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1 Introduction

The behavior of the term structure of interest rates has attracted increased attention

during the last decade, because of the implications for the correct pricing of fixed

income securities and derivatives. While the effort has been placed in developing

models that would yield closed form solutions for the prices of interest rate derivatives,

little attention has been paid to the correctness of the interest rate dynamics implied

by the specified model. This is especially worrisome since some models do not replicate

the most common stylized facts of interest rate behavior: level effects in volatility —the

variance usually being more than linear on the level—, near integrated behavior or high

persistence in term spreads.1 As a consequence, misspecification of the underlying

interest rate model leads to serious pricing errors (Canabarro, 1995, Backus et al.

1998) and to distorting effects on the allocation of investment.

Recent contributions that solve some of these deficiencies include Aït-Sahalia

(1996 a), Brenner et al. (1996), Tauchen (1996), Koedijk et al (1997), Bali (2000,

2003) and Boudoukh et al. (2000). A main finding common to these papers, qualified

by Aït-Sahalia (1996b) and Jones (2003), is the very weak mean reversion of interest

rates —near integration— that suggests the existence of nonlinearities in the mean re-

verting behavior. Additionally, it appears critical to model volatility correctly since

its effects on the pricing of assets are of substantial magnitude. In the case of interest

rates, volatility depends on the level of the interest rate (Chan et al., 1992, hereafter

CKLS), and this dependence appears to be stronger than some traditional models

such as that of Cox et al. (CIR, 1985) have specified.

1Pagan et al. (1996) provide an excellent summary of these stylized facts and of how most of the
existing models fail to account for them.
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Additionally, a number of papers have proposed new estimation methods that

can handle the complexity of the dynamic properties of interest rate data. Robust

estimation techniques (semiparametric or nonparametric) have been suggested to

avoid the arbitrary restrictions imposed by pre-specified parametric functional forms.

Examples are Aït-Sahalia (1996 a,b), Boudoukh et al. (1997, 2000), Stanton (1997),

Ghysels and Ng (1998), Downing (1999) and Broadie et al. (2000).

In this article we specify a model of interest rate dynamics that attempts to cap-

ture a distinctive feature of European interest rates, namely the convergent behavior

during the years prior to the creation of the European Monetary Union (EMU).

Building on the special characteristics of the transition process to EMU we develop

a two-factor model of the domestic interest rate of a European country where we

include a European short-term interest rate as a second factor:2 the domestic rate

follows a mean reverting process that reverts to a stochastic mean which is identified

with the European rate. We use nonparametric regression techniques to estimate the

short-term interest rate processes in two European countries: Spain and Italy. In

both cases we find evidence of a substantial level effect in volatility and —somewhat

weaker— nonlinear drifts.3

Since the dynamic behavior of interest rates affects the prices of bonds and of other

interest rates derivatives, incorporating a second factor should improve the pricing

of these assets. Once we have estimated the interest rate processes and calculated

2Most models characterize interest rates as one-factor Markovian processes. Theoretical and
empirical research have suggested that two-factor models describe the behavior of the term structure
better than one-factor models. The second factor is usually identified with the volatility (Longstaff
and Schwartz, 1992) or the mean rate (Balduzzi et al., BDF 1998, or Balduzzi et al., BDFS 2000).
Some studies (Chacko 1997, Downing 1999 andBDFS 2000) also consider three or four factors.

3Similar empirical results can be found in CKLS (1992), Gallant and Tauchen (1996), Pfann et
al. (1996) and Jones (2003).
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the market price of risk we proceed to value zero coupon bonds using simulation.

We compare the bond prices obtained by our methodology with actual prices. As

benchmark for comparison, we also estimate a one-factor model —similar to that in

Stanton (1997)— where the dynamics of the short term rate depend only on its own

level. Our specification obtains pricing errors that are smaller both because of the

model structure —around 5% for one year bonds and 2% for two year bonds— and

because of the estimation technique —around 30%. We offer some comments as to

how the performance of our model might compare with alternative two-factor models.

The rest of the paper is organized as follows: in Section 2 we present the conver-

gence model and the methods used for the estimation of the interest rate processes.

We show results for Spain, Italy and for a European rate. In Section 3 we derive the

necessary formulas to estimate the market price of European and domestic interest

rate risk. In Section 4 we present the simulations used to price zero coupon bonds

and the results of the pricing exercise. Finally in Section 5 we conclude.

2 Interest rates in Europe: The ConvergenceModel

Mean reverting models for the term structure have enjoyed wide acceptance since

Vasicek (1977) and CIR (1985). Both these models are one-factor models with a

constant long run mean that cannot account for the behavior of the term structure:

in a one-factor world the prices of assets that depend on that factor should be per-

fectly correlated. Furthermore, the evolution of most series of interest rates in the

last years shows that the assumption of a constant long run mean seems unjustifi-

able. Consequently, a natural extension would be to include as an additional factor

a stochastic mean. In particular, in this paper we model the short term interest rate

4



of small European countries as a mean reverting process where the mean changes

stochastically over time. We consider this framework adequate to study the term

structure of interest rates of EMU countries. The Maastricht Treaty required interest

rates of domestic countries to converge to a level given by the rates of the countries

with lowest inflation levels. We argue that a two-factor model of the interest rate,

where the factors are the level of the domestic short term rate and the central ten-

dency of that short term rate is an adequate representation of the behavior of interest

rates in EMU candidates —and, after EMU creation, of EMU members.4 We identify

the stochastic mean of the interest rate with an observable European rate. This is

an important difference with other stochastic mean reverting models, that leave the

mean unidentified and have to estimate it from the data.

Assume that the interest rates of two countries d and e evolve independently

except for, maybe, a correlation in the innovations to their processes. Each rate

reverts to its own mean, θd and θe. Specifying the dynamics as two linear mean

reverting processes, the behavior of the two rates would correspond to

drd = κd (θd − rd) dt+ σddzd (1)

dre = κe (θe − re) dt+ σedze

where the κi terms represent the speed of adjustment to the mean, the volatility

terms σi could be a constant (σi = σ) or a volatility in levels “a la CKLS (1992)”

(σi = σrγi ) and the dz’s are possibly correlated. Now assume that the rate of country

4The setup of EMU does not force domestic interest rates to be the same across member countries:
Domestic market rates in a currency union should approximately be the same but they may differ
because of sovereign or credit risk. This difference may become more notorious for medium and long
term debt. Also, differences in default risk and tax treatment —fiscal law has not been unified in
EMU— imply that some individual bond markets may remain segmented so it is likely that differences
in rates and in rate dynamics still remain.
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d follows a convergent behavior towards the rate in country e: rd is trying to get

closer to —to “converge to”— re so at each point in time the relevant equilibrium value

for rd is the current value of re, which therefore becomes a stochastic mean for rd.

