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Abstract. We explain essentially all known discounted utility anomalies as arte-
facts of the optimizing behavior of an individual with a time-separable utility
function, who perceives a good as a source of a stochastic consumption stream,
and believes that she can wait for an optimal moment to buy or sell the good. For
this individual, the fair price of the corresponding utility stream is interpreted as
an integral of a deterministic utility stream multiplied by certain non-exponential
factors which we interpret as endogenous discount factors; the factors are dif-
ferent for gains and losses, and depend on the utility function and underlying
uncertainty. We provide analytic expressions and numerical examples for dis-
count factors assuming simple utility functions and gaussian uncertainty.

1 Introduction

In the first three decades of the twentieth century, “time preference” was an-
alyzed mainly qualitatively, as interaction among different factors which may
influence intertemporal decisions. In 1933, Paul Samuelson invented the dis-
counted utility theory (DU theory), which compressed the influence of many

1Corresponding author.
The first author is grateful to Efe A. Ok who brought the problem of the DU anomalies to
her attention. We are thankful to Max Stinchcombe, Dale Stahl and Takashi Hayashi for
discussion.
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feasible factors into one number: the discount rate. In continuous time models,
an individual with the time-separable utility u calculates the value of consump-
tion of a stream ct over time interval (0, T ) according to the formula

U =
∫ T

0

e−rtu(ct)dt, (1.1)

where r > 0 is the discount rate. In discrete time models, the counterpart of
equation (1.1) is

U =
T∑

t=0

δtu(ct)dt, (1.2)

where δ ∈ (0, 1). Due to the analytical simplicity (and probably, similarity to
the compound interest formula), the exponential discounted utility model was
almost instantly adopted as a standard tool in intertemporal models, although
Samuelson suggested the DU model as a convenient tool only, and explicitly
disawoved an idea that individuals really optimize an integral of the form (1.1).
Almost 30 years later, Koopmans (1960) constructed an axiomatic theory of time
preference which lead to the exponential discount factor in Samuelson model.
As a result, a general feeling emerged that the DU model was justified. However,
later, in many empirical studies, it was shown that the real behavior of individ-
uals did not agree with the exponential discounting model. We will consider the
following anomalies of discounted utility model (DU anomalies):

1. hyperbolic discounting, which means that the instantaneous discount rate
for gains decreases with time (in the DU model, it is constant);

2. the sign effect (gains are discounted more than losses);

3. the delay-speedup asymmetry: if the change of the delivery time of an
outcome is perceived as an acceleration from a reference point, then the
imputed discount rate is larger than if the change is perceived as a delay;

4. the negative discounting for losses: the individual prefers to expedite a
payment;

5. the magnitude effect (small outcomes are discounted more than large ones);

6. preference for improving sequences.

All these anomalies (and some others) have been well-documented. For the
discussion of DU anomalies and references to the literature on each type of DU
anomalies, see the excellent review Frederick et al. (2002).

To account for these anomalies, several alternative (types of) models have
been developed. In the (β, δ)- model of quasi-hyperbolic discounting introduced
first by Phelps and Pollak (1968), equation (1.2) is replaced by

U = u(c0) +
T∑

t=1

βδtu(ct)dt, (1.3)
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where β, δ ∈ (0, 1). Equation (1.3) is analytically simple, and captures many
qualitative features of hyperbolic discounting. Thus, as in Samuelson (1933),
the discount factors are postulated. Another strand of literature initiated by
Koopmans (1960) deals with the axiomatic systems for time preferences, which
are consistent with DU anomalies - see Ok and Masatlioglu (2003) and the bibli-
ography therein. Fudenberg and Levine (2004) suggested a “dual-self” model as
a unified explanation for several empirical regularities. Habit formation models,
reference point models and a number of other models incorporate non-standard
features into the utility function. Still other alternative models depart from the
DU model even further (once again, we refer the reader to the review Frederick
et al. (2002) for more details and extensive bibliography).

In this paper, we neither postulate the non-standard dependence of the dis-
count factor on time as in the quasi-hyperbolic discounted utility models nor
deduce it from some superficial axioms for time preference. Instead, we derive
general explicit formulas for the discount factors for gains and losses from simple
plausible general assumptions about the behavior of individuals who are not ex-
posed much to the practice of modern financial markets, and demonstrate that
these discount factors exhibit the DU anomalies. Our starting point is that the
individual perceives the future – hence the utility of consumption – as uncertain.
The uncertainty may be caused by both changes in the anticipated consumption
level and utility function per se: certainly, the satisfaction from possession of
a certain widget may change (and typically, changes) in a not completely pre-
dictable fashion. The importance of these factors is well-understood, and, as
Frederick et al. (2002), p. 384, notice, once these and other confound factors
are accounted for, there may be no place left for “pure time preference”. The
main contribution of our paper is the observation that additional simple plau-
sible behavioral assumptions suffice to deduce the DU anomalies as results of
the optimizing behavior of the individual in an uncertain environment. We also
show that if the uncertainty is taken into account but the optimizing behavior
postulated in our model is not, then it is difficult to reproduce the DU anomalies
observed in empirical studies. We provide numerical examples for simple utility
functions and the Brownian motion model for shocks, which demonstrate that
our model gives relatively simple analytic expressions for discount factors, and
reproduces almost all known discounted utility anomalies. In addition, we show
that for some specifications of the utility function, the (β, δ)-model of the hy-
perbolic discounting for gains arises naturally as a discrete time approximation;
for losses, a similar (β, δ)-model arises but with β > 1. For other specifications
of the utility function, different simple continuous time approximations seem to
be natural; they can be regarded as continuous time analogs of the (β, δ)-model.

