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1 Introduction

Transactions in markets often involve auctions of various forms. Auctions are used, in
particular, to establish a price when the item sold does not have a predetermined market
value. A number of questions have been raised regarding what auction form to use and
the respective properties of each. Of particular interest is which form generates the highest
revenue to the seller, and how e±cient is the resulting allocation. Questions such as this
have led to the development of an extensive literature on auctions. For a survey of the
literature on auctions see Milgrom(1989) and McAfee and McMillan(1987a). More technical
survey are presented in Wilson (1991) and Klemperer(1999). The most common ¯nding
of this literature is that di®erent auction forms generate the same revenue when bidders'
valuations are independent. Another ¯nding is that a seller can maximize revenue by setting
a reserve price; i.e., a aminimum acceptable bid. Most of the literature on auction has
been based on the assumptions that auctions are held in a monopolistic environment, and
that the number of bidders at the auction is speci¯ed exogenously. A handful of exceptions
which deals with a competitive environment are Burguet and Sakovics(2000), McAfee(1993),
Peters(1994), and Peters and Severinov (2001). Regarding the former assumption, situations
abound in which auctions are conducted in a more competitive environment. The degree
of competition depends on the number of sellers, the availability of similar items sold in
auctions or elsewhere, and how substitutable these items are with the item at a particular
auction. For example, given the uniqueness of pieces of art, their auctioning will most
likely be less competitive than the auctioning of widely available assets, such as treasury
bills. As for the assumption of an exogenously speci¯ed number of bidders, there are several
situations in which the number of bidders is likely to depend on certain attributes of the
auction which are under the control of the seller. Consequently, the number of bidders could
be endogenously speci¯ed. For example, when a relatively high reservation price is set, other
things equal, fewer bidders would be expected to participate.

The purpose of this paper is threefold. First, to investigate how the presence of other
auctions of similar items a®ects seller behavior and outcomes at a particular auction. Sec-
ond, to examine how the allocation of resources is a®ected when potential bidders have more
information than sellers, and bidders can choose in which auction to participate. Third, to
obtain predictions on equilibrium reserve prices. For simplicity, the paper examines a small
number of participants on each sides of the market. The auctioning environment structured
in the paper can have several applications. For example, a limited number of communities
competing with tax incentives to attract investment or the location of a production process
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from a limited number of multinational ¯rms, and the privatizing of public enterprises in
economies in transition, where buyer interest is limited. However, competing auctions envi-
ronment is now a common way by which prices are formed, and the internet as facilitated
the development of such transaction mechanism.

This paper develops a simple static model of competition among two sellers holding ¯rst-
price sealed-bid auctions with identical items. Each seller attempts to induce participation
by two potential bidders. Sellers competition is modelled as a three-stage game. In the ¯rst
stage, each seller publicly announces a reserve price under which no bid would be accepted.
In the second stage, potential bidders consider how much they value the item, and decide
whether to bid in an auction or not; if they decide to bid, they subsequently choose in which
auction to bid. In the third stage, bidders observe the total number of bidders at the auction
and make a bid. In this environment, con°icting interests arise between sellers and potential
bidders. Sellers maximize expected revenue by noncooperatively choosing a reserve price to
induce participation (i.e. increase competition at the auction). Higher participation, in turn,
induces upward pressure on the expected winning bid. The objective of potential bidders
is to minimize competition at the auction and, hence, the price they expect to pay. They
achieve this through randomized participation.

The model introduces an additional in°uence on the choice of reserve price made by a
seller, other than the standard trade-o® presented in the literature on monopoly auctions.
The trade-o® involves the interaction of two con°icting in°uences on the choice of the optimal
reservation price. On the one hand, by setting a higher reserve price, a seller raises the
expected winning bid, thus raising expected revenue. On the other hand, a higher reserve
price lowers the probability of bidder participation, hence lowering the probability of selling
the item. This additional in°uence rises from the e®ect the choice of reserve price by the
other seller has on the participation decision at the seller's auction. This e®ect is explicitly
derived. Moreover, a feature of the model is the presence of discontinuity in sellers' expected
payo® functions when gains from trade are strictly positive for all. This is occurs because
equilibrium participation strategies change discontinuously with respect to the reserve prices.

The introduction of competition on the seller's side (the one controlling the auction rule)
transfers expected rent from sellers to buyers, lowering the expected winning bids. However,
sellers are left with positive expected rent. The model allows for explicit derivation of sym-
metric equilibrium reserve prices and to show that they are above the sellers' costs or outside
option. This result di®ers from the standard Bertrand model in which the introduction of a
second seller drives prices to marginal cost completely eroding the sellers rent. The results
also suggest that the model has the capability of predicting a smoother relationship between
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concentration and industry pro¯ts, much like in a Cournot model. When the gains from
trade are certain, that is when the lowest bidders' valuation is strictly higher than the sellers
costs, the model exhibits payo® discontinuity similar to Hotelling type models. In a sense,
this paper has an Hotelling type location interpretation. Sellers \locate" themselves on the
reserve price space, and buyers choose with which seller to trade based on their reserve price
\location". For extreme parameter values of the distribution of potential-bidders' valuation,
it is shown that a unique, symmetric, pure-strategy equilibrium in reserve prices exists. For
other values however, no equilibrium in pure strategy exists, and that existing Theorems on
discontinuous games are non applicable.

The paper also shows how duopoly auctions can produce ine±cient outcomes in the sense
that items may remain unsold even though bidders have a higher valuation than reserve
prices. This di®ers from the e±cient outcomes produced by the monopoly auction and the
standard Bertrand duopoly model in which sellers compete with prices and information is
symmetric.

Few paper are related to this one. Burguet and Sakovics(1999), Peters and Severi-
nov(1997) and McAfee(1993). They all also consider sellers competition in reserve prices
with endogenous bidder participation through randomization. However, this paper intro-
duces a model discrete distribution of bidders' valuations, while they consider models with
continuous distribution for bidders valuation. Burguet and Sakovics(1999) also consider a
duopoly auction situation with only two bidders. They show that in a two sellers two buyers
environment, the symmetric equilibrium reserve prices are above the sellers' costs. Peters
and Severinov(1997)'s main contribution is a limit equilibrium concept applied to markets
with in¯nitely many buyers and sellers. Like McAfee(1993), they show that the symmetric
equilibrium reserve prices are equal to sellers' costs. McAfee(1993) assumes ¯nitely many
buyers and sellers, but resort to a perfectly competitive argument by ignoring deliberately
how the change in mechanism a®ects buyers equilibrium selection. He shows that when
sellers focus on direct revelation mechanisms, an equilibrium exists with all sellers o®ering
a second-price auction with reserve prices driven down to sellers costs. Peters and Sev-
erinov(1997) account for how buyers respond to changes in mechanisms o®ered by sellers
and get around the analytical di±culties of the two stage game at the limit by retaining
the restrictions imposed by subgame perfection in the ¯nite version of the game. In this
paper, focusing on small markets, I am able to explicitly derive potentila bidders' selection
as a Bayesian-Nash equilibrium. This allows a detailed account of how buyers' respond
to changes in the mechanisms (reserve price) that a deviating sellers would o®er. While
the focus on mixed-strategy equilibrium selection is more compelling in large markets, the
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reason for focusing on small markets is in fact to show that with discrete valuations, the
selection probability can be derived explicitely.As shown in Julien, Kennes and King(2000),
the equilibrium payo®s converge very quickly to the limit values as the number of buyers
and sellers increase, which means that the extent of coordination frictions carries through.
Furthermore, it can be shown that the properties of the equilibrium selection extends to
large market and one can derive the symmetric equilibrium reserve prices in such markets.

Finally, this paper is related to the recent and growing literature that has recently earned
the name of directed search. This literature considers markets in which capacity constrained
sellers commit to either a reserve or a posted price, and buyers select over sellers after ob-
serving the array of prices. Prices then direct buyers' selection. Like in this paper, but
without informational asymmetries, this literature focuses on the symmetric-equilibrium
mixed strategy to capture market frictions. This modelling strategy provides a microfoun-
dation for the standard matching technology used in search models of the labor market.
Therefore, this paper, along with Burguet and Sakovics(1999), Peters and Severinov(1997)
and McAfee(1993), are models of directed search under informational asymmetry. For a
dynamic directed search model with bidding, complete information and homogeneity (see
Julien, Kennes and King (2000)). For static models of directed search with price posting as
opposed to bidding, but with heterogeneity (see Burdett, Shi and Wright(2001), Coles and
Eeckhout(1999) and Shimer(2001)), and Shi(2001) for dynamic models.2

The remainder of the paper is organized as follows. Section 2 introduces and solves
a model of a monopoly auction. Section 3 extends the model of the monopoly auction
to a duopolistic environment, solves for an equilibrium when one exists, and, compares
the outcomes of the two environments. Finally, Section 4 contains a brief summary, the
conclusions, and topics for further research. Most proofs are relegated to appendices.

2 A Monopoly Auction

As a benchmark, consider the following trading activity involving a single seller and two
potential bidders, all risk neutral. The trading activity is modelled as a three-stage game.
In the ¯rst stage, the seller holds a ¯rst-price sealed-bid auction to sell an indivisible item,
in which he makes public a reserve price. In the second stage, potential bidders observe the
reserve price and make a decision to bid or not at the auction. In the third stage, once at

2 While competition in annouced reserve prices does not seem realistic, modelling competition in auctions
with reserve prices remains an important theoretical exploration. For instance, it provides some basis to
address the key issue on why are reserve prices not annouced publicly.
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the auction, each bidder observes the total number of bidders and makes a bid. The item is
sold to the bidder with the highest bid for a price equal to his bid. This formulation di®ers
from the standard model of a monopoly auction in that participation decisions are explicitly
modelled.

A solution of this game is obtained by backward induction, solving ¯rst for the bidding
strategies, then for the participation decisions, and ¯nally for the choice of reserve price.
The following assumptions are made. The seller's value for the item is normalized to zero.
Potential bidders are symmetric and obtain independently their valuation µj 2 fµ;¹µg from
the following distribution function:

Prfµ = µg = ¯; Prfµ = ¹µg = (1 ¡ ¯) (1)

where ¯ 2 (0; 1); and µ < ¹µ are assumed common knowledge. The realized values of µ,
however, are private information to potential bidders. This notation is similar to the one
used in Fudenberg and Tirole(1991) and makes the results of this paper easily comparable
with a textbook type exposition.

2.1 The Bidding Game

Let r be the publicly announced reserve price by the seller, and n 2 f0; 1; 2g be the total
number of bidders at the auction. Individual rationality implies that a bidder never bids
strictly over his valuation, i.e., b · µ. A bidder strategy is a function b : fµ; ¹µg 7¡! [0;¹µ].
Each bidder chooses a bid to maximize:

Expected Utility = µ [Probability of winning] ¡ Expected payment

Using the bid function b, this expected utility can be expressed with the probability of
winning conditional on the bid and the observed reserve price.

U(£; r) = [µ ¡ b] Prfwinjn; b; rg (2)

where £ = (µ1; µ2). Since valuations are discrete, bidding ties are broken by tossing a fair
coin. The implication of using a discrete support of the distribution of types is that high
valuation bidders play a mixed strategy in equilibrium (See Maskin and Riley (1985)). The
equilibrium bids at the auction are described in the following lemma.

