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Abstract

In this article we study a general class of goodness-of-fit tests for the conditional mean of a

linear or nonlinear time series model. Among the properties of the proposed tests are that they

are suitable when the conditioning set is infinite-dimensional; are consistent against a broad class

of alternatives including Pitman’s local alternatives converging at the parametric rate n−1/2,

with n the sample size; and do not need to choose a lag order depending on the sample size

or to smooth the data. It turns out that the asymptotic null distributions of the tests depend

on the data generating process, so a new bootstrap procedure is proposed and theoretically

justified. The proposed bootstrap tests are robust to higher order dependence, in particular to

conditional heteroskedasticity of unknown form. A simulation study compares the finite sample

performance of the proposed and competing tests and shows that our tests can play a valuable

role in time series modeling. Finally, an application to an economic price series highlights the

merits of our approach.

Keywords and Phrases: Diagnostic test; Model adequacy; Nonlinear spectral analysis;

Wild bootstrap; Conditional mean.

1. INTRODUCTION

In this paper we develop some methodology for testing the goodness-of-fit of a parametric con-

ditional mean of a linear or nonlinear time series model. The proposed tests are suitable when the

conditioning set is infinite-dimensional. More precisely, let {(Yt,Z′t−1)}t∈Z be a strictly stationary

and ergodic time series process defined on the probability space (Ω,F , P ), where Yt ∈ R is the

dependent (predicted) variable and Zt−1 = (Yt−1,X
′
t−1)

′ ∈ Rm, m ∈ N, is the explanatory random

vector containing the lagged value of the dependent variable and other explanatory variables Xt−1,

say. In this paper we are mainly concerned with the case in which the conditioning set at time t− 1
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Velasco for many helpful comments and suggestions. The paper has also benefited from the comments of two referees,

the associate editor and the joint editor. Research funded by the Spanish Ministry of Education and Science reference

number SEJ2004-04583/ECON.
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is given by It−1 = (Z′t−1,Z
′
t−2, ...)

′. From Probability Theory we know that under integrability of Yt

we can write the tautological expression

Yt = m(It−1) + εt,

where m(It−1) = E[Yt | It−1] is the conditional mean almost surely (a.s.) given the conditioning

set It−1, and εt = Yt −E[Yt | It−1] is, by construction, a martingale difference sequence (mds) with

respect to Ft−1, the σ−field generated by It−1, i.e., Ft−1 = σ(It−1) ≡ σ(Zs : s ≤ t− 1, s ∈ Z).
Then, in parametric time series modeling one assumes the existence of a parametric family of

functions M = {f(·,θ) : θ ∈ Θ ⊂ Rp} and considers the following regression model

Yt = f(It−1,θ) + et(θ), (1)

where f(It−1,θ) is a parametric specification for the conditional mean m(It−1), and {et(θ)}t∈Z is a

sequence of disturbances of the model M. Examples of specification (1) include ARMA, ARMAX,

bilinear, nonlinear moving average, Markov-switching, smooth transition, exponential and threshold

autoregressive models among many others, see, e.g., Tong (1990) or Fan and Yao (2003). Our main

goal in this paper is to test the null hypothesis that m(·) ∈M, i.e.,

H0 : E[Yt | It−1] = f(It−1,θ0) a.s., for some θ0 ∈ Θ ⊂ Rp,

against the alternative that m(·) /∈M, or equivalently

H1 : P (E[Yt | It−1] = f(It−1,θ)) < 1 , for all θ ∈ Θ ⊂ Rp.

From the regression model (1), the correct specification is tantamount to

E[et(θ0) | It−1] = 0 a.s., for some θ0 ∈ Θ ⊂ Rp. (2)

Parametric time series modeling continues to be attractive among practitioners because the para-

meter θ0 together with the functional form f(It−1,θ0) describes, in a concise way, the relationship

between the response Yt and the conditioning set It−1. A lack of fit in the postulated conditional

mean can lead to misleading conclusions and statistical inferences, and to suboptimal point forecasts.

To give an example, misspecifications in the conditional mean may deliver inconsistent estimations

of the parameter θ0. Therefore, in order to prevent wrong conclusions, every statistical inference

which is based on the model M should be accompanied by a proper model check, i.e., a test for H0.

There is a huge literature on testing the correct specification of a time series model. A large

body of this literature uses the fact that under our assumptions σ(Iet−1) ⊂ σ(It−1), where Iet−1 =

(et−1(θ0), et−2(θ0), ...)
′, and thus, condition (2) yields that the error sequence {et(θ0)} satisfies

E[et(θ0) | Iet−1] = 0 a.s., for some θ0 ∈ Θ ⊂ Rp. (3)
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The latter condition motivates that many specification tests for the conditional mean are based

on checking for serial dependence (lack thereof) of the unobserved errors {et(θ0)}. In particular,

classical Portmanteau tests are based on checking the serial uncorrelatedness of the errors {et(θ0)},
see e.g. Box and Pierce (1970), Ljung and Box (1978), or more recently, Paparoditis (2000), Peña

and Rodriguez (2001) or Delgado, Hidalgo and Velasco (2003). However, it is well-known that, in

general, the serial uncorrelatedness of the errors {et(θ0)} neither imply (3) nor (2), and therefore,

these tests may not be able to detect some misspecifications in the conditional mean. As a matter of

fact, correlation-based tests are inconsistent for testing H0 in any direction where the error sequence

{et(θ0)} is uncorrelated, see the simulations below for some examples. Uncorrelatedness is only one

of the implications of the correct specification but does not characterize it in the presence of non-

Gaussanity and/or nonlinearity. On the other hand, other tests consider the stronger hypothesis that

the errors {et(θ0)} are serially independent, see the BDS test of Brock, Dechert and Scheinkman

(1987) based on the correlation integral or the generalized spectral test of Hong and Lee (2003).

However, testing for serial independence of the errors is a more restrictive condition than (3) and,

in particular, it is possible that those tests reject a correct null model because of higher order

dependence.

It is important to emphasize that most tests in the time series modeling literature have considered

a finite number of lags in the conditioning set, i.e., they test for

E[et(θ0) | Idt−1] = 0 a.s., for some θ0 ∈ Θ ⊂ Rp, (4)

where Idt−1 = (Z′t−1,Z
′
t−2, ...,Z

′
t−d)

′, and d is finite, d ∈ N. See Escanciano (2004) for a review of the

literature on testing (4). Those tests are inconsistent against alternatives in H1 satisfying (4). In

addition, if the d used in (4) is large, most of these tests are highly affected by the so-called “curse

of dimensionality” problem, see, e.g., the smoothing-based tests of Härdle and Mammen (1993) or

the indicator-based test of Stute (1997). To make a test based on (4) consistent against H1, it

seems natural to consider d in (4) going to infinity with the sample size. In fact, de Jong (1996) has

generalized Bierens’ (1982) test to the case of d → ∞ as n → ∞. However, de Jong’s test requires

numerical integration with dimension equals to the sample size, which makes this test infeasible in

applications where the sample size is usually large, e.g. financial applications. Therefore, we observe

that when a large number of lags is used in the conditioning set most existing tests have poor power

performance in finite samples, due to the loss of a large number of degrees of freedom, to the problem

of the curse of dimensionality or to the integration in spaces of large dimensions.