To demonstrate that under the behavioral assumptions which we make, the
optimizing behavior of the individual in an uncertain environment are sufficient
for a consistent explanation of the DU anomalies (certainly, the other factors
considered in the literature contribute to the DU anomalies as well), we make
relatively standard assumptions about properties of the utility function and un-
derlying uncertainty. In fact, the only departure from the standard utility theory
which we have to make is the first basic assumption of the prospect theory. We
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assume that the individual assesses the utility of gains and disutility from losses
using the present consumption level as the reference point. In other words, when
making decisions concerning consumption ct in the future, the individual con-
siders u(ct − c0), and not u(ct) as in the standard utility theory. However, in
contrast to the prospect theory, we do not need to assume the loss aversion of
u. To be more specific, we do not assume that the instantaneous utility function
for gains, u(c) = uG, is smaller than the (dis)utility function, uL(c) = −u(−c)
for losses in order to explain the delay-speedup asymmetry and sign effects (cf.
Loewenstein (1988) and Loewenstein and Prelec (1992) who used the loss aver-
sion assumption). We also do not impose the restriction that the utility function
over losses is convex, as in the prospect theory. In fact, we demonstrate all the
effects for gains (uG is assumed concave, as usual) but for losses, the magnitude
effect is of the wrong sign if the utility function over losses is convex. A concave
utility function over losses allows us to reproduce the magnitude effect of the
correct sign.

The rest of the paper is organized as follows. In Section 2, we describe a type
of rational behavior which naturally leads to DU anomalies. In Section 3, we for-
malize the model, and derive general analytic formulas for the bid and ask prices
of perpetual streams. These formulas are obtained under standard assumptions
about the optimizing behavior of individuals with the time-separable utility un-
der uncertainty; in fact, they are new interpretations of general results for per-
petual American options obtained in Boyarchenko (2004) and Boyarchenko and
Levendorskǐi (2002), (2004a-c). In Section 4, we derive formulas for the discount
factors for gains and losses, and explain DU anomalies in the framework of our
model. In Section 5, we compare our model to other possible uncertainty-based
models of endogenous time preference, and show that the latter either do not
demonstrate some of the effects, or demonstrate too large effects, or effects of
the wrong sign. In Section 6, we discuss implications of our model which can be
tested in empirical studies of time preferences. Section 7 concludes. Technical
details are presented in the appendix.

2 Two types of rational economic behavior

2.1 Exponential discounted utility model as time prefer-
ence for traders in the complete market

Although Samuelson (1933) never claimed that the discounted utility model
should be a realistic model of the human behavior, some 40 years later there ap-
peared a general theory, where the behavior of economic agents can be naturally
interpreted as the use of the same exponential discount factor for all traded as-
sets. This is the theory of efficient financial markets developed in the beginning
of seventieth in a series of papers by Merton (see Merton (1973) and the col-
lection of papers (1990)) and Black and Scholes (1973), and explained in terms
“arbitrage-free” and “complete” in Harrison and Kreps (1979) and Harrison and
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Pliska (1981)2. In the simplest variant of the theory, it is assumed that the
agents in the market can borrow and lend money at the riskless constant rate
r > 0. Then the absence of arbitrage implies that there exists a probability
measure Q such that the value of a stochastic stream ct is calculated as follows:

V =
∫ T

0

e−rtEQ [ct]dt; (2.1)

in the discrete time case, the integral is replaced by summation. A measure Q is
called a risk-neutral measure; if the market is complete, a risk-neutral measure
is unique. This means that all agents in the market value all streams using the
same formula (2.1). Formula (2.1) can be interpreted as the expected discounted
utility of a risk-neutral agent. The only difference between the deterministic
discounted utility model (1.1) and its stochastic analog (2.1) is the expectation
operator under the integral sign in the latter formula.

If we assume that under Q, the stream ct is a martingale, that is, the expected
value of ct equals c0, then we can write (2.1) as the discounted value of the
deterministic stream c̃t = c0:

V =
∫ T

0

e−rtc̃tdt. (2.2)

Thus, we recover Samuelson’s discounted utility formula (1.1) for a risk-neutral
individual. We may say that (1.1) is the formula for all traders in an arbitrage-
free complete financial markets: should any of them price some assets not in
the accordance with (2.1), then possibilities of arbitrage will arise, which will
be exploited by arbitrageurs. Of course, real financial markets are not exactly
arbitrage free and complete; however, they are sufficiently close to the idealized
efficient market, and one cannot expect that deviations of real markets from the
ideal one suffice to explain the well-documented DU anomalies. As the matter
of fact, we strongly suspect that the DU anomalies will not be observed – or will
be much less prominent – should the researchers conduct their experiments with
a group of professional traders. The natural question is why ordinary people do
not act as traders. Surely, the latter know better how to optimize, and maybe,
the former should have understood that and learned from the latter?

2.2 Producers and consumers for the long run

We do not understand many things not because our notions are
weak but because these things do not belong to the circle of our
notions.3 Thoughts and aphorisms from the fruits of meditation of
Kozma Prutkov, Aphorism # 66

2Recall that a financial market is arbitrage-free, if it is impossible to construct a portfolio
of assets traded in the market offering “something for nothing.” For a rigorous definition see,
for example, Duffie (2001).