Lemma 1 In a ¯rst-price sealed-bids auction with discrete valuations, low valuation bidders
bid their valuation net of their outside option and high valuation bidders randomize. Let
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b(r) and b(r) be the bids submitted by a low and a high valuation bidder respectively. The
equilibrium bids are

b(r) =
(
ri if ni = 1
µ if ni = 2

and

b(r) =

8
>><
>>:

ri if ni = 1

¹µ ¡ (¹µ ¡ µ)¯P iµ (r)
¯P iµ(r) + F (b)(1 ¡ ¯)P i¹µ(r)

if ni = 2

where F (b) is the equilibrium bid distribution with support [µ; bH ], with

bH(r) = ¹µ ¡ (¹µ ¡ µ)¯Pµ(r)
(1 ¡ ¯)P¹µ(r) + ¯Pµ(r)

being the supremum of the bid distribution.

Proof. If r > µ 1and a bidder is not alone then he knows that the other bidder is type
¹µ, perfect information induce bidders to bid their valuation. If r · µ; the demonstration of
the Bayesian equilibrium bids when all types participate follows Maskin and Riley (1985)
and adapted for explicit participation decisions. First focus on type-¹µ behavior. Let ¹(r) =
E[Pµ(r)] = [¯Pµ(r) + (1 ¡ ¯)P¹µ(r)] be the expected participation of a potential bidder held
by all potential bidders. Given that there are only two potential bidders, the conditional
probabilities of facing a competitor or not at the auction given the reserve price are

Prfnjrg =

8
<
:
¹(r) if n = 2 (facing a competitor)
1 ¡ ¹(r) if n = 1 (not facing a competitor)

(3)

For a potential bidder, the probability of facing a competitor of type µ at the auction is

Prfµ ^ n = 2jrg =

8
<
:
¯Pµ(r) if µ = µ
(1 ¡ ¯)P¹µ(r) if µ = ¹µ:

(4)

Once he decides to participate, a potential bidder observes the total number of bidders.
Based on this information, priors about a competitor's type are revised according to Bayes'
rule. The posterior probabilities over a competitor's type are

Prfµjn = 2; rg =
Prfµ ^ n = 2jrg
Prfn = 2jrg

=

8
>>><
>>>:

¯Pµ(r)
¹(r)

if µ = µ

(1 ¡ ¯)P¹µ(r)
¹(r)

if µ = ¹µ:
(5)
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Since type ¹µ randomizes, let F (b) be the cumulative distribution function on [bL; bH ] used in
the mixed strategy. Clearly, bL = µ for if bL > µ a type-¹µ bidder would be better o® bidding
just above ¹µ rather than bL since this would not a®ect his probability of winning and would
reduce his payment.

The conditional probability of winning for type ¹µ when he is facing a competitor at the
auction is

Prfwinjn = 2; r; bg = Prfµ = µjn = 2; rg+ Prfµ = ¹µjn = 2; r; bgF (b)

=
"
¯Pµ(r)
¹(r)

+ F (b)
(1 ¡ ¯)P¹µ(r)
¹(r)

#
(6)

since a bid of b = µ is a measure-zero event. The expected utility of a type-¹µ bidder is

U((¹µ; µ); r) = (¹µ ¡ b)
"
¯Pµ(r)
¹(r)

+F (b)
(1 ¡ ¯)P¹µ(r)
¹(r)

#
: (7)

Any bid made as a part of a mixed strategy must yield the same expected payo®. The
expected payo® at the in¯mum of the support of the mixed strategy distribution is

U((¹µ; µ); r) = (¹µ ¡ µ)
"
¯Pµ(r)
¹(r)

#
: (8)

where F (µ) = 0. Note that the support of a probability distribution is the smallest closed
set that has probability 1, hence µ can belong to the support of type-¹µ bidder's equilibrium
strategy even though playing µ with positive probability would risk tying with a type-µ bidder
and yield a lower expected utility. The equilibrium bid b and its equilibrium distribution
are solved for by equating 6 and 7. Last, because F (bH ) = 1; this implies that

bH(r) = ¹µ ¡ (¹µ ¡ µ)¯Pµ(r)
(1 ¡ ¯)P¹µ(r) + ¯Pµ(r)

< ¹µ (9)

The equilibrium strategy for a type-µ bidder to bid his valuation since he never wins again
a type-¹µ bidder. Furthermore, a bid below µ is not an equilibrium since it yields a zero
probability of winning. Therefore, a type-µ bidder always obtains zero expected utility at
the auction.

In this context, the equilibrium bids depend on the reserve price via the participation
decision. Hence, the probability of winning depends on the equilibrium participation deci-
sions.

7



2.2 Participation Decision

The decision whether to become a bidder or not, after a potential bidder observes his valu-
ation and the reserve price, is a function Pµ(r) : [0; 1] 7¡! f0; 1g de¯ned as

Pµ(r) =

8
<
:

1 if µ ¸ r
0 otherwise

(10)

This function is the probability that a type µ participates in the auction, given the observed
reserve price.

Using equation 3 the ex ante expected utility before one decides to participate at the
auction is

R(£; r) =
2X

n=1
PrfnjrgU (£; r): (11)

Using a standard individual rationality argument,

Pµ(r) =

8
>><
>>:

1 if R(£; r) ¸ 0

0 otherwise.
(12)

Note that this formulation encompasses the case when r > µ. In such case, Pµ(r) = 0
and P¹µ(r) = 1, which yields U ((¹µ; µ); r) = 0.

2.3 The Seller's Decision Problem

A seller who chooses to sell an indivisible item using a ¯rst-price sealed-bid auction in which
he announces a reserve price r, solves the following decision problem

max
r2<

¦(r) =
2X

n=0
¼n(r)B(r ; n)

(13)

where ¼n(r) =

0
@ 2
n

1
A¹(r)n(1 ¡ ¹(r))2¡n is the probability that the seller be visited by n

bidders and B(r ; n) is the expected winning bid conditional on having n bidders at the
auction. Note that to simplify notation, £ is omitted as an argument of ¼n(r); B(r ; n) and
¦(r) for the monopoly and duopoly models. The probabilities that a seller is visited by 0,
1, and 2 bidders are, respectively

¼0(r) = (1 ¡ ¹(r))2

¼1(r) = 2¹(r)(1 ¡ ¹(r)) (14)

¼2(r) = (¹(r))2:
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The following lemma describes the expected winning bid at the auction.

Lemma 2 The expected winning bid at the auction is

B(r ;n) =

8
>>>><
>>>>:

r if n = 1

µ +
"
(1 ¡ ¯)P¹µ(r)
¹(r)

#2
(µ ¡ µ) if n = 2

(15)

Proof. See Appendix A.
If only one bidder visits the auction, the seller is paid his reserve price. The expected

winning bid when n = 2 is a weighted average of µ and ¹µ. For example, if r > µ then
Pµ(r) = 0 and B(r ; 2) = ¹µ. It is easily shown that B(r ; 2) ¸ µ for all r 2 [0; ¹µ].

The seller's maximization problem becomes

max
r2<

¦(r) = ¼1(r)r + ¼2(r)B(r ; 2) (16)

the solution of which is presented in the following proposition.

Proposition 1 Let ¹̄(µ; ¹µ) = 2(¹µ¡µ)
(2¹µ¡µ): The optimal reserve price is

r¤ = argmax
r

¦(r) =

8
>><
>>:

¹µ if ¯ 2
h
0; ¹̄(£)

i

[0; µ] if ¯ 2
h
¹̄(£); 1

i
:

(17)

Proof. The seller's expected payo® can be written as

¦(r) =

8
<
:

2¯(1 ¡ ¯)r+ (1 ¡ ¯)2¹µ if r > µ
µ + (1 ¡ ¯)2(¹µ ¡ µ) if r · µ: (18)

The obvious optimizing values are r¤ = ¹µ if r > µ, and r¤ 2 [0; µ] otherwise. Let ¢(¯;µ; ¹µ) =
¦(r = ¹µ) ¡ ¦(r 2 [0; µ]) and set ¢(¯;µ; ¹µ) = 0 to ¯nd ¹̄(µ;¹µ) = 2(¹µ¡µ)

(2¹µ¡µ) .
Figure ?? illustrates the result.

[Insert Figure 1 here]
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Proposition 1 simply states that, for relatively small probability that potential bidders are
of low type, the seller maximizes expected revenue by choosing a unique reserve price which
induces only type-¹µ potential bidders to participate at the auction. When the probability
that potential bidders are of low type is relatively large, the seller is indi®erent between any
reserve prices that induce both types to participate at the auction. In this case, uniqueness
of the optimal reserve price no longer holds. This follows from the binary feature of the
participation decision. When the seller chooses a reserve price below µ: he is certain he will
face two bidders; he will realize a sale with certainty; and, he will always be paid a higher
price than his reserve price. For a given distribution of valuations, the seller's optimal
reserve price re°ects the trade-o® between a higher expected winning bid and an increased
probability of no sale (no participation). A higher expected winning bid is induced through
the information revealed from the observation of the total number of participants. However,
it can be shown that the results of the bidding game do not depend on the observability of
the number of participants. For example, if the number of participants is kept secret but the
seller announces a reserve price of r > µ, a potential bidder can deduce from the observed
reserve price that only type ¹µ participates, and thus bid ¹µ. Therefore, the assumption made
on the observability of the number of participants is innocuous. This is shown in McAfee
and McMillan(1987b) for a more general environment.

In addition, Proposition 1 implies that there exists a speci¯c value of the parameter
¯, i.e., ¹̄(µ;¹µ), such that the seller is indi®erent between reserve prices that induce only
type ¹µ to participate and reserve prices that induce both types to participate. Consider the
following de¯nition.

De¯nition 1 A key parameter is de¯ned as a parameter value of ¯; such that a seller
is indi®erent between at least two reserve prices, given the potential bidders' equilibrium
participation decisions and bidding strategies.

The value of the key parameter depends on the values of the support of the distribution of
valuations. Therefore, the region of the parameter space of ¯ 2 [0; 1] for which a particular
reserve price is an equilibrium choice, depends on the values of µ and ¹µ. This yields the
following comparative statics:

@¯
@µ

= ¡ 2µ
(2µ ¡ µ)2 = ¡@¯

@µ
< 0 (19)

For higher dispersion in potential bidders' valuations, the range of beliefs that induce all
types of potential bidders to participate is smaller.
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This notion of key parameters is particularly useful in order to rank a seller's payo® for all
possible deviations when expected payo® is discontinuous. The following section introduces
competition on the seller's side.

3 A Duopoly Auction Model

Consider two sellers who choose to sell identical items by simultaneously using a ¯rst-price
sealed-bid auction in which they publicly announce a reserve price of ri 2 [0; 1], i 2 fa; bg:3
Each seller has a single item to sell. Potential bidders observe the reserve prices and decide
to bid or not at an auction; if they decide to bid, they choose in which one of the two
auctions to bid. At an auction, a bidder observes the total number of bidders and makes a
bid. Solutions to the game are obtained by backward induction, solving ¯rst for the bidding
game, then for the participation game, and, ¯nally, for the sellers' game.

The formulation and the results of the bidding game Lemma 1 of the monopoly section
is still valid with the only exception of a superscript to identify a particular auction. There
using ni for the total number of bidders in auction i; P iµ (r) the probability with which type-
µ bidder selects auction i, ¹i(r) the expected participation in auction i, and U i(£; r) the
expected payo® from choosing auction i 2 fa; bg, we have the equilibrium bidding behavior
in each auction.

3.1 The Participation Game

The principal implication of having two sellers is that potential bidders have an outside
option in their desire to acquire one item. After potential bidders have observed their
valuations and the vector of reserve prices r = (ra; rb), they make a participation decision.
Peters and Severinov(1997) analyse both cases when bidders make a participation decision
before or after they learn their valuation. In this model, like in McAfee(1993), since bidders
learn their valuation before participation, a participation decision involves whether to become
a bidder or not, and where to bid. Formally, it is a function P iµ : [0; 1] 7¡! [0; 1] with
P
i2fe;a;bg P iµ(r) = 1 and

P eµ (r) =

8
<
:

1 if µ < minfra; rbg
0 otherwise.

