We also observe a non-

rejection value if d = 1 for the case of no regressors and white noise disturbances. In general,

the results seem quite robust to the different specifications of zt, however, they substantially

vary depending on how we specify the I(0) disturbances. Thus, if ut is white noise, the non-

rejected values are 0.75 and 1. If ut is AR(1), we observe several other non-rejections.

However, in this case, we also observe a lack of monotonic decrease in the value of the test

statistic with respect to d, for small values of d. Such monotonicity is a characteristic of any

reasonable statistic, given correct specification and adequate sample size, because, for

example, we would which that if d = 1 is rejected against d > 1, an even more significant

result in this direction should be expected when d = 0.75 or d = 0.50 are tested. However, in

the event of misspecification, monotonicity is not necessarily to be expected: frequently

misspecification inflates both numerator and denominator of r̂ , to varying degrees, and thus

affects r̂  in a complicated way. Modelling ut in terms of a MA(1) process or with the

Bloomfield(1) exponential model, monotonicity is always obtained and the non-rejection

values of d are 0.50 (in case of MA disturbances) and 0.50 and 0.25 with the Bloomfield

model.

(Table 1 about here)



The results for the second subsample are a bit more ambiguous, given the higher

proportion of non-rejection values, which could be largely due to the smaller sample size.

These values widely range between 0 and 1.25, again observing higher values of d if ut is

white noise rather than autocorrelated. We observe that the non-fractional cases (d = 0 and d

= 1) cannot be rejected in some cases. Thus, for example, the unit root null cannot be

rejected if ut is white noise or AR(1). On the contrary, d = 0 results non-rejected if ut is also

AR(1) or if follows the Bloomfield (1) exponential model.

Finally, we also present the results for the whole sample period. They are less

ambiguous than in the previous cases. Thus, if ut is white noise, d = 1 appears as the only

non-rejection value for the three specifications in zt. This may contradicts the results in Cati

et al. (1999), where they found strong evidence against unit roots using tests of Dickey and

Fuller (1979), Phillips and Perron (1988) and Stock (1990). However, as mentioned in

Section 1, these tests are based on AR models and do not consider fractionally integrated

alternatives. We also observe in this table that imposing weakly autocorrelated disturbances,

the unit root null hypothesis is rejected in favour of less nonstationary (or even stationary)

alternatives, and the non-rejection values of d are now 0.25 and 0.50.

The results presented in Table 1 may be affected by the presence of  outliers due to

the government interventions during the 80’s and early 90’s. Thus, in Table 2, we

recalculate the tests of Robinson (1994), but this time including in zt, five dummy variables

(Dit) to incorporate these outliers. Thus, instead of (9), we have:
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where Dit = 1 I(t = Ti), and Ti corresponding to the time periods of each of the government

interventions. Other types of dummy (step and slope) variables were also considered but the

coefficients were insignificant in practically all cases. Note that the estimates are least

squares and are based on the differenced series so that they have short memory under the



null. Furthermore, the inclusion of impulse dummies also permits us to incorporate lag

effects throughout the autocorrelated disturbances. Again, we perform r̂  given by (5),

testing Ho (3) in model (9) and (10), for values do = 0, (0.25), 2, and white noise and

autocorrelated disturbances. The results are given in Table 2 and the non-rejection values of

d correspond now to d = 1 and 1.25 in case of white noise ut; d = 0.50 and 0.75 for AR(1)

and MA(1) disturbances; and d = 0.25 and 0.50 when using the Bloomfield exponential

spectral model. Higher orders for the AR, MA and Bloomfield models were also considered

and the results were very similar to those reported across the tables, implying that higher

autocorrelated orders were unnecessary when describing the short run dynamics of the

series. We also observe in this table that the significance of the coefficients in the regression

model (10) substantially vary depending on the degree of integration. Thus, D1 appears

significant if d � 0.75; D2 if d � 0.50; D3 if d � 0.25 and D4 if d = 0, 1.75 and 2. D5 always

results insignificant across the different values of d. In view of this, we report in Table 3, the

results for the same statistic as in Table 2, but taking into account only those regressors that

were significant in Table 2.