3Transl. from Russian by the authors
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Among the host of possible natural objections, we want to stress two important
properties of the optimizing behavior of agents in an arbitrage-free complete
market. First, according to the theory, an agent must correctly infer the risk-
neutral measure chosen by the market. Since the markets are, in fact, incomplete,
although close to arbitrage-free ones, an agent must be a specialist in guessing a
risk-neutral measure chosen by the market; we note that this is one of the most
important types of activities real traders are engaged in. In other words, they
must be specialists in guessing the winner of a beauty contest - which implies
that they must be prone to the herd behavior4. We believe that a human who
is not too much exposed to the theory and practice of financial markets can
be expected to rely more on her personal opinion and perception of the value
of a good. Second, if an agent has derivative securities in her portfolio, such
as options, she must trade continuously (otherwise arbitrage opportunity will
arise). In other words, she must perceive assets in the market as something of
no lasting personal value, and be ready to buy or sell anything at any moment.
Certainly, ordinary people in real life do not perceive many consumption goods
as something that can be easily disposed of. The opposite of an asset which an
agent holds for an infinitesimally small time period is a perpetual consumption
stream, such as the one from a fruit tree which a villager planted hundreds or
thousand years ago or a small field which he cultivated after cutting a patch
of a forest, and never thought about selling it. Similarly, if he had to cut the
tree or leave this small field, he regarded it as a loss of a perpetual stream of
fruits from the tree or wheat that grew on the field. We conjecture that the
perception of utility streams from consumption of durable good, imprinted in
the human mind, remains fairly close to the perception of perpetual streams.
The assumption that the individual thinks about consumption as something
distributed over time is important. In Subsection 5.3, we construct a variant
of the model with a non-durable good which has to be consumed immediately,
and demonstrate that although this instantaneous consumption model exhibits
the sign effect, asymmetry effect and hyperbolic effect, the sizes of these effects
are unreasonably large. In addition, large losses are discounted more than small
ones, both for convex and concave utility functions.

Even more crucial is the next assumption: when contemplating a purchase
of a durable good, the individual assumes - consciously or subconsciously - that
she can buy it at any moment (and will enjoy it forever) at a price which the
individual considers as fair. Similarly, when contemplating losses, the individual
presumes that she is free to choose the moment to give up a stream of utility
from consumption of a good, and the loss will be permanent. In this case, the
individual gets a compensation, which is fair from her point of view. Our two
assumptions are extreme but they make the model below especially tractable.
More realistic variant should impose some bounds on the periods of consumption

4Notice that even very sophisticated and clever people as George Soros may fail to feel
accurately the degree of deviation of the behavior of the herd of professional traders from
really rational behavior and lose a lot of money during the last years of the bubble, betting
that quite soon the bubble will burst. One can say that Mr. Soros failed to infer properly
the beliefs of the market which had remained enthusiastic for much longer time period than it
should have had, in George Soros’ reasonable opinion.
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and deliberation or assume that the lengths of these time periods are random.
However, the qualitative conclusions will not change after this refinement of the
model, and if both time periods are large then the quantitative conclusions will
change insignificantly.

3 Decision-making under uncertainty: gains vs.
losses, and the natural bid-ask spread

In this section, we show that if an economic agent has a time-separable utility
function with standard properties, perceives a perpetual stream of consumption
as a monotone function of a stochastic process with i.i.d. increments, and be-
lieves that she can freely choose the moment when to buy or sell the right for the
stream then the fair price (from the point of view of the agent) of the correspond-
ing utility stream can be naturally interpreted as an integral of a deterministic
utility stream with non-exponential discounted factors; the factors are different
for gains and losses, and depend on the utility function and underlying uncer-
tainty. For other models of the DU anomalies, which produce utility-dependent
discount factors, see Section 7 in Frederick et al. (2002).

3.1 The fair exercise price as the expected present value
of a utility stream vs. the real options approach

As the first step, assume that the individual has a simple utility function
u(c) = cγ over gains, where γ ∈ (0, 1), and that the utility stream {ct} fol-
lows a geometric Brownian motion: ct = eXt , where Xt = X0 + bt + σWt, and
Wt is the standard Brownian motion. Suppose that the individual perceives the
stream as constant, on average: E[ct] = c0. Since E[eXt ] = e(b+σ2/2)t+X0 , it
must be that b = −σ2/2. Assume further that the utility is time separable, and
r ≥ 0 is the exogenous discount factor (if r = 0, then there is no exogenous time
preference whatsoever). Then the utility of consumption of the individual over
time period [0, T ] is

U =
∫ T

0

e−rtE[u(ct)]dt

=
∫ T

0

e−rtE[eγXt ]dt

=
∫ T

0

e−t(r+qc)eγX0dt

=
∫ T

0

e−(r+qc)tu(c(X0))dt, (3.1)

where qc = −γb−γ2σ2/2 = γ(1−γ)σ2/2 > 0 is the endogenous correction to the
exogenous discount rate. If the latter is 0, the former is the endogenous discount
rate. A possible interpretation of formula (3.1) is Samuelson’s exponential dis-
counted utility formula (1.1). If the individual can express her utility in dollars,
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she should be willing to pay up to U dollars for the consumption stream {ct},
and ask at least U dollars as the compensation for the loss of the same stream.

