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Abstract

In the dynamic game we analyze, players are the members of a fixed network. Everyone

is initially endowed with an information item that he is the only player to hold. Players are

offered a finite number of periods to centralize the initially dispersed items in the hands of

any one member of the network. In every period, each agent strategically chooses whether or

not to transmit the items he holds to his neighbors in the network. The sooner all the items

are gathered by any individual, the better it is for the group of players as a whole. Besides,

the agent who first centralizes all the items is offered an additional reward that he keeps for

himself. In this framework where information transmission is strategic and physically restricted,

we provide a necessary and sufficient condition for a group to pool information items in every

equilibrium. This condition is independent of the network structure. The architecture of links

however affects the time needed before items are centralized in equilibrium.
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JEL Classification : D83 , C72, L22.

∗I am deeply indebted to J-M. Tallon and F. Koessler for the advises they provided at every stage of the present
work. I thank F. Bloch, N. Houy, M.O. Jackson, R. Kranton, A. Riedl, J-C. Vergnaud and E. von Thadden for helpful
comments and discussions. I also thank participants in workgroups at University Paris 1 and Stanford University
as well as the audience at the 12th Coalition Theory Network Workshop and the 2007 European Meeting of the
Econometric Society.

†Université de Paris 1 Panthéon-Sorbonne, 106-112 Boulevard de l’Hôpital, 75647 Cedex 13, France. E-mail :

hagenbach@univ-paris1.fr

1



1 Introduction

Bonacich (1990) reports an experiment in which success of a given group depends on an effective

flow of information among its members. Precisely, subjects were initially given non-overlapping

subsets of letters from a quotation that the group of participants had to identify. Only once an

individual had identified the quote and independently of who did so, the group received a collective

reward, equally shared between its members. This collective reward was reduced by a penalty that

increased with the time needed to reach the common goal. To gather letters, subjects were offered

several communication rounds, each being an opportunity for agents to transmit their letters along

some given communication links. Indeed, participants were arranged in a fixed network, whose

connections were the only possible channels letters could flow through. In addition to be physically

restricted, the transmission of letters had a strategic aspect: the participant who first identified

the quotation in the name of the whole group, i.e., the winner, was offered an additional reward

that he kept for himself. Therefore, individuals had a collective interest to share their letters

rapidly as well as an individual motivation to hoard them while waiting for other players’ ones

to arrive. Bonacich’s experiment was run for different network structures and whether a subject

communicated extensively or withheld letters appeared to depend on its network position. At a

global level, Bonacich’s experimental results support the following hypothesis: the outcome of the

experimental game is affected by the architecture of the network players belong to. The present

work proposes a model in which this hypothesis can be made precise and given theoretical support.

Bonacich’s experiment is representative of a large class of situations in which the problem of

communication between information holders arises, communication being physically restricted as

well as limited by strategic retention of information. In organizations, the nature of a team’s decision

is often such that it requires the aggregation of some pieces of information privately obtained.1 In

this paper, we consider that the group’s collective task is to put together all the information

items that are initially dispersed. As teams often exist as a part of larger organizations, they

seldom have the freedom to make adjustments of the stated patterns of communication used to

pool information. Consequently, we examine the transmission of items along the links of a fixed

communication structure.2 We further consider that the agent who first centralizes information in

the interest of his team individually benefits from this achievement. His additional gain can take

the form of a monetary reward, a promotion or gratitude form other members.

In this framework, we investigate how the structure of the communication network affects the

group’s ability to centralize information items in equilibrium. We address the question of whether

it may be that among several communication patterns, all physically adequate for the successful

completion of the common task, one results in a significantly "better" equilibrium outcome than an

other. As there is not a unique definition of what "better" means in this context, we examine the

effect of the network structure on the group performance in two ways. First, the performance of a

1For instance, in Jehiel (1999), an organization is in charge of a decision and each operating unit of the firm holds
a partial and crucial information on the decision to be taken.

2A view of a firm’s internal organization as a communication network can be found in Bolton and Dewatripont
(1994) or Radner (1993).
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team is evaluated regarding whether there is failure or success in pooling information in equilibrium.

Next, we examine the impact of the structure on the time the group needs to succeed in equilibrium. If

communication within the given network had no strategic aspect, the smaller the distance between a

team member and every other member would be, the sooner the collective goal of items centralization

could be reached. Communication networks could then be ranked regarding this distance only.

However, we study items transmission that results from deliberate choices by individuals who do

not act in the interest of their organization only. In that sense, we differ from the large literature on

Team Theory, starting with Marschak and Radner (1972) that also aims at relating the performance

of a group to its inner communication structure.

Formally, a dynamic game is introduced whose players are arranged in a fixed network. Everyone

is initially endowed with an information item that he is the only player to hold. Players are next

offered a finite number of periods to centralize the initially dispersed items. In every period, each

player strategically chooses whether or not to transmit the items he holds to his neighbors in the

network. Actions are perfectly observed in every period. Our analysis yields two main insights,

which are obtained by working exclusively on graphical properties of the networks of players. In

particular, our results do not rely on any further assumptions on payoffs than the two following

natural ones: at a given period, every agent strictly prefers to win than to lose, and every player

strictly prefers to lose sooner than later.

First, we provide a necessary and sufficient condition for a group to centralize items at some

position in the network in every (subgame perfect) equilibrium. Interestingly, this condition is

independent of the network structure. Precisely, we show that a group of n players never fails to

pool information in equilibrium if and only if the number of periods offered to do so is at least equal

to n − 1, no matter the network players are arranged in. Next, we claim that network structure

however affects the time needed for the dispersed items to be gathered in equilibrium. Even in the

case in which every player transmits his items to all his neighbors in every period, every player

needs a minimal number of periods to win that depends on his position. This minimal number of

periods physically required corresponds to a graph-theoretical measure called a player’s eccentricity.

We prove that, for every player, there exists an equilibrium in which he is the unique winner at a

date that equals his eccentricity. Said differently, we relate a person’s position in the network to his

ability to win and to the highest possible speed of his win. It follows that there always exists an

equilibrium in which the game ends at the earliest date physically possible for the group. This date

is given by the minimal eccentricity in the network, called its radius. Finally, we show that, for a

particular class of network structures, there exists an upper bound on the duration before success

in equilibrium.

The game we analyze contributes to the economic literature studying non-cooperative games

played on networks extensively surveyed in Goyal (2007) and Jackson (2008). Galeotti et al. (2008)

present a very general framework for static network games. The authors assume that a player’s

payoff depends on his own action as well as on the actions taken by his direct neighbors in the

graph. The same assumption is made in computer sciences models of Graphical Games introduced

by Kearns et al. (2001). Graphical games literature focuses on finding algorithms to compute
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equilibria in one-stage games played on large-scale networks. In the present work, the game played

by network members is dynamic. Players’ payoffs directly depend on the actions taken by every

member of the network in every period of play and on the precise order of these actions. Indeed, in

the game we build, information is pooled not only if every player transmits the items he holds, but

also if it happens in a particular order that depends on the network structure. To understand this

idea, consider the following figure3 showing the initial situation in a game involving three players

arranged in the network gline:

1 2 3

1 2 3 1 2 3 1 2 3

To get the three dispersed information items held by distinct players at the beginning of the game,

player 1 not only needs players 2 and 3 to Pass On but he also needs player 3 to Pass On before

player 2 does so. In the network gline, player 2 is an intermediary for the transmission of information

from agent 3 to 1.

The paper is organized as follows. In the next section, we present the model. The necessary

and sufficient condition to ensure information centralization in every equilibrium is provided in

Section 3. The focus of Section 4 is on the time needed to pool information items in equilibrium.

Section 5concludes. Proofs are mainly relegated to the Appendix.

2 The Model

2.1 Set-Up

Players, Actions and Networks: The set of agents is N = {1, . . . , n}. Agents are arranged in a

connected network4 represented by a graph g from the set G(n) of all the possible connected graphs

involving n nodes. We let ij be in g if player i is linked to player j. We assume that communication

links are undirected so that ij ∈ g implies ji ∈ g, meaning that information items can flow in both

ways. For a given network g, the geodesic distance dij(g) between agents i and j is the length of the

shortest path5 between them. Let Ni(g) be i’s neighborhood in g: Ni(g) = { j ∈ N\{i} : ij ∈ g}.

We denote by g|S the subnetwork of g with the set of agents S ⊆ N and all the links that exist

between these agents in g. The subnetwork of g with the set of agents N\{i} is denoted g\{i} .