The two diffusions in (1) become:

drd = κd (re − rd) dt+ σddzd (2)

dre = κe (θe − re) dt+ σedze

This reasoning directly applies to countries that were candidates to EMU, in

the years prior to the adoption of the single currency. Given the requirements of

the Maastricht Treaty the rates in domestic countries evolved with reference to a

“European” rate given by the average of the rates of some countries.

We could now estimate the model as it is. Following some continuous-time tech-

nique —Hansen and Scheinkman’s (1995) method, simulation based methods such as

indirect inference (Gourieroux et al., 1993) or the Efficient Method of Moments (Gal-

lant and Tauchen, 1996), exact maximum likelihood of the discrete data (Fernández-

Navas, 1999, Gourieroux and Jasiak, 2002)— estimates of the parameters of the two

processes could be obtained. However, linear processes such as (2) perform quite

badly empirically (Pagan et al., 1996). Significant nonlinearities in mean reversion

of interest rates are apparent so a specification that imposes linearity becomes too

restrictive. One would like to specify a general form for the drift and volatility terms

that was flexible enough to account for possible nonlinearities. We follow this ap-

proach, and leave both the drift and the volatility functions unspecified. We therefore

postulate that the short term domestic interest rate in EMU countries, rd, follows a
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process given by the diffusion

drd = µd(re − rd)dt+ σd(rd)dzd (3)

and the mean reverting level, re, is the European interest rate which evolves over

time following

dre = µe(re)dt+ σe(re)dze (4)

dzd and dze may be correlated with correlation coefficient ρ.5 µ(·) and σ(·) are general
nonparametric forms for the drift and diffusion functions of the two processes.6

We call equations (3) and (4) Model 1. Given that we did not specify a functional

form for both the drift and volatility functions, we need to provide a parameter-free

estimation of our model using nonparametric techniques. Since the data are only

available in discrete time we briefly outline in Section 2.1 the procedure we follow to

estimate the underlying continuous-time functions with discrete data. Section 2.2.

describes the estimation technique.

5The volatility of the domestic rate could be assumed to react also to the level of the European
rate or to the rate differential:

(1) drd = µd(re − rd)dt+ σd(rd, re)dzd

(2) drd = µd(re − rd)dt+ σd(rd, re − rd)dzd

We have explored the second specification, more reasonable in our context, and the relevant results
did not change much. However, when using two conditioning variables for the nonparametric esti-
mation of the volatility we ran into the curse of dimensionality, given that it is in the high values
of the spread re − rd where its effect in volatility appears but for those values the density of both
the spread and the domestic rate is lower. Thus, an empty-space phenomenon arises that impedes
a good estimation of the bivariate specification of the volatility. We opted for keeping only rd, the
conditioning variable that had a clearer effect on volatility.

6We assume that µ(·) and σ(·) satisfy the smoothness conditions required for the analysis of the
stochastic process (Duffie, 2001) and for the posterior nonparametric estimation (Pagan and Ullah,
1999).
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2.1 Approximations to the continuous time functions

The procedure we use to obtain estimations of the nonparametric drift and volatility

functions —based on Stanton (1997)— relies on approximating the infinitesimal genera-

tor of the continuous-time functions in the interest rate dynamics. This methodology

stems from Hansen and Scheinkman (1995) where the infinitesimal generators of the

drift and volatility of a continuous-time parametric diffusion process are used to gen-

erate moment conditions from which the parameters can be estimated via GMM.

Given our nonparametric specification for the drifts and volatilities, the methodology

of Hansen and Scheinkman cannot be directly applied in our context. Stanton (1997)

modified the procedure so that it could be used to estimate nonparametric drifts

and diffusions by relying on stochastic Taylor-series expansions of the infinitesimal

generator of functions related to the diffusion process studied. Given that he used a

one-factor model, we need to extend and complement his analysis so that it can be

applied to our two-factor specification of the evolution of the domestic interest rate.

Assume a general multivariate diffusion process X with k elements

dX = µ(X)dt+ σ(X)dZ (5)

corr(dZ) = R

where µ(X) and σ(X) are k × 1 vectors that contain the drift and diffusion terms,
dZ is a k dimensional Wiener process and R is a k× k matrix with ij coefficient ρij.

Take now any smooth function of that process, f(x, t). The infinitesimal generator

of that function, which gives the expected change in f(x, t) in the next infinitesimal
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period of time, is defined as

=f(x, t) = lim
τ↓t

Et[f(Xτ , τ)|Xt = x]− f(x, t)

τ − t
= (6)

=
∂f(x, t)

∂t
+

kX
i=1

∂f(x, t)

∂xi
µi(x) +

1

2

kX
i=1

kX
j=1

∂2f(x, t)

∂xi∂xj
σi(x)σj(x)ρij

We can obtain an approximation to that infinitesimal generator by an stochastic

Taylor-series expansion of the term Et [f(Xt+4, t+4)] around f(Xt, t) which yields:

Et [f(Xt+4, t+4)] = f(Xt, t)+4=f(Xt, t)+
1

2
42=2f(Xt, t)+...+

1

n!
4n=nf(Xt, t)+O(4n+1)

(7)

and after rearranging terms:

=f(Xt, t) =
1

4Et [f(Xt+4, t+4)− f(Xt, t)]−1
2
4=2f(Xt, t)−...− 1

n!
4n−1=nf(Xt, t)+O(4n)

(8)

which allows us to approximate =f(Xt, t) arbitrarily close with an error of order

O(4n). An approximation of order one would be

=f(Xt, t) =
1

4Et [f(Xt+4, t+4)− f(Xt, t)] +O(4) (9)

and multiplying this by two and subtracting an expansion with 4t = 24 we get a

second order approximation

=f(Xt, t) =
1

24 {4Et [f(Xt+4, t+4)− f(Xt, t)]−Et [f(Xt+24, t+ 24)− f(Xt, t)]}+O(42)

(10)

and so on.

