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Abstract

In this note I specify the class of functions that are equilibria of

symmetric first-price auctions.

1 Introduction

Suppose we somehow obtained a bidding function b (·). It could, for example,
be originated from some laboratory auction or be a linear interpolation of
some auction data. Is this bidding function theoretically possible? If so,
does it come from a model adequate to the situation at hand? In this paper
I study this problem in a sealed bid first-price auction set up. To be more
concrete we are in the independent private values model and suppose we have
3 bidders with signals in the interval [0, 1] and that our estimated bidding
function is b (x) = x

2
. If the distribution of signals is uniform with three

bidders the equilibrium is b∗ (x) = 2x
3
. With two bidders the equilibrium is

exactly b∗ (x) = x
2
. Do we have a dummy bidder? Colusion? Here I focus on

the distribution of signals. The uniform distribution that we supposed in this
example is usually used more for convenience than for theoretical reasons. In
this example if we change the distribution to F (x) =

√
x we have that the

equilibrium bidding function is exactly b (x) . I show in this paper that for
any number of bidders and pratically any strictly increasing function b (·) it
is possible to find a strictly increasing continuous distribution function such
that the equilibrium bidding function is exactly b (·) . This result is similar in
spirit to the Sonneschein-Mantel-Debreu theorem on excess demand. I also
analyze a second aspect of this problem. If we insist that the distribution of
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signals is given and vary the bidder valuation from Vi = xi to Vi = u (xi) .
The conditions to find an appropriate u (·) are however harder to be met.

2 The model

We consider first-price sealed bid auctions. There are n bidders with inde-
pendent private values and each bidders’ signal are in the interval [0, v̄]. We
consider distribution of bidders signals in the set

F = {F : [0, v̄] → [0, 1] ; F is continuous strictly increasing and onto} .

Thus F is the set of strictly increasing distributions with support [0, v̄] . Let
F ∈ F be the distribution of bidder i ≤ n signal xi. If bidder i has signal xi

he valuates the object as Vi = xi. Define bF (0) = 0 and if x ∈ (0, v̄],

bF (x) = x −
∫ x

0
F n−1 (v) dv

F n−1 (x)
.

We first prove the

Lemma 1 bF is continuous and strictly increasing.

Proof : The continuity of bF for x′ > 0 is immediate. At x′ = 0 it follows
from bF (x) < x. Let us now prove that it is strictly increasing. Suppose that
0 ≤ x < y ≤ v̄. If x = 0 it is immediate from

∫ y

0
F n−1 (v) dv < F n−1 (y) y

that bF (y) > 0 = bF (x) . If x > 0 then:

bF (y) − bF (x) = y −
∫ y

0
F n−1 (u) du

F n−1 (y)
− x +

∫ x

0
F n−1 (u) du

F n−1 (x)
=

y − x −
∫ y

x
F n−1 (u) du

F n−1 (y)
+

(

1

F n−1 (x)
− 1

F n−1 (y)

)
∫ x

0

F n−1 (u) du > 0.

Note that
∫ y

x
F n−1 (u) du ≤ F n−1 (y) (y − x) . QED

We now show that bF is an equilibrium bidding function.

Proposition 1 Let F ∈ F . If there are n bidders with independent signals

distributed accordingly to F then bF (·) is a symmetric equilibrium of the

first-price auction.
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Proof : Define b = bF and x = xi. Suppose bidder j 6= i with signal xj bids
b (xj). We have to prove that for any y ∈ [0, v̄] ,

(x − b (x)) Pr

(

b (x) ≥ max
j 6=i

b (xj)

)

≥ (x − b (y)) Pr

(

b (y) ≥ max
j 6=i

b (xj)

)

.

Since b is strictly increasing and the signals are independent,

Pr

(

b (x) ≥ max
j 6=i

b (xj)

)

=
∏

j 6=i

Pr (b (x) ≥ b (xj)) =

∏

j 6=i

Pr (x ≥ xj) = F n−1 (x) .

Therefore

(x − b (x)) Pr

(

b (x) ≥ max
j 6=i

b (xj)

)

=

∫ x

0

F n−1 (v) dv.

Thus we have to prove that for every y ∈ [0, v̄] ,

∫ x

0

F n−1 (v) dv ≥ (x − y) F n−1 (y) +

∫ y

0

F n−1 (v) dv.

This is equivalent to

∫ x

y

F n−1 (u) du ≥ (x − y) F n−1 (y) .

Considering separately the cases x > y and y ≥ x we see that this inequality
is true. QED
Define

B = {bF (·) ; F ∈ F} .

We may now prove our main theorem.

Theorem 1 Suppose b : [0, v̄] → R . Then b ∈ B if and only if:

1. b (·) is strictly increasing;

2. b (0) = 0;

3. b (x) < x if x > 0;

4. limx→0+ (x − b (x)) e
∫ v̄

x
dy

y−b(y) = ∞.
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Proof : Suppose b ∈ B. It is clear that it satisfies (1), (2) and (3). To see
that it also satisfy (4) let F ∈ F be such that b = bF . Then

1

y − b (y)
=

F n−1 (y)
∫ y

0
F n−1 (v) dv

=

(

log

(
∫ y

0

F n−1 (v) dv

))′

.