(20)

3 There is an issue of commitment in this model as well as all directed search models with ¯nite and large
markets. A seller selected by only one bidder has the incentive to increase the reserve price. This is one of
the weaknesses of this modelling strategy.
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The function P eµ (r) represents the decision to become a bidder and the superscript e (for
entry) refers to the participation decision. If P eµ (r) = 1; a type-µ potential bidder does not
participate.

Participation strategies and their corresponding payo®s (to be de¯ned later) constitute
a Bayesian-Nash game: at the time of the participation decision, potential bidders have
private information about their valuation.

Using equation 3 with the appropriate superscript, the ex ante expected payo® in auction
i is

Ri(£; r) =
P2
ni=1 PrfnijrgU i(£; r; ni)

= ¹i(r)U i(£; r; ni = 2) + (1 ¡ ¹i(r))U i(£; r; ni = 1)
(21)

where U i(£; r;ni = 1) = (µ ¡ ri), the expected utility of type µ bidder when he faces no

competitor in auction i; and U i(£; r;ni = 2) = U i((¹µ; µ); r) = (¹µ ¡ µ)
"
¯P iµ(r)
¹i(r)

#
.

Once they choose to participate in the market, potential bidders maximize their ex ante
expected payo® by choosing P iµ(r) such that

Ra(£; r) = Rb(£; r) (22)

and
P aµ (r) +P

b
µ (r) = 1: (23)

The following proposition summarizes the equilibrium participation strategies.
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Proposition 2 The unique, symmetric-equilibrium of the Bayesian-Nash participation game
is

D
P eµ (r); P aµ (r); P

a
¹µ (r)

E
=

8
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

D
1;0; 12

E
if ra = rb = ¹µ

D
1;0; ¹µ¡ra¡¯(¹µ¡rb)

(1¡¯)(2¹µ¡ra¡rb)

E
if ra > µ; rb > µ

D
0;1; (1¡¯)(¹µ¡ra)¡¯(µ¡rb)(1¡¯)(2¹µ¡ra¡rb)

E
if ra · µ · rb < ¹rb; ra 6= rb

h0; 1;1i if ra · µ < ¹rb · rb; ra 6= rb
D
0;0; ¹µ¡ra¡¯(¹µ¡µ)

(1¡¯)(2¹µ¡ra¡rb)

E
if ¹ra > ra ¸ µ ¸ rb; ra 6= rb

h0; 0;0i if ra ¸ ¹ra > µ ¸ rb
D
0; 12 ¡ (ra¡rb)

2¯(2µ¡ra¡rb) ;
1
2

E
if ra < µ; rb < µ

D
0; 12 ;

1
2

E
if ra = rb = µ

(24)

where
¹ri =

h
¹µ ¡ ¯(¹µ ¡ µ)

i
; P e¹µ (r) = 0 for all r 2 [0; ¹µ]

and D
P bµ (r);P

b
¹µ (r)

E
=

D
(1 ¡ P aµ (r)); (1 ¡ P a¹µ (r))

E
:

Proof. See Appendix A1.
This proposition is one of the main results of this paper. It shows precisely how the

equilibrium participation decisions depend on the vector of reserve prices. For some vectors
of reserve prices, a potential bidder maximizes his ex ante expected payo® by choosing
explicitly which auction to visit. While for other vectors of reserve prices, he maximizes
his ex ante expected payo® by choosing randomly which auction to visit. By making a
random choice, a potential bidder minimizes the opportunity cost of visiting any auction.
Furthermore, a random choice re°ects the negative externality on the price he expects to
pay, created by the presence of the other bidder at the auction. Suppose ra < rb, in a
standard Bertrand model, all buyers would visit seller a. In this model, buyers visit seller a
with a higher probability. A buyer understands that the other buyer randomizes. If he visit
seller a, he will pay a lower price if he is alone than what he will pay if alone visiting seller b.
However, he is more likely not to be alone at auction a than at auction b, in which case he will
pay a higher price. This is the explicitely derived equilibrium mixed-strategy participation
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as in Julien, Kennes and King(2000) but with informational asymmetry.4 Because of their
focus on limit equilibrium and continuous valuations, Peters and Severinov(1997) are unable
to do this.

An interpretation of the equilibrium participation strategies is to consider them as the
potential-bidders demand function for the right to bid at an auction. From a seller's view-
point, the equilibrium participation strategies are used to specify an expected demand to
participate in his auction in the following way:

Expected demand = 2[¯P iµ(r) + (1 ¡ ¯)P i¹µ(r)] = 2¹i(r): (25)

3.2 Sellers' Game

A strategy for a seller is a public announcement of a reserve price ri 2 <+ with i = a; b: The
expected payo® of a seller i is

¦i(r;n) =
2X

ni=1

¼ini(r)B
i(r ;ni) (26)

where ¼ini(r) is the probability that a seller i is selected by ni potential bidders, andBi(r ; ni)
is the expected winning bid given the vector of reserve prices r = (ra; rb), conditional on
the number of bidders ni at the auction. The expected winning bid is established in the
following lemma.

Lemma 3 The expected winning bid at an auction for a competing seller is

Bi(r ; ni) =

8
>>>><
>>>>:

r if ni = 1

µ +
"
(1 ¡ ¯)P i¹µ (r)
¹i(r)

#2
(µ ¡ µ) if ni = 2

Proof. Same as Lemma 2.
This lemma is similar to Lemma 2, except that the participation decision is a participation

strategy derived as an equilibrium of a Bayesian-Nash game among potential bidders.
The probability that a seller i is visited by ni bidders is5

¼ini(r) =

0
@ 2
ni

1
A¹(r)ni[1 ¡ ¹(r)]2¡ni (27)

4 It is important to notice that there exist pure strategy equilibria in this game for which a bidder always
visits auction a, and the other always visits auction b, and vice versa. The existence of these equilibria have
been demonstrated in the directed search literature, namely, in Julien, Kennes and King (2000).

5 In what follows, let ¹a(r) = ¹(r) and ¹b(r) = 1 ¡ ¹(r).
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The respective probabilities of being visited by 0, 1, and 2 bidders are

¼a0(r) = (1 ¡ ¹(r))2 = ¼b2(r)

¼a1(r) = 2¹(r)(1 ¡ ¹(r)) = ¼b1(r) (28)

¼a2(r) = ¹(r)2 = ¼b0(r)

Since sellers choose their reserve price simultaneously, an equilibrium vector of reserve
prices is found by a standard Nash argument,

¦i(r¤i ; r
¤
¡i) ¸ ¦i(ri; r¤¡i) (29)

for all i = a; b and ri 6= r¤i 2 <+. The equilibrium reserve price for a seller is not only the
result of the standard trade-o®, but also the result of the in°uence of the competing seller's
reserve price on the optimal participation strategies of potential bidders.

Proposition 3 Let the low-type valuation of a potential bidder be µ = 0. For every ¯ 2 [0; 1],
the vector of reserve prices (r¤a; r¤b) =

³
(1 ¡ ¯)¹µ=2; (1 ¡ ¯)¹µ=2

´
is the unique, symmetric

equilibrium of the sellers' game.

Proof. Given that sellers are symmetric, all proofs in the remainder of the paper are
done only for one seller's payo®. (In order to ease notation, r is omitted as an argument of
¹ in the following proof. )

Since both reserve prices are above µ, Pµ(r) = 0 and P¹µ(r) =
¹µ¡ra¡¯(¹µ¡rb)

(1¡¯)(2¹µ¡ra¡rb) , which imply
that B(r ; 2) = ¹µ. Seller a maximizes

¦(ra; rb) = ¼1(r)ra + ¼2(r)B(r ; 2) (30)

= 2¹(1 ¡ ¹)ra + ¹2¹µ

by choosing ra.
@¦(ra; rb)
@ra

= 2¹(1 ¡ ¹) + 2(1 ¡ 2¹)
@¹
@ra
ra + 2¹

@¹
@ra

¹µ (31)

Using the fact that
@¹
@ra

= ¡ (1 ¡ ¹)
(2¹µ ¡ ra¡ rb)

(32)

yields

@¦(ra; rb)
@ra

= 2¹(1 ¡ ¹)
(
1 ¡ (¹¹µ + ra(1 ¡ 2¹))

¹(2¹µ ¡ ra ¡ rb)

)

= ¼1(r)
(
1 ¡ (¹¹µ + ra(1 ¡ 2¹))

¹(2¹µ ¡ ra ¡ rb)

)
: (33)
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Setting it equal to zero
¡ra(1 ¡ ¹) + ¹(¹µ ¡ rb) = 0: (34)

Substituting the value of P¹µ(r) in ¹ and rearranging

¹µ(1 ¡ ¯) + ¯rb ¡ (2 + ¯)ra = 0 (35)

yields the reaction function

ra(rb) =
¹µ(1 ¡ ¯) + ¯rb

(2 + ¯)
: (36)

A similar expression exists for seller b

rb(ra) =
¹µ(1 ¡ ¯) + ¯ra

(2 + ¯)
: (37)

These reaction functions yield r¤i = (1¡¯)¹µ
2 for i = a; b. Uniqueness is established from the

slope of the reaction functions, which are less than one for all ¯ 2 [0; 1]. That means that
these functions cross only once over the strategy space. Consider a deviation to ri = 0 (a
non-local deviation) by one seller when the other seller sets r¤¡i =

(1¡¯)¹µ
2 . Let 4(¯;µ; ¹µ) =

¦((1¡ ¯)¹µ=2; (1¡ ¯)¹µ=2)¡¦(0; (1 ¡¯)¹µ=2). It can be shown that 4(¯;µ; ¹µ) = 2¹µ+3¯ +
8¯2+ 3¯3 > 0 for all ¯ 2 [0; 1]. Notice that if ¯ = 1 then ra = rb = 0 is an equilibrium. The
second-order conditions are easily shown to be satis¯ed since

@2¦(ra; rb)
@r2a

= ¡2(1 ¡ ¹)(¹µ ¡ rb + rb)
¹(2¹µ ¡ ra¡ rb)2

< 0 (38)

Figure 2 depicts this result.

[Insert Figure 2 here]

The equilibrium reserve prices can be represented by the use of the reaction functions
de¯ned in (36) and (37), and shown in Figure 3.

[Insert Figure 3 here]
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These reaction functions exhibit strategic complementarity in a manner similar to the
Bertrand-di®erentiated product environment. In the model of this paper, it is the het-
erogeneity of consumers that yields this form of reaction functions, not heterogeneity of
the product. Strategic complementarity is an implication of the equilibrium participation
strategies. When a seller reduces his reserve price, potential bidders place more weight into
participating in this seller's auction. The other seller would then react by decreasing his
price. The similarity with the Bertrand di®erentiated product is not surprising. Each seller
is selling his auction through a reserve price. There is a probability of winning associated
with each auction which depends on the equilibrium participation strategies, themselves
dependent on the potential bidders types.

Consider the situation in which their is always gains from trade, i.e. µ > 0. Stan-
dard di®erential arguments cannot be used to solve the sellers' game in this case because of
the discontinuous payo® functions that this assumption creates. A seller's expected payo®
changes continuously as he increases his reserve price until it reaches a value ri = µ, where it
falls discontinuously. This is a direct implication of the discontinuity in the equilibrium par-
ticipation strategies formulated in Proposition 2. It is also an implication of the assumption
of discrete distribution of valuations.

In order to ¯nd an equilibrium vector of reserve prices, consider the following terminology.