Now we need to find a function f(x, t) such that =f(x, t) = g(x, t), where g(x, t)

is the function we want to approximate. In our case these functions are µd(re − rd),

σd(rd), µe(re), σe(re), the scalar ρ and the two prices of risk. We outline the procedure
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for the first five terms here and postpone the discussion on the market price of risk

until Section 3.

- Drifts: Take f(rd, re, t) = rd. Then from (6) it is immediate to find that, given

that rd and re are known at time t, the infinitesimal generator of f(rd, re, t) is:

=f(rd, re, t) = = (rd) = lim
τ↓t

Et[rd,t+τ |rd,t = rd, re,t = re]− rd
τ − t

= µd(re − rd) (11)

so the drift can then be approximated by

µd [(re − rd)t] = = (rd) = 1

4Et [rd,t+∆ − rd,t] +O(4) (12)

or by higher order expansions.7 This expression is also directly applicable to the drift

of the European rate µe(re), which is conditional only on the own level of the rate.

- Volatility: Take f(rd, re, t) = (rd − rd,t)
2. Then the infinitesimal generator of

f(rd, re, t) is

=f(rd, re, t) = =
£
(rd − rd,t)

2¤ = µd(re − rd) · 2(rd − rd,t) +
1

2
· 2 · σ2d(rd) (13)

which evaluated at rd = rd,t, re = re,t yields =f(rd,t, re,t, t) = σ2d(rd,t). Thus, σ2d(rd,t)

can be approximated by

σ2d(rd,t) = =
£
(rd − rd,t)

2¤ = 1

4Et

£
(rd,t+4 − rd,t)

2
¤
+O(4) (14)

or by higher order approximations. The same applies to the variance of the European

rate, σ2e(re).

- Correlation coefficient : Take f(rd, re, t) = (rd − rd,t) (re − re,t). Then the infini-

tesimal generator of f(rd, re, t) is

=f(rd, re, t) = = [(rd − rd,t) (re − re,t)] = (15)

= µd(re − rd) · (re − re,t) + µe(re) · (rd − rd,t) +
1

2
· 2 · σd(rd)σe(re)ρ(rd, re)

7Note that this first order approximation yields the naïve discretization with ∆ = 1.

10



which evaluated at rd = rd,t, re = re,t yields =f(rd, re, t) = σd(rd,t)σe(re,t)ρ(rd, re), a

“conditional covariance” cov(rd, re). We divide by the volatilities and integrate over

the distribution of rd and re to find the unconditional value of ρ. Thus the correlation

coefficient of the twoWiener processes can be approximated by taking the expectation

over rd and re of the conditional estimate:

ρ = E

·
1

4σd(rd,t)σe(re,t)
Et [(rd,t+4 − rd,t)(re,t+4 − re,t)]

¸
(16)

or by higher order approximations of the term inside the conditional expectation.

In this paper we use the first order approximations to the drift, volatility and

correlation coefficient terms. Stanton (1997) showed simulation evidence that with

high frequency data (daily or weekly data) the first order approximation is accurate

enough. Consequently, we estimate the drift and the variance from8

µ
£
(re − rd)t−1

¤
= E[rd,t − rd,t−1|rd,t−1, re,t−1] + ut = E[∆rd,t|rd,t−1, re,t−1] + ut (17)

σ2(rd,t−1) = E[(rd,t − rd,t−1)2|rd,t−1] + ut = E[(∆rd,t)
2|rd,t−1] + ut (18)

where ut are errors of O(∆), and the correlation coefficient from

ρ = E

·
1

4σd(rd,t)σe(re,t)
Et [(rd,t+4 − rd,t)(re,t+4 − re,t)] + ut

¸
(19)

Later in the article we compare the results for bond prices obtained from the above

specifications with those obtained using the specifications µd(rd,t−1) = E[∆rd,t|rd,t−1]+
ut and σ2d(rd,t−1) = E[(∆rd,t)

2|rd,t−1] + ut, according to the diffusion

drd = µd(rd)dt+ σd(rd)dzd (20)

8We adopt now the more conventional notation of making the information set It−1 and ∆rd,t =
rd,t − rd,t−1. Therefore, we set ∆ = 1 and keep that notation for the rest of the paper.
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We call this equation Model 2 : it corresponds to the nonparametric specification

of the basic one-factor process. By estimating this model and comparing the results

obtained with those from Model 1 we can assess the advantages of using the spread

as the explanatory variable of the domestic interest rate dynamics.

In the next subsection we explain how the expectation terms in (12), (14) and

(19) can be estimated nonparametrically and offer some comments on the estimation

process.

2.2 Estimation of conditional moments with LLR

The simple Nadaraya-Watson (NW) estimator for the conditional expectation of a

variable y given some conditioning variable x comes from defining

y = E[y|x] + u = m(x) + u (21)

where m(x) is a conditional expectation function and u is by construction an error

term with zero mean conditional on x. The NW estimator calculates a local estimate

bm(x1) from the data by weighting the values of y around x1 using a kernel function

k(xi) that weighs the observations depending on their distance from x1. The estimator

is:

bE [y|x1] = bm(x1) = 1
N ·hx

PN
i=1 k(xi) · yi

1
N ·hx

PN
i=1 k(xi)

(22)

where 1
N ·hx

PN
i=1 k(xi) =

1
N ·hx

PN
i=1K(

x1−xi
hx
) = df(x1) and hx is a smoothing parame-

ter that controls how distant observations are weighted into the local expectation.

The NW estimator can be thought of as a weighted least squares procedure per-

forming a pointwise minimization of
PN

i=1 {yi − α}2 k(xi) with respect to α. If instead
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we minimize
NX
i=1

{yi − α− (xi − x1)β}2 k(xi) (23)

with respect to both α and β, then bm(x1) can be identified with the estimate of α.
Tthe resulting estimator has the form:

bm(x1) = NX
i=1

wi(x1) · yi (24)

where the weights are wi(x1) = e01(
PN

i=1 zikiz
0
i)
−1 · ziki, ki = K

³
x1−xi
hx

´
, zi =¡

1 (xi − x1)
¢0
and e1 =

¡
1 0

¢
is the vector that selects bα from

³ bα bβ ´.
This local linear regression (LLR) estimator is a weighted least squares regression

of yi against zi with weights set to k
1/2
i . The LLR is now fitting a straight line with

nonzero slope9 to the data close to x1 and does this fitting locally for each possible

value of x.

