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In this article we propose a new method for testing nonstationary cycles in financial time

series data. In particular, we use a procedure due to Robinson (1994) that permits us to test

unit root cycles in raw time series. These tests have several distinguishing features

compared with other procedures. In particular, they have a standard null limit distribution

and they are the most efficient ones when directed against the appropriate alternatives. In

addition, the procedure of Robinson (1994) allows us to test unit root cycles at each of the

frequencies, and thus permits us to approximate the number of periods per cycle. The

results, based on the daily structure of the Spanish stock market prices (IBEX 35) show

that some intra-year cycles occur, and they take place at approximately 6, 9 or between 24

and 50 periods.
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1. Introduction

A major theme of financial time series analysis concerns the adequate modelling of stock

market prices and, though there is generally agreement about its nonstationary nature, there

is still little consensus about its appropriate modelling. Most of empirical literature assume

that stock prices posess unit roots and the key question becomes then the analysis of the

autocorrelations of the underlying I(0) disturbances. Thus, empirical work has concentrated

on stock market returns. The early work found that autocorrelations of daily and weekly

returns are close to zero, and concluded that the stock market is efficient (see Fama, 1970).

Summers (1986), though, took issue with this interpretation, and stressed that slowly-

decaying temporary components in stock prices can generate weak negative correlation in

short-horizon returns, but strong negative correlation in long-horizon ones. The latter could

either reflect irrationality of the market, or result from time-varying equilibrium expected

returns in the presence of rational asset pricing (see Poterba and Summers, 1988). The

potential presence of long memory in financial asset returns has also been an important

subject of both theoretical and empirical research. If asset returns display long memory, or

strong dependence, they exhibit significant autocorrelation between observations widely

separated in time and contradicts the weak form of the market efficiency hypothesis, which

states that conditioning on historical returns, future asset returns are unpredictable. A

number of authors have tested this hypothesis in the stock markets. Greene and Fielitz

(1977) used the R/S method and found evidence of persistence in the daily US stock return

series. On the contrary, using a modified version of this statistic, Lo (1991) found no

evidence to support that hypothesis. Using the modified R/S and other regression methods,
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Cheung and Lai (1995) found no evidence of persistence in several international stock

return series, while Crato (1994) reports similar evidence for the stock returns series of the

G-7 countries. The question of long memory in smaller markets has received little

attention. Barkoulas et. al (1996) examined the long memory property in the Greek stock

market and concluded in favour of the existence of long-term persistence in its behaviour.

Other authors have dealt with the empirical fact that while the returns exhibit little

or no autocorrelation, their squares have noticeable one. Attempts to model this

phenomenon began with the ARCH(p) model of Engle (1982), followed by its

GARCH(p,q) extension (Bollerslev, 1986), and the stochastic volatility model of Taylor

(1986), with numerous elaborations of these themes. Robinson (1991) considered

extensions of the ARCH(p) and GARCH(p, q) that might entail arbitrarily slow decay of

autocorrelations of squared returns, including long memory, where autocorrelations are not

summable, and Whistler (1990) applied relevant tests he developed to financial data. Ding

and Granger (1996) and others have developed such models further. On the other hand,

Andersen and Bollerslev (1997), Breidt et al. (1998), Harvey (1998) considered a long

memory version of Taylor`s (1986) stochastic volatility model. Robinson and Zaffaroni

(1998) examined a non-linear moving average model whose squares have long memory

while Teyssiere (1998) disscussed a variety of ARCH type long memory functional forms

involving various forms of nonlinearity.

All these previous works that use long memory models concentrate at the long run

or zero frequency and do not examine other frequencies that might be the source of the

nonstationarity. In this article, we take a completely different approach and examine the

nonstationary nature of prices throughout the cyclical structure by means of using new

statistical techniques based on fractional integration at the cyclical frequencies.
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The study of cyclical structures in daily financial time series data has not been very

much used in previous econometric models and one by product of this work is its

emergence as a credible alternative to the classical first differenced (or even fractional)

models. There exist different approaches when modelling cycles. Traditionally,

deterministic models based on trigonometric functions of time, that were fitted by linear

regression techniques, were proposed but they were shown to be inappropriate in many

series. Stochastic models, based on stationary autoregressive processes were then proposed