Therefore

∫ v̄

x

dy

y − b (y)
=

∫ v̄

x

(

log

(
∫ y

0

F n−1 (v) dv

))′

dy = log

(

∫ v̄

0
F n−1 (v) dv

∫ x

0
F n−1 (v) dv

)

and

(x − b (x)) e
∫ v̄

x
dy

y−b(y) =

∫ x

0
F n−1 (v) dv

F n−1 (x)

∫ v̄

0
F n−1 (v) dv

∫ x

0
F n−1 (v) dv

=

∫ v̄

0
F n−1 (v) dv

F n−1 (x)
.

Thus b satisfy (4). Now suppose b (·) satisfy (1), (2), (3) and (4). I show
that b = bG where G (0) = 0 and if x ∈ (0, v̄],

G (x) = e−
1

n−1

∫ v̄

x
1

y−b(y)
dy

(

v̄ − b (v̄)

x − b (x)

)
1

n−1

.

First note that (4) imply that G is continuous at 0. And obviously G (v̄) = 1.
It is also clear that G is continuous if x > 0. We now show that G is strictly
increasing. It is equivalent to prove that

φ (x) := log Gn−1 (x) = −
∫ v̄

x

1

y − b (y)
dy − log (x − b (x))

is strictly increasing. If h > 0 then

φ (x + h) − φ (x)

h
=

1

h

∫ x+h

x

1

y − b (y)
dy +

1

h
log

(

x − b (x)

x + h − b (x + h)

)

.

If x−b(x)
x+h−b(x+h)

≥ 1 then

φ (x + h) − φ (x)

h
≥ 1

h

∫ x+h

x

1

y − b (y)
dy.

If x+h−b(x+h)
x−b(x)

> 1, then

log

(

x + h − b (x + h)

x − b (x)

)

= log

(

1 +
h − b (x + h) + b (x)

x − b (x)

)

<
h − b (x + h) + b (x)

x − b (x)
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and therefore

φ (x + h) − φ (x)

h
>

1

h

∫ x+h

x

1

y − b (y)
dy − 1

h

h − b (x + h) + b (x)

x − b (x)
≥

1

h

∫ x+h

x

1

y − b (y)
dy − 1

x − b (x)
.

Thus

lim inf
h→0+

φ (x + h) − φ (x)

h
≥ 0

which implies that φ is increasing. To show that it is strictly increasing
suppose not. Then φ is constant in an interval (c, d) and therefore it is
differentiable and hence b (·) is differentiable in (c, d) as well. Thus from

d

dx
φ (x) =

1

x − b (x)
− 1 − b′ (x)

x − b (x)
=

b′ (x)

x − b (x)
, x ∈ (c, d)

we have that b′ (x) = 0 if x ∈ (c, d) and this contradicts that b (·) is strictly
increasing. It remains only to check that

bG (x) = x −
∫ x

0
Gn−1 (v) dv

Gn−1 (x)

is equal to b (x) . Now note that
∫ x

0

Gn−1 (u) du =

∫ x

0

e−
∫ v̄

u
1

y−b(y)
dy

(

v̄ − b (v̄)

u − b (u)

)

du =

(v̄ − b (v̄))

∫ x

0

d

du

(

e−
∫ v̄

u
1

y−b(y)
dy

)

du = (v̄ − b (v̄))
(

e−
∫ v̄

u
1

y−b(y)
dy

)∣

∣

∣

x

0
=

(v̄ − b (v̄)) e−
∫ v̄

x
1

y−b(y)
dy.

Since

Gn−1 (x) = e−
∫ v̄

x
1

y−b(y)
dy

(

v̄ − b (v̄)

x − b (x)

)

=

∫ x

0
Gn−1 (u) du

x − b (x)

we conclude that

bG (x) = x −
∫ x

0
Gn−1 (u) du

Gn−1 (x)
= x − (x − b (x)) = b (x) .

QED

Example 1 Let us consider b (x) = x/2, x ∈ [0, 1] . Then if there are n
bidders,

G (x) = e−
1

n−1

∫ 1
x

2
y
dy 1

x
1

n−1

= x
1

n−1 .

If n = 3 then G (x) =
√

x.
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3 The model with a more general valuation

Suppose now that the set of signals of bidder i is an abstract probability space
(X, T , P ) and if bidder i has a signal xi ∈ X his valuation is Vi = u (xi) where
u : X → [0, v̄] . If the distribution

Fu (l) = Pr (u (x) ≤ l) , l ∈ [0, v̄]

belongs to F then we can easily see that

bu (x) = bFu
(u (x)) (1)

is a symmetric equilibrium bidding function.
Is it possible to fix a distribution F and vary the valuation u (·) to obtain

a pre-specified bidding function b (·)? Suppose the set of signals is X = [0, v̄]
with distribution F (x) with a continuous density f (x) > 0. Then we have
the

Theorem 2 Suppose b : [0, v̄] → R is continuously differentiable, strictly

increasing such that b (0) = 0 and

u (x) = b (x) +
b′ (x) F n−1 (x)

(F n−1)′ (x)
=

(b (x) F n−1 (x))
′

(F n−1)′ (x)
is increasing.

Then b (·) is the symmetric equilibrium of the first-price auction if bidders

have valuation Vi (x) = u (x) and the distribution of signals is F .

Proof: First note that Fu (u (x)) = F (x) and therefore using (1) that

bu (x) = u (x) −
∫ u(x)

0
F n−1

u (l) dl

F n−1
u (u (x))

=

u (x) −
∫ x

0
F n−1 (l) u′ (l) dl

F n−1 (x)
=

∫ x

0
u (l) (F n−1)

′
(l) dl

F n−1 (x)
=

∫ x

0
(b (l) F n−1 (l))

′
dl

F n−1 (x)
= b (x) .
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