2.3 The Choice of Kernel and Window Width

The choice of the kernel function has been shown to be of relatively little importance

or, at least, of less importance than that of the window width hx. Most of the

kernel functions that meet certain requirements yield results comparable to those

of the theoretically optimal choice. Possible choices of the kernel function are the

Triangular, Epanechnikov or Gaussian. We show the results of a Gaussian kernel:

K(ϕi) = (2π)
−1
2 ·e−ϕ2i

2 although some other kernels —Epanechnikov and quartic— were

tried with the results being unchanged.

The choice of the smoothing parameter hx is more relevant. If the function is

oversmoothed or undersmoothed (that is, if hx is higher or smaller than some optimal

9Nadaraya-Watson could be thought of fitting a line with zero slope. Therefore LLR must do
better, for at least locally it is correct to approximate smooth functions with a linear function.
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value) the actual estimation might differ substantially from the true function m(x).

The optimal window width, calculated so that some error criterion (e.g. AIMSE,

Asymptotic Integrated Mean Square Error, a polynomial approximation in h to the

IMSE) is minimized, depends on the number of observations and the dispersion of

those observations. Formal derivations of the AIMSE can be found in Härdle (1990),

Scott (1992) and Pagan and Ullah (1999). Throughout the paper we use Silverman’s

rule of thumb (hi = 1.06 · bσi ·N −1
d+4 ) that is close to optimal when using a Gaussian

kernel. A variable bandwidth estimator, as in Fan and Gijbels (1992), was also

tried. This variable bandwidth estimator is controlling for the lower density of the

conditioning variable in some areas of its range. The bandwidth is specified as being

proportional to the density of the conditioning variable, hi ∝ f(xi)
−1/5, so it allows

the window width to be larger where the density of observations is lower, alleviating

the empty space phenomenon. The results from this estimator differed only slightly

from the regular LLR, and precisely in the areas of higher density of the conditioning

variable. Thus, it offered no real improvement over the simpler LLR.

2.4 Data and results for interest rates

The short-term interest rates used are weekly observations of the Italian and Spanish

interbank one-month middle rates and the middle interest rate for one-month deposits

in Ecus. Thus, we identify the second factor with the Ecu/euro rate.10

10The Ecu was a basket of currencies from different countries, several of which were much weaker
than an economy satisfying the Maastricht criteria. This argument led some people to suggest the
DM rate as a better proxy for re. Nevertheless we think that, during the sample period, uncertainty
about which countries would join EMU justifies the use of the Ecu. Additionally, the Maastricht
requirement did not force interest rates to converge exactly to German rates -something which at
times seemed quite infeasible for some smaller countries- but to the average of the three countries
with lowest inflation. Thus, the convergence requirement was specified in terms of an average rate,
which we believe can be better proxied by the Ecu rate.
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Table 1 provides descriptive statistics for the interest rate data, and Figure 1

shows their time evolution. The European and Italian series start on April 8, 1988

and the Spanish series on September 2, 1988.11 All series end in October 16, 1998 so

there are 550 observations for Europe and Italy and 529 for Spain. The sample period

corresponds to the years prior to the creation of EMU, the period during which the

domestic countries were trying to bring their rates in line with the European rates.12

Figures 2 and 3 present some visual evidence on how our chosen conditioning

values affect the evolution of the domestic rate in Spain (rs).13 Figure 2 plots ∆rs,

conditioned on the spread re − rs and Figure 3 shows the absolute value of ∆rs

conditioned on the level rs. Figure 2 shows how negative values of ∆rs occur when

the difference re − rs is big but these ∆rs become smaller as so does re − rs: there

seems to be, therefore, some evidence of (nonlinear) convergence. Figure 3 gives

evidence of the level effect on volatility.

Processes for the domestic rates are estimated following (17) and (18) where the

conditional expectation terms will be estimated as in (24). The European process

is estimated with bµe [re,t−1] = bE[∆re,t|re,t−1] and bσ2e(re,t−1) = bE[(∆re,t)
2|re,t−1]. The

correlation coefficient is calculated as the unconditional expectation of the term in

(19).

This approach to estimating the volatility, which corresponds to the expression

directly derived from the approximation to the stochastic Taylor-series expansion of

11The starting dates have been determined by data availability on Datastream. Final dates were
determined by the creation of EMU, when domestic interbank rates were discontinued.
12The convergence requirements were not specified until 1990, and were included in the Maastricht

Treaty in 1992. However, countries had interest rate convergence as a macro objective some time
before then. Restricting our sample to post-1991 data would not change the results significantly,
though.
13A more comprehensive set of figures is available upon request.
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the variance term, has one advantage with respect to the alternative bσ2d(rd,t−1) =
dvar[∆rd,t|rd,t−1], suggested by Stanton and used in his paper for the results in the ta-
bles: in order to estimate the alternative specification var[∆rd,t|rd,t−1] = E[(∆rd,t −E∆rd,t)

2 |rd,t−1]
we need to plug in an estimate of the driftE [∆rd,t|rd,t−1] and then estimateE[(bud,t)2 |rd,t−1]
where bud,t = ∆rd,t − dE∆rd,t is the residual after estimating the drift. This implies

that for values of rd where the drift is not very accurately estimated (generally those

values that have low density of re − rd, in our case corresponding usually to the

values in the higher range of rd) we would be plugging in a very defective estimate,

thus carrying over the error to the volatility. In particular, when re − rd has a low

density, the estimated drift tends to be very close to the actual observed value of

∆rd,t, since there are only a few observations close to that point and consequently

the weight assigned to other observations is small. Therefore the estimated residual

bud,t will tend to be small, and when squared and plugged in the formula above the
effect is amplified. This “empty space” phenomenon, more relevant in the case of

the variance, is the reason why some of the papers that estimate conditional second

moments find that the estimated function peaks at some point and then it starts to

decrease.14 “Leave-one-out” estimators try to solve for this feature, but they then

create the opposite effect, since the estimated residual becomes too big. The use of

the approximation (18) avoids part of this problem by not having to use an estimated

residual. In other words, we would be avoiding a “carry-over” effect on the volatility

of a poorly estimated drift. However, both the drift and the volatility will still be

poorly estimated when the density of the conditioning variable is low. Otherwise,

14See Aït-Sahalia (1996 a), Stanton (1997) and our own results for Italy and Spain. A similar
“empty-space” phenomenon led us to use only one conditioning variable in the volatility of the
domestic rate.
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and noting that we are using the squared value of ∆rd,t, the estimated variance will

not be smooth enough (it will be highly sensitive to the actual values of ∆rd,t) and

will yield a wiggly estimate for observations in the low density range of rd,t.