To alleviate some of these problems and, at the same time, consider information at all lags, Hong

(1999) has introduced a generalized spectral density as a new tool for testing interesting hypotheses

in a nonlinear time series framework. Rather recently, Hong and Lee (2004) have extended Hong’s

(1999) ideas to a test for H0 under processes which may display conditional dependence at second
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and higher conditional moments. Hong and Lee’s (2004) test is based on the fact that, under (3),

the pairwise error regressions E[et(θ0) | et−j(θ0)] vanish (a.s.) ∀j ≥ 1. Under integrability of

et(θ0), this is in turn equivalent to the fact that the pairwise measures of dependence γej(x,θ0) =

E[et(θ0) exp(ixet−j(θ0))], j ≥ 1, x ∈ R, are identically equal to the zero function almost everywhere

(a.e.), where i =
√
−1 is the imaginary unit. With this in mind, Hong and Lee’s (2004) test is based

on a Fourier transform of the measures {γej(·,θ0)}∞j=1. From similar arguments, under H0

γj(θ0) = E[et(θ0) | Zt−j ] = 0 a.s. ∀j, j ≥ 1, for some θ0 ∈ Θ ⊂ Rp. (5)

Then, by choosing appropriately a parametric family of functions {w(Zt−j ,x) : x ∈ Υ ⊂ R
s}, cf.

Lemma 1 below, condition (5) can be equivalently expressed as

γj,w(x,θ0) = E[et(θ0)w(Zt−j ,x)] = 0 a.e. in Υ ⊂ Rs, s ∈ N, j ≥ 1. (6)

As we shall show below, usual examples of weighting functions w satisfying previous equivalence are

w(Zt−j ,x) = 1(Zt−j ≤ x) with x ∈ [−∞,∞]m, where 1(A) denotes the indicator of the event A, or

w(Zt−j ,x) = exp(ix′Zt−j) with x ∈ Rm, see Lemma 1. The tests proposed in this paper are then

based on an integrated Fourier transform of the measures {γj,w(·,θ0)}∞j=1.
Although our tests and the test of Hong and Lee (2004) are founded on a generalized spectral

approach they are different at least in four aspects. First, here we are mainly concerned with the

problem of testing (2), whereas Hong and Lee (2004) test for (3). Second, our methodology is based on

a generalized spectral distribution function of {γj,w(·,θ0)}∞j=1 contrary to the generalized spectral

density function approach used in Hong and Lee (2004) and based on {γej(·,θ0)}∞j=1. Therefore,

unlike their test, our tests do not depend on any kernel and bandwidth choices, which are necessary

for the consistent estimation of the density function. Note that our methodology is more general

because is not restricted to exponential-based weighting families. Third, we overcome the technical

problem of considering different weighting families w in (6) through a Hilbert space approach for the

asymptotic theory that not only allows us to consider smooth and non-smooth w′s and multivariate

x′s, but also requires weaker conditions than other existing approaches. And fourth, in general, the

asymptotic null distributions of our tests depend on the data generating process (DGP) and are no

longer standard. Hence, a bootstrap approach to approximate the asymptotic critical values of our

tests will be considered and justified theoretically.

We summarize the main characteristics of our tests as follows; (i) they are consistent against a

broad class of linear and nonlinear alternatives to H0, as we shall show in an extensive simulation

experiment below; (ii) are consistent against pairwise Pitman’s local alternatives converging at the

parametric rate n−1/2; (iii) incorporate information on the serial dependence from all lags and, at

the same time, avoid the problem of the curse of dimensionality or high-dimensional integration; (iv)

do not depend on any smoothing parameter or kernel; (v) are valid under fairly general regularity
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conditions on the underlying DGP, in particular, no mixing conditions are imposed; and (vi) are

simple to compute.

A related work has been considered in Escanciano and Velasco (2003) for testing the martingale

difference hypothesis using the exponential weighting function. In fact, Escanciano and Velasco’s

(2003) test can be viewed as the simple hypothesis here, i.e., the case in which θ0 is known. In

the present paper, we are more interested in the use of a general weighting function w and, more

important, in the composite case in which θ0 is unknown and has to be estimated from the sample.

Note that this is not a trivial extension. In particular, the bootstrap approach of Escanciano and

Velasco (2003) is not valid here, and a more involved resampling procedure is needed in the composite

case.

The layout of the article is as follows, in Section 2 we present the generalized spectral distribution

based-tests for testing H0. In Section 3, we study the asymptotic distribution of our tests under

the null, fixed and local alternatives. In Section 4, we propose and justify theoretically a bootstrap

method to implement the tests. We make an extensive simulation exercise and an empirical appli-

cation in Section 5, comparing with competing tests. Finally, we conclude in Section 6 with some

conclusions and further research. All proofs are gathered in an appendix. Throughout, Ac, A′ and

|A| denote the complex conjugate, the matrix transpose and the Euclidean norm of A, respectively.

Unless indicated, all convergences are taken as the sample size n→∞. In the sequel C is a generic

constant that may change from one expression to another.

2. THE INTEGRATED GENERALIZED SPECTRAL TESTS

The main purpose of this paper is to test for H0 when the conditioning set at time t−1 is infinite-

dimensional and is given by It−1 = (Z′t−1,Z
′
t−2, ...)

′, with Zt−j ∈ Rm, j ≥ 1, m ∈ N. One possible

approach for testing H0 is to consider (4) with d tending to infinite with the sample size. However,

this approach delivers some important problems such as the curse of dimensionality or integration

in high-dimensional spaces, hindering its application in cases where the sample size is large and the

d demanded is also large, e.g. high frequency data. To avoid those problems, we propose a pairwise

approach based on (6) that, although checking for a necessary but not sufficient condition of (2), it

is general enough to pick a broad class of alternatives and delivers simple tests statistics.

The equivalence between (5) and (6) plays a crucial role in our subsequent work. The following

Lemma gives sufficient conditions on the parametric family F = {w(Z,x) : x ∈ Υ ⊂ Rs} to satisfy

this equivalence, where hereafter Z is a random vector with the same distribution as Zt, t ∈ Z. We

need some definitions. Let denote by Cb(R
m) the space of all bounded, continuous complex-valued

functions on Rm. We say that a class of functions in Cb(R
m), F say, is a vector lattice if it is a

vector space that is closed under taking positive parts: if f ∈ F , then f+ = max{f, 0} ∈ F . We
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say that F ⊂ Cb(R
m) is an algebra if is a vector space that is closed under taking products, i.e., if

f, g ∈ F , then f · g ∈ F . Also, F separates points of Rm if, for every pair x �= y ∈ Rm, there exists a

function f ∈ F , with f(x) �= f(y). A function is analytic if is locally equal to its Taylor expansion

at each point of its domain. Finally, a class of Borel sets of Rm, B say, is a separating class if two

Borel probability measures that agree in B necessarily agree also on the whole Borel σ-field of Rm,

see Billingsley (1999, p. 9).

Lemma 1 The following conditions are sufficient for the class of functions F = {w(Z,x) : x ∈ Υ ⊂
R
s} to satisfy the equivalence between (5) and (6):

(a) F ⊂ Cb(R
m) is a vector lattice that contains the constant functions and separates points of

R
m.

(b) F ⊂ Cb(R
m) is an algebra that contains the constant functions and separates points of Rm.

(c) F = {w(x′Z) : x ∈ Υ ⊂ Rs} and w is an analytic function which is non-polynomial.

(d) F = {1(Z ∈ Bx) : x ∈ Υ ⊂ Rs} and {Bx}x∈Υ is a separating class of Borel sets of Rm.

Examples of families satisfying (c) in the previous Lemma are w(Z,x) = exp(ix′Z), w(Z,x) =

sin(x′Z) or w(Z,x) = 1/(1+exp(x′Z)), all of them with Υ a compact set of Rm containing the origin,

see Bierens and Ploberger (1997) or Stinchcombe and White (1998). Whereas w(Z,x) = 1(Z ≤ x)
satisfies (d). Throughout the paper we shall assume that the family of functions F = {w(Z,x) : x ∈
Υ ⊂ Rs} satisfies at least one of the sufficient conditions of Lemma 1.