(see, eg., Harvey, 1985). However, in many series, the cycles evolve or change over time,

and nonstationary cycles have been studied by Ahtola and Tiao (1987). In that paper, they

propose a test statistic for testing unit root cycles embedded in autoregressive (AR(2))

processes. Robinson (1994) also develops tests for unit root cycles, however, unlike Ahtola

and Tiao (1987), they are not based on autoregressions but on fractional models of the

form advocated by Gray et al. (1989, 1994). In a recent article, Gil-Alana (2001a) showed

that the tests of Robinson (1994) outperform Ahtola and Tiao (1987) for the unit root

cycles in a number of cases.1  Furthermore, Andersen and Bollerslev (1997) found

evidence of strong intraday periodicity in return volatility in foreign exchange and equity

models and Robinson (2001) also suggests the use of cyclical structures when modelling

financial data.

The outline of this article is as follows: Section 2 briefly presents Robinson’s

(1994) procedure for testing unit root cycles in raw time series. In Section 3, the tests are

                                                          
1 Unit root cycles have also been examined by Chan and Wei (1988) and Gregoir (1999a,b), who derive the
limiting distribution of least squares estimates of AR processes with complex-conjugate unit roots, with
inference based on parametric estimates. Bierens (2001) also use a model of this sort  to test for the presence
of business cycles in the annual change of monthly unemployment in the UK
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applied to the daily structure of the Spanish stock market prices while Section 4 contains

some concluding comments.

2. Testing of unit root cycles

Ahtola and Tiao (1987) proposed tests for unit root cycles which are embedded in an

AR(2) process of form:

...,2,1,2211 =++= −− tuxxx tttt φφ (1)

which, under the null hypothesis,

12: 21 −=< φφ andH o (2)

becomes the cyclical I(1) model specified below in (5). Gray et al (1989, 1994) extended

the unit root model to allow for a fractional degree of integration. In particular, they

considered processes like:

     ...,2,1,)21( 2 ==+− tuxLL tt
dµ , (3)

where d can be any real number and where ut is an I(0) process, defined in the context of

the present paper, as a covariance stationary process with spectral density function which is

bounded and bounded away from zero at any frequency. Gray et al. (1989) showed that xt

in (3) is stationary if �µ � < 1 and d < 0.50 or if �µ � = 1 and d < 0.25. They also showed

that the polynomial in (3) can be expressed in terms of the Gegenbauer polynomial Cj,d(µ)

such that for all real d ≠ 0:
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where Γ(x) means the Gamma function, and a truncation will be required below (4) to

make (3) operational. Thus, the process in (3) becomes:
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and when d = 1, we have:

....,2,1,2 21 =+−= −− tuxxx tttt µ , (5)

which is a cyclic I(1) process with the periodicity determined by µ. We can now take µ =

cos wr, with wr = 2π/r, and r will indicate the number of periods required to complete the

whole cycle. Examples of simulated realizations of unit root cyclical models like (5) can be

found in Gil-Alana (2001b).

Robinson (1994) proposed tests for unit root cycles which are embedded in

fractional models of form as in (3). Let’s now briefly describe the testing procedure.

Following Bhargava (1986), Schmidt and Phillips (1992) and others on parameterization

on unit roots, we can consider the regression model,

....,2,1,' =+= txzy ttt β , (6)

where yt is the raw time series we observe; β is a (kx1) vector of unknown parameters; zt is

a (kx1) vector of exogenous regressors, that may include, for example, an intercept (zt ≡ 1),

or an intercept and a linear time trend, (i.e., zt = (1,t)′); and the regression errors xt are of

form as in (3). Robinson (1994) developed a Lagrange Multiplier (LM) test of the null

hypothesis:

,: oo ddH = (7)
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in (6) and (3), for any real value do, and thus, also including the unit root model (5) in case

of do = 1. The functional form of the test statistic, denoted by ,ŝ  is described in the

Appendix.

Based on Ho (7), Robinson (1994) established that under certain regularity

conditions:2

     ,)1,0(ˆ ∞→→ TasNs d (8)

and this standard limit distribution holds across the different types of regressors in zt in (6)

and also across the different types of disturbances ut in (3). Thus, a one-sided 100α%-level

test of Ho (7) against the alternative H1: d > do (d < do) is given by the rule: ‘Reject Ho if ŝ

> zα  ( ŝ  < -zα)’, where the probability that a standard normal variate exceeds zα is α.