(Tables 2 and 3 about here)

We see that the non-rejection values practically coincide with those given in Table 2.

The only exception corresponds to the case of Bloomfield disturbances and d = 0.50. This

model cannot be rejected in Table 2 but is rejected in Table 3 when including only the

significant coefficients.

Table 4 summarises the selected models according to the results in Table 3. That is,

we write the estimated models based on (9) and (10), in which the null hypothesis Ho (3)

was not rejected and all the coefficients were significantly different from zero. We see that

all except model 7 are nonstationary (d � 0.5), and the significant dummies appear to be D1,



D2 and D3 in models 1, 2, 3, and 4; the time trend and D2 and D3 in models 5 and 6; while

the time trend and D3 are the only significant regressors in model 7.

(Table 4 about here)

A more difficult task is to determine which is the correct model specification across

he different models presented in that table. We display in the last column of Table 4 several

diagnostic tests carried out on the residuals. In particular, we perform tests of no serial

correlation, functional form, normality and homoscedasticity using Microfit. For serial

correlation, we use a Lagrange Multiplier test of residuals serial correlation (Godfrey,

1978a,b); for the functional form, the Ramsey’s (1969) RESET test using the square of the

fitted values; for normality, a test based on skewness and kurtosis of residuas, (Bera and

Jarque, 1981) while for homoscedasticity, a test based on the regresion of squared residuals

on squared fitted values. 

We observe that if d = 1.25 or 1 (Models 1 and 2), the models fail in relation to the

homocedasticity property.(the p-values are respectively 0.007 and 0.002). Models 4, 5 and 6

(corresponding to d = 0.75 and 0.50) fail in relation to the functional form, (p-values:

0.0001, 0.0003 and 0.001) while Model 7 (d = 0.25 and Bloomfield disturbances) cannot be

evaluated because of its non-parametric autocorrelated structure. Thus, we see that Model 3

is the only one which passes all the diagnostics on the residuals, and it corresponds to:

...,,2,1,332211 ����� txDDDy ttttt ��� (11)
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giving the estimates: �1 = -7.469; �2 = -9.040; �3 = -16.457 and 
 = -0.472. (The LM tests

give values in this model of 4.74; 5.21, 6.36 and 1.14 respectively for no serial correlation,

functional form, normality and homoscedasticity, which are all adequate at the 10%

significance level). Thus, the impact of the government interventions appears especially

relevant for the data in the cases of the first three plans, (i.e., 86:3, 87:7 and 89:2), while the



fourth and fifth interventions, even being large in magnitude (in particular the fourth) have

little impact on the series.

(Figures 3 and 4 about here)

To evaluate the responses of inflation to the plan shocks, we need to derive the

impulse response functions. We do this next. Let (1 + 0.472L)(1 – L)0.75 = a(L), and calling

d1(L) = -7.469a(L); d2(L) = -9.040a(L); d3(L) = -16.457a(L), the model in (11) and (12)

becomes:

....,,2,1,)()()()( 332211 ����� tDLdDLdDLdyLa ttttt �

and using a power expansion of a(L), d1(L), d2(L) and d3(L) in terms of its lags, with D1j =

D2j = D3j = 0 for j � 0, we obtain:
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where aj are the coefficients of the impulse response functions, and d1j, d2j and d3j are the

impacts of the shock plans on the inflation. Figure 3 summarizes these values for the

impulse responses and Figure 4 for the impacts of the plans. We observe through the aj’s that

the effect of a shock on inflation tends to die away in the long run, though it takes a very

long period to disappear completely. In fact, we see that even 50 periods after the initial

shock, 20% of its effect still remains on the series. The impact of the shocks is higher for the

third plan (89:2) than for the others (86:3 and 87:7) and they also take a long time to

disappear completely. Impulse responses, however, should be interpreted with great care

because of the underlying assumptions. An impulse response assumes that the system is

initially shocked once by some amount, but that the system is absent of any other

perturbation from then on. This is a scenario that we rarely see in stochastic dynamic

economies. We should rather see the economy in a system that is continuously perturbed



with random fluctuations coming either from news, policy decisions or changing

environments.