We see that the naive use of (3.1) as a fair price, at which the individual
should be willing to buy or sell the right for the stream, does not lead to the
hyperbolic discounting. The reason is that this naive exercise rule is incorrect
for the individual who is under no obligation to buy or sell the right for the
consumption stream {ct} instantly, and can wait for a more favorable realization
of the underlying uncertainty. In other words, there is the option value for
waiting. This fact is well-known in the theory of financial and real options, and
more generally, in the optimal stopping theory. If the individual can wait forever,
the right to buy or sell a good may be regarded as a perpetual option. The pricing
formula in this case is especially tractable. Also analytically tractable but more
involved is the case of an option which can be exercised any moment up to the
maturity date T , provided T is an exponential random variable independent of
the underlying stochastic process. In this paper, we confine ourselves to the
simple case of perpetual options, that is, T = +∞.

3.2 The model

We make the following assumptions.

A1. The consumption level at time t > 0, as perceived by the individual at time
t = 0, is ct = c(Xt), where c is an increasing function, and {Xt} is a process
with i.i.d. increments.

Thus, in the discrete time model, Xt is a random walk, and in the contin-
uous time model, Xt is a Brownian motion or more generally, Lévy process. If
c(Xt) = eXt , and Xt is a Brownian motion, we obtain the geometric Brownian
motion model. One may argue that a geometric mean-reverting process would
be preferable. Notice, however, that with an appropriate choice of a functional
dependence of ct on Xt, processes with mean-reverting features can be obtained
(see Boyarchenko and Levendorskǐi (2004a-c)).

A2G. The utility over gains is time-separable, and the instantaneous utility
uG(c) = u(c) for gains is monotone and concave.

A2L. The utility over losses is time-separable, and the instantaneous utility
u(c) = −uL(−c) for losses is monotone.

We will analyze how the DU anomalies change if we replace the concavity of
the instantaneous utility over losses by convexity (equivalently, the convexity of
uL by concavity), as in the prospect theory.

A3. The individual discounts the future at the constant rate r > 0. To be more
specific, her ex post evaluation of utility from consumption of a perpetual stream
{ct} is

U(uG ◦ c; x) =
∫ ∞

0

e−rtE[uG(c(Xt))]dt, (3.2)

where x is the level of the stochastic factor Xt at time 0: X0 = x. Similarly,
while evaluating the ex post disutility from the loss of consumption of a perpetual
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stream {ct} she uses (3.2) with uL instead of uG. It will become clear later on
in the paper that ex post and ex ante evaluations of utility streams are different.

We cannot avoid the use of a small background discount factor (killing rate) in
the model with perpetual consumption streams, and perpetual options to acquire
or sell the stream. (In a more involved version of the model with exponentially
distributed lengths of consumption and deliberation periods, the background
factor is unnecessary). However, as we will see below, arbitrary small r > 0 leads
to the same qualitative conclusions (unless the concavity of the utility function
over losses is significant; in this case, the background discount factor should be
significant as well in order to avoid the feeling of an infinite loss). Moreover, we
will see that in the case of gains, under natural assumptions, it will be possible to
pass to the limit r → 0, and get rid of the exogenous component of the discount
rate altogether; for losses, this is also possible but only under more stringent
assumptions about the utility function and consumption flow. In any case, some
exogenous killing rate seems to be natural 5.

In the literature on DU anomalies, it is implicit that

(i) utility of gains and disutility of losses have dollar equivalents;

(ii) the individual agrees to pay K dollars for a stream {ct} iff K ≤ U(uG◦c; x);

(iii) the individual agrees to lose a stream {ct} for a compensation of K dollars
iff K ≥ U(uL ◦ c; x).

In numerous experimental studies (typically, under an assumption that the in-
dividual perceives a consumption stream as deterministic), it is shown that the
rules (ii) and (iii) do not work; in view of the real option approach, this was to
be expected.

Our aim is to show that the majority of the DU anomalies can be naturally
explained if we make the following crucial assumption:

A4. While contemplating the decision to pay K dollars for a consumption
stream, or accept K dollars for the loss of a consumption stream, the individual
regards this possibility of exchange as a perpetual option which can be exercised
any moment, and she presumes that she has a menu of options with different
strikes to choose from.

Thus, the individual contemplating gains regards herself as a holder of a
perpetual American call option with the payoff U(uG ◦ c; x) −K. In the stan-
dard option theory, the strike K is given, and the individual chooses a moment
to exercise when the spot level x becomes sufficiently high. In the context of
experiments dealing with DU anomalies, the individual has to make a decision
now. In effect, she is told to choose the fair strike price, or the highest strike
price, which makes a call option optimal to exercise at the current level of the

5As Voland put it: “Of course man is mortal, but that’s only half the problem. The trouble
is that mortality sometimes comes to him so suddenly! And he cannot even say what he will
be doing this evening.” M. Bulgakov, The Master and Margarita, transl. by Michael Glenny,
1967, Hamper and Row, New York
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stochastic factor. Similarly, the individual contemplating losses regards herself
as a holder of a perpetual American put option with the payoff K−U(uL ◦ c; x),
and she exercises the option now if she perceives the strike price K as fair.