To consider simultaneously all the dependence measures {γj,w(·,θ0)}, we define γ−j,w(·,θ0) =

γj,w(·,θ0) for j ≥ 1, and write the Fourier transform of the functions {γj,w(·,θ0)}∞j=−∞, i.e.,

fw(u,x,θ0) =
1

2π

∞∑

j=−∞

γj,w(x,θ0)e
−iju ∀u ∈ [−π, π],x ∈ Υ, (7)

which contains the same information about H0 as the whole sequence {γj,w(x,θ0)}∞j=0. Note that

under H0, fw(u,x,θ0) ≡ f0,w(x,θ0) = (2π)−1γ0,w(x,θ0). Using a similar idea, Hong and Lee (2004)

have proposed a test for H0 based on the Fourier transform fHL(u, x,θ0), where fHL(u, x,θ0) is

the same as fw(u,x,θ0) but with the measures {γej(x,θ0)} replacing {γj,w(x,θ0)}. Hong and Lee’s

(2004) test statistic is an standardization of an L2-distance between kernel estimators of fHL under

H1 and under H0, see Section 5 below.

The novel approach here is to avoid kernel estimation by considering a generalized spectral distri-

bution function based on the dependence measures {γj,w(·,θ0)}∞j=−∞, i.e., based on the integral of

fw(u,x,θ0)

Hw(λ,x,θ0) = 2

λπ∫

0

fw(u,x,θ0)du ∀λ ∈ [0, 1],x ∈ Υ,
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that is,

Hw(λ,x,θ0) = γ0,w(x,θ0)λ+ 2
∞∑

j=1

γj,w(x,θ0)
sin jπλ

jπ
. (8)

Now, suppose we have a random sample {Yt, Ît−1}nt=1 of size n which is used to estimate the model

f(It−1,θ). Here Ît−1 is the information set observed at time t− 1 that contains (Z′t−1,Z
′
t−2, ...,Z

′
0)
′

and that may contain some initial values. We obtain residuals êt ≡ êt(θn) = Yt − f (̂It−1,θn)

where θn is a
√
n-consistent estimator for θ0, e.g. the conditional nonlinear least squares estimator

(NLSE). The sample version of γj,w(x,θ0) is then given by

γ̂j,w(x,θn) =
1

nj

n∑

t=j

êtw(Zt−j ,x), j ≥ 1, nj = n− j + 1.

Hence, the sample analogue of (8) is

Ĥw(λ,x,θn) = γ̂0,w(x,θn)λ+ 2
n∑

j=1

γ̂j,w(x,θn)(nj/n)
1/2 sin jπλ

jπ
,

with (nj/n)
1/2 a finite sample correction factor which does not affect the asymptotic theory and

delivers a better finite sample performance of the test procedure. The effect of this correction factor

is to put less weight on very large lags, for which we have less sample information. Under the

null hypothesis, Hw(λ,x,θ0) = γ0,w(x,θ0)λ, and therefore, tests can be based on the discrepancy

between Ĥw(λ,x,θn) and Ĥ0,w(λ,x,θn) = γ̂0,w(x,θn)λ, i.e.

Sn,w(λ,x,θn) =
(n
2

)1/2
{Ĥw(λ,x,θn)− Ĥ0,w(λ,x,θn)} =

n∑

j=1

n
1/2
j γ̂j,w(x,θn)

√
2 sin jπλ

jπ
.

In order to evaluate the distance from Sn,w(λ,x,θn) to zero, a norm has to be chosen. We consider

the usual Cramér-von Mises (CvM) norm

D2
n,w(θn) =

∫

Π

|Sn,w(λ,x,θn)|2W (dx)dλ =
n∑

j=1

nj
(jπ)2

∫

Υ

∣∣γ̂j,w(x,θn)
∣∣2W (dx), (9)

where W (·) is an integrating function depending on the weighting family w and satisfying some mild

conditions (see Assumption A5 below). Therefore, our tests consist in rejecting H0 for “large” values

of D2
n,w(θn). Note that D2

n,w(θn) uses all lags contained in the sample, does not depend on any lag

order or kernel function and is very simple to compute, see Section 5. On the other hand, the range

of possibilities in the choice of w and W gives flexibility for D2
n,w(θn) in directing the power against

some desired directions. Next section justifies inferences based on the asymptotic theory.
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3. ASYMPTOTIC THEORY

3.1 Asymptotic Null Distribution

To elaborate the asymptotic theory we consider the following assumptions. Let denote g(It−1,θ) ≡
gt(θ) = (∂/∂θ′)f(It−1,θ) and w(Zt−j ,x) ≡ wt−j(x). Recall that εt = Yt − E[Yt | It−1], It−1 =

(Z′t−1,Z
′
t−2, ...)

′, and that under H0, et(θ0) = εt a.s.

Assumption A1:

A1(a): {Yt,Zt−1}t∈Z is a strictly stationary and ergodic process.

A1(b): E[ε21] < C.

Assumption A2: The response function ft(·) ≡ f(It−1, ·) is specified stationary, ergodic and is twice

continuously differentiable on Θ. The function gt(θ0) is stationary and ergodic, Ft−1-measurable

and there exists an integrable function M(It−1) with |g(It−1,θ)| ≤M(It−1).

Assumption A3:

A3(a): The parametric space Θ is compact in Rp. The true parameter θ0 belongs to the interior

of Θ. There exists a unique θ∗ ∈ Θ such that |θn − θ∗| = oP (1). Obviously, under H0, θ∗ = θ0.

A3(b): The estimator θn satisfies the following asymptotic expansion under H0

√
n(θn − θ0) =

1√
n

n∑

t=1

h(Yt, It−1,θ0) + oP (1),

where h(·) is such that E[h(Yt, It−1,θ0)] = 0 and L(θ0) = E[h(Yt, It−1,θ0)h
′(Yt, It−1,θ0)] exists

and is positive definite.

Assumption A4: The integrating function W (·) is a probability distribution function absolutely con-

tinuous with respect to Lebesgue measure. The weighting function w(·) is such that the equivalence

between (5) and (6) holds, and is uniformly bounded on compacta. Also, w(·) satisfies the following

uniform law of large numbers (ULLN)

sup
x∈Υc

∣∣∣∣∣n
−1

n∑

t=1

ζtw(ξt,x)−E[ζtw(ξt,x)]
∣∣∣∣∣ −→ 0 a.s.,

whenever {(ζt, ξ′t), t = 0,±1, ...} is a strictly stationary and ergodic process with ζt ∈ R, ξt ∈ Rm,

E |ζ1| <∞, and Υc is any compact subset of Υ ⊂ Rs.

Assumption A5: The observed information set available at period t, Ît, may contain some assumed

initial values and satisfies lim
n→∞

∑n
t=1

(
Esup
θ∈Θ

(f(It−1,θ)− f (̂It−1,θ))2
)1/2

≤ C.

Assumption A1 is a mild condition on the DGP, that permits but does not require var(Yt) <

∞. Here, we only assume finite variance for the errors εt, whereas most works in the literature
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assume fourth bounded moments. This fourth moment assumption may look restrictive, it rules out

many empirically relevant GARCH processes whose fourth moments are often found to be infinite.

Note that unlike most existing test under time series, we do not need of any mixing or asymptotic

independence assumption to derived the asymptotic theory, see e.g. A.2 in Hong and Lee (2004).

These asymptotic independence concepts are difficult to check in practice, whereas the martingale

difference errors assumption used in our asymptotic theory is implied from H0. A1 can be extended

to non-stationary sequences using the results of Jakubowski (1980) at the cost of complicating further

the notation. Assumption A2 is on the model and is standard in the conditional mean specification

literature, see e.g. Koul and Stute (1999). Assumption A3 is satisfied under mild conditions,

for instance, for the NLSE or for its robust modifications (under further regularity assumptions),

see Chapter 5 in Koul (2002) or Chapter 6 in Hall and Heyde (1980). Examples of W (·) include

the cumulative distributions functions (cdf) of a N(0,1), Double Exponential or the Student’s tν

distribution. The continuity assumption of W is essential to gain consistency in the test procedure,

see Escanciano and Velasco (2003) for further discussions on the choice of W . All previous examples

of functions w satisfy A4. A5 is a condition on the truncation of the information set Ît−1 and is

similar to Assumption A4 in Hong and Lee (2004). Those authors show that A5 is satisfied for

some standard examples, e.g. ARMA(1,1) models, under mild conditions on the conditional mean

parameters.