De¯nition 2 A local deviation is a deviation by a seller from an initial reserve price, to
a new reserve price that induces his expected payo® to change continuously.

De¯nition 3 A non-local deviation is a deviation by a seller from an initial reserve
price, to a new reserve price that induces his expected payo® to change discontinuously.

If a vector of reserve prices is to be an equilibrium for the sellers' game, it must resist all
local and non-local deviations by all sellers.

A discontinuity occurs in a seller's payo® function whenever he sets a reserve price equal
to µ. An example of such a discontinuity is shown in Figure 9 Appendix C.

Since a symmetric equilibrium in reserve prices is sought for, the following reserve prices
are the only candidates for such an equilibrium: ra = rb 2 [0; µ); ra = rb = µ ; and,
ra = rb 2 (µ; ¹µ]. In a series of lemmas, the symmetric vectors of reserve prices that resist
unilateral, local deviations will be established. In particular, the following lemma establishes
that if there is an equilibrium in which ra = rb < µ then it must be ra = rb = µ=2. This
reserve price does not depend on the prior belief for the simple reason that when both
reserve prices are below µ, all types participate and perfectly randomize. This can be seen
by replacing these reserve prices in the equilibrium participation strategies in Proposition 2.
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Since there are only two seller, each is visited with probability 1/2. If there were more than
two sellers, such reserve prices would be expected to be decreasing in the number of sellers.

Lemma 4 Let µ > 0, for all ¯ 2 [0; 1], the vector of reserve prices (ra ; rb) = (µ=2; µ=2) is
the only symmetric vector that resists unilateral deviations over [0; µ):

Proof. The participation strategies impose restrictions on the payo® functions that result
in non-di®erentiable points. From Proposition 2, when ri < µ then Pµ(r) = 1

2 ¡ (ra¡rb)
2¯(2µ¡ra¡rb)

and P¹µ(r) = 1=2. The non-di®erentiable points are de¯ned by r`i (r¡i) and rhi (r¡i), the
solution of Pµ(r) = 1 and Pµ(r) = 0, respectively. For all ri < r`i (r¡i) , Pµ(r) = 1 and for
all ri > rhi (r¡i), Pµ(r) = 0. Deviations beyond the non-di®erentiable points induce low-type
potential bidders to adopt pure strategies in the participation game. The expected payo®s
for these deviations have the following property

@¦(ri; r¡i)
@ri

=
(1 ¡ ¯2)

2
¸ 0 (39)

for all ri 2 [0; r`i ][[rhi ; µ]. As a result, a deviation is not pro¯table beyond a non-di®erentiable
point.

Over the interval [r`i (r¡i); rhi (r¡i)], using the equilibrium participation strategies from
Proposition 2 for the case when both reserve prices are below µ,

@¦(ra ; rb)
@ra

= 2¹(1 ¡ ¹) + [2(ra(1 ¡ 2¹) + 2¹µ]
@¹
@ra
: (40)

A similar derivative exists for seller b given symmetry.
Setting this derivative equal to zero yields

2µ ¡ 4ra = 0; (41)

with a similar expression for b. Therefore, (ra; rb) = (µ=2; µ=2).

Lemma 5 For all ¯ 2 [0; 1¡2µ=¹µ], the vector of reserve prices (ra ; rb) = ((1 ¡ ¯)=2; (1 ¡ ¯)=2)
is the only symmetric vector that resists unilateral deviations over (µ; ¹µ].

Proof. The proof of this lemma is essentially the same as the proof of Proposition 3
which deals with local deviations.

Non-local deviations are handled by a comparison of sellers' expected payo® evaluated
at all possible deviations. For that purpose, consider the following de¯nition.

De¯nition 4 The following equalities de¯ne a set of key parameters:
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(1) ¯1(µ; ¹µ) solves ¦i((1 ¡ ¯)¹µ=2; (1 ¡ ¯)¹µ=2) = ¦i(µ; (1 ¡ ¯)¹µ=2).

(2) ¹̄ satis¯es r¤ = (1 ¡ ¯)¹µ=2 = µ .

(3) ¯2 solves limri!¡µ ¦i(ri; µ=2) = ¦i(µ=2; µ=2).

(4) ¯3(µ; ¹µ) solves limri!¡µ ¦i(ri; µ=2) = ¦i(BRi(µ=2); µ=2).

(5) ¯4(µ; ¹µ) solves ¦i(µ=2; µ=2) = ¦i(BRi(µ=2); µ=2);

where BRi(µ=2) > µ is a seller's best response above µ, when the other seller sets r¡i = µ,
and BRi(µ=2) is found from BRa(rb) = (¹µ¡rb)(¹µ¡¯(¹µ¡µ))

2(¹µ¡rb)+¯(¹µ¡µ) (This best response is derived in
Appendix B, equation (102).)

It follows from 1-5 in De¯nition 4 that three key parameters are functions of µ and ¹µ, as
opposed to the monopoly case where only one key parameter was a function of µ and ¹µ. In
order to determine for which subset of the parameter space of ¯ there is an equilibrium in
reserve prices or not, the key parameters of De¯nition 4 are used to partition the parameter
space of ¯. Values of µ and ¹µ induce a ranking over the key parameters. This ranking of key
parameters, in turn, can be used to establish a ranking of the di®erent payo®s from relevant
deviations. For a given value of ¯, the expected payo®s from deviating from a certain vector
of reserve prices can be found.

Lemma 6 The key parameters of De¯nition 4 exist and are unique.

Proof. See Appendix B.
The following results are obtained for the seller's game.

Proposition 4 The vector of reserve prices (ra; rb) = (µ; µ) is not a symmetric equilibrium
of the sellers' game.

Proof. See Appendix B.
At the candidate vector of reserve prices, for all ¯ 2 [0; 1], a seller can increase his

expected payo® discontinuously by undercutting his rival. This is illustrated in Figure 9 in
Appendix C.

Consider the two regions of the reserve price domain [0; µ) and (µ; ¹µ]. Continuity of
sellers' expected payo®s over these two regions, implies the following. Given Proposition 4,
the vectors (ra; rb) = (µ=2; µ=2) and (ra ; rb) = ((1 ¡ ¯)=2; (1 ¡ ¯)=2) are the only candidate
vectors an equilibrium of the sellers' game.
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Proposition 5 [Equilibrium reserve prices below µ:] For given values of µ and ¹µ in
<+, there exists a unique set of key parameters

n
¯2; ¯4(µ; ¹µ)

o
½ [0; 1], such that for all ¯ >

maxf¯2; ¯4(µ; ¹µ)g; the vector of reserve prices (r¤a ; r¤b ) = (µ=2; µ=2) is a unique, symmetric
equilibrium of the sellers' game.

Proof. See Appendix B.
Figures 4, 5, and 6 illustrate the equilibrium described in Proposition 5, for di®erent

values of µ. Figure 7 in Appendix C illustrates a seller's payo® function associated with the
equilibrium of Proposition 5.

When the probability that potential bidders are low type is relatively high, the equilib-
rium reserve prices under competition are lower than µ. This is di®erent from the monopoly
case, where a reserve price below µ was not an equilibrium. In a monopolistic environment,
there is no pressure, other than the distribution over potential bidders' valuations, that
induces the seller to set a reserve price below µ (i.e., potential bidders' only interest is to
acquire the seller's item). Because of the discontinuity in the payo® functions at µ, ¯ needs
to be su±ciently low relative to µ for a deviation to ri = µ or ri > µ to be worthwhile
when the other seller sets µ=2. Intuitively, the probability of low-type bidders has to be
high enough, relative to µ and ¹µ, for a seller to ¯nd it pro¯table to set ri in order to attract
marginal bidders.

Proposition 6 [Equilibrium reserve prices above µ:] For given values of µ and ¹µ in
<+, there exists a unique key parameter ¯1(µ;¹µ) 2 [0; 1 ¡ 2µ=¹µ], such that for all ¯ <
¯1(µ; ¹µ), the vector of reserve prices (r¤a; r¤b) =

³
(1 ¡ ¯)¹µ=2; (1 ¡ ¯)¹µ=2

´
À (µ; µ) is the

unique, symmetric equilibrium of the sellers' game.

Proof. See Appendix B.
Figures 5 and 6 illustrate this equilibrium for di®erent values of µ. Figure 8 shows the

payo® function of a seller at such equilibrium.
The existence of symmetric equilibrium in reserve prices depend on the extent of het-

erogeneity as by the di®erence between µ and ¹µ. For µ > ¹µ=2, that is for low level of
heterogeneity of potential bidders, no equilibrium above µ exists, because ¯1(µ; ¹µ) · 0. This
is shown in Figure 4 below.

The following numerical examples may facilitate the interpretation of the main proposi-
tions and how the existence of symmetric equilibrium in reserve prices for di®erent beliefs
depends on the extent of heterogeneity.

Let ¹µ = 1 and consider the following cases:
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1. Suppose µ = :75, then ¯1(:75;1) = 0 and ¯4(:75; 1) = :07 < ¯2 = :414. Therefore
maxf:07; :414g = :414. From Proposition 5, r¤a = r¤b = :375 is a unique, symmetric
equilibrium of the sellers' game, for all ¯ 2 [:414; 1]. Figure 4 illustrates this case.

[Insert Figure 4 here]

2. Suppose µ = :4, then ¯1(:4; 1) > 0 and ¯3(:4; 1) = :21 < ¯2 = :414. Therefore
maxf:21; :414g = :414. From Proposition 5, r¤a = r¤b = :2 is a unique symmetric
equilibrium of the sellers' game, for all ¯ 2 [:414; 1]. From Proposition 6, for ¯ <
¯1(:4;1), then r¤a = r¤b = (1 ¡ ¯)=2 is a unique symmetric equilibrium of the sellers'
game. This is illustrated in Figure 5.

[Insert Figure 5 here]

3. Suppose µ = :05, then ¯1(:05;1) > 0 and ¯3(:05; 1) = :55 > ¯2 = :414. Therefore
maxf:55; :414g = :55. From Proposition 5, r¤a = r¤b = :025 is a unique symmetric
equilibrium of the sellers' game, for all ¯ 2 [:55; 1]. From Proposition 6, for ¯ <
¯1(:05; 1), then r¤a = r¤b = (1 ¡ ¯)=2 is a unique symmetric equilibrium of the sellers'
game. This is illustrated in Figure 6.

[Insert Figure 6 here]

For other parameter values of the distribution of potential bidders valuation, the following
result is obtained.

Proposition 7 [Non-existence of symmetric equilibrium in reserve prices.]
For given values of µ and ¹µ in <+, there exists a unique set of key parameters,n
¯1(µ;¹µ); ¯2; ¯4(µ; ¹µ)

o
½ [0; 1]; such that for all ¯ 2 (¯1(µ; ¹µ);maxf¯4(µ; ¹µ); ¯2g), there is

no vector of symmetric reserve prices constituting an equilibrium of the sellers' game.

Proof. See Appendix B.
The result of non-existence of a pure strategy equilibrium is common to discontinuous

games. As mentioned earlier, this model shares this feature with Hotelling-location type
models.

A standard implication of increasing competition arises. For extreme belief values, the
introduction of a second seller transfers expected rent from the sellers to the bidders. Under
a single auction a type µ, when he participates, bids his valuation and gets a zero expected
payo®. However, under two auctions, he gets a positive expected surplus from submitting
a bid in one auction. In equilibrium, there is a positive probability that he would face no
competitors at an auction which announced a reserve price below µ. A type ¹µ always obtains
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a positive expected payo® under competition, compared to the monopoly situation where
he obtains a positive expected payo® only when he faces a competitors, and the equilibrium
reserve price is smaller or equal to µ.