An argument that can be employed against this type of procedures is that Robinson’s

(1994) method is not robust in the presence of outliers. In that respect, other methods like

Beran’s (1994) M-estimator might be more appropriate. However, it should also be noted

that the tests of Robinson (1994) have the advantage of permitting us to include dummy

variables for the outliers, and given that the model is estimated under the null, which is

supposed to be I(0), we can test the significance of the dummies via t-tests. Additionally, the

significancy of such coefficients can be used to examine the impacts of government

interventions, something that we are unable to do in case of using the method of Beran

(1994) in spite of its robustness.

4. Conclusions

The monthly structure of the Brazilian inflation rate (74:1 – 93:6) has been investigated in

this article by means of fractionally integrated techniques. This series is characterized by a

period of hyperinflation, starting by the end of the 80’s and followed by government

interventions to bring inflation to a low level for a short period of time. We have made use

of a testing procedure due to Robinson (1994) that allows us to consider I(d) statistical

models and at the same time to incorporate dummy variables for the government

interventions, with no effect on the standard limit distribution of the tests. These tests are

also the most efficient ones when directed against the appropriate alternatives. When the

dummy variables are not included in the regression model, the results of Robinson’s (1994)

tests indicate that the series may be I(1) if the underlying disturbances are white noise.

However, if they are autocorrelated, the order of integration seems to be smaller, oscillating

between 0.25 and 0.50. This contradicts the results in Cati et al. (1994), which found that the



series is I(1) but, in that paper, they do not consider fractionally integrated alternatives.

Incorporating the dummies, the results also substantially vary depending on how we specify

the disturbances. Thus, if they are white noise, the orders of integration are 1 and 1.25. If ut

is AR(1) or MA(1), d appears to be 0.50 and 0.75, while using the Bloomfield (1973)

exponential model, the series seems to be stationary with d = 0.25. In order to choose which

might be the best model specification across the potential models, we look at several

diagnostic tests carried out on the residuals of the selected models, the results indicating that

the series may be well described in terms of an I(0.75) process with three dummy variables

for the first three interventions (86:3, 87:7 and 89:2). Thus, the fourth and fifth interventions

(even being large in magnitude) have little impact in the underlying structure of the series.

It would be worthwhile proceeding to get point estimates of d, perhaps especially in

the Bloomfield case, where the results indicate that the series may be stationary as opposed

to the nonstationary results obtained for the remaining cases. However, not only would this

be computationally more expensive, but it is then in any case confidence intervals rather

than point estimates which should be stressed, while available rules of inference require

preliminary integer differencing to achieve stationarity and invertibility. In addition, most of

these methods (e.g., Dahlhaus, 1989; Sowell, 1992) estimate the fractional differencing

parameter including at most an intercept and/or a linear time trend but do not permit the

inclusion of dummy variables for the outliers. The approach used in this article generates

simply computed diagnostics for departures from any real d. It is thus not at all surprising

that, when fractional hypotheses are entertained, some evidence supporting them appears,

because this might happen even when the unit-root model is highly suitable. However, even

though our practise of computing test statistics for a wide range of null hypotheses lead to

ambiguous conclusions, often the bulk of these hypotheses are rejected, suggesting that the

optimal local power properties of the tests may be supported by reasonable performance



against non-local alternatives. Furthermore, the diagnostic tests carried out on the residuals

of the selected models give further support for fractional models when describing the

Brazilian inflation rate.