The game is played over discrete time periods t = 0, ..., T with a finite deadline T ≥ 1. At each

date t ≥ 1, every player i chooses an action at
i from the set A = {P,H}: at

i = P means that player i

Passes On all the information items he holds at time t to every agents in his neighborhood Ni(g)

3Players’ labels correspond to numbers written above the line. There are three different information items and a
box numbered j near a player i is filled in black if player i holds the item j

4A network is connected if there exists a path between any pair of distinct agents.
5A path is a sequence of consecutive nodes and links in a graph. The length of the path is the number of links

traversed.
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and at
i = H means that player i Hides all his information items to every player. The way pieces of

information are transmitted is exposed in more detail below.

An action profile at time t is a vector at = (at
i)i∈N ∈ An. A history ht of the game at time t

is the observed past sequence of profiles of actions (a1, ..., at−1), which is an element of the set of

histories at date t denoted Ht = (An)t−1. At date t, every player perfectly observes the history ht.

Information Items: We assume that there are n different information items, numbered from

1 to n. Initially, every player is given a unique item, which he is the only player to hold. Player i

is given the item numbered i. The state of players’ information at date t is given by a matrix

V t ∈ {0, 1}n×n with the component vt
ij of V t equal to 1 if player i holds the item j at date t and 0

otherwise. Initially, the matrix of players’ information is the identity matrix: V 0 = Idn.

The state of players’ information evolves as players Pass On or Hide. We assume that, once

received, an item is never lost, even if Passed On later in the game. Formally, for every i, j ∈ N ,

the component vt
ij evolves in the following way:

vt
ij = max{k∈Ni(g):at

k
=P}{v

t−1
ij , vt−1

kj }. (1)

Payoffs, Winners and Losers: The payoff structure has common features with the one

considered in Bonacich’s experimental study. If there is no player who manages to gather the n

items before the deadline T is reached, then players earn nothing. On the contrary, if there is at least

one player who centralizes the n items in the time offered to do so, then all the players are rewarded.

In this case, we denote τ the first period in which the n items are held by an agent. The game

ends up at τ . At this date, a collective reward of value n is equally shared between all the players.

Besides, the players who have managed to pool information items, called the winners,6 receive an

additional reward of value R > 0.7 It follows that, at any given date, every agent strictly prefers

to win than to lose. Payoffs are discounted according to some common discount factor δ ∈ (0, 1)

ensuring, in particular, that every player strictly prefers to lose sooner than later.

For a given g, each final history hT+1 uniquely defines a sequence of matrices representing players’

information (V 0, V 1, ..., V T ). Denote ιn the vector with n components equal to 1. Formally, the

present value of player i’s payoff is given by:

ui(V
0...V T ) =































0 if V T
j 6= ιn, ∀ j ∈ N,

δt−1 if V t
i 6= ιn and ∃ j 6= i, j ∈ N : V t

j = ιn

and ∀ k ∈ N , V t−1
k 6= ιn,

δt−1(1 + R
l
) if V t

i = ιn

and ∀ k ∈ N , V t−1
k 6= ιn , with l = #{k ∈ N : V t

k = ιn}.

A game with players in a set N arranged in a network g and lasting T periods is denoted Γ(N, g, T ).

Strategies: We restrict our attention to pure strategies. A pure strategy of player i is a profile

si = (s1
i , ..., s

T
i ) with st

i: Ht → A for every t = 0, . . . , T . A strategy profile is denoted s = (si)i∈N .

6Players who have not centralized the items at τ are called the losers
7In case there are several winners, the additional reward is equally shared between them.
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Example: As an example, consider the one-shot duel Γ({1, 2}, g, 1) where g is the complete

network. Initially, players’ states of information V 0 is Id2. Since N1(g) = N2(g) = N , if player i

Passes On the item he holds initially to player j 6= i, then v1
ji = v1

ii = 1. It is easy to get the matrix

of utilities of Γ({1, 2}, g, 1) which is the well known Chicken Game:

P H

P 1 + R
2 , 1 + R

2 1, 1 + R

H 1 + R, 1 0, 0

The one-shot duel has two Nash Equilibria in pure strategies: (a1, a2) = (P,H) and (a′1, a
′
2) =

(H,P ). Note that every equilibrium outcome is such that the game ends with a winner.

2.2 Equilibrium Concept

The game Γ(N, g, T ) has a multiplicity of Nash Equilibria (NE) and we do not attempt to provide

a complete characterization of these. To narrow down the set of NE, the solution concept we use

is the subgame perfect Nash Equilibrium (SPNE).8 Since we investigate the way information is

pooled in a decentralized way by the members of a fixed network, we find it reasonable to assume

that players do not commit themselves to the dates at which they plan to Pass On. Incorporating

subgame perfection therefore makes sense. For every game Γ(N, g, T ), the set of (SP)NE is denoted

S(SP )NE.

The way subgame perfection eliminates non-credible threats in the game we propose appears in

the following example. Consider Γ({1, 2, 3}, gline, 2) with gline the three-player network presented

in the Introduction. The strategy profile that consists in "every player Hiding in every period,

whatever the history" is a NE. Indeed, as long as two players out of three Hide in every period,

every player receives 0, whatever his strategy. Next, consider the subgame of Γ({1, 2, 3}, gline, 2)

that starts at time t = 2 after player 1 has Passed On at date t = 1 while players 2 and 3 have

Hidden. In this subgame, if player 3 Passes On instead of Hiding, he receives δ instead of 0 as player

2 finally holds the three information items. It follows that "players 2 and 3 Hiding in the second

period of play, whatever the history" is not credible.

2.3 Graphical Objects

We define some graph-theoretical concepts that are used below, and start with a centrality measure:

Definition 1 Player i’s eccentricity in the network g, denoted ei(g), is the distance from agent i

to the agent furthest away from him: ei(g) =maxj∈N{dij(g)}.

In the game Γ(N, g, T ), player i’s eccentricity is equal to the minimal number of periods required

for player i to centralize the n items in case every other player Passed On in every period. In a

8Each finite game Γ(N, g, T ) contains subgames that are uniquely defined by each history ht and denoted
Γ(N, g, T )|ht. The strategy profile s ∈ S is a SPNE if, for every ht ∈ Ht, the continuation strategy profile de-
noted s|ht is a NE of Γ(N, g, T )|ht.
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network g, the minimal eccentricity is called the radius r(g) and the maximal eccentricity is called

the diameter d(g). Obviously, a player i cannot win in a game Γ(N, g, T ) that lasts strictly less

than ei(g) periods:

Definition 2 For every game Γ(N, g, T ), the set of potential winners is given by W (g, T ) = { i ∈

N : ei(g) ≤ T }.

Games of interest are games Γ(n, g, T ) such that W (g, T ) 6= ∅ or equivalently such that T ≥ r(g).

We restrict our attention to such games in the present work. Note that every player can potentially

win, i.e., W (g, T ) = N , if and only if T ≥ d(g).

We now focus on networks’ connectedness:

Definition 3 In a connected network g, an agent i is critical (respectively non-critical) if g\{i} is

disconnected (resp. connected).

In other words, a critical agent is crucial in maintaining the connectedness of a network. 9 By

definition, a critical agent in g is on every path between at least one pair of agents in g.

A complete network, denoted gcomplete, is a particular architecture in which every agent is linked

to every other one. Since a link exists between every pair of distinct agents, every agent is non-

critical in gcomplete. A tree network, denoted gtree, is such that there is a unique path between every

pair of distinct agents. It follows that there is at least one critical agent in every tree involving three

players or more. Note that a connected network involving two players is both a complete and a tree

network. More generally, the following theorem deals with the existence of non-critical agents in

connected networks:

Theorem 1 [Kelly and Merriell (1958)] In a connected network with n ≥ 2 agents, there are at

least two non-critical agents.

Finally, a particular type of network structure is defined with respect to the existence of a critical

agent:

Definition 4 A connected network in which there is at least one critical agent is separable. A

connected network in which every agent is non-critical is non-separable.

A separable network can be disconnected by removing one agent. Tree networks involving more

than three players are separable whereas complete networks are not.

To illustrate the previous definitions, we consider the following network gkite:

9The term "critical agent" refers to the term "critical link", defined by Jackson and Wolinsky (1996) as crucial to
maintain the connectedness of a graph.
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1 2

3

4

e1 = 2 e2 = 1

e3 = 2

e4 = 2

Players’ eccentricities appear near players’ labels. We have r(gkite) = 1 and d(gkite) = 2. The sets

of potential winners are W (gkite, 1) = {2} and W (gkite, T ) = N for every T ≥ 2. The network gkite

is separable with player 2 being critical and players 3, 4 and 5 being non-critical.