Furthermore, he shows that the above tests are efficient in the Pitman sense, i.e., that

against local alternatives of form: Ha: d = do + δ T-1/2, for δ ≠ 0, the limit distribution is

normal with variance 1 and mean which cannot (when ut is Gaussian) be exceeded in

absolute value by that of any rival regular statistic. Other versions of the tests of Robinson

(1994), based on annual and seasonal (quarterly and monthly) data can be respectively

found in Gil-Alana and Robinson (1997, 2001) and Gil-Alana (1999), and a small

application of the present version of the tests is Gil-Alana (2001a).

3. Unit root cycles in the Spanish stock market prices

The time series data analysed in this section correspond to the log-transformation of the

daily structure of the Spanish stock market prices, (IBEX 35), obtained for the time period

4-January-1994 to 26-November-2001. The Spanish stock market index IBEX 35 is a

                                                          
2 These conditions are very mild, and concern technical assumptions to be satisfied by ψ(λ) in the Appendix.
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value-weighted index that includes the thirty five most traded stocks of the Spanish stock

market. Every six months the effective trading volumes of all stocks are studied in order to

adjust the stocks and their weights that will form the index in the following six months.

Denoting the time series yt, we employ throughout the model in (3) and (6), with zt

= (1,t)’, t ≥ 1, (0, 0)’otherwise, and µ = cos wr, i.e.,

...,2,1,10 =++= txty tt ββ  (9)

   ...,2,1,)cos21( 2 ==+− tuxLLw tt
d

r , (10)

testing Ho (7), with do = 1, for values wr = 2π/r, r = 1, 2, …, T/2, thus testing for unit root

cycles at all possible frequencies.3 We treat separately the cases of β0 = β1 = 0 a priori,

(i.e., including no regressors in the undifferenced regression); β0 unknown and β1 = 0 a

priori, (i.e., including an intercept); and β0 and β1 unknown (i.e., with an intercept and a

linear time trend), and model the I(0) disturbances to be both white noise and to have

parametric autocorrelation.

The test statistic reported in Table 1 (and also in Tables 2 – 5) is the one-sided one

given by ŝ  in the Appendix. However, instead of presenting the results for the whole range

of values of r, we only report across the tables, those cases where we find at least one non-

rejection value for each type of regressors.4

(Insert Table 1 about here)

Starting with the case of white noise disturbances, (in Table 1), we see that if we do

not include regressors, the unit root null hypothesis cannot be rejected when r is equal to 6

and 9. Including an intercept, the non-rejection values take place at r = 6, 37, 38 and 39,

                                                          
3 Note that in case of r = 1, the model reduces to the I(2) hypothesis, with a peak ocurring exclusively at the
long run or zero frequency.
4  The test statistic was also computed based on the first differenced data and the unit root null hypothesis
was rejected for all values of r and all type of disturbances.
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and if we include an intercept and a linear time trend, the unit root null cannot be rejected

at r = 6, 24 and 25. Therefore, the results presented across this table suggest that unit root

cycles may be plausible alternative ways of modelling this series, obtaining some evidence

of intra-year effects in its behaviour.

However, the significance of the above results may be in large part due to the un-

accounted for I(0) autocorrelation in ut. Thus, in Tables 2 and 3, we also permit AR(1) and

AR(2) disturbances. Modelling ut in terms of an AR(1) process, the null was always

rejected in case of no regressors, and including an intercept and/or a linear time trend, we

find some non-rejection values, with r ranging between 35 and 38 and between 49 and 53.

If ut is AR(2), the non-rejections take place at r = 6, 35, 36, 50, 51 and 52.

(Insert Tables 2 and 3 about here)

AR modelling of I(0) processes is very conventional, but there exist many other

types of I(0) processes, including ones outside the stationary and invertible ARMA class.

One that seems especially relevant and convenient in the context of the present tests is that

proposed by Bloomfield (1973), in which the spectral density function of ut is given by:

.)(cos2exp
2

);(
1

2

�
�
�

�
�
�
�

�
= �

=

m

r
r rf λτ

π
στλ         (11)

The intuition behind this model is the following. Suppose that ut follows an ARMA

process of form:

� �
= =

−− −+=
p

r

q

r
rtrtrtrt uu

1 1

,εθεφ

where εt is a white noise process and all zeros of φ(L) = (1 - φ1L - … - φpLp) lying outside

the unit circle and all zeros of θ(L) = (1 - θ1L - … - θpLp) lying outside or on the unit

circle. Clearly, the spectral density function of this process is then:
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where τ corresponds now to all the AR and MA coefficients and σ2 is the variance of εt.