In all auctions, the bidder with the highest valuation always gets the item, i.e., auc-
tions are e±cient. In this environment however, when private information is held before
participation decisions are made, the introduction of competition leads to potential ine±-
ciencies (in a Pareto sense). In equilibrium in this model, there is a positive probability
that two potential bidders would end up at the same auction when both reserve prices
are below the potential bidders' valuations. This means that in equilibrium, a seller may
not sell his item even though all potential bidders' valuations are higher than the reserve
price he announced. This kind of ine±ciency is common in models of trading activities in
which participants on opposite sides of the market are matched by an exogenous matching
technology. This model shows how a duopolistic environment under asymmetric informa-
tion yields potential ine±ciencies, despite the feature that participants on both side of the
market are matched endogenously. Of course, this is driven by the static nature of the model.

In the duopoly auction, the existence of mixed strategies can be investigated outside the
region of pure strategies. However, the results from the literature on the existence of an
equilibrium mixed strategy in discontinuous games do not apply in the environment of this
paper. Another di±culty in applying the existence results for discontinuous games, is that
the equilibrium participation strategies of Proposition 2 play the role of a highly discontinu-
ous demand function. This form of discontinuity increases the di±culties in calculating the
boundaries of the interval over which randomization can occur in the sellers' game.

To understand the di±culties involved in computing a mixed strategy equilibrium in this
context, it is worthwhile to consider the usual Bertrand game under perfect information.
In the typical Bertrand game, the demand function is also discontinuous. When one seller
undercuts his rival, even by an in¯nitesimal amount, he serves the entire market. The
discontinuity in the payo® functions such a demand induces, occurs only when sellers set
the same price. Given that strategy spaces are a continuous, when sellers randomize, the
probability of setting the same price is a measure-zero event. Therefore, the discontinuity in
the demand does not pose problems in the calculation of the equilibrium mixed strategies.
In the present model, the demand and the expected pro¯t of sellers become discontinuous
when a seller sets a reserve price equal to µ, independently of the reserve price set by the
other seller. The set of seller strategies that induce a discontinuity on the expected payo®
can be written as R¤(i) = f(ra; rb)jra = µ; 0 · rb · µg Sf(ra; rb)jrb = µ;0 · ra · µg. The

22



only existence result that could be applied in this context is the Theorem 5a formulated
by Dasgupta and Maskin (1986). However, the payo®s associated with the sellers game in
this context do not satisfy the condition (i) of their Theorem. Namely, just by considering
limri!µ;r¡i!r̂¡i ¦i(ri; r̂¡i) 6= ¦i(µ; r̂¡i), for all r̂¡i 2 [0; µ]: A typical form of a seller's expected
payo® function is illustrated in Figure 9 in Appendix C. The question of whether or not
there exist an equilibrium in mixed strategies despite this violation is open. An example of
a discontinuous game that produces a set of discontinuity that is not of measure zero can be
found in Dasgupta and Maskin(1986b).

Until now, the paper has focused on ¯nding symmetric equilibrium reserve prices for
given parameter values. However, from the de¯nition of the key parameters, it is evident
that there exist values of the parameter ¯ for which an asymmetric equilibrium in reserve
prices exists.

Corollary 1 For given values of µ and ¹µ in <+ and
BRi(µ=2) = (¹µ¡ri)(¹µ¡¯(¹µ¡µ))

2(¹µ¡ri)+¯(¹µ¡µ) > µ (as de¯ned in equation (102) in Appendix B), the follow-
ing vector of reserve prices constitutes an equilibrium of the sellers' game.

r = (ri; r¡i) =

8
>>>>>>>>>>><
>>>>>>>>>>>:

((1 ¡ ¯)¹µ=2; µ) if ¯ = ¯1(µ; ¹µ) and µ · ¹µ=2

(µ=2; µ) if ¯ = maxf¯4(µ; ¹µ); ¯2g

(BRi(µ=2); µ=2) if ¯ = ¯4(µ; ¹µ) = ¯2 = ¯3(µ;¹µ)

(BRi(µ=2); µ) if ¯ = ¯4(µ; ¹µ) = ¯2 = ¯3(µ;¹µ)

Uniqueness of equilibrium reserve prices no longer holds when ¯ = ¯4(µ;¹µ) = ¯2 =
¯3(µ; ¹µ). This model is therefore capable of generating equilibrium reserve price dispersion.
Given ex post bidding, reserve price dispersion translates into further price dispersion

3.2.1 Alternative formulation of the results

An alternative way to present the implications of this model is to use the mean and variance
of the underlying distribution of valuations. In this paper, a potential bidder's valuation is
a Bernoulli random variable. Since E[µ] = ¯µ + (1 ¡ ¯)¹µ , the variance of the distribution
of potential bidders' valuations is

¾2 = ¯µ2 + (1 ¡ ¯)¹µ2 ¡ (E[µ])2

= ¯(1 ¡ ¯)(¹µ ¡ µ)2
(42)
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For given values of µ and ¹µ,

@E[µ]
@¯

= ¡(¹µ ¡ µ) < 0

@¾2

@¯
= (¹µ ¡ µ)2(1 ¡ 2¯)<>0 , ¯><1=2

(43)

and a for a given value of ¯;

@E[µ]
@µ

= ¯ > 0

@¾2

@µ
= ¡2¯(1 ¡ ¯)(¹µ ¡ µ) < 0

@E[µ]
@¹µ

= (1 ¡ ¯) > 0

@¾2

@¹µ
= 2¯(1 ¡ ¯)(¹µ ¡ µ) > 0

(44)

For each ¯ , µ; and ¹µ; there is a unique ¾2. For each key parameter obtained earlier, there
is an associated variance. Therefore, each possible values of µ and ¹µ induce a ranking of the
key values of the variance. The result that a pure-strategy Nash equilibrium in reserve prices
exists for extreme values of ¯ can be expressed in variance terms. The above derivatives
show that the variance is small for extreme values of ¯:

Proposition 8 For given values of µ and ¹µ and a su±ciently small variance of the distribu-
tion of valuations of potential bidders, there exists a symmetric Nash equilibrium in reserve
prices, otherwise, no symmetric Nash equilibrium in reserve prices exist.

This proposition makes the results a little more intuitive. For known possible valuations,
the smaller the believed dispersion of the underlying distribution of potential bidders' valu-
ations, the smaller is the gain to a seller by deviating from a given equilibrium reserve price
to attract marginal bidders.

3.3 Perfect information

It is possible to ¯nd the perfect information equilibrium reserve prices. The ¯rst possibility
is when the two potential bidders are known to have the same valuation. From Proposition
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5 and 6, as ¯ 7¡! 0, then r¤ 7¡! ¹µ=2 and as ¯ 7¡! 1, then r¤ 7¡! µ=2. If types are
known to be the same, given that they are assumed to make simultaneous participation
decisions, there exists a unique symmetric equilibrium in reserve prices in which potential
bidders perfectly randomize choosing each seller with probability 1=2. There are also two
pure strategy equilibria in which potential bidders choose di®erent auctions. This case of
bilateral homogeneity under perfect information has been explored in Julien, Kennes and
King(2001). The second possibility is when the two potential bidders are know to have
di®erent valuations. If it is perfect information that one potential bidder is type µ and the
other is type ¹µ, given that sellers are homogeneous, it is easily shown that potential bidders
will perfectly randomize choosing each seller with probability 1=2, and that r¤ = µ=2 is the
unique, symmetric equilibrium reserve prices. It is interesting to note that for symmetric
reserve prices such that all potential bidders choose a seller with positive probability, private
information held by the potential bidders does not seem to matter for sellers equilibrium
choice of reserve prices. This is explained by the fact that very low reserve prices reveal to
potential bidders that all types will participate. Based on that information, each potential
bidders adopt a perfectly random participation strategy.

4 Conclusion

This paper has formulated a model of auctions with discrete bidders valuations in a duopolis-
tic environment. The model is able to produce symmetric equilibrium reserve prices when
the lowest bidder's valuation coincide with the seller's opportunity cost. The model also
makes predictions about symmetric equilibrium reserve prices for extreme beliefs about po-
tential bidders' valuations and when the lowest bidder's valuation is strictly above the seller's
opportunity cost. When sellers are very uncertain about potential bidders' valuations, the
model has no symmetric equilibrium in reserve prices. This result is in line with Burguet
and Sakovics(1999) in that with continuous bidders valuations they are also able to show
that in a dupolistic environment the symmetric equilibrium reserve prices are above the
seller's opportunity cost, but their framework does not allow for an explicit solution for the
equilibrium reserve prices.

Despite the limitation that the model cannot produce equilibria for all parameter values
of the distribution of valuations, the model, nevertheless, accounts for several stylized facts
of competing auctioning processes; namely that, on average, bidders pay a lower price, and
reserve prices are lower than in monopolistic auctions. Furthermore, the model shows that
in a static environment, potential ine±ciencies arise by introducing competition under the
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presence of informational asymmetries. In other words, items which are reserve priced below
the valuation of potential buyers can, nonetheless, remain unsold.

The paper aims to contribute to a better understanding of competitive interactions under
informational asymmetries, and to enrich the literature on price formation and directed
search. Several extensions of the model on this paper are possible. The obvious extension
is to consider ¯nite number of sellers and buyers, and asymptotic results. Other extensions
would be to remove the assumption that the item is indivisible. Extending the model to
consider divisible items and common-value auctions would bring it closer to applications
such as foreign-exchange or treasury-bill auctions. (See Bartolini and Cottarelli (1994)). For
a recent application of the competing auctions paradigm with open bids to trade over the
internet (see Peters and Severinov (2001)). Further extensions would be to allow a choice
of auction format by the sellers under the assumption of private and common value; to
introduce intermediaries; and, to account for private information about sellers' opportunity
costs.
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Appendix A
Proof of lemma 2. Let Eb(µ; r) be the expected winning bid when the bidders are type
£ = (µj; µ¡j) and the reserve price r is announced. Hence Eb((µ;¹µ); r) and Eb((¹µ;¹µ); r) are
the expected winning bid when there is only one type-¹µ bidder and the expected winning
bid when there are two type-¹µ bidders, respectively. Eb((µ;¹µ); r) ¸ µ; and in case of equality
we assume that type ¹µ wins. Denote by B(r ; 2) the expected winning bid by the seller when
two bidders are present at the auction.