3 Success or Failure in Equilibrium

Our objective is to compare network structures with respect to their efficiency in encouraging

information centralization when its transmission is strategic. As already mentioned, if information

transmission were not strategic but were automatic in every period, network structures could be

trivially ranked as r(g) would be the number of periods required to centralize the n dispersed items

in a network g.

The first measure of group performance that we consider is the achievement of the collective

goal in every equilibrium. For every game Γ(N, g, T ), the set of strategy profiles S is split into two

disjoint subsets. Let SW ⊆ S be the set of strategy profiles such that the game Γ(N, g, T ) ends with

at least one winner, or equivalently, such that the collective goal is reached at a time t ≤ T . Let

SL = S\SW be the set of strategy profiles such that the game ends with no winner, or equivalently,

such that players have failed to centralize information at some position in the network before the

deadline is reached.

Recall that if a game ends with at least a winner, every player earns a strictly positive payoff

whereas if the game ends with no winner, every player earns 0. It follows that failure in performing

the collective task is an outcome that is Pareto dominated by any outcome in which success is

ensured. The following proposition provides a necessary and sufficient condition for success to be

ensured in every SPNE outcome of Γ(N, g, T ):

Proposition 1 SSPNE ⊆ SW if and only if the game Γ(N, g, T ) is such that T ≥ n − 1.

That is, every equilibrium yields at least one winner if and only if the game lasts sufficiently many

periods. On the contrary, if the deadline is T ≤ n − 2, there exists equilibria that lead to failure

in the collective task. In such cases, there may also be equilibrium outcomes such that there is a

winner.

Interestingly, the condition T ≥ n−1 is independent of the structure of the connected network g

and, in particular, depends neither on its radius nor on its diameter. Given a deadline T and a fixed

number of players n, all communication networks are therefore equally efficient with respect to the

efficiency criterion considered in this section, namely collective success in equilibrium. Precisely, a

complete network happens to be as efficient as any connected structure that minimizes the number
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of links such as tree networks do. In settings in which building communication links is costly but

neither the identity of the winner nor the time needed to succeed matters, a tree network can be

chosen rather than any other structure.

The proof of the fact that T ≥ n − 1 is a sufficient condition to get SSPNE ⊆ SW is done by

induction and is quite constructive. It mainly relies on the following two-player result: every NE

of a dynamic duel Γ({1, 2}, g, T ) yields at least one winner. Indeed, for a duel to end up with a

winner, it is sufficient to have one of the two players Pass On before the deadline is reached. It

follows that both players loosing cannot be an equilibrium outcome since every one can unilaterally

prevent such an outcome. Next, to see how this fact about duel is used, consider the one-shot game

Γ({1, 2, 3}, gline , 1), with gline represented in the Introduction. In this game, if two or more players

Hide, the game ends with no winner and this is a SPNE since no player can unilaterally prevent

this outcome.

Proposition 1 states that adding a period to Γ({1, 2, 3}, gline , 1) is sufficient to rule out such

an equilibrium outcome. This is due to the fact that, in Γ({1, 2, 3}, gline, 2), player 1 or player 3

have the ability to unilaterally make the game evolve into a duel between the two other players

that would last at least one period. This happens to be a general feature of non-critical agents

whose existence relies on Theorem 1. More precisely, if a non-critical player, say player 1, Passes

On at date t = 1 while the other players Hide (which means they behave in the worst way regarding

items centralization), then the subgame that starts at time t = 2 is strategically equivalent to the

one-shot duel: players 2 and 3 are directly linked to each other and each player is holding some

items that, if transmitted, make the other player win immediately. This is represented as Situation

A in Figure 1.10 Next, as stated earlier, once a duel is reached, every equilibrium yields at least a

winner. The same reasoning can be applied to the game Γ({1, 2, 3}, gcomplete , 2) as it is illustrated

by Situation B on the following figure.

1 2 3

1 2 3 1 2 3 1 2 3

1

2 3

1 2 3 1 2 3

1 2 3

Situation A Situation B

Figure 1: Informational situations once player 1 has Passed On and players 2 and 3 have Hidden.

From the previous paragraph, we have that every equilibrium outcome of Γ({1, 2, 3}, g, 2) is such

that there is at least a winner. One can then get the same result for games Γ({1, 2, 3, 4}, g, 3) by

noting that there always exists a non-critical agent in g who can, by Passing on at time t = 1,

10On Figure 1, players’ labels correspond to numbers written above the line. Every player i’s informational situation
is represented by three boxes numbered 1,2 and 3 and situated near player i: box numbered j near player i is filled
in black if player i holds the item j and is empty otherwise.
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make the subgame that starts at time t = 2 be such that the other three players are in a situation

strategically equivalent either to Γ({1, 2, 3}, gline, 2) or to Γ({1, 2, 3}, gcomplete , 2). This inductive

reasoning enables to state that the minimal number of periods sufficient to get a winner in every

equilibrium of Γ(N, g, T ) is n − 1.

The intuition behind the number n − 1 is found in the following observation: any n-player

connected network can be transformed into a 2-player connected network by a number n − 2 of

successive removals of non-critical agents. Said differently, n−2 is to the number of periods required

to reduce any n-player network to a 2-player network by dropping out one non-critical agent at a

time. In our game, n − 2 is therefore the number of periods required to reduce a n-player game

to a duel through successive items transmissions by non-critical agents. n − 1 corresponds to that

number n − 2 of periods to reach a duel plus one period which is the unique one required for the

duel to solve with a winner.

4 Duration in Equilibrium

Among equilibria that yield success, aggregate payoffs are lower when information is centralized at

time t than at any earlier date t′ < t.11 This section focuses on the time needed for the group of

players to succeed in equilibrium. From a global point of view, the minimal duration before success

in equilibrium gives the best equilibrium outcome. Once success is ensured in every equilibrium,

maximal duration before success then gives the worst equilibrium outcome.

4.1 Minimal Duration

In a game Γ(N, g, T ), duration before success has a lower bound that depends on the architecture

of the network g and corresponds to the radius r(g). The first question we ask is therefore whether

the end of the game at time t = r(g) is a SPNE outcome. The next proposition claims that it is

the case, meaning that, with respect to the best equilibrium outcomes, networks could be ranked

according to their radii. More generally, this proposition relates a person’s position in the network

to his ability to win and the highest possible speed of his win. It states that, for every potential

winner, there exists an equilibrium in which this player is effectively the unique winner after a

number of periods just equal to the time he "physically" requires to be so. Every of these equilibria

is Pareto efficient. We show that there are no strategic matters which prevent players from reaching

them:

Proposition 2 For every player i ∈ W (g, T ), there exists a SPNE of Γ(N, g, T ) such that player i

is the unique winner at time t = ei(g).

Complete networks are particular in that every member’s eccentricity is equal to the radius

r(g) = 1. Indeed, in gcomplete, an information item which is Passed On is immediately held by every

player. As a consequence, a member of a complete network is the unique winner if and only if he

11Recall that if a game ends up with at least a winner at time t ≤ T , then aggregate payoffs equal δt−1(n + R).
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is the last player to Pass On. Said differently, as soon as n − 1 players have "conceded", the game

ends with the player who has not conceded yet holding the n items and winning. To that extent,

the game Γ(N, gcomplete, T ) can be viewed as a war of attrition of complete information in which n

symmetric players compete for one prize in discrete and finite time. As in usual such games, every

player strictly prefers to win than to lose but prefers to lose sooner than later.

Interestingly, the previous proposition applied to games Γ(N, gcomplete, T ) corresponds to a well-

known result of the war of attrition literature. In Kornhauser et al. (1988), a concession game

with complete information is played in discrete time by two players 1 and 2 with different discount

factors. The authors state that there is an infinity of SPNE outcomes: one of these outcomes is

for player 1 to concede immediately, another is for player 1 to wait and for player 2 to concede

immediately.12 Proposition 2 corresponds to the generalization of that observation to the case of n

agents competing for one prize. We get that, for every individual in the complete network, there is

a SPNE outcome in which the n − 1 other players concede immediately. This statement is further

generalized to any network structure by showing that, for every individual, there is a SPNE outcome

in which only that individual wins at a date that is equal to his eccentricity. Indeed, if the network

is not complete, a number n− 1 of immediate concessions do not always enable the player who has

not conceded to win immediately. The time needed by the latter player depends on the network

structure.