3.3 Bad news and good news principles, or why it may be
optimal to keep old golf clubs in a closet

The optimal exercise rules for perpetual American call and put options with
perpetual streams as payoffs were obtained in Boyarchenko (2004) for the
case u(c(Xt)) = eXt , where Xt is a Lévy process; the generalization for
u(c(Xt)) = eγXt , where γ > 0, is straightforward. In Boyarchenko and Lev-
endorskǐi (2004a-c), the results were extended to arbitrary increasing u in con-
tinuous time, discrete time – continuous state space and discrete time – discrete
state space models. Notice that it was Bernanke (1983) who spelt out the “bad
news principle” for the first time (in a different set-up).

Bad news principle. Given the strike price K, exercise the perpetual American
call option on a stream u(c(Xt)) the first time the expected present value of a
stream u ◦ c calculated for the infimum process Xt = inf0≤s≤t Xs in place of Xt,
equals or exceeds K:

U−(u ◦ c; x) := Ex

[∫ ∞

0

e−rtu(c(Xt))dt

]
≥ K (3.3)

(for a Brownian motion, the rule involves “=” instead of ≥). Equivalently, given
x, the price K is fair iff (3.3) holds with equality.

Good news principle. Given the strike price K, exercise the perpetual Amer-
ican put option on a stream u(c(Xt)) the first time the expected present value
of a stream u◦c calculated for the supremum process X̄t = sup0≤s≤t Xs in place
of Xt, equals or drops below K:

U+(u ◦ c;x) := Ex

[∫ ∞

0

e−rtu(c(X̄t))dt

]
≤ K (3.4)

(for a Brownian motion, the rule involves “=” instead of ≤). Equivalently, given
x, the price K is fair iff (3.4) holds with equality.

The bad and good news principles give the following formulas for the fair ex ante
value of a stream of gains

G(uG ◦ c; x) = Ex

[∫ ∞

0

e−rtuG(c(Xt))dt

]
, (3.5)

and losses

L(uL ◦ c; x) = Ex

[∫ ∞

0

e−rtuL(c(X̄t))dt

]
. (3.6)

Before proceeding further, we give the following interpretation of ex ante pricing
formulas (3.5)–(3.6). When the individual plans to purchase the good, she is
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pessimistic in her anticipation of changes in the relative quality of a durable
good or her tastes, and disregards all possible temporary upward movements.
On the other hand, when assessing the disutility of losses, the individual is too
optimistic, and mainly takes into account possible increases of her perception
of the quality of the good (maybe, I will use my old golf clubs the next year
although I do not want to do it now). Notice that we do not make these plausible
behavioral assumptions; we deduce them from assumptions A1–A4.

3.4 Natural bid-ask spread

We assume that functions u = u(c) and c = c(x) are monotone, and

uL(c) := −u(−c) ≥ uG(c) := u(c), ∀ c > 0, (3.7)

which is a natural assumption for a concave u. It may also hold for utility
functions that are concave over gains and convex over losses, as in the prospect
theory. Then the fair value of gains is less than the fair value of losses, and we
observe a natural bid-ask spread for any reasonable model for shocks, even in
the case of the same u for utility of gains and disutility of losses. Indeed, the
trajectories of the supremum process are not lower than the ones of the infimum
process, and if the process is not trivial, they are higher: Xt < X̄t a.s., and
therefore, even for uG = uL, the RHS in (3.5) is less than the RHS in (3.6).

4 Discounted utility anomalies

4.1 Discount factors for gains and losses

In the majority of empirical studies of DU anomalies, it is assumed that gains
and losses are deterministic; in the framework of our paper, this means that
c(Xt) is deterministic and constant. In an uncertain environment, the closest
analog is a martingale:

Ex[c(Xt)] = c(x), ∀ t ≥ 0. (4.1)

Assume (4.1), and write (3.5)–(3.6) as

G(uG ◦ c;x) =
∫ ∞

0

e−rtDc
G(x, t)uG(c(x))dt, (4.2)

and
L(uL ◦ c;x) =

∫ ∞

0

e−rtDc
L(x, t)uL(c(x))dt, (4.3)

where

Dc
G(x, t) =

Ex[uG(c(Xt))]
uG(c(x))

and Dc
L(x, t) =

Ex[uL(c(X̄t))]
uL(c(x))

(4.4)
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are correction factors to the background exponential discount factor e−rt. We
can regard

DG(x, t) := e−rtDc
G(x, t) and DL(x, t) := e−rtDc

L(x, t) (4.5)

as the (total) discount factors for gains and losses. Generally, both depend not
only on time as in the exponential discounted utility model and hyperbolic model
but on the utility function and current level of the stochastic factor x = X0

(equivalently, on the current consumption level c0 = c(X0)) as well. Notice
that although we derived the formulas for the discount factors for evaluation
of perpetual streams of losses and gains, we will use them to evaluate streams
over finite time intervals. More consistent approach would be to derive the
formulas for the discount factors for each situation but this would have led to
more involved formulas with essentially the same qualitative properties. Another
motivation is: certainly, it is hard to imagine that the individual can evaluate
all possible “real life options” accurately; we believe that it is more realistic to
assume that the human brain has certain general matrices for time preference
which she uses in all situations.

4.2 Analysis of DU anomalies

We claim that the discount rates DG(x, t) and DL(x, t) enjoy properties 1-6
(DU anomalies) listed in Introduction. The properties 2 and 3 do not require
any specific assumption about the process Xt and functions u and c apart from
monotonicity and (3.7); the others will be demonstrated for u and c satisfying
certain natural assumptions on u and c, and for a simplest model of a process
with i.i.d. increments: a Brownian motion.