It is clear that B(r ; 1) = r. Now it can be shown that B(r; 2) is a convex combination of
µ and ¹µ. From the randomization equations (6) and (7) with appropriate superscripts, b(r)
and F (b) can be solved for, where b is the bid made by a type-¹µ bidder.

b(r) = ¹µ ¡ ¯(¹µ ¡ µ)Pµ(r)
[¯Pµ(r) + F (b(r))(1 ¡ ¯)P¹µ(r)]

(45)

F (b(r)) =
¯(b(r) ¡ µ)Pµ(r)

(1 ¡ ¯)(¹µ ¡ b(r))P¹µ(r)
From the same equation, since F (bH) = 1

bH(r) = ¹µ ¡ (¹µ ¡ µ)¯Pµ(r)
(1 ¡ ¯)P¹µ(r) + ¯Pµ(r)

(46)

and

F 0(b(r)) =
(¹µ ¡ µ)¯Pµ(r)

(1 ¡ ¯)P¹µ(r)(¹µ ¡ b(r))2 (47)

where F 0(b(r)) is the partial derivative of F with respect to b. The expected bid from a
type-¹µ bidder is then

Eb((µ; ¹µ); r) =
Z bH (r)

µ
b(r)F 0(b(r))db(r) (48)

The expected bid can be transformed as follows. Let ® = ¯(¹µ ¡ µ) and ± = (1 ¡ ¯). Then

Eb((µ; ¹µ); r) =
Z bH(r)
µ

b(r)®Pµ(r)
±P¹µ(r)(¹µ ¡ b(r))2 db(r) (49)

Let a(r) = ®Pµ(r)
±P¹µ(r)

then

Eb((µ; ¹µ); r) = a(r)
Z bH(r)
µ

b(r)
(¹µ ¡ b(r))2 db(r) (50)

Rewriting b(r)
(¹µ¡b(r))2 = b(r)

(¹µ¡b(r))
1

(¹µ¡b(r)) = ( ¹µ
(¹µ¡b(r)) ¡ 1)( 1

(¹µ¡b(r)) ) we have

Eb((µ;¹µ); r) = a(r)
Z bH (r)

µ
(

¹µ
(¹µ ¡ b(r)) ¡ 1)(

1
(¹µ ¡ b(r)))db(r) (51)
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= h 1
(¹µ ¡ b(r)) + ln(

¹µ ¡ b(r))ia(r)jbH (r)
µ

= h 1
¹µ ¡ bH(r)

+ ln(¹µ ¡ bH(r)) ¡ 1
(¹µ ¡ µ) ¡ ln(¹µ ¡ µ)ia(r)

Using the above de¯nition of a(r) , bH (r) and ¹(r) to write

Eb((µ; ¹µ); r) = ¹µ +
¯(¹µ ¡ µ)Pµ(r)
(1 ¡ ¯)P¹µ(r)

ln(
¯Pµ(r)
¹(r)

) (52)

Where it can be shown using L'Hôpital's rule that

lim
¯!0
Eb((µ; ¹µ); r) = 1 lim

¯!1
Eb((µ; ¹µ); r) = µ (53)

furthermore @Eb((µ;
¹µ);r)

@µ > 0 and @Eb((µ;¹µ);r)
@¯ < 0. The expected winning bid when two type-¹µ

bidders participate is

Eb((¹µ; ¹µ); r) =
Z bH
µ

2bF 0(b)F (b)db (54)

From the de¯nition of F (b) above

Eb((¹µ; ¹µ); r) = 2
Z bH
µ

b¯2Pµ(r)2(¹µ ¡ µ)(b ¡ µ)
(1 ¡ ¯)2P¹µ(r)2(¹µ ¡ b)3 (55)

Let ® = ¯2Pµ(r)2(¹µ¡µ)
(1¡¯)2P¹µ(r)2

. In order to evaluate the integral, consider

Eb((¹µ; ¹µ); r) = 2®
Z bH
µ

b2 ¡ bµ
(¹µ ¡ b)3db (56)

= 2®h
Z b2

(¹µ ¡ b)3db¡
Z bµ

(¹µ ¡ b)3 dbi

= 2®h
Z
(
b

(¹µ ¡ b) )
2 1
(¹µ ¡ b)db ¡ µ

Z
(
b

(¹µ ¡ b))
1

(¹µ ¡ b)2 dbi

using the same transformation as above for (b=(¹µ ¡ b));

Eb((¹µ;¹µ); r) = 2®h
Z
(
¹µ(¹µ ¡ µ)
(¹µ ¡ b)3 db¡

Z (2¹µ ¡ µ)
(¹µ ¡ b)2 db +

Z 1
(¹µ ¡ b)dbi (57)

= 2®[
¹µ(¹µ ¡ µ)
2(¹µ ¡ b)2 ¡ (2¹µ ¡ µ)

(¹µ ¡ b) ¡ ln(¹µ ¡ b)]bHµ

From the above de¯nitions of bH , ¹(r) and Eb((µ; ¹µ); r) the expected winning bid from two
type-¹µ bidders is

Eb((¹µ; ¹µ); r) = ¹µ ¡ 2¯Pµ(r)
(1 ¡ ¯)P¹µ(r)

[Eb((µ; ¹µ); r) ¡ µ] (58)
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Finally the expected winning bid when n = 2 is

B(r; 2) =
¯2Pµ(r)2

¹(r)2
µ +

2¯(1 ¡ ¯)Pµ(r)P¹µ(r)
¹(r)2

Eb((µ;¹µ); r) +
(1 ¡ ¯)2P¹µ(r)2
¹(r)2

Eb((¹µ; ¹µ); r)(59)

B(r; 2) =
¯2Pµ(r)2

¹(r)2
µ +

2¯(1 ¡ ¯)Pµ(r)P¹µ(r)
¹(r)2

µ +
(1 ¡ ¯)2P¹µ(r)2
¹(r)2

¹µ

B(r; 2) =
Ã
1 ¡ (1 ¡ ¯)2P¹µ(r)2

¹(r)2

!
µ +

(1 ¡ ¯)2P¹µ(r)2
¹(r)2

¹µ

Proof of Proposition 2:
The demonstration simply follows from equating the ex ante expected utility of a potential

bidder among auctions, Ra(µ; r) = Rb(µ; r), for all combinations of r relative to µ. Consider
the following cases

1. ri > µ for all i = a; b. Then Pµ(r) = 0 is a dominant strategy for a low-type potential
bidder. For a type ¹µ, P¹µ(r) is found from

(1 ¡ ¯)(1 ¡ P¹µ(r))(¹µ ¡ ra) + ¯(¹µ ¡ ra) = (1 ¡ ¯)P¹µ(r)(¹µ ¡ rb) + ¯(¹µ ¡ rb) (60)

therefore

P¹µ(r) =
¹µ ¡ ra ¡ ¯(¹µ ¡ rb)

(2¹µ ¡ ra¡ rb)(1 ¡ ¯) (61)

2. ra = rb = ¹µ. The equilibrium strategies are found using L'Hôpital's rule on P¹µ(r),
yielding P¹µ(r) = 1=2.

3. ra · µ · rb with ra 6= rb. In this case Pµ(r) = 1 is a dominant strategy. Type ¹µ's
strategy is found by

[(1 ¡ ¯)(1 ¡P¹µ(r)) + ¯(1 ¡ Pµ(r))](¹µ ¡ ra) + ¯Pµ(r)(¹µ ¡ µ) =

[(1 ¡ ¯)P¹µ(r) + ¯Pµ(r)](¹µ ¡ rb)
(62)

hence

P¹µ(r) =
(1 ¡ ¯)(¹µ ¡ ra) ¡ ¯(µ ¡ rb)

(1 ¡ ¯)(2¹µ ¡ ra ¡ rb)
(63)

4. ra ¸ µ ¸ rb with ra 6= rb. For this case Pµ(r) = 1 is a dominant strategy. P¹µ(r) results
from

f¯(1 ¡ Pµ(r)) + (1 ¡ ¯)(1 ¡ P¹µ(r))g(¹µ ¡ ra) =

f(1 ¡ ¯)P¹µ(r) + ¯Pµ(r)g(¹µ ¡ rb) + ¯Pµ(r)(¹µ ¡ µ)
(64)
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therefore

P¹µ(r) =
¹µ ¡ ra ¡ ¯(¹µ ¡ µ)

(1 ¡ ¯)(2¹µ ¡ ra ¡ rb)
(65)

5. ri < µ for all i = a; b. In this case there are no dominant strategies. The equilibrium
strategies are derived from the following equations

f(1 ¡ ¯)(1 ¡ P¹µ(r)) + ¯(1 ¡ Pµ(r))g(µ ¡ ra) = f(1 ¡ ¯)P¹µ(r) + ¯Pµ(r)g(µ ¡ rb)

f(1 ¡ ¯)(1 ¡ P¹µ(r)) + ¯(1 ¡ Pµ(r))g(¹µ ¡ ra) + ¯(¹µ ¡ µ)Pµ(r) (66)

= f(1 ¡ ¯)P¹µ(r) + ¯Pµ(r)g(¹µ ¡ rb) + ¯(¹µ ¡ µ)(1 ¡ Pµ(r))

therefore
Pµ(r) =

1
2

¡ (ra ¡ rb)
2¯(2µ ¡ ra ¡ rb)

; P¹µ(r) =
1
2
: (67)

6. Finally the case of ra = µ = rb. The equilibrium strategies are found by taking
limra=rb=r!¡µ Pµj (r) of the equilibrium strategies of case 4 using L'Hôpital's rule yields
Pµ(r) = P¹µ(r) = 1=2.

Uniqueness of cases 1 ,2 ,3 and 5 is obvious. For case 4, the uniqueness of the completely
mixed strategies is clear. It must be shown that no pure strategies are an equilibrium
in this case. Consider the possible pure strategies,

< Pµ; P¹µ >= f< 0; 0 >;< 0; 1 >;< 1; 0 >;< 1;1 >g. Without loss of generality let
ra < rb < µ.

(a) Suppose < Pµ; P¹µ >=< 0; 0 >; that is both types are participating in auction b,
and let R(µ)(0;0) be type µ's expected utility when both types play < 0; 0 >.

R(µ)(0;0) = 0; R(¹µ)(0;0) = ¯(¹µ ¡ µ) (68)

consider the deviation ~P¹µ = 1

R(¹µ)(0;1) = ¯(¹µ ¡ rb) > ¯(¹µ ¡ µ) (69)

since rb < µ.

(b) Suppose < Pµ; P¹µ >=< 0; 1 >

R(µ)(0;1) = (1 ¡ ¯)(µ ¡ rb); R(¹µ)(0;1) = ¯(¹µ ¡ ra) (70)
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Consider a deviation ~P¹µ 2 [0; 1]

R(1)(0; ~P1) ¡R(1)(0;1)
= [1 ¡ ~P1 + ¯ ~P1](¹µ ¡ ra) + (1 ¡ ¯) ~P1(¹µ ¡ rb) + ¯(¹µ ¡ µ) ¡ [¯(¹µ ¡ ra)]
= (1 ¡ ¯)(1 ¡ ~P1)(¹µ ¡ ra) + (1 ¡ ¯) ~P1(¹µ ¡ rb) + ¯(¹µ ¡ µ) > 0

(71)

(c) Suppose < Pµ; P¹µ >=< 1; 0 >

R(µ)(1;0) = (1 ¡ ¯)(µ ¡ ra); R(¹µ)(1;0) = ¯(¹µ ¡ rb) (72)

Consider the deviation ~Pµ = 0

R(µ)(0;0) = (µ ¡ ra) > (1 ¡ ¯)(µ ¡ ra) (73)

(d) Suppose < Pµ; P¹µ >=< 1; 1 >

R(µ)(1;1) = 0; R(¹µ)(1;1) = ¯(¹µ ¡ µ) (74)

Consider the deviation ~P¹µ = 0

R(1)(1;0) = ¯(¹µ ¡ rb) > ¯(¹µ ¡ µ) (75)

Therefore no equilibrium in pure strategies exists.

Appendix B
Proof of Proposition 4: The proof consists of showing that it always pays a seller to
deviate from the candidate (µ; µ) for all ¯ 2 [0; 1] and µ 2 [0; 1]. In doing that, ¯rst ¦i(µ; µ)
needs to be evaluated. Given that discontinuity occurs at µ,

¦i(ri; r¡i)jri=r¡i=r =
(2r + (¯µ(2 ¡ µ) + (1 ¡ ¯)2)

4
(76)

where r < µ. Consider the following limit

lim
r!¡µ

¦i(ri; r¡i)jr =
µ + (1 + µ)(1 ¡ ¯)2

4
(77)

= ¦i(µ; µ)

In order to demonstrate that it always pays a seller to set a reserve price just below µ when
his rival sets µ; the payo® ¦i(ri < µ; µ) evaluated at ri = µ is needed

¦i(ri < µ; µ)jri=µ =
(1 ¡ ¯2)µ

2
+ µ +

(1 ¡ ¯)2(¹µ ¡ µ)
4

: (78)
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Comparing the two payo®s, let

4(¯;µ; ¹µ) = ¦i(ri < µ;µ)jri=µ ¡ lim
r!¡µ

¦i(ri; r¡i)jr (79)

=
(1 ¡ ¯2)µ

2
+ µ +

(1 ¡ ¯)2(¹µ ¡ µ)
4

¡
Ã
µ + (¹µ + µ)(1 ¡ ¯)2

4

!