4.2 Maximal Duration

In the previous section, we have shown that, for every Γ(N, g, T ), there is a lower bound on the

equilibrium duration of the game. The present section focuses on the existence of an upper bound

on that duration. We recall that, for games Γ(N, g, T ) such that T < n − 1, Proposition 1 states

that the worst equilibrium outcome corresponds to the case in which the game reaches the deadline

with no winner. On the contrary, success is ensured in every equilibrium for games Γ(N, g, T ) such

that T ≥ n − 1. Our goal is now to examine whether there is an upper bound on the time needed

for that success to happen. Let Send≤n−1 ⊆ SW be the set of winning strategy profiles SW that are

such that the game ends with at least a winner at a date t ≤ n − 1.

4.2.1 A graphical sufficient condition

For every given n, we consider a particular set of networks K(n) ⊆ G(n). Let a n-player network g

belong to K(n) if and only if every of its connected subnetwork g|S with S ⊆ N is either a separable

or a complete network. In particular, for every n, we have gcomplete ∈ K(n) since every subnetwork

of a complete network is complete. For every n, the set K(n) also encompasses all the n-player

trees, since tree networks have every of their subnetworks separable or complete.13 Networks in

12Departing from that statement, their paper then develops a criterion for selecting an intuitive equilibrium out-
come, namely one in which the weaker player, i.e., with the lower discount factor, concedes immediately.

13Precisely, all the connected subnetworks of a tree are separable, except two-player connected subnetworks which
are complete.
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K(n) which are neither complete nor trees can be pictured as "made up" of both structures. The

network gkite ∈ K(4) presented in Section 2.3 is an example of such structures.

The following proposition establishes that g ∈ K(n) is a sufficient condition for the existence of

an upper bound equal on the equilibrium duration of every game Γ(N, g, T ) such that T ≥ n − 1.

This upper bound is equal to n − 1:

Proposition 3 In every Γ(N, g, T ) with T ≥ n−1, we have: if g ∈ K(n), then SSPNE ⊆ Send≤n−1.

In Section 3, Proposition 1 stated that every equilibrium yields a winner if the game lasts at least

n − 1 periods. Proposition 3 now gives conditions under which every of these winning equilibria

is such that the game ends up at the latest at date n − 1, while the number of periods offered to

the players can be strictly larger than n − 1. In other words, it establishes that if the network g

belongs to the particular class of structures K(n), then the available periods from date t = n to

t = T are never used by the group of agents to succeed in equilibrium. In the following section, we

will examine a four-players game Γ({1, 2, 3, 4}, g, T ≥ 3) played on a network g 6∈ K(4) and show

that the game can end up at a date T > 3 in equilibrium.

The proof of Proposition 3 is done by induction and the reasoning is similar to the one developed

in Section 3 to establish one part of Proposition 1. However, two additional ingredients are needed.

First, to show that the statement is true for n + 1 players using the assumption that it is true for

n, we use the fact that a network g ∈ K(n + 1) has every of its n-player connected subnetworks in

K(n).14 Second, we use the following result about equilibrium sets of winners:

Proposition 4 i) In every Γ(N, g, T ) with g separable, every s ∈ SW is such that there is at least

one non-critical agent who loses. ii) In every Γ(N, g, T ) with g complete, every s ∈ SNE ∩ SW is

such that the winner is unique, implying that there is at least one non-critical agent who loses.15

To get an intuition of how Proposition 4i) works, let’s consider gkite presented in Section 2.3. Assume

that non-critical players 1, 3 and 4 win together at time t. To get such an outcome, player 1 must

hold, at date t, the items initially held by players 3 and 4 and vice versa. In gkite, player 2 is the

intermediary for items transmission between player 1 and players 3 and 4. It follows that players

1, 3 and 4 winning together at time t implies that player 2 already held the four items at a date

t′ ≤ t− 1, which contradicts the initial assumption. While part i) relies on the graphical properties

of separability, part ii) is established for equilibrium strategy profiles. Observe that Proposition 4

is independent of W (g, T ). It is not because some non-critical players are not potentially able to

win, that there always exists (at least) one loser. Even in case in which W (g, T ) = N , it is the

structure that prevents some players from winning together in equilibrium.

Now, let’s come back to Proposition 3 and first establish it for two players: every equilibrium of

a duel is such that the game ends up in the first period of play. Indeed, a single period is sufficient

for every agent to make a duel end. Since a two-player connected network belongs to K(2), we get

14It is the case because every network g ∈ K(n) is precisely defined by the structure of each of its subnetworks.
Every subnetwork itself contains subnetworks with the same structure.

15In a complete network, every agent is non-critical.

12



from Proposition 4 that the winner is unique in every equilibrium of Γ({1, 2}, g, T ). It follows that

an equilibrium strategy profile of the duel cannot be such that it lasts strictly more than one period

as the loser would have a profitable deviation to a strategy that makes him lose in the first period

of play.

Second, let’s consider a game Γ({1, 2, 3}, g, T ) with T ≥ 2 and an equilibrium strategy profile of

that game such that it ends up with a winner at a date t ≥ 3. Since every three-player connected

network belongs to K(3)16, we have from Proposition 4, that this profile is then such that a non-

critical agent loses at t. By Passing on in the first period of play, this non-critical agent can make

the game evolve into a duel that ends up at time t = 2. Since every player prefers to lose sooner than

later, the strategy profile considered cannot be an equilibrium. Finally, we get: in a three-player

game lasting at least two periods, every equilibrium yields a winner in one or two periods.

Finally, let’s consider a game Γ({1, 2, 3, 4}, g, T ) with T ≥ 3. To establish the fact that, if

g ∈ K(4), then SSPNE ⊆ Send≤3, we extend the inductive reasoning detailed above. Note however

that contrary to the cases of networks involving two or three players, four-player networks do not

all belong to K(4).17 The ones in K(4) are such that, by Passing On, every non-critical player i can

make the game evolve into a subgame played in a connected three-player network g\{i} ∈ K(3).

Again, since that subgame lasts at most two periods, a strategy profile such that Γ({1, 2, 3, 4}, g, T )

ends at t ≥ 4 with a non-critical player i loosing cannot be an equilibrium. This inductive reasoning

generalizes easily to n-player networks in K(n).

The strength of Proposition 3 lies in that the existence of an upper bound only relies on the

graphical properties of the networks in K(n). In particular, it does not depend on any further

assumption on payoffs than the two natural ones we made: first, at any given date, one always

strictly prefers to win than to lose, i.e., R > 0, and second, one strictly prefers to lose sooner than

later, i.e., δ ∈ (0, 1). It is Proposition 4 which is crucial to establish Proposition 3. It shows, for the

set of separable and complete networks which encompasses the set K(n), that there is a non-critical

agent who loses in every equilibrium. Without such a result on the effect of the structure on the

set of winners in equilibrium, the existence of an upper bound on duration in every equilibrium

depends on further assumptions about payoffs. The example developed in the following section

aims at making this point clear.

4.2.2 The square

We will consider a game played on a network g which is neither separable nor complete, and

therefore do not belong to K(n), and first show that it has an equilibrium in which all the players

win together.18 We will then demonstrate how this enables to construct an equilibrium in which

the game ends up at the very last date T > n − 1.

Let’s take the game Γ({1, 2, 3, 4}, gsquare , 2) with gsquare 6∈ K(4). We start by analyzing the

16A three-player connected network is either a complete network (the triangle) or a separable network (the tree).
17Precisely, among the six different connected structures that four-player networks can have, two structures do not

belong to K(4). The four-player square with no diagonal and the four-player square with one diagonal are neither
separable nor complete.

18However, there does not exist such an equilibrium in every game played on incomplete and non-separable networks.
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subgame that would result from a first period in which every player Passes On. The informational

situation of such a subgame is illustrated by Situation C on Figure 2. In Situation C, if every player

Passes On at T , then the game ends with four winners. At date t = 2, by Hiding while the other

players Pass On, no player can prevent the other three players from winning. Consequently, starting

from Situation C, "every player Passing On" is a NE yielding four simultaneous winners.

Next, we analyze the subgame that result from a first period of play in which one player, say 1,

Hides and the other three players Pass On. Situation D on Figure 2 shows the resulting informational

situation. In Situation D, if player 1 Passes On while the other three players Hide, the game ends

up with players 2 and 4 receiving δ(1+ R
2 ) whereas players 1 and 3 earn δ. At date t = 2, by Hiding

instead of Passing On, player 1 makes the game end with no winner. Given Situation D, player 3’s

action has no impact on the outcome of the game. Finally, if player 2 or 4 deviates from Hiding, it

makes three players win (1, 2 and 4) instead of two (2 and 4). Therefore, starting from Situation D,

"player 1 Passing On while the other players Hide" is a SPNE yielding two simultaneous winners,

players 2 and 4.