To elaborate the asymptotic theory we need some further notation. Let Π = [0, 1] × Υ and

η=(λ,x′)′ ∈ Π. We first establish the null limit distribution of the process Sn(λ,x,θn) ≡ Sn(η,θn)

under H0. We consider Sn(η,θn) as a random element on the Hilbert space L2(Π, ν) of all complex-

valued and square ν-integrable functions on Π, where ν is the product measure of the W -measure

and the Lebesgue measure on [0,1]. In L2(Π, ν) we define the inner product

〈f, g〉 =
∫

Π

f(η)gc(η)dν(η) =

∫

Π

f(λ,x)gc(λ,x)W (dx)dλ.

L2(Π, ν) is endowed with the natural Borel σ-field induced by the norm ‖·‖ = 〈·, ·〉1/2, see Chapter VI

in Parthasarathy (1967) for convergence results on Hilbert spaces. If Z is an L2(Π, ν)-valued random

variable, we say that Z has mean m if E[〈Z, h〉] = 〈m,h〉 ∀h ∈ L2(Π, ν). If E ‖Z‖2 <∞ and Z has

zero mean, then the covariance operator of Z, CZ say, is defined by CZ(h) = E[〈Z, h〉Z]. Let =⇒ de-

note weak convergence in the Hilbert space L2(Π, ν) endowed with the norm metric. Also, denote by
L2−→ convergence in probability in L2(Π, ν), i.e., Zn

L2−→ Z ⇐⇒ ‖Zn − Z‖ P−→ 0. Let define Ψj(λ) =
√
2(sin jπλ)/jπ, bj(x,θ0) = E[wt−j(x)gt(θ0)], Gw(η) ≡Gw(η,θ0) =

∑∞

j=1 bj(x,θ0)Ψj(λ) and

σ2h =
∞∑

j=1

∞∑

k=1

E[ε21

∫

Π×Π

h(η1)h
c(η2)w

c
1−j(x)w1−k(y)Ψj(λ)Ψk(-)dν(η1)dν(η2)], h ∈ L2(Π, ν), (10)

with η1 = (λ,x′)′ and η2 = (-,y′)′. Let V be a normal random vector with zero mean and variance-
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covariance matrix given by L(θ0), and let S0w(·) be a Gaussian process in L2(Π, ν) with zero mean

and covariance operator CS0
w

satisfying σ2h = 〈CS0
w
(h), h〉, ∀h ∈ L2(Π, ν), where σ2h is defined in

(10). Then, under Assumptions A1-A5 we establish the asymptotic null distribution of Sn,w in the

following Theorem.

Theorem 1 Under Assumptions A1-A5 and H0, the process Sn,w converges weakly to Sw on L2(Π, ν),

where Sw(·) has the same distribution as S0w(·)−G′
w(·)V, with

Cov(S0w(η),V) =
∞∑

j=1

E[εtwt−j(x)h(Yt, It−1,θ0)]Ψj(λ).

The next corollary follows from the Continuous Mapping Theorem (Billingsley 1999, Theorem 2.7)

and Theorem 1.

Corollary 1 Under the Assumptions of Theorem 1,

D2
n,w(θn)

d−→ D2
∞,w(θ0) =

∫
|Sw(λ,x,θ0)|2W (dx)dλ.

For wt−j(x) = 1(Zt−j ≤ x), it is natural to choose W (·) as Fn(·), the empirical distribution function

based on {Zt−1}nt=1. In the next corollary we shall show that the use of the empirical distribution

function Fn(x) instead of the true continuous cdf, F (x) say, does not affect the asymptotic null

distribution of the CvM test for the indicator case.

Corollary 2 Under the assumptions of Theorem 1 and the continuity of F (x),

D2
n,I

d−→
∫
(SI(λ,x,θ0))

2F (dx)dλ.

To end this section, it is important to remark that the asymptotic null distribution of D2
n,w depends

in a complex way on the DGP as well as the hypothesized model under the null, so critical values

have to be tabulated for each model and each DGP, making the application of these asymptotic

results difficult in practice. To overcome this problem we shall propose to implement the tests with

the assistance of a bootstrap procedure in Section 4.

3.2 Consistency and Local Alternatives

The consistency properties of the tests are stated in the following theorems. Let consider the

global alternative

Ha : Yt = ft(θ0) + at + εt,

where {at} is strictly stationary, ergodic, with at Ft−1-measurable and with E |a1| <∞. The next

theorem shows the asymptotic behaviour of Sn,w under the global alternative Ha.

10



Theorem 2 Under Assumptions A1-A5 and Ha,

n−1/2Sn,w(η,θn)
L2−→ Lw(η) =

∞∑

j=1

ςj(x)Ψj(λ),

where ςj(x) = E[atwt−j(x)].

Let denote by Ξ the class of alternatives {at} for which it holds that under Ha there exists at

least one j ≥ 1, such that ςj(x) �= 0 for some subset of Υ with positive Lebesgue measure. From

Lemma 1 we observe that Ξ is the class of alternatives {at} for which it holds that under Ha there

exists at least one j ≥ 1, such that E[at | Zt−j ] �= 0 with positive P -measure. Then, if {at} ∈ Ξ,

because W (·) is absolutely continuous with respect the Lebesgue measure, n−1D2
n,w will converge

to a positive constant under Ha, and consequently, our test statistic D2
n,w will be consistent against

Ha. It is important to mention that although the set Ξ forms a large class of alternatives, it does not

cover all possible alternatives. The test statistic D2
∞,w will not be able to detect those alternatives

in the complement of Ξ. We illustrate this with the following

Example 1 Let {εt}t∈Z be a sequence of independent and identically distributed (i.i.d.) zero mean
random variables. Let define the process Yt = εt−1εt−3 + εt. In this case, Zt−1 = (Yt−1, εt−1)

′,

It−1 = (Z′t−1,Z
′
t−2, ...)

′, θ0 is known and equal to zero, ft(θ0) ≡ 0 and at = εt−1εt−3. Then, it is

easy to show that ςj(x) = E[εt−1εt−3wt−j(x)] = 0 a.e., ∀j ≥ 1.

To gain insight of the consistency properties of the tests, the next theorem shows the behavior of

our tests statistics under a sequence of alternative hypotheses tending to the null at the parametric

rate n−1/2. Let consider the local alternatives

Ha,n : Yt,n = ft(θ0) +
at√
n
+ εt, (11)

where {at} is as in Ha. To proceed further, we need an assumption related to the behavior of the

estimator under these local alternatives.

Assumption A6 : The estimator θn satisfies the following asymptotic expansion under Ha,n

√
n(θn − θ0) = ξa +

1√
n

n∑

t=1

h(Yt, It−1,θ0) + oP (1),

where the function h(·) is as in A3 and ξa ∈ Rp.

Theorem 3 Under the sequence of alternatives hypotheses (11) and Assumptions A1-A6,

Sn,w =⇒ Sw + Lw(·)−G′
w(·)ξa,

where Sw and Lw are the processes defined in Theorem 1 and Theorem 2, respectively. Then

D2
n,w(θn)

d−→
∫
|Sw(η,θ0) + Lw(η)−G′

w(η)ξa|
2
dν(η).