4.2.1 Gains are more discounted than losses.

Under our standing assumption (3.7), we obtain from (3.5) and (3.6) the in-
equality

DG(x, t) < DL(x, t), ∀ x and t > 0. (4.6)

4.2.2 The “Delay-Speedup” Asymmetry

If the individual is asked whether she is willing to delay the delivery of a widget
(say, a CD–player) and receive it at date T instead of the present date, she
evaluates the expected value of utility which she will not receive during the
period [0, T ], that is, she evaluates the disutility of losses (using the discount
factor for losses). Hence, the fair value which she asks as a compensation is

Kdel =
∫ T

0

DL(x, t)uL(c(x))dt. (4.7)

Similarly, if she expects the delivery at time T > 0 then the instant delivery
provides an additional utility stream over the period [0, T ], which she discounts
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using the discount factor DG(x, t). The fair price which she is willing to pay for
the instant delivery is

Kexp =
∫ T

0

DG(x, t)uG(c(x))dt. (4.8)

Inequalities (4.6) and (3.7) taken together imply that the RHS in (4.8) is less
than the RHS in(4.7): Kexp < Kdel.

In some studies, a similar effect is demonstrated for losses: respondents de-
manded more to expedite payment (due at time t > 0) than they would pay to
delay it. We can deduce this effect from inequalities (4.6) and (3.7) as follows. If
the individual agrees to expedite a payment, she will not lose the consumption
chunk ct, which she evaluates as gains: uG(c(Xt)). She discounts this utility
using the discount factor DG(x, t). In return, she suffers the disutility uL(c(x)),
and the balance is −uL(c(x)) + DG(x, t)uG(c(x)). Hence the individual should
demand the compensation

Kexp = uL(c(x))−DG(x, t)uG(c(x)). (4.9)

On the other hand, if the individual can delay the payment, she enjoys the utility
uG(c(x)) now but suffers the disutility uL(c(Xt)) later, at time t. The latter is
discounted using the factor DL(x, t), and the balance (the fair price which the
individual should be willing to pay for the delay) is

Kdel = uG(c(x))−DL(x, t)uL(c(x)). (4.10)

Since DL(x, t) > DG(x, t), and uL ≥ uG, the difference

Kexp −Kdel = uL(c(x))(1 + DL(x, t))− uG(c(x))(1 + DG(x, t))

is positive, which agrees with empirical studies.

4.2.3 Hyperbolic discounting: A model example for gains

Consider the instantaneous utility function for gains of a simple form uG(c) = cγ ,
where γ ∈ (0, 1), and assume that c(Xt) = eXt , where Xt = X0 + bt+σWt is the
Brownian motion with drift. The shape of the curve u(c) in the neighborhood of
0 is non-standard but for this oversimplified functional form explicit analytical
results are available. In Subsubsection 4.2.5, we will deduce analytical formulas
for a general u but these formulas will involve integration. The results presented
below agree with the numerical examples for the utility function uG(c) = (1 +
c)γ − 1, and if the current consumption level c(x) = ex is not small, then even
quantitative differences are small.

As above, we assume that c(Xt) is a martingale. Since for a Brownian motion,
Ex[eXt ] = ex+(b+σ2/2)t, it must be that b = −σ2/2. Set ρ = γσ and µ = −σ/2,
and represent γXt in the form γXt = γX0 + ρYt, where Yt = µt + Wt. Now,

Dc
G(x, t) = e−γxEx[eγXt ] = E[eρY t ],
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and we can use equation 1.2.3 on p. 251 in Borodin and Salminen (2002):

E[eρY t ] =
ρ + µ

ρ + 2µ
eρ(ρ+2µ)t/2Erfc

(
(ρ + µ)

√
t√

2

)
+

µ

ρ + 2µ
Erfc

(
−µ

√
t√

2

)
, (4.11)

where Erfc is the complementary error function

Erfc(x) =
2√
π

∫ +∞

x

e−v2
dv. (4.12)

This special function is tabulated and can be found in any standard package
(and it can be easily expressed in terms of the cumulative normal distribution
function). Substituting µ = −σ/2 and ρ = γσ into (4.11), we obtain the correc-
tion factor Dc

G(x, t) for gains (to the background discount factor e−rt) in terms
of γ ∈ (0, 1) and σ:

Dc
G(x, t) =

0.5− γ

1− γ
eγ(γ−1)σ2t/2Erfc

(
2γ − 1

2

√
σ2t

2

)
+

0.5
1− γ

Erfc

(
1
2

√
σ2t

2

)
.

(4.13)
Using (4.13), we can easily calculate Dc

G(x, t) and the correction term qc
G(x, t) =

− log Dc
G(x, t)/t to the background discount rate r. In Fig. 1 and 2, it is clearly

seen that qc
G(x, t) decreases with t, and it drops especially fast in a neighborhood

of 0. Since the discount rate

qG(x, t) = − log D(x, t)/t = r + qc
G(x, t), (4.14)

we conclude that qG enjoys the same properties for any value of the background
discount rate. Hence, we observe the hyperbolic discounting effect. Notice that
for a homogeneous utility function uG(c) = cγ the discount rate is independent
of x; this will not be the case for inhomogeneous utility functions. We also see
that the discount rates increase with σ and γ.