Comparing Situations C and D, player 1 has no interest in deviating from Passing On in the

first period of play when the other three players Pass On. The same is true for every player as their

positions are symmetric. We conclude that there is a SPNE of Γ({1, 2, 3, 4}, gsquare , 2) such that

ends with four winner at t = 2.

1 2

34

1 2

34

1 2 3 4 1 2 3 4

1 2 3 4 1 2 3 4

1 2 3 4 1 2 3 4

1 2 3 4 1 2 3 4

Situation C Situation D

Figure 2: Two informational situations at time t = 2.

Finally, let’s take a game Γ({1, 2, 3, 4}, gsquare , T ) with T ≥ 4 and a strategy profile s resulting

in "every player Hiding in every period t ∈ [1, T − 2] and Passing On in periods T − 1 and T".

Following s from time t = 1 to time T − 2, the subgame that starts at time T − 1 is equivalent

to Γ({1, 2, 3, 4}, gsquare , 2) examined above and has a SPNE yielding four winners at time T . It is

always possible to construct the profile s such that, if any player, say i, deviates from Hiding in a

period t ∈ [1, T − 2], then, in the subgame that starts, players play a NE such that player i loses

in period t + 1.19 Given a discount factor δ, one can then easily find an addition reward R > 0

such that the strategy profile s yielding four winners at time T is a SPNE. Indeed, it is the case

for R such that δT−1(1 + R
4 ) > δ. For the network gsquare, Proposition 4 does not apply. It follows

19For instance, if player 1 Passes On in the first period of play, then, in the subgame that starts, a SPNE is played
in which players 2 and 4 always Pass On while 3 always Hides and therefore win at time t = 2.
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that, for some couple (δ,R), we cannot find any agent who has a strictly profitable deviation from

a strategy profile such that the game ends at t ≥ n.

5 Conclusion

In the dynamic game we analyze, the members of a fixed network face a communication dilemma in

the sense that they have a collective interest to transmit information items via communication links

as well as an individual interest to withhold them. We show that, a group of n players centralizes

all the initially dispersed items in every subgame perfect equilibrium if and only if the game lasts

sufficiently many periods, precisely more than n − 1 periods. It follows that whether or not the

collective task is performed in every equilibrium is independent of the network structure, as long as

it is physically adequate for the successful completion of this task, i.e., connected. On the contrary,

the architecture of the communication links affects the time needed before information items are

pooled in equilibrium. For every network, we show that the minimal time needed in equilibrium is

given by the radius of the network. Finally, once success is ensured in every equilibrium, we provide

a sufficient condition on network structure to get an upper bound on the duration of the game in

equilibrium. The number n− 1 corresponds to that the maximal number of periods used by players

for items centralization.

We have proposed to evaluate the ability of a group to solve communication dilemmas regarding

whether it fails or succeeds in every equilibrium, and the time it needs to do so. According to these

criteria, a network structure that appears adapted to the task of centralizing dispersed items is the

star network. Indeed, it exhibits a radius equal to one, meaning that the best equilibrium outcome

of the game played in the star is the best the group can get in any connected network. Besides,

the star exhibits the graphical properties that are sufficient to provide an upper bound on the time

needed to pool information in equilibrium. If information transmission in the network were auto-

matic, suggesting the star network for centralization purposes would be quite straightforward. The

interesting point here is that this structure remains adapted to players’ task despite the conflicting

interests - collective and individual - which characterize our communication dilemma.

Information items that are considered in this paper are not private information in the usual

sense of incomplete information games. For instance, one could imagine that the items transmitted

by players are some keys that have to be centralized by the agents for them to open a box. Note

that it would then be as if each player Passed On copies of the keys he possessed. To answer the

question about the structure that is the most appropriate for the pooling of these keys, we introduce

graphical notions and results from graph theory that are used in some areas of operations research.20

A building block of our analysis is a graphical result stating that, in every connected network, there

exists at least two non-critical agents. Since such agents can be dropped from a network without

disconnecting the resulting subnetwork, proofs can be done by induction within networks.

20For instance, Buckley (1986) uses the eccentricity measure to define and find the center of a tree network. More
generally, see network location theory that addresses the question of the optimal location of a single-point facility in
a graph.
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Even if Bonacich (1990)’s experimental results stated that the outcome of such communication

dilemmas is affected by the network structure, his study rather examined the influence of an agent’s

position on his individual behavior. For instance, it seemed that agents with peripheral positions

behaved more cooperatively than central agents. In the present work, for agents who are not in the

set of potential winners because they are peripheral in the sense that their eccentricities are too large,

Passing On in every period of play is a weakly dominating strategy. That is, the effective chances

of victory determined by network positions clearly affect one’s communication behavior. Our focus

was on the effect of the players’ positions and network structure on equilibrium outcomes. We leave

for further research the impact positions have on individual behaviors.

6 Appendix

For every proposition presented in a previous section, the proof is given in a subsection of the

Appendix entitled as the section. We denote Γ(N, g, T )|ht the subgame of Γ(N, g, T ) that starts at

time t ≤ T after history ht. Player i’s continuation strategy after history ht is denoted si|h
t.

6.1 Success or Failure in Equilibrium

6.1.1 Proposition 1: Sufficient Condition

Lemma 1 If the game Γ(N, g, T ) is such that T ≥ n − 1, then SSPNE ⊆ SW .

Proof of Lemma 1 is by induction: assume it is true for n players and show it stays true for n + 1.

To do so, fix n and consider three kinds of games. First, games Γ(N, g, T ) with |N | = n. Next,

augmented games Γ(N ′, g′, T ) with |N ′| = n + 1. Without loss of generality, let player (n + 1) be

in Nn(g′) and be non-critical in g′. Finally, augmented modified games Γ̃(N ′, g′, T ) that differ from

augmented games only in that the initial matrix of information Ṽ ′0 6= Idn+1 is such that, for every

i ∈ N ′, we have ṽ′0ii = 1 and such that ṽ′0n n+1 = 1 meaning that player n initially holds the item

numbered (n + 1).

Let two games Γ(N, g, T ) and Γ̃(N ′, g′, T ) form a pair if the two connected networks g and g′

are such that g = g′\{n + 1}. Given either Γ(N, g, T ) or Γ̃(N ′, g′, T ) only, one can always construct

a pair. Indeed, a connected g′ can be constructed from a connected g by linking agent (n + 1) only

to agent n. Since agent (n + 1) has a unique neighbor in g′, he is non-critical in g′. A connected g

can be constrcuted from a connected g′ by removing the non-critical agent (n + 1) and all its links.

The sets of (SP)NE of games Γ(N ′, g′, T ) and Γ̃(N ′, g′, T ) are denoted S′
(SP )NE

and S̃′
(SP )NE

respectively. The sets of strategy profiles such that games Γ(N ′, g′, T ) and Γ̃(N ′, g′, T ) end with at

least one winner (no winner, resp.) are denoted S′
W and S̃′

W respectively (S′
L and S̃′

L, resp.). Before

proving Lemma 1, we show:

Lemma 2 For every pair of games Γ(N, g, T ) and Γ̃(N ′, g′, T ), we have: if SSPNE ⊆ SW , then

S̃′
SPNE ⊆ S̃′

W .
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Proof: Take a pair of games Γ(N, g, T ) and Γ̃(N ′, g′, T ). We show that if there exists a strategy

profile s̃′ in S̃′
SPNE ∩ S̃′

L, then there exists a strategy profile s in SSPNE ∩ SL. In Γ̃(N ′, g′, T ),

consider a profile s̃′ ∈ S̃′ such that player (n + 1) Hides in every period whatever the history and

such that, for every player i ∈ N , player i’s action at time t is independent of player (n + 1)’s

actions at dates t′ ∈ [1, t − 1]. Next, in Γ(N, g, T ), consider a profile s ∈ S such that s and s̃′

describe, for every player i ∈ N and every date t ≤ T , the same action profile in games Γ(N, g, T )

and Γ̃(N ′, g′, T ) respectively.

Considering the process of items’ transmission given by (1), it is easy to show that the sequences

(V 0, ...V T ) and (Ṽ ′0, ..., Ṽ ′T ) determined by s and s̃′ in Γ(N, g, T ) and Γ̃(N ′, g′, T ) respectively are

such that, for every i ∈ N and every t ≤ T , we have (A): for each item j ∈ N , ṽ′tij ≥ vt
ij .

21 Next,

since s̃′ ∈ S̃′
L, there exists, for every i ∈ N , at least one item k ∈ N ′ such that ṽ′Tik = 0. Given

that items n and (n + 1) are transmitted together in Γ̃(N ′, g′, T ) as ṽ′0n n+1 = 1, we get that s̃′ ∈ S̃′
L

implies that there exists, for every i ∈ N , an item k ∈ N such that ṽ′Tik = 0. Using (A), we have

that s̃′ ∈ S̃′
L implies s ∈ SL.