11



Furthermore, it can be shown that our tests will have nontrivial power against the local nonpara-

metric alternatives (11) in Ξ not collinear to the score gt(θ0), see Escanciano (2004) for further

discussions on the local power properties of residual-marked tests. This property is not attainable

for those tests using lag-bandwidth parameters or a fixed number of lags, e.g. Koul and Stute (1999),

Fan and Huang (2001) or Hong and Lee (2004).

4. BOOTSTRAP APPROXIMATIONS

Resampling methods have been used extensively in the model checks literature of regression and

time series models, see e.g. Härdle and Mammen (1993), Stute, Gonzalez-Manteiga and Presedo-

Quindimil (1998) or more recently Li, Hsiao and Zinn (2003) in an i.i.d context, or Franke, Kreiss

and Mammen (2002) for time series sequences. It is shown, in these papers, that the most relevant

bootstrap method for regression problems is the wild bootstrap (WB) introduced in Wu (1986) and

Liu (1988). Here we extend the WB to our present context. In time series, the block bootstrap is

the oldest and best known bootstrap method. Particularly well-suited in our set-up is the stationary

bootstrap of Politis and Romano (1994), because it is justified for general Hilbert-valued random

variables. Unfortunately, the block bootstrap involves the choice of the block size and, more impor-

tant, estimation errors that converge to zero relatively slow, see Härdle, Horowitz and Kreiss (2003)

for a discussion on these issues. Here we approximate the asymptotic null distribution of Sn,w by

that of

S∗n,w(λ,x,θ
∗
n) =

n∑

j=1

n
1/2
j γ̂∗j (x,θ

∗
n)Ψj(λ),

with

γ̂∗j (x,θ
∗
n) =

1

nj

n∑

t=j

ê∗t (θ
∗
n)wt−j(x),

and where the fixed-design wild bootstrap (FDWB) residuals ê∗t (θ
∗
n), 1 ≤ t ≤ n, are obtained from

the following algorithm:

Step 1 Estimate the original model and obtain the residuals êt(θn).

Step 2 Generate WB residuals according to ê∗t (θn) = êt(θn)Vt for 1 ≤ t ≤ n, with {Vt} a sequence

of i.i.d random variables with zero mean, unit variance, bounded support and also independent

of the sequence {(Yt, Î′t−1)′}nt=1.

Step 3 Given θn and ê∗t (θn), generate bootstrap data for the dependent variable Y ∗t according to

Y ∗t = f (̂It−1,θn) + ê∗t (θn) for 1 ≤ t ≤ n.

Step 4 Compute θ∗n from the data {Y ∗t , Ît−1}∞t=1 and compute the FDWB residuals ê∗t (θ
∗
n) =

Y ∗t − f (̂It−1,θ∗n) for t = 1, ..., n.
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Examples of {Vt} sequences are i.i.d. Bernoulli variates with P (Vt = 0.5(1 −
√
5)) = b and

P (Vt = 0.5(1 +
√
5)) = 1 − b, with b = (1 +

√
5)/2

√
5, used in e.g. Mammen (1993), Stute,

Gonzalez-Manteiga and Presedo-Quindimil (1998), or P (Vt = 1) = 0.5 and P (Vt = −1) = 0.5,

as in Liu (1988) or de Jong (1996), for other sequences see Mammen (1993). The next theorem

justifies theoretically the bootstrap approximation. We use the concept of convergence in distri-

bution in probability one, a less restrictive concept is convergence in distribution in probability,

see Giné and Zinn (1990) for more detailed discussions on these concepts. We need an additional

assumption on the bootstrap estimator. In the remaining of this section and using standard boot-

strap notation, denote by E∗ the expectation operator given the sample {(Yt, Î′t−1)′}nt=1. Let define

L∗(θn) = E∗[h(Y ∗t , Ît−1,θn)h
′(Y ∗t , Ît−1,θn)].

Assumption A7 :

A7(a): The estimator θ∗n satisfies the following asymptotic expansion

√
n(θ∗n − θn) =

1√
n

n∑

t=1

h(Y ∗t , Ît−1,θn) + oP (1), a.s.

where the function h(·) is as in A3 with

A7(b): E∗[h(Y ∗t , Ît−1,θn)] = 0, a.s..

A7(c): L∗(θn) exists and is positive definite (a.s.) with L(θn)→ L(θ∗) a.s..

A7(d): n−1
∑n

t=1E
∗[et(θn)wt−j(x)Vth(Y

∗
t , Ît−1,θn)]→ E[et(θ∗)wt−j(x)h(Yt, Ît−1,θ∗)] a.s..

In many cases, the function h(·) required in A3(b) and A7 can be expressed as h(Yt, It−1,θ) =

εt(θ)k(It−1,θ) for some function k(·), see e.g. the NLSE or, more generally, estimators resulting

from a martingale estimating equation, see Heyde (1997). Then, in those cases A7 is satisfied under

some mild conditions on the function k(·).

Theorem 4 Assume A1-A7, then, under the null hypothesis H0, under any fixed alternative hy-

pothesis or under the local alternatives (11),

S∗n,w =⇒
∗
S̃w, a.s.,

where S̃w is the same Gaussian process of Theorem 1 but with θ∗ replacing θ0 and =⇒
∗
denote weak

convergence almost surely under the bootstrap law, see Giné and Zinn (1990).

5. FINITE SAMPLE PERFORMANCE AND EMPIRICAL APPLICATION

In order to examine the finite sample performance of the proposed tests we carry out a simulation

experiment with some DGP under the null and under the alternative. In the simulations we consider
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the univariate case, i.e., m = 1 with Zt = Yt, t ∈ Z. We compare our tests with the test of Bierens

(1982), the generalized spectral test of Hong and Lee (2004), the multivariate bootstrap version of

Koul and Stute (1999) proposed in Escanciano (2004) and the usual Portmanteau test of Ljung and

Box (1978). We briefly describe our simulation setup. We denote by D2
n,I and D2

n,C our new CvM

tests corresponding to w(Yt, x) = 1(Yt ≤ x) and w(Yt, x) = exp(iYtx), respectively. They are given

by

D2
n,I =

n∑

j=1

nj
n(jπ)2

n∑

t=1

γ̂2j,I(Yt−1,θn),

with γ̂j,I(x,θn) = (σ̂enj)
−1
∑n

t=j êt(θn)1(Yt−j ≤ x), σ̂2e = n−1
∑n

t=1 ê
2
t (θn), and

D2
n,C =

n∑

j=1

1

σ̂2enj(jπ)
2

n∑

t=j

n∑

s=j

êt(θn)ês(θn) exp(−0.5 · (Yt−j − Ys−j)2),

where we have considered as W the empirical cdf Fn(·) based on {Yt−1}nt=1 and the cdf of a standard

normal random variable, Φ say, respectively. The results with other weighting functions W in D2
n,C

are similar, see Hong (1999) and Hong and Lee (2004) who documented a similar situation. These

are representatives of the CvM tests based on a smooth and non-smooth weighting function, which

are the most used in the literature.

In an ARMA(p, q) framework Ljung and Box (1978) proposed a diagnostic test based on the

classical Portmantau’s statistic

LBm = n(n+ 2)
m∑

j=1

(n− j)−1ρ̂2e,j ,

where ρ̂e,j is the residual autocorrelation coefficient at lag j from the ARMA(p, q) fitted model.

Under i.i.d errors and H0 the asymptotic distribution of LBm can be approximated by a χ2m−p−q

distribution (m > p+ q).