=
¯µ(1 ¡ ¯)

2
+

3µ
4
> 0

This shows that when a seller sets µ, the other seller's payo® increases when he sets ri < µ.
There exists an arbitrary ² > 0 such that for ri 2 N¡

² (µ), 4(¯; µ;¹µ)jri > 0 for all ¯ 2 [0; 1]
and µ 2 [0; 1]. This result is illustrated in Figure 9 in Appendix C.
Proof of Lemma 6:

To show existence and uniqueness of the key parameters, consider:

1. For ¯1(µ; ¹µ). Let 4(¯; µ;¹µ) = ¦(r¤a; r¤b) ¡ ¦(µ; r¤b) where r¤i = (1 ¡ ¯)¹µ=2. 4(¯; µ; ¹µ) is
easily shown to be monotonically decreasing in ¯. Rewrite 4(¯; µ; ¹µ) while omitting
the subscript of r¤;

4(¯; µ;¹µ) =
(1 ¡ ¯2)r¤

2
+

(1 ¡ ¯)2¹µ
4

¡ f(¹µ ¡ µ)2[1 ¡ ¯2µ]
(2¹µ ¡ r¤ ¡ µ)2 (80)

+
(¹µ ¡ µ)(¹µ ¡ r¤)[2µ(1 + ¯) ¡ 2¯(¹µ ¡ µ)] + ¯2(1 ¡ r¤)2(¹µ ¡ µ)

(2¹µ ¡ r¤ ¡ µ)2

Using the envelope theorem

@4(¯; µ; ¹µ)
@¯

= ¡
Ã
(1 ¡ ¯)2(¹µ ¡ µ)2 + (1 ¡ ¯2)(1 + ¯)2

2(2¹µ ¡ µ ¡ r¤)2
!

(81)

¡
Ã
(¹µ ¡ µ)((1 ¡ ¯2)¯ + 4µ(1 + ¯µ))

2(2¹µ ¡ µ ¡ r¤)2
!
< 0

for all ¯; µ 2 [0;1]. Observe that

lim
¯!0

4(¯; µ;¹µ) =
1 ¡ 4µ + 4µ2

2(3¹µ ¡ 2µ)2
> 0 (82)

and
lim

¯!1¡2µ
4(¯; µ;¹µ) = ¡µ(1 ¡ 2µ) < 0 (83)

From the monotonically decreasing feature of 4(¯; µ; ¹µ) and the limit values, it fol-
lows that there exists a ¯1(µ; ¹µ) such that 4(¯;µ; ¹µ) = 0 and for all ¯ · ¯1(µ;¹µ)
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, 4(¯;µ; ¹µ) ¸ 0. This shows that for a relatively small ¯, a deviation to ri = µ
is not pro¯table when the other seller sets r¤. It is obvious from the above, that
¯1(µ; ¹µ) < (1 ¡ 2µ) = ¹̄.

2. For ¹̄, clear by inspection of item 2 of De¯nition 4.

3. ¯2 solves
(1 ¡ ¯2)µ

2
+

(1 ¡ ¯)2
4

=
µ(1 + 2¯ ¡ ¯2) + (1 ¡ ¯)2

4
(84)

Therefore ¯2 = 0:414.

4. ¯3(µ; ¹µ) solves
(1 ¡ ¯2)µ

2
+

(1 ¡ ¯)2¹µ
4

=
(¹µ ¡ ¯(¹µ ¡ µ))2

(3¹µ ¡ µ) (85)

The solution is ¯3(µ; ¹µ) =
(¹µ¡3µ)

+
¡2

p
µ3(3¹µ¡µ)

(¹µ¡µ+2µ2) . It is easily veri¯ed that for any µ 2 [0; ¹µ]
and ¹µ, ¯3(µ; ¹µ) is unique.

5. ¯4(µ; ¹µ) solves
µ(1 + 2¯ ¡ ¯2) + (1 ¡ ¯)2¹µ

4
=

(¹µ ¡ ¯(¹µ ¡ µ))2
(3¹µ ¡ µ) (86)

The solution is ¯4(µ; ¹µ) = 2(¹µ+µ)
+
¡
p

8µ(3¹µ¡µ)
2(¹µ¡3µ) . It is easily veri¯ed that the solution is

unique for all µ 2 [0; ¹µ] and ¹µ.

Proof of Proposition 5:
The proof of this proposition consists of showing that no possible deviations upsets the

candidate (r¤a ; r¤b ) = (µ=2; µ=2) as an equilibrium of the sellers' game.
Lemma 4 establishes that local deviations over [0; µ) are not pro¯table. Deviations to

ri = µ and ri above µ must be considered. In order to investigate these possible deviations,
some properties of a seller's payo® function evaluated at each candidate equilibrium are
needed. The following lemma shows that pro¯t falls discontinuously as soon as a seller sets
ri = µ when the other sets ri = µ=2.

Lemma 7 For a seller, a deviation close to µ is more pro¯table than a deviation to ri = µ
when the other seller sets r¡i = µ=2

lim
ri!¡µ

¦i(ri; µ=2) ¸ ¦i(µ; µ=2); 8¯ 2 [0; 1]: (87)

33



Proof of Lemma 7: Consider the following limit

lim
ri!¡µ

P iµ(r) =
1
2

¡ lim
ri!¡µ

(ri ¡ µ=2)
2¯(2µ ¡ ri ¡ µ=2)

(88)

=
1
2

¡ 1
2¯
< 0

Therefore, the lower bound on the participation strategy is binding, and hence, at the limit
P iµ(r) = 0. The expected payo® at the limit is

lim
ri!¡µ

¦i(ri; µ=2) =
(1 ¡ ¯2)µ

2
+

(1 ¡ ¯)2¹µ
4

: (89)

The expected pro¯t evaluated at µ when the other seller sets ri = µ=2 is

¦i(µ; µ=2) =
2(¹µ ¡ µ)(1 ¡ ¯)(1 ¡ µ=2 + ¯(¹µ ¡ µ))µ + (¹µ ¡ µ)2(1 ¡ ¯)2

(2¹µ ¡ µ ¡ µ=2)2 : (90)

Rearranging

¦i(µ; µ=2) =
4(¹µ ¡ µ)(1 ¡ ¯)(2 ¡ µ + 2¯(¹µ ¡ µ)) + 4(¹µ ¡ µ)2(1 ¡ ¯)2

(4¹µ ¡ 3µ)2
(91)

These payo®s have the following properties:

@ limri!¡µ ¦i(ri; µ=2)
@¯

= ¡¯µ ¡ (1 ¡ ¯)¹µ
2

< 0 (92)

@¦i(µ; µ=2)
@¯

=
¡4(¹µ ¡ µ)(µ(1 + 2¯(1 ¡ µ) + 2(¹µ ¡ µ)(1 ¡ ¯))

(4¹µ ¡ 3µ)2
< 0:

Let 4(¯; µ;¹µ) = limri!¡µ ¦i(ri; µ=2) ¡¦i(µ; µ=2). The function has the following limits

lim
¯!0

4(¯;µ; ¹µ) =
1 + 2µ

4
¡ 4(¹µ ¡ µ)(2 ¡ µ)µ + 4(¹µ ¡ µ)2

(4¹µ ¡ 3µ)2
(93)

=
2µ3 + 7µ(¹µ ¡ µ) + µ

(4¹µ ¡ 3µ)2
> 0

and
lim
¯!1

4(¯; µ; ¹µ) = 0 (94)

for all ¯ 2 [0;1]. This proves the result.
Consider a deviation above µ. The payo®s ¦i(ri; r¡i) are continuous over (µ; ¹µ] because

the equilibrium participation strategies are continuous over that range. A seller would choose
ri > µ to maximize

¦i(ra ; rb) = ¼i1(r)ri + ¼
i
2(r)B

i(r; 2) (95)

= 2¹i(1 ¡ ¹i)ri + (¹i)2
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Lemma 8 Seller i's expected payo® ¦i(ri; µ=2) is concave in ri 2 (µ; ¹µ].

Proof of Lemma 8: Because of symmetry let ¦a(:; :) = ¦b(:; :) = ¦(:; :): Consider the
payo® of seller a. The ¯rst order condition is

@¦(ra; rb)
@ra

= 2¹(1 ¡ ¹) + 2ra(1 ¡ 2¹)
@¹
@ra

+ 2¹
@¹
@ra

= 0 (96)

Using the fact that
@¹
@ra

= ¡ (1 ¡ ¹)
(2¹µ ¡ ra¡ rb)

(97)

yields
@¦(ra; rb)
@ra

= 2¹(1 ¡ ¹)
(
1 ¡ (¹+ ra(1 ¡ 2¹))

¹(2¹µ ¡ ra ¡ rb)

)
= 0: (98)

The second-order condition is

@2¦(ra ; rb)
@r2a

=
2(1 ¡ ¹)

(2¹µ ¡ ra ¡ rb)2
n
2¹(¹µ ¡ rb) ¡ 2ra(1 ¡ ¹) ¡ (3 ¡ 2ra)(1 ¡ ¹)

o
(99)

Given that rb = µ=2, ¹ < 1=2 and ra > rb,

@2¦(ra; rb)
@r2a

= ¡2(1 ¡ ¹) f(1 ¡ µ)(1 ¡ 2¹) ¡ 2ra(1 ¡¹) ¡ (2 ¡ 3¹)g
(2¹µ ¡ ra ¡ rb)2

< 0 (100)

Similar expressions exist for seller b.
With some transformations, the ¯rst-order condition becomes

ra(1 ¡ ¹) ¡ ¹(¹µ ¡ rb) = 0 (101)

ra =
¹

(1 ¡ ¹)(
¹µ ¡ rb):

Substituting the value of P i¹µ(r) =
(¹µ¡ra¡¯(¹µ¡µ))
(1¡¯)(2¹µ¡ra¡rb) in ¹

BRa(rb) =
(¹µ ¡ rb)(¹µ ¡ ¯(¹µ ¡ µ))
2(¹µ ¡ rb) + ¯(¹µ ¡ µ) (102)

which is seller a's best response above µ when seller b sets a reserve price below µ. A similar
expression exists for seller b.

Since the candidate equilibrium (ra; rb) = (µ=2; µ=2) is of particular interest, letBRi(µ=2) >
µ be the best response above µ by seller i when ¡i sets µ=2.

Consider a deviation to ri = µ by one seller when the other sets r¡i = µ=2. The proof
of Lemma 7 implies that as a seller increases his reserve price from an initial reserve price
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below µ, payo® falls discontinuously when it hits ri = µ. The payo® evaluated at a deviation
to ri = µ is limri!¡µ ¦i(ri; µ=2):

Lemma 6 shows the existence of a set of unique key parameters. The relevant properties
of the payo®s involved in the de¯nition of the key parameters are now established.

Lemma 9 The sellers' expected payo®s,

1. ¦i(BRi(µ=2); µ=2) is convex in ¯.

2. ¦i(µ=2; µ=2) is concave in ¯.

3. limri!¡µ ¦i(ri; µ=2) is concave in ¯ if µ=¹µ > 1=2, linear in ¯ if µ=¹µ = 1=2 and convex
in ¯ if µ=¹µ < 1=2.

Furthermore, all three payo®s are strictly decreasing in ¯ for all ¯ 2 [0; 1].