Results of the drift and volatility (variance) functions for the European, Italian

and Spanish rates are shown in Figures 4, 5 and 6.15 We find nonlinear drifts and

level-related heteroskedasticity in the diffusions, which suggests that the hypotheses

underlying many parametric term structure characterizations are probably inaccu-

rate.16 We also show bootstrap confidence bands for the estimated functions.17 The

bootstrap bands have been calculated using 10000 replications of Künsch’s (1988)

block bootstrap algorithm with block length five (different block lengths yielded sim-

ilar results).

The estimated correlation coefficients between dre and drs, and dre and drl are

0.24 and 0.21 respectively.

3 The market price of risk

In order to calculate the prices of assets that depend on the interest rate via sim-

ulation, we need to find expressions for the market price of interest rate risk, that

will then allow us to simulate the risk-adjusted process for the interest rate. We first

review the expression for the market price of European interest rate risk —which is

15As mentioned above, we tried some alternative estimators -higher order kernels and a variable
bandwidth estimator (Fan and Gijbels 1992)- with the results not being significantly changed.
16In the case of Italy the drift is nonexistent. This result contrasts markedly with the simple OLS

estimation that yields a significant mean reversion coefficient due to the effect of the outliers.
17We report the results obtained for the bootstrap standard deviation confidence intervals. Tradi-

tional and bootstrap percentile intervals are available to any interested reader. Traditional confidence
bands are calculated from the asymptotic distribution of the LLR estimator (Pagan and Ullah, 1999)
but they do not account for possible dependencies in the data. For this reason, in time series contexts
researchers have opted for using bootstrap-based bands. For details on the two types of bootstrap
bands mentioned see Efron and Tibshirani (1993).
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already available in Stanton (1997)— and then derive the necessary expressions for

estimation of the domestic price of interest rate risk.

3.1 European interest rate risk

The European short-term interest rate is the only factor affecting European zero

coupon bonds. In this case the stochastic process followed by the spot interest rate

is (4)

dre = µe(re)dt+ σe(re)dze (25)

The price at time t of a zero coupon bond that depends on re,t and matures at

time T evolves according to:

dP (re, τ)

P
= αe(re, t)dt+ υe(re, t)dze (26)

where αe(.) is the expected instantaneous rate of return, υ2e(.) is its instantaneous

variance and τ = T − t.18

Since the drift and diffusion of re are time homogeneous, applying Ito’s lemma

yields the following expressions

αe(re, t)P =
1

2
σ2e(re)Prere + µe(re)Pre + Pt (27)

υe(re, t)P = σe(re)Pre

where Prere , Pre and Pt denote partial derivatives.

The no-arbitrage condition implies αe(re, t) = re + λe(re)
Pre
P
. We can substitute

for αe in the previous expression and set the drift equal to zero. The result is the

following partial differential equation:

[µe(re)− λe(re)]Pre +
1

2
σ2e(re)Prere + Pt − reP = 0 (28)

18The price of the bond should be Pt(T ) = P (re, t, T ). Since the drift and difussion of re do not
depend on time the price of the bond becomes a function of re and maturity (τ = T − t).
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which is the bond pricing equation. The appropriate boundary condition is P (re, 0) =

1.

Note that this is equivalent to performing a change of measure in the original

stochastic process since under the new measure the drift of the bond is zero but the

original volatility does not change

dP (re, τ)

P
= υe(re, t)dz

∗
e (29)

and the corresponding modified stochastic process for re is

dre = [µe(re)− λe(re)]dt+ σe(re)dz
∗
e (30)

In this case we can apply directly the approach of Stanton (1997), and calculate

the market price of risk λe(re)19 with the first order approximation,

λe(re,t) =
σe(re,t)

∆(σ
(1)
e (re,t)− σ

(2)
e (re,t))

Et(R
(1)
t,1 −R

(2)
t,1 |re,t) +O(∆) (31)

where R(1)t,1 , R
(2)
t,1 are the holding period returns between times t and t + 1 on two

nondividend paying securities dependent on the European rate. We have used the

fact that λe(re,t) is related to the excess return on interest rate dependent securi-

ties. σ(i)e (re,t) is the instantaneous volatility of European asset i, conditional on the

European rate.

3.2 Domestic interest rate risk

We proceed now to one of the main contributions of this paper. In this section we

derive an expression that allows the nonparametric estimation of the market price of

risk of the rate that depends on an additional source of uncertainty to be estimated

19This specification of λ satifies the conditions necessary to preclude the arbitrage opportunity
pointed out by CIR (1985).
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—the results in Stanton (1997) apply only to a one-factor process. The derivations

here obtain the price of domestic interest rate risk, given the specification of our

convergence model, although extensions to other settings could be similarly derived.

P (rd, re, τ) is the price of a discount bond with face value one unit of domestic

currency and τ periods to maturity. P (rd, re, τ) depends on rd(rd, re, t) (3); by Ito’s

lemma P must follow the SDE:20

dP (rd, re, τ)

P
= αd(rd, re, t)dt+ υd(rd, t)dzd + υe(re, t)dze (32)

with

αd(rd, re, t)P =
1

2
σ2e(re)Prere +

1

2
σ2d(rd)Prdrd + ρσe(re)σd(rd)Prerd + (33)

+Pt + µd(re − rd)Prd + µe(re)Pre

υe(re, t)P = σe(re)Pre

υd(rd, t)P = σd(rd)Prd

The two Wiener processes are correlated with coefficient ρ, and Prere, Prdrd , Prerd,

Prd , Pre and Pt are partial derivatives.

In a two-factor economy the risk of each asset relative to each factor must be

proportional to the sensitivity towards that factor. Thus, the no-arbitrage condition

is αd(rd, re, t) = rd + λd(rd)
Prd
P
+ λe(re)

Pre
P
. We substitute for αd and set the drift

equal to zero to obtain the PDE for the bond

0 =
1

2
σ2e(re)Prere +

1

2
σ2d(rd)Prdrd + ρσe(re)σd(rd)Prerd + Pt + (34)

+[µd(re − rd)− λd(rd)]Prd + [µe(re)− λe(re)]Pre − rdP

20More exactly, the price of the bond should be Pt(T ) = P (rd, re, t, T ). Since the drift and
difussion of rd do not depend on time the price of the bond becomes a function of rd, re and
maturity (τ = T − t).
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The boundary condition for this PDE is P (rd, re, 0) = 1.