Hong and Lee (2004) have proposed a diagnostic test for the adequacy of a parametric conditional

mean under possible conditional heteroskedasticity. Their test statistic is

HLn(p) =
[
L22(p)− Ĉ1(p)

]
/

[√
D̂1(p)

]
, (12)

where

L22(p) =
n∑

j=1

njk
2

(
j

p

)∫

R

∣∣γ̂ej(x,θn)
∣∣2W (dx), (13)

γ̂ej(x,θn) = n−1j
∑n

t=j et(θn)ψ̂t−j(x), ψ̂t(x) = exp(ixet(θn))−ϕ̂(x), ϕ̂(x) = n−1
∑n

t=1 exp(ixet(θn)),

k(·) is a symmetric kernel, p is a bandwidth parameter and W (·) is an integrating function. The

centering and scaling factors in the standardization of L22(p) to obtain an asymptotic standard normal

null distribution depend on the higher dependence structure between the errors and the regressors.
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In the more general case considered by Hong and Lee (2004) the centering and scaling factors are,

respectively,

Ĉ1(p) =
n∑

j=1

n−1j k2
(
j

p

) n∑

t=j

ê2t (θn)

∫

R

∣∣∣ψ̂t−j(x)
∣∣∣
2

W (dx),

and

D̂1(p) = 2
n−1∑

j=1

n−1∑

l=1

k2
(
j

p

)
k2
(
l

p

)∫

R2

∣∣∣∣∣∣
1

n−max(j, l) + 1

n∑

t=max(j,l)

ê2t (θn)ψ̂t−j(x)ψ̂t−l(y)

∣∣∣∣∣∣

2

W (dx)W (dy).

Under some assumptions and H0, they showed that HLn(p) converges to a standard normal random

variable. For the simulations for HLn(p) we use again the cdf of standard normal random variable

as the integrating function W and the Daniell kernel k(z) = sin(πz)/(πz), as in the simulations of

Hong and Lee (2004).

In order to compare the pairwise approach with the case of considering a fixed number of lags in

the conditioning set, we examine the finite sample properties of the CvM test of Bierens (1982) and

the CvM and Kolmogorov-Smirnov (KS) tests of a multivariate version of Koul and Stute (1999)

proposed in Escanciano (2004). The Bierens’ test is based on the weighting function w(Idt−1,x) =

exp(ix′Idt−1) and the cdf of a multivariate standard normal random vector as the integrating measure,

where Idt−1 = (Yt−1, ..., Yt−d)
′ is the d-lagged values of the series. Under this setup Bierens’ test is

CvMexp,d = n−1σ̂−2e

n∑

t=1

n∑

s=1

et(θn)es(θn) exp(−
1

2

∣∣Idt−1 − Ids−1
∣∣2).

Escanciano (2004) has recently proposed some diagnostic tests based on residual marked empirical

processes. He justifies theoretically the FDWB approximation for a large class of residual marked

tests, including the Bierens’ test and the multivariate extension of Koul and Stute (1999) as special

cases. We denote by CvMd and KSd the CvM and KS statistics proposed in Escanciano (2004),

which are, respectively,

CvMd =
1

σ̂2en
2

n∑

j=1

[
n∑

t=1

êt(θn)1(I
d
t−1 ≤ Idj−1)

]2

and

KSd = max
1≤i≤n

∣∣∣∣∣
1

σ̂e
√
n

n∑

t=1

êt(θn)1(I
d
t−1 ≤ Idi−1)

∣∣∣∣∣ .

Throughout εt and vt are independent sequences of i.i.d. N(0, 1). We have considered the empirical

level at the 5% and samples sizes n = 100 and n = 300. The results with other significance levels

are similar. For the sake of space, we only present in simulations the case n = 100. The number

of Monte Carlo experiments is 1000 and the number of bootstrap replications is B = 500. In all

the replications 200 pre-sample data values of the processes were generated and discarded. Random

numbers were generated using IMSL ggnml subroutine. We employ a sequence {Vt} of i.i.d Bernoulli
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variates satisfying P (Vt = 0.5(1−
√
5)) = b and P (Vt = 0.5(1+

√
5)) = 1−b, with b = (1+

√
5)/2

√
5.

The power in the non-bootstrap cases is level-adjusted by using the empirical values obtained under

5000 simulations of Model 1 below, although the difference is not substantial.

We use the FDWB approximation described before in our tests D2
n,I and D2

n,C , and in CvMexp,d,

CvMd and KSd, see Escanciano (2004). To examine the impact of the different parameters on

the tests we consider p from 2 to 11 in HLn(p), m from 2 to 11 in LBm, and d = 1, 3, 5, 7, 9 and

11 in CvMexp,d, CvMd and KSd. To simplify notation, we use in Figures the names Di, Dexp,

CvMexp, CvM, KS, HL and LB to denote D2
n,I , D2

n,C , CvMexp,d, CvMd, KSd, HLn(p) and LBm,

respectively. The X-axes in all figures corresponds with the values of m, p and d.

Our null model is an AR(1) model: Yt = a+ bYt−1 + εt. We examine the adequacy of this model

under the following DGP:

1. AR(1) model: Yt = 0.6Yt−1 + εt.

2. AR(1) model with exponential centered noise εt ∼ Exp(1) : Yt = 0.6Yt−1 + εt.

3. AR(1) model with heteroskedasticity (ARHET): Yt = 0.6Yt−1 + htεt; h
2
t = 0.1 + 0.1Y 2t−1 +

0.6Y 2t−2.

4. AR(1) model plus a bilinear term (AR-BIL): Yt = 0.6Yt−1 + 0.4Yt−1εt + εt.

5. AR(2) model: Yt = 0.6Yt−1 − 0.5Yt−2 + εt.

6. ARMA(1,1) model: Yt = 0.6Yt−1 + 0.5εt−1 + εt.

7. Bilinear model (BIL): Yt = 0.6Yt−1 + 0.7εt−1Yt−2 + εt.

8. Nonlinear moving average model (NLMA): Yt = 0.6Yt−1 + 0.7εt−1εt−2 + εt.

9. Threshold autoregressive model (TAR): Yt = 0.6Yt−1 + εt if Yt−1 < 1 and Yt = −0.5Yt−1 + εt

if Yt−1 ≥ 1.

10. Sign autoregressive model (SIGN): Yt = sign(Yt−1)+0.43εt, where sign(x) = 1(x > 0)−1(x <

0).

11. Temp Map model (TEM MAP): Yt = α−1Yt−1 if 0 ≤ Yt−1 < α and Yt = (1−α)−1(1−Yt−1) if

α ≤ Yt−1 ≤ 1, where α = 0.49999 and Y0 is generated from the uniform distribution on [0,1].

12. Nonlinear autoregressive model (NAR): Yt = 0.6Yt−1 + 0.7sin(0.3πYt−2) + εt.

Models 1 and 5 to 11 have been considered in Hong and Lee (2003) and are well described there.

Models 2 to 4 are introduced to examine the empirical size of tests. Model 12 is introduced to

compare indicator and exponential functions, see e.g. Eubank and Hart (1992).

16



To compute all the tests statistics we consider the usual least squares residuals from model 1,

i.e., êt(θn) = Yt − â − b̂Yt−1 for t = 1, ..., n. In Figures 1 and 2 we report the empirical rejections

probabilities (RP) associated with the models 1 and 5 to 11 to examine the empirical level and

power of the tests. The tests statistics Di, Dexp, CvM, KS show good empirical level properties.

The empirical size of CvMexp decreases as d increases, this is a general property of this test in all

simulations and might be due to numerical problems with the characteristic weighting function, that

is, because the distance
∣∣Idt−1 − Ids−1

∣∣2 increases very fast with d, and hence, the weights are very

near to zero when d is relatively large. Hong and Lee’s (2004) test HL presents some underrejection

for all null models. A similar situation is reported in Hong and Lee (2004). The empirical level of

LB is more or less satisfactory except in the heteroskedastic model ARHET. This is a well-known

result and to solve this problem one can robustify the Ljung and Box (1978) test, see e.g. Deo

(2000).