Proof of Lemma 9.
Using the participation strategies for ri > µ > r¡i and simplifying the payo®s yields

¦i(BRi(µ=2); µ=2) =
(¹µ ¡ ¯(¹µ ¡ µ))2

(3¹µ ¡ µ) (103)

@¦i(BRi(µ=2); µ=2)
@¯

=
¡(¹µ ¡ µ)2(1 ¡ ¯(¹µ ¡ µ))2 ¡ 3¯(¹µ ¡ µ))

(3¹µ ¡ µ) < 0

@2¦i(BRi(µ=2); µ=2)
@¯2

= ¡(¹µ ¡ µ)(1 ¡ 4µ + 2µ2) + 2¯(1 ¡ µ4
(3¹µ ¡ µ) < 0

When both reserve prices are µ=2

¦i(µ=2; µ=2) =
µ(1 + 2¯ ¡ ¯2) + (1 ¡ ¯)2

4
(104)

@¦i(µ=2; µ=2)
@¯

= ¡ (¹µ ¡ µ)(1 ¡ ¯)
2

< 0

@2¦i(µ=2; µ=2)
@¯2

=
(¹µ ¡ µ)

2
> 0

lim
ri!¡µ

¦i(ri; µ=2) =
(1 ¡ ¯2)µ

2
+

(1 ¡ ¯)2¹µ
4

(105)

@ limri!¡µ ¦i(ri; µ=2)
@¯

= ¡¯µ ¡ (1 ¡ ¯)¹µ
2

< 0

@2 limri!¡µ ¦i(ri; µ=2)
@¯2

= ¡(¹µ ¡ 2µ)
2

<
=
> 0 i®

<
¹µ

=
> 2µ
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Consider the limit values of the above payo®s,

lim
¯!0

¦i(BRi(µ=2); µ=2) =
1

(3¹µ ¡ µ) >
¹µ + µ
4

(106)

lim
¯!0

[ lim
ri!¡µ

¦i(ri; µ=2)] =
¹µ + 2µ

4

lim
¯!0

¦i(µ=2; µ=2) =
¹µ + µ
4

and

lim
¯!1

¦i(BRi(µ=2); µ=2) =
µ2

(3¹µ ¡ µ) <
¹µ + µ
4

(107)

lim
¯!1

[ lim
ri!¡µ

¦i(ri; µ=2)] = 0

lim
¯!1

¦i(µ=2; µ=2) =
µ
2
>

µ2

(3¹µ ¡ µ)

From these limit values and the properties of the payo® functions de¯ned in Lemma 9
follows this corollary:

Corollary 2 For a given µ 2 [0; ¹µ], the following relations hold:

1. If ¯<>¯1(µ;¹µ) then ¦i(µ; (1 ¡ ¯)¹µ=2)<>¦i((1 ¡ ¯)¹µ=2; (1 ¡ ¯)¹µ=2).

2. If ¯<>¯1(µ;
¹µ) then µ<>r

¤ = (1 ¡ ¯)¹µ=2 .

3. If ¯<>¯2 then ¦i(µ=2; µ=2)<> limri!¡µ ¦i(ri; µ=2).

4. If ¯<>¯3(µ;
¹µ) then ¦i(BRi(µ=2); µ=2)

<
> limri!¡µ ¦i(ri; µ=2).

5. If ¯<>¯4(µ;
¹µ) then ¦i(µ=2; µ=2)<>¦

i(BRi(µ=2); µ=2):

These relationships suggest that limri!¡µ ¦i(ri; µ=2) and ¦i(µ=2; µ=2), as well as
¦i(BRi(µ=2); µ=2) and ¦i(µ=2; µ=2), will cross only once over the parameter space of ¯ 2
[0; 1]. Similarly, it can be concluded that ¦i(BRi(µ=2); µ=2) and limri!¡µ ¦i(ri; µ=2) will
cross once, if and only if the following limits hold:

lim
¯!0

n
¦i(BRi(µ=2); µ=2)

o
=

(¹µ + 2µ)
4

>
1

(3¹µ ¡ µ) = lim
¯!0

(
lim
ri!¡µ

¦i(ri; µ=2)
)
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or equivalently when µ < 0:219.
A ranking among some of the key parameters can be established. First, it follows that

for all µ · 0:219, ¯3(µ; ¹µ) = 0, and for µ > 0:219, ¯3(µ; ¹µ) > 0. Consider the following lemma

Lemma 10 For a given value of µ, if ¯4(µ;¹µ)
<
>¯2 then ¯2

<
>¯3(µ;

¹µ).

Proof of Lemma 10: Consider the case ¯4(µ;¹µ) < ¯2 < ¯3(µ; ¹µ).
Suppose, by way of contradiction, that ¯4(µ; ¹µ) < ¯2 and ¯2 > ¯3(µ;¹µ). Let ¯ = ¯2. On

one hand, Corollary 2 implies that limri!¡µ ¦i(ri; µ=2) = ¦i(µ=2; µ=2)
and ¦i(BRi(µ=2); µ=2) < limri!¡µ ¦i(ri; µ=2) which yields ¦i(BRi(µ=2); µ=2) < ¦i(µ=2; µ=2).

On the other hand ¯ = ¯2 > ¯3(µ; ¹µ). Corollary 2 implies that ¦i(BRi(µ=2); µ=2) >
¦i(µ=2; µ=2), a contradiction.

Now let ¯ 2 (¯2; ¯3(µ;¹µ)) and ¯ < ¯4(µ;¹µ). Corollary 2 implies that limri!¡µ ¦i(ri; µ=2) <
¦i(µ=2; µ=2) and ¦i(BRi(µ=2); µ=2) < limri!¡µ ¦i(ri; µ=2) which yields ¦i(BRi(µ=2); µ=2) <
¦i(µ=2; µ=2). Since ¯ < ¯4(µ; ¹µ), ¦i(BRi(µ=2); µ=2) > ¦i(µ=2; µ=2), a contradiction.

Finally, let ¯2 < ¯ = ¯3(µ;¹µ) and ¯ < ¯4(µ; ¹µ). Corollary 2 implies that ¦i(BRi(µ=2); µ=2) =
limri!¡µ ¦i(ri; µ=2) and ¦i(BRi(µ=2); µ=2) > ¦i(µ=2; µ=2) which yields limri!¡µ ¦i(ri; µ=2) >
¦i(µ=2; µ=2). Since ¯ > ¯2, limri!¡µ ¦i(ri; µ=2) < ¦i(µ=2; µ=2), a contradiction.

The demonstration is similar for other inequalities.
Therefore, given values of µ and ¹µ induce a ranking of the three key parameters described

in the above lemma. It is particularly convenient to compare ¯4(µ; ¹µ) with ¯2. In particular,
consider maxf¯2; ¯4(µ; ¹µ)g.

Proposition 4 establishes that (µ; µ) is not a symmetric-equilibrium vector of reserve
prices for all ¯ 2 [0; 1]. From Lemma 10, no symmetric reserve prices above µ could be an
equilibrium for all ¯ > ¯1(µ; ¹µ). Hence existence and uniqueness of r¤ = µ=2 is established.
This concludes the proof of the proposition.

Proof of Proposition 6:
(Given symmetry of the sellers' payo®s, the proof focuses on seller a's payo®. A similar

result exists for seller b.) Because of the discontinuity of the payo® functions, a di®erential
argument is not su±cient to show unpro¯table deviations. Lemma 6 proves the existence of
a unique parameter ¯1(µ; ¹µ) for all µ. This shows that local deviations are not pro¯table for
a seller.

The next possible deviation is ri 2 [0; µ]. Consider a seller's expected payo® when
ra < µ < rb.

¦a(ra ; r¤b ) = ¼1(r)ra + ¼2(r)B(r;2) (108)
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= 2¹(1 ¡ ¹)ra + ¯¹µ + ¯(1 ¡ ¯)P¹µ(r)µ + (1 ¡ ¯)2P¹µ(r)2

@¦a(ra; r¤b)
@ra

= 2¹(1 ¡ ¹) ¡ f2ra(1 ¡ 2¹) + 2¯µ + 2(1 ¡ ¯)P¹µ(r)g
@¹
@ra

(109)

Rearranging the derivative using the value of ¹ when ra < µ < rb and the fact that

@¹
@ra

= ¡ (1 ¡ ¹)
(2¹µ ¡ ra¡ rb)

(110)

yields
@¦a(ra; r¤b)
@ra

=
2(1 ¡ ¹)

(2¹µ ¡ ra ¡ rb)
n
¹µ + 2ra¹+ ¯¹µ + ¹ ¡ ¯

o
> 0 (111)

since
¹¡ ¯ > 0: (112)

The uniqueness of r¤ follows from Lemma 10 and Proposition 4, where it is shown that
the vectors (ra ; rb) = (µ; µ) is not equilibrium vector of reserve prices for all ¯ 2 [0;1]; hence
for ¯ < ¯1(µ; ¹µ).

Proof of Proposition 7:
The proof follows directly from the following lemma that completes the ranking of the

key parameters.

Lemma 11 The interval B = (¯1(µ; ¹µ);maxf¯2; ¯4(µ; ¹µ)g) is not empty, for every µ 2 [0; ¹µ].

Proof of Lemma 11:
Consider µ 2 [1=2; ¹µ]. Since ¯1(µ; ¹µ) < ¯1(µ;¹µ) = (1 ¡ 2µ=¹µ) and because for all ¯ >

1 ¡ 2µ, r¤ = (1¡¯)¹µ
2 < µ, it follows that ¯1(µ; ¹µ) = 0. From Lemma 6, the exact values

of ¯4(µ;¹µ) and ¯2 are such that for all µ > :14, ¯4(µ; ¹µ) < ¯2. Therefore, over [1=2; 1],
¯1(µ; ¹µ) = 0 < ¯2 = maxf¯4(µ; ¹µ); ¯2g.

Let µ 2 [:29; 1=2). It is still true that ¯4(µ; ¹µ) < ¯2 . Now, for all µ ¸ :29, ¹̄ · ¯2 it
follows that ¯1(µ;¹µ) < ¯2.

If µ 2 (:14; :29) then ¯4(µ;¹µ) < ¯2 < ¹̄. Evaluate 4(¯2; µ) for all µ 2 (:14; :29) to discover
that 4(¯2; µ) < 0 which implies, given the limit values of 4(¯; µ; ¹µ) with respect to ¯, that
¯1(µ; ¹µ) < ¯2.

Consider µ 2 (0; :14], it is found that ¯4(µ; ¹µ) ¸ ¯2. Evaluating 4(¯4(µ;¹µ); µ) to discover
that 4(¯4(µ; ¹µ); µ) < 0, which implies that ¯1(µ; ¹µ) < ¯4(µ;¹µ). Finally let µ = 0. This
implies that ¯4(µ;¹µ) = ¯1(µ; ¹µ) = 1.
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This lemma along with Proposition 4 proves the result.

Appendix C

Figure 1: Reserve Price in a Monopoly Auction

Figure 2: Reserve Price in a Duopoly Auctions with lowest bidder valuation equal to the
seller's opostunity cost.
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Figure 3: Reaction Functions for the Duopoly Auctions

Figure 4: Symmetric equilibrium prices for large values of ¯
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Figure 5: Equilibrium Reserve Prices for Low and High Values of ¯.

Figure 6: Equilibrium Reserve Prices for Low and High Values of ¯.
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Figure 7: Typical seller's payo® when r¤ = µ=2:

Figure 8: Typical seller's payo® when r¤ = (1 ¡ ¯)µ=2:
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Figure 9: Typical seller's payo® when no equilirbium reserve prices exist.
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