Although it is difficult to conduct a thorough analytical study of properties
of the correction factor Dc

G(x, t), it is relatively easy to study its behavior for
large t, and the results are rather interesting. In the appendix, we show that

a) if γ ∈ (0, 0.5), then as t → +∞,

DG(x, t) = βδt + · · · , (4.15)

where β := (1 − 2γ)/(1 − γ) ∈ (0, 1) and δ := e−(r+γ(1−γ)σ2/2) ∈ (0, 1). Using
(4.14), we obtain

qG(x, t) = r +
γ(1− γ)σ2

2
+
− log β

t
+ · · · . (4.16)

(In (4.15)–(4.16) and in approximate equations below, the dots stand for the
terms which decay faster than the leading (shown) term(s).) Since for small t,
DG(x, t) is closer to 1 than to β, we observe the behavior which is strikingly
similar to the (β, δ)-model of hyperbolic discounting (see (1.3)). Notice also
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that for these γ, (4.15) can be regarded as a hyperbolic correction to the naive
stochastic discounting rule (3.1).

b) if γ = 0.5, then

DG(x, t) =
4√

2πσ2t
e−t(r+σ2/8) + · · · , (4.17)

and therefore from (4.14),

qG(x, t) = r +
σ2

8
+

log t

2t
+ · · · ; (4.18)

c) if γ ∈ (0.5, 1), then

DG(x, t) =
8√

2π(σ2t)3/2
e−t(r+σ2/8) + · · · , (4.19)

and therefore from (4.14),

qG(x, t) = r +
σ2

8
+

3 log t

2t
+ · · · . (4.20)

It is clearly seen that the discount rate decreases with t, and the leading terms
of qG(x, t) for large t is independent of γ ∈ (0.5, 1). In other words, for util-
ity functions with a small or moderate coefficient of the relative risk aversion,
1 − γ ∈ (0, 0.5), the discount rate is hyperbolic and universal in the sense that
it is essentially independent of the utility function (for large t, at least). The
final two remarks are: first, the correction term to the discount rate increases
in σ2, and second, it remains positive even in the limit r → 0 (that is, when the
background discount rate vanishes). Hence, we can use our stochastic endoge-
nous discounting model for gains without resorting to the background exogenous
discount factor, and the discounting model becomes purely endogenous.

4.2.4 Negative discounting: A model example for losses

Consider the disutility function for losses of the same form uL(c) = cγ . This
time, we allow both γ < 1 and γ > 1. We have

Dc
L(x, t) = e−γxEx[eγX̄t ] = E[eρȲt ],

and we can use equation 1.1.3 on p. 250 in Borodin and Salminen (2002):

E[eρȲt ] =
ρ + µ

ρ + 2µ
eρ(ρ+2µ)t/2Erfc

(
− (ρ + µ)

√
t√

2

)
+

µ

ρ + 2µ
Erfc

(
µ
√

t√
2

)
. (4.21)

Inserting ρ = γσ and µ = −σ/2, we obtain

Dc
L(x, t) =

0.5− γ

1− γ
eγ(γ−1)σ2t/2Erfc

(
1− 2γ

2

√
σ2t

2

)
+

0.5
1− γ

Erfc

(
−1

2

√
σ2t

2

)

(4.22)
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Using (4.22), we can easily calculate Dc
L(x, t) and the correction term qc

L(x, t) =
− log Dc

L(x, t)/t to the background discount rate r. Although (4.22) is similar to
(4.13), the qualitative behavior of the discount factors for gains and losses are
strikingly different. First of all, for small t > 0, the correction factor is greater
than 1:

Dc
L(x, t) = 1 +

2γσ√
2π

√
t + · · · (4.23)

(for the proof of (4.23) and the statements below, see the appendix), therefore,
for sufficiently small t > 0, the negative discounting will be observed always:

qL(x, t) = r − log(1 + 2γσ
√

t + · · · )/√2π

t
= − 2γσ√

2π
t−1/2 + · · · < 0.

As t → +∞, the correction factor Dc
L(x, t) behaves as follows.

If γ ∈ (0, 1), then
Dc

L(x, t) = 1/(1− γ) + · · · , (4.24)

and therefore, any positive background discount rate suffices to ensure that the
discount rate for losses becomes negative for large t. In particular, for any r > 0,
and large t, we obtain an approximate formula

DL(x, t) = βδt, (4.25)

where β = 1/(1− γ) > 1, and δ = e−r ∈ (0, 1).
In the case γ = 1, Dc

L(x, t) grows slower than any exponential function, and
therefore, as in the case γ ∈ (0, 1), any positive background discount rate suffices
to ensure that the discount rate for losses becomes negative for large t.

Finally, if γ > 1, then

Dc
L(x, t) =

2γ − 1
γ − 1

etγ(γ−1)σ2/2 + · · · . (4.26)

Hence, to avoid a feeling of the infinite loss, the background discount factor must
be not too small: r > γ(γ−1)σ2/2. Then, for large t, we obtain an approximate
formula (4.25) with β = (2γ − 1)/(γ − 1) > 1 and δ = e−r+γ(γ−1)σ2/2 ∈ (0, 1).

We conclude that for modelling of the non-standard discounting for losses,
the (β, δ) model (1.3) might be appropriate but with β > 1 and δ ∈ (0, 1) instead
of β ∈ (0, 1) and δ ∈ (0, 1). In Fig. 3 and 4, we plot, for several values of γ and
σ, correction factors and rates, and (total) discount factors and rates for losses.