Finally, if s̃′ ∈ S̃′
SPNE, the profile of continuation strategy s̃′|h′t is a NE of the subgame

Γ̃(N ′, g′, T )|h′t for every h′t ∈ H ′t. Since s̃′ is such that, for every i ∈ N , player i’s action in

every period is independent of player (n + 1)’s past actions and player (n + 1)’s actions are inde-

pendent of the history, we directly get: if s̃′|h′t is a NE of Γ̃(N ′, g′, T )|h′t, then s|ht is a NE of

Γ̃(N, g, T )|ht with h′t and ht describing the same action profile for every i ∈ N and every date

t ≤ T . It follows that s̃′ ∈ S̃′
SPNE implies s ∈ SSPNE which completes the proof. �

Proof of Lemma 1: As stated in Section 3, every NE of a dynamic duel Γ({1, 2}, g, T ) yields at

least one winner, which implies that Lemma 1 is true for n = 2. We assume that Lemma 1 is true

for n agents and prove that it stays true for n + 1 agents: if the game Γ(N ′, g′, T + 1) is such that

T + 1 ≥ n, then S′
SPNE ∩ S′

L = ∅.

First, in Γ(N ′, g′, T + 1), we consider a strategy profile s′ ∈ S′
SPNE such that a′1n+1 = P and we

show that T + 1 ≥ n implies s′ ∈ S′
W . By definition of SPNE, the profile of continuation strategy

(s′i|h
′2)i∈N ′ is a SPNE of the subgame Γ(N ′, g′, T +1)|h′2 with h′2 = ((a′1i )i∈N , P ). This subgame is

equivalent to the augmented modified game Γ̃(N ′, g′, T ). More precisely, games Γ(N ′, g′, T + 1)|h′2

and Γ̃(N ′, g′, T ) have the same set of players N ′, the same network g′, the same number of periods

of play T and the same matrix of players’ information: at the beginning of Γ(N ′, g′, T + 1)|h′2 the

matrix V ′1 is such that, for every i ∈ N ′, we have v′1ii = 1 and such that v′1n n+1 = 1 since n ∈ Nn+1(g
′)

and a′1n+1 = P . By assumption, if Γ(N, g, T ) is such that T ≥ n − 1, then SSPNE ⊆ SW . Given

Γ̃(N ′, g′, T ), we can find a game Γ(N, g, T ) to get a pair and then deduce from Lemma 2 that

S̃′
SPNE ⊆ S̃′

W . Therefore, (s′i|h
′2)i∈N ′ ∈ S̃′

SPNE implies (s′i|h
′2)i∈N ′ ∈ S̃′

W which implies that

s′ = (s′1i (h′1), s′i|h
′2)i∈N ′ ∈ S′

W .

Next, in Γ(N ′, g′, T + 1), we consider a strategy profile s′ ∈ S′
SPNE such that a′1n+1 = H and we

show that T + 1 ≥ n implies s′ 6∈ SL. By definition of SPNE, the profile of continuation strategy

21Note that we have ṽ′t
ij ≥ vt

ij and not ṽ′t
ij = vt

ij because we do not exclude that the initial matrix Ṽ ′0 of players’

information in Γ̃(N ′, g′, T ) is such that there exists a pair of players i, j ∈ N , i 6= j such that ṽ′0
ij = 1 whereas this is

excluded for the initial matrix of players’ information V 0 = Idn of Γ(N, g, T ).
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(s′i|h
′2)i∈N ′ is a SPNE of Γ(N ′, g′, T + 1)|h′2 with h′2 = ((a′1i )i∈N ,H). As shown in the previous

paragraph, if T ≥ n−1, then every SPNE played in a subgame Γ(N ′, g′, T +1)|h′2 that starts after a

history h′2 = ((a′1i )i∈N , P ) is such that the game Γ(N ′, g′, T + 1) ends up with a winner. Therefore,

if we assume that s′ ∈ S′
L, then T ≥ n − 1 implies that player (n + 1) has an interest in deviating

from s′n+1 such that a′1n+1 = H to a strategy s′′n+1 such that a′′1n+1 = P . This profitable deviation in

the first period of play contradicts s′ ∈ S′
SPNE which is why s′ 6∈ S′

L.

Proof is completed by noting that every s′ ∈ S′
SPNE is either such that a′1n+1 = H or such that

a′1n+1 = P . �

6.1.2 Proposition 1: Necessary Condition

Lemma 3 If the game Γ(N, g, T ) is such that T ≤ n − 2, then SSPNE ∩ SL 6= ∅.

We prove Lemma 3 for complete networks only and use the the following lemma to get it for any

connected network.

Lemma 4 If SSPNE ∩ SL 6= ∅ in Γ(N, gcomplete, T ), then SSPNE ∩ SL 6= ∅ in Γ(N, g, T ).

Proof: In Γ(N, gcomplete, T ), consider a strategy profile sc ∈ SL. Next, in Γ(N, g, T ), consider a

strategy profile s such that s and sc describe the same action profiles for every i ∈ N and every

t ≤ T in Γ(N, gcomplete, T ) and Γ(N, g, T ) respectively. Since Ni(g) ⊆ Ni(gcomplete) = N\{i} for

every i ∈ N , we directly have that sc ∈ SL implies s ∈ SL. Equivalently, we get that s ∈ SW implies

sc ∈ SW . Therefore, if there exists a player i with a strictly profitable deviation from the profile

s ∈ SL for a history ht in Γ(N, g, T ), then the same deviation from sc ∈ SL is strictly profitable

in Γ(N, gcomplete, T ). We conclude that if the strategy profile s ∈ SL is not in SSPNE, then the

strategy profile sc ∈ SL is not in SSPNE. �

Lemma 5 If the game Γ(N, gcomplete, T ) is such that T ≤ n − 2, then SSPNE ∩ SL 6= ∅.

Proof: We show that if T ≤ n−2, then there exists a strategy profile s ∈ SSPNE ∩SL. For every ht,

denote M(ht) the set {i ∈ N : ∀j ∈ N\{i}, vt−1
ji = 0} and let m(ht) = |M(ht)|. Players in M(ht)

have Hidden in every period t′ ∈ [1, t− 1]. Note that as soon as a history ht is such that M(ht) is a

singleton, say M(ht) = {l}, the game ends at t− 1 with player l being the unique winner. Consider

the profile s such that, for every i ∈ N , we have:

- st
i(h

t) = H if i 6∈ M(ht)

- st
i(h

t) = H if i ∈ M(ht) and T − t + 1 ≤ m(ht) − 2

- st
i(h

t) = H if i ∈ M(ht) and T − t + 1 > m(ht) − 2 and i = minj∈M(ht)j

- st
i(h

t) = P if i ∈ M(ht) and T − t + 1 > m(ht) − 2 and i 6= minj∈M(ht)j.

First, let’s show s ∈ SL. Since for every i, j ∈ N , i 6= j, v0
ij = 0, we have that M(h1) = N

and m(h1) = n. If T − 1 + 1 ≤ n − 2, then, following s, V 1 remains equal to Idn. Repeating the

reasoning, we get that everybody Hides in every period, which establishes s ∈ SL.

Next, let’s show s ∈ SSPNE by showing that s satisfies the one-stage deviation principle. We

distinguish two kinds of histories ht and check that, conditional on ht reached, no player i ∈ N
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has an strict interest in unilaterally deviating from the continuation strategy si|h
t at date t and

conforming to si|h
t thereafter.22

First, consider a subgame Γ(N, gcomplete, T )|ht with ht such that T − t + 1 > m(ht) − 2. Let

l = minj∈M(ht)j. Following (si|h
t)i∈N , the action profile (at

i)i∈N is such that (1) for every i 6∈ M(ht),

at
i = H, (2) for every i ∈ M(ht)\{l}, at

i = P and (3) at
l = H. Therefore, we get M(ht+1) = {l}.23

As a consequence, following (si|ht)i∈N in Γ(N, gcomplete, T )|ht, the game Γ(N, gcomplete, T ) ends at

t with l being the unique winner. Obviously, player l has no interest in unilaterally deviating

from sl|h
t at time t. In addition, in gcomplete, the action of every i 6∈ M(ht) has no effect in

Γ(N, gcomplete, T )|ht 24, so there is no strict interest for these players in deviating from si|h
t at t.