Several other lines of research are under way which should prove relevant to the

analysis of these and other macroeconomic data. Extensions of the tests of Robinson (1994)

to include structural breaks at unknown periods of time are being developed. Also, the

estimation of fractional models in the context of Bloomfield (1973) exponential spectral

disturbances is being examined. Work is also proceeding on multivariate extensions of

Robinson’s (1994) tests, and this would lead to an alternative approach to the study of

cointegration. How these approaches may affect to the conclusions obtained in this article

still remains to be investigated.
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FIGURE 3
Impulse response function of the Brazilian inflation rate
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TABLE 1
Testing Ho (3) in (8) and (9) with r̂ given by (5)

Sample ut zt / do 0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
--- 24.75 15.27 5.26 0.78’ -1.49’ -2.82 -3.62 -4.14 -4.51
1 24.75 16.80 5.94 0.42’ -1.70 -2.86 -3.58 -4.08 -4.45White noise

(1, t)’ 14.80 8.63 3.59 0.23’ -1.70 -2.85 -3.56 -4.03 -4.40
--- -1.26’ -0.28’ 0.02’ -1.45’ -2.51 -3.26 -3.73 -4.01 -4.20
1 -1.26’ -1.21’ -0.08’ -1.57’ -2.61 -3.28 -3.71 -3.99 -4.18AR (1)

(1, t)’  -0.62’  0.32’ -0.57’ -1.70 -2.61 -3.26 -3.67 -3.89 -4.06
--- 18.95 7.52 -0.49’ -2.73 -3.51 -5.01 -6.39 -7.29 -7.93
1 18.95 9.28 -0.009’ -3.12 -3.89 -5.07 -6.32 -7.18 -7.82MA (1)

(1, t)’ 8.58 2.22 -1.57’ -3.25 -3.88 -5.05 -6.29 -7.09 -7.73
--- 10.22 3.65 -0.54’ -2.45 -3.35 -4.03 -4.42 -4.65 -4.79
1 10.22 4.98 -0.19’ -2.77 -3.74 -4.24 -4.57 -4.74 -4.86

74.1 – 86.3

Bloomfield (1)
(1, t)’  2.75 0.34’ -1.61’ -2.89 -3.73 -4.21 -4.50 -4.63 -4.70

Sample ut zt / do 0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
--- 9.55 5.90 3.60 1.67 0.10’ -1.09’ -2.00 -2.69 -3.21
1 9.55 6.24 3.56 1.64’ 0.10’ -1.09’ -2.00 -2.69 -3.21White noise

(1, t)’ 9.53 6.44 3.83 1.72 0.10’ -1.10’ -2.00 -2.69 -3.21
--- 0.90’ 0.29’ -0.47’ -1.07’ -1.53’ -1.90 -2.21 -2.47 -2.71
1 0.90’ -0.01’ -0.61’ -1.09’ -1.53’ -1.90 -2.21 -2.47 -2.71AR (1)

(1, t)’ 1.37’ 0.38’ -0.41’ -1.05’ -1.53’ -1.90 -2.21 -2.47 -2.71
--- 5.88 2.36 0.30’ -1.12’ -2.19 -2.88 -3.71 -4.94 -5.88
1 5.88 2.56 0.29’ -1.14’ -2.20 -2.88 -3.71 -4.94 -5.89MA (1)

(1, t)’ 5.87 2.79 0.47’ -1.09’ -2.19 -2.89 -3.71 -4.94 -5.88
--- 1.33’ 0.63’ -1.54’ -2.17 -2.65 -3.01 -3.30 -3.56 -3.74
1 1.33’ -0.33’ -1.53’ -2.20 -2.65 -3.01 -3.30 -3.56 -3.74

86.4 – 93.6

Bloomfield (1)
(1, t)’ 1.21’ -0.39’ -1.36’ -2.13 -2.65 -3.02 -3.31 -3.56 -3.73

Sample ut zt / do 0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
--- 27.75 13.49 6.12 2.49 0.04’ -1.76 -3.12 -4.14 -4.92
1 27.75 14.85 6.35 2.48 0.03’ -1.76 -3.12 -4.14 -4.91White noise