Bloomfield (1973) showed that the logarithm of an estimated spectral density function is

often found to be a fairly well-behaved function and can thus be approximated by a

truncated Fourier series. He showed that (11) approximates (12) well where p and q are of

small values, which usually happens in economics. Like the stationary AR(p) model, the

Bloomfield (1973) model has exponentially decaying autocorrelations and thus we can use

a model like this for ut in (10). Formulae for Newton-type iteration for estimating the τl are

very simple (involving no matrix inversion), updating formulae when m is increased are

also simple, and we can replace Â  in the Appendix by the population quantity:

� �
∞

+= =

−− −=
1 1

2
2

2 ,
6ml

m

l

ll
π

which indeed is constant with respect to the τj (unlike what happens in the AR case). The

Bloomfield (1973) model, has not been very much used in previous econometric models,

(though the Bloomfield model itself is a well-known model in other disciplines, see, e.g.,

Beran, 1993), and one by-product of this work is its emergence as a credible alternative to

the fractional ARMA which have become conventional in parametric modelling of I(0)

processes.5  The results of Robinson’s (1994) tests based on Bloomfield disturbances (with

m = 1, 2) are respectively given in Tables 4 and 5.

(Insert Tables 4 and 5 about here)

                                                          
5  Among the few empirical applications found in the literature are Velasco and Robinson (2000) and Gil-
Alana (2001a)
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Starting with m = 1, we observe a large proportion of non-rejection values compared with

previous tables, and the values of r where the unit root null cannot be rejected widely

oscillate between 3 and 73. If m = 2, (Table 5), the non-rejections occur with r ranging

between 4 and 69. In view of all these results, we can conclude by saying that some intra-

year cyclical components are present in the Spanish stock market prices. Thus, the standard

approach of taking first differences may be obscuring the presence of other nonstationary

components in the cyclical structure of the series.

4. Concluding comments

In this article we have examined the nonstationary behaviour of the Spanish stock market

prices (IBEX 35) by means of using new statistical techniques based on unit root cycles.

We have used a version of the tests of Robinson (1994) that permits us to test

nonstationary cycles at each of the frequencies of the process and thus, it permits us to

approximate the number of periods per cycle. The results show that some intra-year

cyclical components are present in the data and thus, they may be taken into account when

modelling this series. In fact, the lack of non-rejection values when using first differenced

data suggests that the standard practice of assuming first differences may be obscuring

other important sources of nonstationarity.

The frequency domain approach used in this article seems to be unpopular with

many econometricians, and it is important to stress that the results reported across this

paper have nothing to do with nonparametric spectral estimation. There exist time domain

versions of the test statistics (cf. Robinson, 1991) and the preference here for the frequency

domain set-up of Robinson (1994) is motivated by the somewhat greater elegance of

formulae it affords, especially when the Bloomfield model is used. In finite samples, the
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time and frequency domain versions of ŝ  will differ from each other, in some cases

possibly considerably. Under the null, the difference is Op(T-1/2), but substantial differences

could appear when the null hypothesis is seriously in error, because of the great degree of

noncircularity of nonstationary processes. It is not known in general to what extent this

could lead to different conclusions and work in this direction is now in progress.

Several other lines of research are under way which should prove relevant to the

analysis of these and other macroeconomic or financial data. A natural following-up step

would be to test fractional cycles, i.e., allowing do in (7) to be a real number rather than 1.