Our tests Di and Dexp have excellent empirical power against the AR(2), TAR, SIGN, TEM

MAP and NAR models, and moderate empirical power against ARMA(1,1), BIL and NLMA mod-

els. Neither Di nor Dexp outperforms the other. The Cramér-von Mises and Kolmogorov-Smirnov

statistics CvM and KS present similar behavior with decreasing empirical power for large values of

d, as expected, given the sparseness of the data in high dimensional spaces. This is the case also for

CvMexp but with more variation with respect to d. In general, CvMexp presents better empirical

power properties than CvM and KS. For AR(2), ARMA(1,1) and NAR models their maximum

power is achieved at d = 3, whereas for the other models is at d = 1. Their power is very sensitive to

d, see e.g. AR(2) model. Hong and Lee’s (2004) test HL has good empirical power against AR(2)

and ARMA(1,1), and moderate power against the rest of models. It is very sensitive on p for AR(2)

and NAR models, and roughly stable for the other models. Ljung and Box’s (1978) test LB has

excellent empirical power against the linear models AR(2) and ARMA(1,1), and cannot detect some

nonlinear alternatives such as the BIL, NLMA, TAR, and TEM MAP alternatives.

Generally speaking, Di and Dexp have omnibus power against all linear and nonlinear alternatives,

for TAR, SIGN, TEM MAP and NAR models achieve the best empirical power overall. Moreover,

their size behavior is robust to different models with the same specified conditional mean. From the

present simulations and other considered in a previous version of this paper we conclude that, in

general, the pairwise approach is better than the approach based on a fixed number of lags, in some

cases uniformly in d. The latter approach, gives reasonable empirical power properties if the lag

order d is chosen appropriately, but is very sensitive to this choice. In addition, the pairwise approach

avoids the choice of lag order parameters and overcomes the problem of the curse of dimensionality,

which affects the tests when d is large or even moderate.

Now, we consider an application to model a weekly egg prices series of a German agricultural
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market between April 1967 and May 1990. This series is of length 300 and is the first quarter of a

longer series extensively analyzed by Finkenstädt (1995), and also studied in Fan and Yao (2003, p.

113-117), where different linear models have been proposed. Using different criteria these authors

choose a linear model ARMA(1, 2) for the differenced series, Xt say, where Xt = Yt − Yt−1, and

estimate the model

Xt = ϕ1Xt−1 + εt − θ1εt−1 − θ2εt−2. (14)

As in Fan and Yao (2003), we subtract the sample mean from the data before the fitting. Our

estimations using the NLSE for (ϕ1, θ1, θ2) are respectively, (0.888, 0.594, 0.381). The Ljung and

Box’s (1978) test LBm shows that there is no linear dependence structure in the residuals with

a sequence of p-values that attain the minimum value of 0.080 at lag m = 7. The empirical p-

values obtained for D2
n,I , D2

n,C , CvMexp,2, CvM2 and KS2 are 0.046, 0.004, 0.942, 0.872 and 0.956,

respectively. For values of d larger than 2 the behaviour of CvMexp,d, CvMd and KSd is similar.

Therefore, we observe that although the tests based on a fixed number of lags fail to reject the

ARMA(1, 2) model, our new pairwise tests are able to reject it. These findings may be due to the

present of high order subtle dependence structure that the pairwise tests are able to detect because

they consider information from all lags contained in the sample.

6. SUMMARY AND CONCLUSIONS

In this paper we have presented goodness-of-fit tests for linear and nonlinear time series mod-

els using a generalized spectral distribution approach very convenient when the conditioning set is

infinite-dimensional. We think that our tests provide a good compromise between generality, sim-

plicity and feasibility. The present paper, jointly with the works by Hong and his coauthors, shows

that the generalized spectral approach can be a useful tool for studying serial dependence in a time

series framework. Here, we provide an alternative proposal to Hong and we extend the generalized

spectral approach to other weighting functions including but not restricting to exponential func-

tions. We use Hilbert space methods which allow us to elaborate a unified asymptotic theory for the

tests statistics. The smoothing approach used by Hong may give more flexibility in the weighting

scheme, compare (13) and (9). However, the choice of a kernel and a smoothing parameter affects

the inferences in finite samples, as we have shown in the extensive simulation experiment. On the

other hand, the range of possibilities in the choice of w and W gives flexibility for D2
n,w in directing

the power against some desired directions. We would like to stress here that although D2
n,w has

the attractive convenience of being free of choosing any smoothing parameter or kernel, should be

viewed as not competing but as a complement to the smoothing kernel density approach.

Among the appealing properties of our tests are that; first they are free of choosing any lag order
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or smoothing parameters; second, they present excellent empirical size and power properties, as is

shown in the extensive simulation experiment; third, they avoid the curse of dimensionality problem

and high dimensional integration that affects other tests proposed in the literature; and four, they are

robust to higher order dependence, which is of crucial importance in conditional moments modeling.

The price to pay for such good properties is that our tests are not consistent against all alternatives

because we check only pairwise implications of the correct specification, that the weights in our

tests are 1/(jπ)2, which heavily downweigh the contribution of γ̂j,w(x,θn) to detect a lack of fit in

the conditional mean, and that under H0 the asymptotic null distribution depends on the DGP, so

bootstrap procedures have to be used. To solve the first problem, one possibility is to apply the

spectral methodology proposed here to the measures

γjh(x,y,θ0) = E[et(θ0)w(Zt−j ,x,Zt−h,y)], j ≥ 1, h ≥ 1,

where, for example, w(Zt−j,x,Zt−h,y) = 1(Zt−j ≤ x,Zt−h ≤ y), and consider a generalized

bispectrum approach, i.e., the Fourier transform of the double sequence {γjh}. For the second

problem, our weights represent, in some sense, the price to pay for considering all lags contained

in the sample and avoiding the choice of lag-bandwidth parameters. Once these two properties

are sacrificed there are many possibilities to avoid such weights. For instance, one can consider

Portmanteau-type tests
m∑

j=1

an,j

∫

Υ

∣∣γ̂j,w(x,θn)
∣∣2W (dx),

for a fixed m ∈ N and some choice of {an,j}mj=1. One can argue that our tests naturally discount

higher order lags, which is consistent with the stylized fact that many underlying real variables

are more affected by the recent past events than by the remote past events. The latter problem

is much more difficult to solve without altering the other appealing properties of the tests. Other

alternatives proposed in the literature such as the martingale transformation used in Koul and Stute

(1999), cf. Khamaladze (1981), are difficult in our context. The main reason is that, unlike in Koul

and Stute (1999), the dependence structure of the regressors plays a crucial role in the covariance

operator of our null limit process. To end this section, we would like to stress the generality of the

approach proposed here. Many important testing problems that arise in time series can be expressed

as conditional moment restrictions. Higher conditional moments modeling, e.g conditional variance,

or testing for conditional symmetry are examples. These hypotheses are fundamental in financial

and economic applications and can be dealt with similar techniques to those proposed here.
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APPENDIX: PROOFS

Proof of Lemma 1: Let m(y) = E[et(θ0) | It−1 = y] a.s.. Let define the finite Borel measure

ν(B) =

∫

B

m(y)PI(dy),

where PI is the probability measure associated to It−1 and B is a Borel set of R∞, i.e., B ∈ B say.

The proof of (i) and (ii) is a direct application of Lemma 1.3.12 (b) in van der Vaart and Wellner

(1996), after noting that the argument used there can be extended to any finite measure and not

only a probability measure. Hence, we deduce that ν(B) = 0, ∀B ∈ B, and then m = 0 a.s.. The

proof for (iii) follows from Theorem 2.3 in Stinchcombe and White (1998). The proof for (iv) follows

because if ν(B) = 0 for all Borel sets B in a separating class, then it holds for all Borel sets, by

definition.

Lemma A1: Under A4 and A5 the effect of estimating the conditioning set It−1 by Ît−1 in

f(It−1,θn) has no effect on the asymptotic theory. That is,

∥∥∥Sn,w(η,θn)− S̃n,w(η,θn)
∥∥∥
2 P−→ 0.

where S̃n,w(η,θn) is the same process as Sn,w(η,θn) but with It−1 replacing Ît−1.