Finally, consider a deviation of a player j ∈ M(ht)\{l}. A strategy s′j|h
t that agrees with sj|h

t

except at date t consists in Hiding at t instead of Passing On. If period t = T , then player j has

no interest in such a deviation as the game would end at T with no winner instead of ending at

T with player l winning. If period t < T , then at time t + 1 after player j’s deviation, we have

M(ht+1) = {j, l} and m(ht+1) = 2 which implies that m(ht+1) − 2 = 0. Since t < T , we have

T − t = T − (t + 1) + 1 > 0 = m(ht+1) − 2. As a consequence, following (si|h
t)i∈N in the subgame

that starts at t + 1 after player j’s deviation, every agent i 6= j Hides and player j Passes On. It

follows that player l is still the unique winner but at time t + 1 instead of t: if player j deviates, he

then receives δt instead of δt−1. Conditional on ht reached, we conclude that no player i ∈ N has

a strict interest in unilaterally deviating from si|h
t at time t only.

Finally, consider a subgame Γ(N, gcomplete, T )|ht with ht such that T − t + 1 ≤ m(ht) − 2.

Following (si|h
t)i∈N , the action profile (at

i)i∈N is such that, for every i ∈ N , at
i = H. Therefore,

we get m(ht+1) = m(ht). Since T − t + 1 ≤ m(ht) − 2, we have T − (t + 1) + 1 ≤ m(ht+1). As a

consequence, following (si|h
t)i∈N in Γ(N, gcomplete, T )|ht, we have that for every i ∈ N , at+1

i = H

yielding m(ht+2) = m(ht+1). The same reasoning applies for every t′ ∈ [t + 2, T ] meaning that

following (si|h
t)i∈N , the game Γ(N, gcomplete, T )|ht ends at T with no winner. As mentioned in the

previous paragraph, in Γ(N, gcomplete, T )|ht, players i 6∈ M(ht) have no strict interest in deviating

from si|h
t at t. For a player i ∈ M(ht), a strategy s′i|h

t that agrees with si|h
t except at date t consists

in Passing On at t instead of Hiding. If a player i Passes On at time t, we get m(ht+1) = m(ht)−1.

Since ht is such that T −t+1 ≤ m(ht)−2, we have that T−(t+1)+1 ≤ m(ht)−1−2 = m(ht+1)−2.

Therefore, following (si|h
t)i∈N in the subgame of Γ(N, gcomplete, T )|ht starting at t + 1 after history

ht+1, we get for every i ∈ N , at+1
i = H. Repeating the reasoning, we get for every i ∈ N , at+2

i = H

and so until date T . Conditional on ht reached, we conclude that no player i ∈ N has a strict

interest in deviating from si|h
t at time t only. �

Proof of Lemma 3: Directly from Lemmas 5 and 4. �

Proof of Proposition 1 : Directly from Lemmas 1 and 3. �

22See one-stage deviation principle for finite horizon games in Fudenberg and Tirole (1991)[pp 108-110].
23If a player i ∈ M(ht) Passes On at time t, then i 6∈ M(ht+1).
24In gcomplete, a Passed On item immediately reaches every player, i.e., no one further transmits previously received

items.
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6.2 Duration in Equilibrium

6.2.1 Minimal Duration

Let W (g, T )|ht denote the set of potential winners in Γ(N, g, T )|ht. Given ht, every player in

W (g, T )|ht is such that there exists a strategy profile s|ht in Γ(N, g, T )|ht that enables him to hold

the n items at a date t ≤ T .

Lemma 6 Consider a history ht of Γ(N, g, T ) such that there exists a player i ∈ W (g, T )|ht who

has Hidden in every period t′ ∈ [1, t − 1]. There exists a continuation strategy profile s|ht that is a

NE of Γ(N, g, T )|ht and such that player i is the unique winner of Γ(N, g, T ).

Proof: Consider the profile s|ht such that i Hides in every period whatever the history and such

that every j 6= i Passes On in every period whatever the history. �

Proof of Proposition 2 : Pick a player i ∈ W (g, T ). Consider a strategy profile s ∈ S that results

in a final history hei(g)+1 = (a1, . . . , aei(g)) such that :

- for all t ≤ ei(g), at
i = H

- every player j 6= i starts to Pass On in every period at a specific date tj = ei(g)− dij(g) + 1 (that

depends on his distance to player j) : at
j = H for all t < tj and at

j = P for all t ≥ tj .

The history hei(g)+1 is such that player i Hides in every period and the further a player j is

from player i, the earlier he starts Passing On in every subsequent period. At every date t, the set

of players N\{i} can be divided into two sets : the set {j : tj ≥ t} of players who are "t-close" to

i, that is who have not Passed on in any period t′ < t, and the set {j : tj < t} of players who are

"t-distant" from i, that is who have started to Pass On at a date t′ < t. According to hei(g)+1, in

every period t, every piece of information initially held by a "t-distant" player is held by at least

one "t-close" player. Indeed, every player j 6= i who Passes On at time t = 1, i.e is such that

dij(g) = ei(g), is linked to at least one player k 6= i who Passes On at time t = 2, i.e., who is such

that dik(g) = ei(g) − 1, and so on. At date t = ei(g), player i wins the game because he receives

the n− 1 items that he did not hold initially from his direct neighbors. He is the unique winner as

every player lacks at least player i’s information item.

Let’s prove that s ∈ SSPNE by showing that s satisfies the one-stage deviation principle. We

consider three kinds of histories ht and check that, conditional on ht reached, no player has a strict

interest in unilaterally deviating from the continuation strategy si|h
t at date t and conforming to

si|h
t thereafter.

(i) First, consider a history ht = (a1, . . . , at−1) with t − 1 < ei(g) that describes the same actions

as hei(g)+1 for every i ∈ N and every date t′ ≤ t − 1. Let’s examine each kind of player :

• Player i : In Γ(N, g, T )|ht, player i has no strict interest in unilaterally deviating from the

continuation profile (si|h
t)i∈N as being the unique winner at date ei(g) is his best possible outcome.

• Players in {j 6= i : tj < t} : Conditional on ht, a "t-distant" player’s deviation from sj|h
t at

date t consists in Hiding. Then, the subgame Γ(N, g, T )|ht+1 that starts at time t + 1 is such that

20



player i is still able to win the game25, i.e., belongs to W (g, T )|ht+1, and has Hidden in every

period t′ ∈ [1, t]. It follows from Lemma 6 that s can be constructed so that s|ht+1 is a NE of

Γ(N, g, T )|ht+1 such that player i is the unique winner at a date t ≥ ei(g). Therefore, "t-distant"

players have no strict interest in deviating unilaterally from sj|h
t at the single date t.

• Players in {j 6= i : tj > t} : Conditional on ht, such a "t-close" player’s deviation from sj|h
t

at date t consists in Passing On. Then, the subgame Γ(N, g, T )|ht+1 that starts at time t + 1 is

such that player i is still able to win the game26, i.e., belongs to W (g, T )|ht+1, and has Hidden in

every period t′ ∈ [1, t]. It follows from Lemma 6 that s can be constructed so that s|ht+1 is a NE of

Γ(N, g, T )|ht+1 such that player i is the unique winner at a date t ≥ ei(g). Therefore, such "t-close"

players have no strict interest in deviating unilaterally from sj|h
t at the single date t.

• Player in {j 6= i : tj = t} : Conditional on ht, such a "t-close" player’s deviation from sj|h
t at

date t consists in Hiding, which can have two different effects :

1st case, i ∈ W (g, T )|ht+1 : it follows from Lemma 6 that s can be constructed so that s|ht+1

is a NE of Γ(N, g, T )|ht+1 such that i is the unique winner at a date t ≥ ei(g). Therefore, such

"t-close" players have no strict interest in deviating unilaterally from sj|h
t at the single date t.

2nd case, i 6∈ W (g, T )|ht+1 : this case corresponds to a situation in which player i is excluded

from potential winners of Γ(N, g, T )|ht+1 by the fact that player j Hides at t. If this single deviation

prevents i from winning, it must be that dij(g) > T − t ⇔ ei(g) = T , which means that the number

of remaining periods after date t is too small to enable player i to get player j’s information item

before the end of the game. Conditional on ht+1 reached, player i has never Passed On in t′ ∈ [1, t].

It follows from dij(g) > T − t that j cannot hold the item i at a date t ∈ [t+1, T ] either. Therefore,

player j cannot win. Finally, we have to check that the outcome of the game is such that player j

has no interest in deviating because the game would end with a player different from i winning at

a date t ≤ ei(g).

First, let players i and j be such that dij(g) = 1. In that case, it follows from dij(g) > T − t

that player j’s deviation at date tj = t = T yields to the game ending up with no winner - player j

has never Passed On at a date t′ < T and does not Pass On at time T . Therefore, player j has no

strict interest in deviating from sj|h
t at the single date t.