Of course, it would also be of interest in this context to estimate the order of integration of

the cyclical component of the series. There exist several procedures for estimating the

fractional differencing parameter in seasonal and cyclical contexts, (e.g., Ooms, 1997;

Arteche and Robinson, 1999, 2000; etc.), however, they are not only computationally more

expensive, but it is then in any case confidence intervals rather than point estimates which

should be stressed. Other questions such as the possible extension of the Bloomfield model

to a multivariate setting has yet to be investigated.
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Appendix

The test statistic is given by:

  
2
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evaluated at λj = 2πj/T and g is a known function coming from the spectral density

function of tû : ),;(
2

);(
2

τλ
π

στλ gf =  with τ̂  obtained by minimising σ2(τ). Note that

these tests are purely parametric and therefore, they require specific modelling assumptions

to be made regarding the short memory specification of ut. Thus, for example, if ut is white

noise, g ≡ 1 and, if ut is an AR process of form: φ(L)ut = εt, g = |φ(eiλ)|-2, so that the AR

coefficients are function of τ.  Finally, the summation on *  in the above expressions are

over λ ∈ M,  where M = {λ: -π < λ < π, λ ∉ (ρu - λu, ρu + λu),  u = 1, 2, …, s}, such that

ρu,  u = 1, 2, …, s < ∞ are the distinct poles of ψ(λ) on (-π, π].
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TABLE 1

Testing of unit root cycles with white noise disturbances

r Type of regressors
Number of periods per

cycle
No regressors An intercept An intercept and a

linear time trend
6    0.377’ -0.024’ -0.068’
9    -0.271’ 18.371 17.139

24 -18.082 23.806 1.276’
25 -18.079 21.751 -0.475’
37 -18.297 0.879’ -12.267
38 -18.304 -0.369’ -12.766
39 -18.188 -1.544’ -13.111

‘ and in bold: Non-rejection values at the 95% significance level.

TABLE 2

Testing of unit root cycles with AR(1) disturbances

r Type of regressors
Number of periods per

cycle
No regressors An intercept An intercept and a

linear time trend
35 -58.635 10.061 1.394’
36 -52.795 9.712 0.472’
37 -48.105 9.254 -0.431’
38 -44.333 8.712 -1.312’
49 -24.634 1.301’ -8.100
50 -23.610 0.652’ -8.437
51 -23.135 0.014’ -8.889
52 -22.494 -0.604’ -9.244
53 -21.802 -1.206’ -9.543

‘ and in bold: Non-rejection values at the 95% significance level.

TABLE 3

Testing of unit root cycles with AR(2) disturbances

r Type of regressors
Number of periods per

cycle
No regressors An intercept An intercept and a

linear time trend
6 -12.559 -0.124’ -0.394’

35 -43.137 17.339 1.327’
36 -43.007 16.366 -0.776’
50 -41.098 1.367’ -21.519
51 -42.634 0.202’ -22.933
52 -42.748 -0.986’ -23.733

‘ and in bold: Non-rejection values at the 95% significance level.
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TABLE 4
Testing of unit root cycles with Bloomfield (1) disturbances

r Type of regressors
Number of periods per

cycle
No regressors An intercept An intercept and a

linear time trend
3    -0.617’ -17.708 -14.537’

13  -5.367 -0.001’  -1.074’
14  -4.984 2.447   1.141’
44 -12.423 12.368   0.916’
45 -12.492 12.046   0.814’
46 -12.557 11.746   0.143’
47 -12.611 11.506  -0.544’
48 -12.644 10.364  -1.106’
67 -12.557   1.250’ -7.906
68 -12.621   0.963’ -7.878
69 -12.620   0.094’ -8.214
70 -12.545  -0.136’ -8.477
71 -12.641  -0.348’ -8.831
72 -12.541  -1.100’ -8.652
73 -12.611  -1.266’ -8.960

‘ and in bold: Non-rejection values at the 95% significance level.

TABLE 5
Testing of unit root cycles with Bloomfield (2) disturbances

r Type of regressors
Number of periods per

cycle
No regressors An intercept An intercept and a

linear time trend
4   0.578’  -0.415’ 2.500

20 -5.165   1.150’ -1.840
21 -6.249  -0.269’  -1.402’
22 -4.559   0.092’ -2.403
23 -5.372   0.690’  -1.411’
24 -3.030   0.174’  4.125
34 -6.274 6.714  1.346
56 -8.996 7.021   0.367’
57 -9.152 10.395   1.344’
58 -9.297 8.429  -0.041’
61 -8.437 5.618   0.722’
62 -9.574 9.781  -0.353’
63 -9.234 7.702  -1.302’
68 -9.813 8.331   0.028’
69 -9.685 6.856  -0.838’

‘ and in bold: Non-rejection values at the 95% significance level.