If there are no arbitrage possibilities, the same probability will convert all asset

prices into martingales (see Duffie, 2001). Under the new measure we have

drd = [µd(re − rd)− λd(rd)]dt+ σd(rd)dz
∗
d

dre = [µe(re)− λe(re)]dt+ σe(re)dz
∗
e (35)

To calculate the price of domestic interest rate risk we consider the function of

the excess return of asset P (1) over P (2)

f(rd, re, s) =
P (1)(rd,re, s)

P (1)(rd,t, re,t, t)
− P (2)(rd,re, s)

P (2)(rd,t, re,t, t)
(36)

From the definition (6) of the infinitesimal generator, = we get

=f(rd,t, re,t, t) = lim
s↓t

Et[f(rd, re, s)|rd,t, re,t]− f(rd,t, re,t, t)

s− t
= (37)

=
1

P (1)(rd,t, re,t, t)
[
1

2
σ2e(re)P

(1)
rere +

1

2
σ2d(rd)P

(1)
rdrd

+

+ρσe(re)σd(rd)P
(1)
rerd

+ P
(1)
t + µd(re − rd)P

(1)
rd
+ µe(re)P

(1)
re ]−

− 1

P (2)(rd,t, re,t, t)
[
1

2
σ2e(re)P

(2)
rere +

1

2
σ2d(rd)P

(2)
rdrd

+

+ρσe(re)σd(rd)P
(2)
rerd

+ P
(2)
t + µd(re − rd)P

(2)
rd
+ µe(re)P

(2)
re ]

We use (34) for

=f(rd,t, re,t, t) =
1

P (1)(rd,t, re,t, t)

£
λd(rd,t)P

(1)
rd
+ λe(re,t)P

(1)
re

¤− (38)

− 1

P (2)(rd,t, re,t, t)

£
λd(rd,t)P

(2)
rd
+ λe(re,t)P

(2)
re

¤
or

=f(rd,t, re,t, t) = λd(rd,t)

"
P
(1)
rd

P (1)(rd,t, re,t, t)
− P

(2)
rd

P (2)(rd,t, re,t, t)

#
+ (39)

+λe(re,t)

"
P
(1)
re

P (1)(rd,t, re,t, t)
− P

(2)
re

P (2)(rd,t, re,t, t)

#

21



Now we use (33) to obtain

=f(rd,t, re,t, t) = λd(rd,t)

"
σ
(1)
d (rd,t)− σ

(2)
d (rd,t)

σd(rd,t)

#
+ λe(re,t)

"
σ
(1)
d (re,t)− σ

(2)
d (re,t)

σe(re,t)

#
(40)

and substituting in equation (8)

λd(rd,t) =
σd(rd,t)

∆(σ
(1)
d (rd,t)− σ

(2)
d (rd,t))

(
Et(R

(1)
t,1 −R

(2)
t,1 |rd,t)− λe(re,t)

"
σ
(1)
d (re,t)− σ

(2)
d (re,t)

σe(re,t)

#)
+O(∆)

(41)

where we already know the term λe(re,t) from the excess return of European assets.

σ
(i)
d (re,t) is the volatility of domestic asset i conditional on the European interest

rate, and σ
(i)
d (rd,t) is the volatility of domestic asset i conditional on the domestic

interest rate. R(1)t,1 and R
(2)
t,1 are again the returns of two nondividend paying securities

dependent on the rate. Note that this formula also satisfies the conditions in CIR

(1985).

3.3 Results for risk premiums

As proxies for the two nondividend paying securities we have used the one and six-

month Italian and Spanish interbank middle rates. For the European case we have

used the one and six-month Ecu denominated deposit rates. The use of Treasury Bills

could have avoided some of the default risk inherent to interbank rates, but we did

not have access to homogeneous T-Bill data for the three cases and decided to use a

comparable rate. Even so, default risk in the three areas during the period studied

was probably very small.

Results for the nonparametric estimation of the price of interest rate risk are

shown in Figures 7 to 9. We observe a well known result in the Spanish case: the

market price of risk is a decreasing function of the interest rate (Merton, 1990). In
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the case of the European and Italian rates, the market price of risk seems to be close

to zero (note the different scale in Figures 7 and 8). The average risk premiums are

-0.00035 for Europe, and -0.00418 and 0.00365 for Spain and Italy. The European and

Spanish risk premiums adopt the sign corresponding to a positive reward for carrying

interest rate risk —this is what a priori one should expect— although the European

risk is an order of magnitude smaller than the Spanish risk. In the Italian case the

sign is reversed. The cause for this phenomenon may reside in the high volatility that

Italian interest rates were subject to during the period under study.

Later in the paper we find that for valuation purposes interest rate risk premiums

do not have a substantial influence in the performance of the model: the pricing errors

obtained with the estimated market price of risk differ little from those obtained by

setting λ = 0. The short-term nature of our data and the noise during the estimation

period might be behind this result. It is not the first time that market risk premiums

are not significant or even negative. In fact, ongoing research is still trying to explain

this so-called “risk premium puzzle” (see Brennan and Schwartz, 1980, for an early

motivation, and Gómez and Martínez, 2002, for a discussion on the market price of

risk in Spain).21

We obtained an interesting result. If the European price of interest rate risk is set

equal to zero the results for the estimation of the Spanish and Italian risk premiums

—and their pricing effects— do not change: mean risk premiums are -0.00413 for Spain

and 0.00368 for Italy. Therefore, during the period under study there seemed to be no

premium for European interest rate risk. This is not unreasonable, given the low risk

premium for both Spain and Italy and the fact that the European rate was composed

21This result has also been documented for Europe (Guo 1998 and Fiorentini et al. 2002).
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mainly of economies more solid than those of Spain and Italy.

4 Pricing European and domestic bonds

4.1 European bonds

The European bond is affected solely by the European short-term interest rate so the

price of a zero coupon bond with a payoff of $1 at time T, Pt(T ), can be written as

Pt(re, T ) = E∗t
h
e−

R T
t r∗udu

i
(42)

where E∗t denotes the expectation taken with respect to the modified stochastic

process

r∗e = re (43)

dr∗e = {µe(r∗e)− λe(r
∗
e)} dt+ σe(r

∗
e)dz

∗
e .