Proof of Lemma A1: Write

E
∥∥∥Sn,w(η,θn)− S̃n,w(η,θn)

∥∥∥
2

=
n∑

j=1

1

(jπ)2
n−1j E




n∑

t=j

(f(It−1,θn)− f (̂It−1,θn))wt−j(x)



2

≤ C
n∑

j=1

1

(jπ)2
n−1j




n∑

t=j

(
Esup
θ∈Θ

(f(It−1,θ)− f (̂It−1,θ))2
)1/2



2

≤ C

(
n∑

t=1

(
Esup
θ∈Θ

(f(It−1,θ)− f (̂It−1,θ))2
)1/2)2




n∑

j=1

1

(jπ)2
n−1j


 ,

where the first inequality is due to the Minkowski’s inequality. Then, the Lemma follows from A5.

For simplicity, we rename S̃n,w(η,θn) again as Sn,w(η,θn). The next Lemma establishes the as-

ymptotic expansion of the process Sn,w(η,θn) under the null.

Lemma A2: Under (2) and the assumptions A1-A5,

‖Sn,w(η,θn)− Sn,w(η,θ0) +G′
w(η,θ0)V‖

2 P−→ 0.

Proof of Lemma A2: By the Mean Value Theorem and A1-A5

Sn,w(η,θn) = Sn,w(η,θ0) +
∂Sn,w(η, θ̃n)

∂θ′
(θn − θ0), (15)
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where θ̃n is a mean value satisfying
∣∣∣θ̃n − θ0

∣∣∣ ≤ |θn − θ0| a.s.. Note that the process Sn,w(η,θn)

can be written as

Sn,w(η,θn) =
1√
n

n∑

t=1

et(θn)
t∑

j=1

n1/2n
−1/2
j wt−j(x)

√
2 sin jπλ

jπ
=

1√
n

n∑

t=1

et(θn)Qt,w(η),

where Qt,w(η) is implicitly define. Hence,

1√
n

∂Sn,w(η, θ̃n)

∂θ
=

1

n

n∑

t=1

∂et(θ̃n)

∂θ
Qt,w(η)

= −
n∑

j=1

1

n

n∑

t=j

n1/2n
−1/2
j gt(θ̃n)wt−j(x)Ψj(λ)

= −
n∑

j=1

bj,n(x, θ̃n)Ψj(λ),

where bj,n(x, θ̃n) = n−1
∑n

t=j n
1/2n

−1/2
j gt(θ̃n)wt−j(x). Hence, Assumptions A1-A5, the uniform

argument of Jennrich (1969, Theorem 2) and applying Lemma 1 in Escanciano and Velasco (2003,

hereafter EV) yield ∥∥∥∥∥∥
1√
n

∂Sn,w(η, θ̃n)

∂θ
+

n∑

j=1

bj(x,θ0)Ψj(λ)

∥∥∥∥∥∥
P−→ 0.

The last display, Assumption A3, Theorem 1 in EV and (15) imply the result.

Proof of Theorem 1: We apply Lemma A2 and Theorem 1 in EV but with wt−j(x) replacing

exp(ixYt−j) there.

Proof of Corollary 1: By A5, Theorem 1 and the Continuous Mapping Theorem (see e.g. Billings-

ley 1999) the result holds.

Proof of Corollary 2: Note that
∫

Π

(Sn,I(η,θn))
2{Fn(dx)− Fn(dx)}dλ =

n∑

j=1

1

(jπ)2

∫

Υ

(n
1/2
j γ̂j,I(x,θn))

2{Fn(dx)− F (dx)}.

From Corollary 1 in Escanciano (2004), using the continuity of F (x), we have that n
1/2
j γ̂j,I(x,θn)

is tight in D∞(Υc), the metric space of all uniformly bounded real-valued functions on Υc endowed

with the supremum norm. Also we have the Glivenko-Cantelli’s Theorem for stationary and ergodic

sequences, see Dehling and Philipp (2002, p. 4). Hence, applying Lemma 3.1 in Chang (1990), we

can conclude that ∫

Υ

(n
1/2
j γ̂j,I(x,θn))

2{Fn(dx)− F (dx)} P−→ 0, ∀j ≥ 1.

Applying a partition argument as in the proof of Lemma 1 in EV the corollary is proved.

Proof of Theorem 2: By Lemma 1 in EV it is sufficient to consider elements of the form

γ̂j,w(x,θn) =
1

nj

n∑

t=j

et(θn)wt−j(x) =
1

nj

n∑

t=j

{εt + at + ft(θ0)− ft(θn)}wt−j(x), j ≥ 1.
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We apply a linearization argument for {ft(θ0)− ft(θn)} as in Theorem 1 and use A4 to obtain

sup
x∈Υc

∣∣∣∣∣∣
1

nj

n∑

t=j

{εt + at + ft(θ0)− ft(θn)}wt−j(x)−E[atwt−j(x)]

∣∣∣∣∣∣
= oP (1), j ≥ 1.

Proof of Theorem 3: Again, we write for fix j ≥ 1

γ̂j,w(x,θn) =
1

nj

n∑

t=j

{εt + ft(θ0)− ft(θn) +
at√
n
}wt−j(x)

=
1

nj

n∑

t=j

{εt + ft(θ0)− ft(θn)}wt−j(x) +
1

nj

n∑

t=j

at√
n
wt−j(x) = γ̂1j(x,θn) + γ̂2j(x,θn),

where by γ̂1j(x,θn) and γ̂2j(x,θn) are implicitly defined. Let use the same arguments as in Theorem

1 for γ̂1j(x,θn), but now with A7, to show that

sup
x∈Υc

∣∣∣∣∣∣
1

nj

n∑

t=j

{εt + ft(θ0)− ft(θn)}wt−j(x)− ξ′abj(x,θ0)

∣∣∣∣∣∣
= oP (1), j ≥ 1.

Also, from A4 ∣∣∣n1/2j γ̂2j(x,θn)−E[atwt−j(x)]
∣∣∣ = oP (1), j ≥ 1,

uniformly in x ∈ Υc. Then, the latter displays jointly with Lemma 1 in EV yield the result.

Proof of Theorem 4: We write similarly to Lemma A2

S∗n,w(η) = n−1/2
n∑

t=1

e∗t (θn)Qt,w(η)− n−1/2
n∑

t=1

{f(It−1,θ∗n)− f(It−1,θn)}Qt,w(η)

= S∗n,w,L(η)− I∗ − II∗ − III∗,

where

I∗ = n1/2(θ∗n − θn)n−1
n∑

t=1

{g(It−1, θ̃
∗

n)− g(It−1,θn)}Qt,w(η),

II∗ = n1/2(θ∗n − θn)n−1
n∑

t=1

[g(It−1,θn)Qt,w(η)−G′
w(η,θ∗)]

and III∗ = n1/2(θ∗n − θn)G′
w(η,θ∗), with θ̃

∗

n satisfying
∣∣∣θ̃
∗

n − θn
∣∣∣ ≤ |θ∗n − θn| a.s.(conditionally on

the sample). Under our assumptions is easy to show that conditionally on the sample, ‖I∗‖ = oP (1)

and ‖II∗‖ = oP (1) with probability one. Therefore, in L2(Π, ν)

S∗n,w(η) = S∗n,w,L(η)− n1/2(θ∗n − θn)′G′
w(η,θ∗) + oP (1) a.s..

The convergence of the finite-dimensional distributions follows from the last expression, A7, Theorem

1 in EV and from the Cramér-Wold device. The tightness (a.s.) follows from Theorem 2.5.2 in van

der Vaart and Wellner (1996). The proof is finished.
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