Next, let players i and j be such that dij(g) ≥ 2, which means that there is at least one agent,

say k, on the shortest path between player i and j. Since we have dik(g) < dij(g), we have at

least three players, namely i, j and k, who have never Passed On at the beginning of the subgame

Γ(N, g, T )|ht+1. It follows that s can be constructed so that s|ht+1 is a NE of Γ(N, g, T )|ht+1 in

which these three players Hides in every period whatever the history in the subgame.27 This leads

to the game ending up with no winner. Therefore, player j has no strict interest in deviating from

sj|h
t at the single t.

25Indeed, at date t, every information item initially held by a "t-distant" player is already held by a "t-close"
player. It follows that if every "t-close" player j sticks to sj |h

t+1 and Passes On in every period from time t on,
player i can hold the n item at t = ei(g).

26Indeed, it cannot be detrimental to player i’s ability to win that a player j Passes On earlier than what is imposed
by sj |h

t and then sticks to sj |h
t+1.

27It is straightforward to check that such a profile is a NE of the subgame : given that two players Hide in every
period whatever the history, there is no strictly profitable deviation from doing the same for the third agent.
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(ii) Next, consider a history ht = (a1, . . . , at−1) with t − 1 ≥ ei(g) that describe the same actions

as hei(g)+1 for every i ∈ N and every t′ ≤ t − 1 : for any such history, the subgames Γ(N, g, T )|ht

do not exist as the game ends at date ei(g).

(iii) Finally, for any other history ht, s can be constructed so that s|ht is a NE of Γ(N, g, T )|ht. �

6.2.2 Maximal Duration

We prove Proposition 4 before Proposition 3:

Proof of Proposition 4 i): By definition of separable graphs (chapter 3 in Tutte (2001)), if g is

separable, then there exists a pair (g1, g2) of connected subnetworks of g such that g1 ∪ g2 = g and

g1 ∩ g2 is a critical agent of g, say k. Letting N1 be the agents in g1 and N2 the agents in g2, we

get N1 ∪ N2 = N and N1 ∩ N2 = {k}. From Theorem 1, there exists at least one agent in N1\{k}

who is non-critical in the connected network g1, say i, and at least one agent in N2\{k} who is

non-critical in the connected network g2, say j. It follows from the fact that g1\{i} is connected

that (g1\{i}) ∪ g2 = g1 ∪ g2\{i} = g\{i} is connected28, meaning that i is non-critical in g. The

same is true for agent j. Next, we show that i and j cannot win together at a date t ≤ T . If i

and j win together at t, it must be that player i has every item l ∈ N2 and player j has every item

l ∈ N1 at date t. Since k is on every path between i and j, every item l ∈ N2 was held by k at least

one period before it was held by i and every item l ∈ N1 was held by k at least one period before it

was held by j. Since N1 ∪N2 = N , there was a period t′ ≤ t − 1 in which k held the n items. This

contradicts the fact that i and j win together at t. �

Proof of Proposition 4 ii) First, we show that every s ∈ SW is either such that the winner is unique

or such that there are n winners. Consider a strategy profile s ∈ SW such that the game ends with

strictly more than one winner, say players i and j win together at t. Since i wins at t, i holds every

item l ∈ N\{i} at that date. Since the network is complete, every agent k ∈ N also holds every

item l ∈ N\{i} at t. Applying the same reasoning to j, we get that players i and j both winning at

t implies n players winning at that date. Second, we consider a strategy profile s ∈ SW such that

there are n winners at t and show that s 6∈ SNE . If n players win at t, every i ∈ N has Passed On

at least at one date t′ ≤ t. Nevertheless, since the n players have not won at t − 1, at least two

agents, say i and j, had not Passed On yet at time t − 1 but both Pass On at t.29 Given that i

Passes On at t, j has a strict interest in deviating from Passing On to be the only winner at t. �

Proof of Proposition 3 is by induction. As in Section 6.1.1, we fix n and consider games Γ(N, g, T ),

augmented games Γ(N ′, g′, T ), and augmented modified games Γ̃(N ′, g′, T ).

Let two games Γ(N, g, T ) and Γ̃(N ′, g′, T ) form a K-pair if the two connected networks g

and g′ are such that g = g′\{n + 1} with g ∈ K(n) and g′ ∈ K(n + 1). Given either Γ(N, g, T )

with g ∈ K(n) or Γ̃(N ′, g′, T ) with g′ ∈ K(n + 1), one can always construct a K-pair. Indeed, a

g′ ∈ K(n + 1) can be constructed from a g ∈ K(n) by linking agent (n + 1) only to agent n.30

28The union of two connected networks is a connected network.
29If there is a unique i who has not Passed On yet at time t − 1, then player i is the unique winner at time t − 1.
30Then g′ is separable as n is critical.
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All the connected subnetworks of g′ are A g ∈ K(n) can be constructed from a g′ ∈ K(n + 1) by

removing the non-critical agent (n + 1) and all its links.

The sets of strategy profiles such that the games Γ(N ′, g′, T ) and Γ̃(N ′, g′, T ) end up with a

winner at a date t ≤ n (at date t ≥ n + 1, resp.) are denoted S′
end≤n and S̃′

end≤n respectively

(Send≥n+1 and S̃′
end≥n+1, resp.). To prove Proposition 3, we use:

Lemma 7 For every K-pair of games Γ(N, g, T ) and Γ̃(N ′, g′, T ), we have: if SSPNE ⊆ S≤n−1,

then S̃′
SPNE ⊆ S̃′

end≤n.

Proof: Similar to Lemma 2. �

Proof of Proposition 3: As stated in Section 4.2.1, Proposition 3 is true for n = 2 and n = 3. We

assume that Proposition 3 is true for n agents and we prove that it stays true for n + 1 agents: in

every Γ(N ′, g′, T + 1) with T + 1 ≥ n, we have that if g′ ∈ K(n + 1), then S′
SPNE ⊆ S′

end≤n. From

Proposition 4, we have that if g′ ∈ K(n+1), every s′ ∈ S′
SPNE is such that there is one non-critical

agent in g′ who loses.

First, in Γ(N ′, g′, T +1), we consider a strategy profile s′ ∈ S′
SPNE such that player (n+1) loses

and such that a′1n+1 = P . By definition of SPNE, the profile of continuation strategy (s′i|h
′2)i∈N ′ is a

SPNE of the subgame Γ(N ′, g′, T +1)|h′2 with h′2 = ((a′1i )i∈N , P ). This subgame is equivalent to the

augmented modified game Γ̃(N ′, g′, T ) in the same sense as in the proof of Lemma 1. By assumption,

if g ∈ K(n), then SSPNE ⊆ Send≤n−1. Given Γ̃(N ′, g′, T ), we can find a game Γ(N, g, T ) to get a

K- pair and then deduce from Lemma 7 that S̃′
SPNE ⊆ S̃′

end≤n−1. Therefore, (s′i|h
′2)i∈N ′ ∈ S̃′

SPNE

implies (s′i|h
′2)i∈N ′ ∈ S̃′

end≤n−1 which implies s′ = ((s′1i (h′1)), (s′i|h
′2))i∈N ′ ∈ S′

end≤n.

Next, in Γ(N ′, g′, T +1), we consider a strategy profile s′ ∈ S′
SPNE such that player (n+1) loses

and such that a′1n+1 = H. By definition of SPNE, the profile of continuation strategy (s′i|h
′2)i∈N ′

is a SPNE of Γ(N ′, g′, T + 1)|h′2 with h′2 = ((a′1i )i∈N ,H). As shown in the previous paragraph,

if g ∈ K(n), then every SPNE played in a subgame Γ(N ′, g′, T + 1)|h′2 that starts after a history

h′2 = ((a′1i )i∈N , P ) is such that the game Γ(N ′, g′, T + 1) ends up with a winner different from

player (n + 1) at a time t ≤ n. Therefore, if we assume that s′ ∈ S′
end≥n+1, then the fact that g′

belong to K(n + 1) implies that player (n + 1) has an interest in deviating from s′n+1 such that

a′1n+1 = H to a strategy s′′n+1 such that a′′1n+1 = P . Such a deviation would not make player (n + 1)

win but make him lose at t ≤ n instead of t ≥ n + 1. This profitable deviation in the first period of

play contradicts s′ ∈ S′
SPNE which is why s′ 6∈ S′

end≥n+1. Proof is completed by noting that every

s′ ∈ S′
SPNE is either such that a′1n+1 = H or such that a′1n+1 = P . �
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