We use Monte Carlo simulation to calculate the implied prices of bonds. This

entails repeatedly simulating paths for the risk adjusted interest rate process r∗e using

the Euler discretization of the modified dynamics of (4) described in equations (43)

4re,t = re,t − re,t−∆t = [µe(re,t−∆t )− λe(re,t−∆t)]4 t+ σe(re,t−∆t)
p
4tξt (44)

We simulated 10000 interest rate paths for each bond price. The ξt are drawn

from a standard normal distribution.

4.2 Domestic bonds

In Model 1 the domestic bond is affected by the domestic short-term interest rate

whose drift depends on the spread with respect to the European rate and whose
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volatility depends on its own level. Then the price of a zero coupon bond with a

payoff of $1 at time T, Pt(T ), can be written as

Pt(T ) = E∗t
h
e−

R T
t r∗udu

i
(45)

where E∗t is the expectation taken with respect to the modified process

r∗d = rd (46)

r∗e = re

(re − rd)
∗ = (re − rd)

dr∗d = {µd [(re − rd)
∗]− λd(r

∗
d)} dt+ σd(r

∗
d)dz

∗
d

dr∗e = {µe(r∗e)− λe(r
∗
e)} dt+ σe(r

∗
e)dz

∗
e

Calculations for equation (45) are done by simulating paths for the risk adjusted

interest rate processes r∗d and r∗e using the following Euler discretization of the mod-

ified dynamics of (3) and (4)

(47)

4rd,t = rd,t − rd,t−∆t = {µd [(re − rd)t−∆t]− λd(rd,t−∆t)} 4 t+ σd(rd,t−∆t)
p
4tξd,t

4re,t = re,t − re,t−∆t = µe(re,t−∆t)4 t+ σe(re,t−∆t)
p
4tξe,t

calculating the integral inside the expectation in equation (45) for each path, and

averaging over the paths. We simulated 10000 interest rate paths for each bond price.

The ξt are drawn from a bivariate normal distribution with correlation coefficient ρ.

The value for ρ comes from the nonparametric estimation of (16).

In the case of Model 2 the equations are parallel to (43) and (44).
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4.3 Results of bond pricing

4.3.1 The convergence model

We carry out the above simulations for one and two year bonds and compare, using

the root mean squared error, RMSE, the results with actual bond prices. Weekly

prices of discount bonds are obtained from the estimation of the yield curve fitted

with splines to the power of three with maturities one and two years available in

Datastream. We have a total of 382 prices of bonds in all three cases, corresponding

to the period 9/90 to 12/97.

Results on the prices and pricing errors appear in Tables 2 and 3 for European

and domestic bonds respectively. Differences in the results with and without the

risk premiums are small, although the accuracy is slightly improved when the risk

premium is accounted for. These results are a consequence of the fact that, on

average, the risk premiums are very close to zero, especially in the case of the Italian

and European bonds.

The comparison between the results ofModel 1 (convergence) andModel 2 (Stan-

ton 1997) uncovers a key feature. Pricing errors of Model 1 are 5.8% smaller for the

one year Spanish bonds and 4.2% for the one year Italian bonds. The reduction of

pricing errors is only 1.5 % for two year bonds. Given the increased flexibility pro-

vided by the second factor, the performance of the two-factor model improves for the

short-term end of the term structure but this improvement vanishes as longer term

bonds are priced. We comment on this result in the next subsection.

Regarding the nonparametric estimation, in Table 4 we compare our errors for

the Spanish bonds with those obtained in the parametric estimation in CS (2000).22

22We do not have available studies to perform comparisons for the European and Italian cases.
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Our errors are significantly smaller than those of both the parametric convergence

and Vasicek models: for one and two year bonds we reduce the RMSE by 34%.23

4.3.2 Some comments on two-factor models

Given that the term structure depends on both the volatility and the level of the

interest rate, incorporating one of the two as a second factor has been recognized

as necessary to give a better account for the behavior of the term structure: two-

factor models for interest rates have therefore included a stochastic-mean factor (BDF

1998; BDFS 2000) —of which our convergence model is a special case— or a stochastic-

volatility factor (Andersen and Lund 1997; Downing 1999; BDFS 2000; Bali 2000,

2003; Boscher et al. 2000; Boudoukh et al. 2000).

Our analysis gives guidance in the specification of two-factor interest rate models.

The differences in prices obtained with the one and two-factor models are small:

Model 1 outperforms Model 2 in all instances, but more significantly for short-term

bonds. The main feature of our convergence model is that, based on intuition coming

from the economic behavior of the data, it incorporates an observable stochastic

mean. We use a level effect for the variance (CKLS 1992; Pagan et al. 1996; Brenner

et al. 1996), a choice that allows us to account for volatility without introducing

a third factor.24 This stochastic mean model performs quite well at the short end

Nevertheless, pricing errors are similar in magnitude to those of Spain.
23The time period and data used in CS (2000) vary slightly from those used here but the results

in Table 4 incorporate the necessary adjustments.
24A GARCH variance or a stochastic volatility —and therefore a three-factor model— could have

been used alternatively. The parametric literature agrees that the three specifications do a similar job
when fitting the volatility of interest rates, although the stochastic volatility is slightly more flexible
(Pagan 1996). The reason rests on the strong persistence of the volatility: Estimated volatilites
present an autocorrelation function close to that of an integrated variable. Given that the interest
rate itself is near-integrated, the autocorrelations of volatility implied by a volatility in levels term,
by a GARCH model with GARCH parameter close to one —as it is frequently the case— and by a
stochastic volatility model with autoregressive parameter close to one are all alike, showing a slow
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of the term structure but the improved accuracy is lost for longer-term assets. The

results of the pricing exercise therefore suggest that when the main objective is the

correct valuation of short-term assets, a flexible specification of the behavior of the

mean process —including a stochastic mean as the second factor— can substantially

reduce the pricing errors, as long as the volatility incorporates a structure that allows

for persistence and conditional heteroskedasticity. However, when longer-term assets

are the focus of the analysis, allowing for stochastic volatility is probably the better

way to obtain low pricing errors since in longer horizons the effect of the volatility

overwhelms the effect of the weak mean reversion (see also Bali 2003). Of course, if

one wants to fit the complete term-structure, a three-factor model would dominate,

but the literature so far has favored keeping simpler models rather than running the

risk of overfitting. A formal comparison of different two-factor models is beyond the

scope of this paper, since our main concern was to present and justify the convergence

model. However, analysis of the performance of alternative models at the different

ends of the term structure provides fruitful and exciting avenues for future research.