(1, t)’ 16.13 10.15 5.20 2.44 0.03’ -1.76 -3.12 -4.14 -4.91
--- 1.66 1.44’ -0.69’ -2.01 -2.78 -3.34 -3.81 -4.22 -4.58
1 1.66 1.18’ -0.69’ -2.03 -2.78 -3.34 -3.81 -4.22 -4.58AR (1)

(1, t)’ 3.01 0.96’ -0.86’ -2.04 -2.78 -3.34 -3.81 -4.22 -4.58
--- 20.51 7.04 0.96’ -1.69 -3.23 -4.19 -5.41 -7.14 -8.45
1 20.51 8.11 1.13’ -1.69 -3.24 -4.20 -5.41 -7.14 -8.45MA (1)

(1, t)’ 10.54 4.56 0.64’ -1.72 -3.24 -4.19 -5.41 -7.14 -8.45
--- 9.97 1.75 -1.64’ -2.92 -3.68 -4.21 -4.63 -5.00 -5.25
1 9.97 2.41 -1.49’ -2.93 -3.69 -4.22 -4.63 -5.00 -5.25

74.1 – 93.6

Bloomfield (1)
(1, t)’ 2.53 -0.15’ -1.79’ -2.96 -3.69 -4.21 -4.63 -4.99 -5.24

 ‘ and in bold : Non-rejection values of the null hypothesis Ho (3) in (9) and (10) at the 95% significance level.



TABLE 2

Testing Ho (3) in (9) and (10) with r̂ given by (5)
d Significant regressors White noise AR(1) MA(1) Bloomfield (1)

0.00 1;   t;   D4 15.59 2.30 9.76 2.83
0.25  T;   D3 10.53 1.86 5.44 -0.75’
0.50 T;   D2;   D3 6.00 -0.93’ 1.19’ -1.44’
0.75 D1;   D2;  D3;  3.43 -1.29’ -1.10’ -3.92
1.00 D1;   D2;  D3;  1.19’ -2.41 -2.92 -4.51
1.25 D1;   D2;  D3;  -0.51’ -3.22 -4.25 -4.98
1.50 D1;   D2;  D3;  -1.82 -3.84 -5.17 -5.29
1.75 D1;   D2;  D3;   D4 -2.83 -4.33 -5.81 -5.56
2.00 D1;   D2;  D3;   D4 -3.63 -4.73 -6.25 -5.76

‘ and in bold: Non-rejection values of the null hypothesis Ho (3) in (9) and (10) at the 95% significant level.

TABLE 3

Testing Ho (3) in (9) and (10) with r̂ given by (5) including only significant regressors
d Regressors White noise AR(1) MA(1) Bloomfield (1)

0.00 1;   t;   D4 15.33 2.66 9.18 3.24
0.25  T;   D3 10.74 1.86 5.54 -0.63’
0.50 T;   D2;   D3 6.40 0.07’ 1.56’ -2.65
0.75 D1;   D2;  D3;  3.42 -1.35’ -1.15’ -3.72
1.00 D1;   D2;  D3;  1.07’ -2.49 -3.03 -4.37
1.25 D1;   D2;  D3;  -0.67’ -3.28 -4.27 -4.81
1.50 D1;   D2;  D3;  -2.01 -3.87 -5.12 -5.16
1.75 D1;   D2;  D3;   D4 -2.89 -4.34 -5.76 -5.52
2.00 D1;   D2;  D3;   D4 -3.66 -4.67 -6.31 -5.65

‘ and in bold: Non-rejection values of the null hypothesis Ho (3) at the 95% significant level.



TABLE 4
Selected models for the Brazilian inflation rate according to Table 3

Model Diagnostics
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*: Non-rejections at the 99% significant level of A): No serial correlation; B): Functional form; C):
Normality, and D): Homocedasticity. Standard errors in parenthesis.
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