Finally, allowing for nonlinearities in the behavior of the factors, which we have

done through the nonparametric estimation, is shown to lead to much improved re-

sults. Thus, the derivations in our paper, that extend Stanton’s (1997) methodology

to a specific two-factor structure, or in Downing (1999), that also extends nonpara-

metric estimation to multifactor models, are helpful when deciding on the correct

specification and analysis of interest rate processes.

decrease similar to that of a near-unit root process.
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5 Conclusions

In this paper we analyzed the dynamic behavior of the short-term interest rates of

Italy and Spain as two-factor mean reverting processes: we modeled the convergence

between interest rates —experienced in EMU countries— using the spread between the

short term domestic and European interest rates as the underlying forcing variable.

We used nonparametric techniques to estimate the short term interest rate dynamics.

Important extensions to the results available in the literature were derived that al-

lowed us to account for all the features of the convergence model. We then proceeded

to price zero coupon bonds and to compare the results with actual market prices.

Estimation of the interest rate processes showed evidence in favor of the conver-

gence model, yielding a nonlinear mean reverting behavior of domestic rates towards

the European rate. With regards to bond prices, the performance of the convergence

model is about a 5% better for one year bonds and a 2% better for two year bonds

than a simpler one-factor model without the convergence feature. Additionally, pric-

ing errors were about 34% smaller than those obtained with parametric models. A

substantial improvement in the results in this paper, therefore, rests on the nonpara-

metric technique used in the estimation. However, the second factor introduced in

the drift, the main feature of the convergence model, does improve significantly the

accuracy of the pricing of short duration bonds.

The above results provide directions for future research, especially with regards to

the specification of multifactor models: models for the pricing of shorter-term interest

rate derivatives seem to profit from incorporating more structure in the mean of the

rate —thus suggesting the use of a stochastic mean factor— whereas the accuracy in
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the pricing of longer-term derivatives seems to depend more on the specified behavior

of volatility —suggesting the use of a stochastic volatility factor.
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Table 1

Descriptive Statistics. Weekly data

Period of study: 4/8/88 to 10/16/98 for the European and Italian rates; 9/2/88 to
10/16/98 for Spain. µ, σ, S and κ are, respectively, the mean, standard deviation,
skewness and kurtosis coefficients. re is the European rate whereas rl and rs are,

respectively, the Italian and Spanish rates.
µ σ S κ Max Min

∆re -0.000038 0.002 -0.0349 16.560 0.014375 -0.015
re 0.07332 0.0247 0.0187 1.4699 0.126875 0.04
∆r l -0.000112 0.0059 3.0504 110.58 0.086 -0.0644
r l 0.10304 0.0276 0.5314 5.679 0.2769 0.047825
re-r l -0.0301 0.0146 -1.7777 14.699 0.001875 -0.161587
∆r s -0.00012 0.00344 0.1066 31.539 0.0307 -0.0272
r s 0.10475 0.0369 -0.1382 1.6555 0.1775 0.0415
re-r s -0.03143 0.0164 -0.1664 2.4127 -0.000875 -0.080625

Table 2

European Bonds. RMSE and Effect of Risk on Bond Valuation

Period of study: 9/90 to 12/97

Results of bond valuation for bonds maturing in one and two years. The Root Mean
Square Error is calculated with the difference between the bond prices obtained with the
Monte Carlo simulation and the actual market bond prices. The value of the bond corre-
sponds to the average price of the results of the simulation.

1 Year RMSE 0.00559
Value of Bond 0.93422

2 Years RMSE 0.01477
Value of Bond 0.87329
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Table 3

Domestic Bonds. RMSE and Effect of Risk on Bond Valuation
Period of study: 9/90 to 12/97

Results of bond valuation for bonds maturing in one and two years. The Root Mean
Square Error is calculated with the difference between the bond prices obtained with the
Monte Carlo simulation and the actual market bond prices. The value of the bond corre-
sponds to the average price of the results of the simulation. Values in the first column use
the estimated λ(rs). Values in the second column are calculated imposing both λ(rs) = 0
and λ(re) = 0.

Model 1 Model 2
λ(r) λ = 0 λ(r) λ = 0

Spanish Bonds
1 Year RMSE 0.00631 0.0064 0.0067 0.00671

Value of Bond 0.90788 0.90797 0.90799 0.90796
2 Years RMSE 0.0143 0.01475 0.01485 0.01491

Value of Bond 0.8257 0.8256 0.82545 0.82537
Italian Bonds

1 Year RMSE 0.0078 0.0079 0.00815 0.00815
Value of Bond 0.9041 0.9042 0.90434 0.90433

2 Years RMSE 0.0159 0.0159 0.01619 0.01621
Value of Bond 0.8177 0.8178 0.81864 0.81858

Table 4
Comparison of Parametric and Nonparametric results for the Spanish

data
Period of study: 9/90 to 12/97.

Results of bond valuation for bonds maturing in one and two years. The Table shows
the RMSE obtained with three different models: The nonparametric models estimated in
this paper and the convergence and Vasicek models estimated in CS (2000). The Root
Mean Square Errors are calculated with the difference between the bond prices estimated
with the different techniques and the actual market bond prices.

Model 1 Model 2 Convergence Vasicek
1 Year 0.0063 0.0067 0.0095 0.0093
2 Years 0.0143 0.0148 0.0215 0.022
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Figure 1
Short-Term Interest Rate Evolution
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Figure 2
Changes in Spanish rate (drs) conditioned on differential with European rate (re-rs)

-0.03

-0.02

-0.01

0

0.01

0.02

0.03

-0.085 -0.065 -0.045 -0.025 -0.005

re-rs

drs

Figure 3
Absolute value of Changes in Spanish rate (drs) conditioned on its own level (rs)
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Figure 4
Drift of the European Short-term Interest Rate Estimated with LLR and LLRBV and Confidence 

Bands
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Figure 5
Drift of the Italian Short-term Interest Rate Estimated with LLR and Confidence Bands
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Figure 6
Drift of the Spanish Short-Term of Interest Rates Estimated with LLR and Confidence Bands
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Figure 7
European Short-Term Interest Rates Price of Risk
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Figure 8
Italian Short-Term Interest Rates Price of Risk
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Figure 9
Spanish Short-Term Interest Rates Price of Risk
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