4.2.5 Inhomogenous utility functions and magnitude effect

A homogeneous utility function u(c) = cγ is not quite appropriate because it
exhibits incorrect behavior near 0; in addition, the discount factors are inde-
pendent of x, hence, of the consumption level c(x). Thus, the magnitude effect
(smaller discount factors for larger gains/losses) cannot be reproduced.

Take an inhomogeneous u, say, u(c) = (1 + c)γ − 1. Then we can calculate
Ex[u(c(X̄t))] and Ex[u(c(Xt))] using the explicit formulas for the cumulative
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distribution functions of Ȳt and Y t (formulas 1.2.4 and 1.1.4 on p.251 and p.250
in Borodin and Salminen (2002)): for y > 0,

P(Ȳt ≤ y) = 1− 1
2
Erfc

(
y − µt√

2t

)
− 1

2
Erfc

(
y + µt√

2t

)
, (4.27)

and for y < 0,

P(Y t ≤ y) =
1
2
Erfc

(
−y − µt√

2t

)
− 1

2
Erfc

(
−y + µt√

2t

)
, (4.28)

where µ = −σ/2. We have

Dc
L(x, t) =

∫ +∞

0

uL(c(x + σy))
uL(c(x))

dP(Ȳt ≤ y), (4.29)

and

Dc
G(x, t) =

∫ 0

−∞

uG(c(x + σy))
uG(c(x))

dP(Y t ≤ y). (4.30)

The Riemann-Stiltjes integrals on the RHS’s are reduced to the Riemann inte-
grals using the following formulas:

dP(Ȳt ≤ y)
dy

=

√
2
πt

e−(y−µt)2/(2t) − µe2µy · Erfc
(

y + µt√
2t

)
,

and
dP(Y t ≤ y)

dy
=

√
2
πt

e−(y−µt)2/(2t) + µe2µy · Erfc
(
−y + µt√

2t

)
.

In Fig.5, we plot correction factors and rates to the background discount factor
and rate, and total discount factors and rates, for several values of the current
consumption level c0. The magnitude effect is clearly seen. In Fig.6, we plot cor-
rection factors and terms for losses, for several values of the current consumption
level c0. In the left panel, γ = 0.75 < 1, which means that the utility function
over losses is convex. This non-standard property (assumed in the prospect
theory) leads to the magnitude effect of the wrong sign: the discount factors
increase with the consumption level. In the right panel, uL is convex, hence
the utility function is concave, and the magnitude effect of the correct sign is
observed.

4.2.6 Preference for improving sequences

For simplicity, we start with the deterministic discrete time model. Assume that
the individual regards each drop in the consumption level as a loss. Then she
calculates the utility from consumption of a decreasing consumption sequence
c0 > c1 > c2 > · · · > cn (consumed at t = t0, t1, . . . , tn) as follows:

U = DG(t0)uG(c0) + {DG(t1)uG(c0)−DL(t1)uL(c0 − c1)}
+ {DG(t2)uG(c1)−DL(t2)uL(c1 − c2)}
+ · · ·
+ {DG(tn)uG(cn−1)−DL(tn)uL(cn−1 − cn)} ,
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which is

U = DG(t0)uG(c0) +
n∑

j=1

DG(tj)uG(cj−1)−
n∑

j=1

DL(tj)u(cj−1 − cj). (4.31)

Assume that uL is differentiable at 0. Passing to the limit maxj(tj+1 − tj) → 0,
we obtain

U =
∫ T

0

DG(t)uG(ct)dt− (uL)′(0)
∫ T

0

DL(t)d(−ct). (4.32)

A natural stochastic analog of (4.32) is possible only if the supremum process
for c(Xt) is of bounded variation

U(x) =
∫ T

0

e−rtEx[uG(c(Xt))]dt− (uL)′(0)
∫ T

0

e−rtEx[d(−c(X̄t))]. (4.33)

Otherwise, the negative term on the RHS becomes infinite. If the supremum
process for c(Xt) is of unbounded variation as in the geometric Brownian motion
model for consumption, then we cannot pass to the continuous time limit, and the
smaller the time step between the bursts of consumption, the larger (in absolute
value) the disutility from perceived losses is. This observation alone explains the
preference for improving sequences, and we will not produce numerical examples
(which require more complicated processes or discrete time modelling).

5 Comparison with other uncertainty-based
models

To demonstrate that all components of our approach are important for the expla-
nation of DU anomalies, we consider two simpler standard ways to account for
the uncertainty of the future, and then a variant of our model with instantaneous
consumption.

5.1 Discrete time model, i.i.d. draws

A rather popular way to model the uncertain consumption in the future is to
consider the discrete time model, with the consumption in each time period
modeled as an i.i.d. draw from a given distribution. Assume that time periods
are of length ∆ > 0, and the individual’s discount factor per period is δ > 0.
As above, the expected value of consumption ct at time t = j ·∆, j = 0, 1, . . .,
equals the current consumption level: c0 = E[ct]. If u is concave, then β :=
E[u(ct)]/u(c0) < 1 by Jensen’s inequality, and we recover the (β, δ)-model, which
is popular as an approximation to the hyperbolic discounting for gains. If we
use a convex utility function over losses, as in the prospect theory, we obtain the
same model, and there will be no negative discounting observed. In addition, if
uL = uG, then there will be neither sign effect nor asymmetry effect, whereas
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our model produces both effects even in this case. The negative discounting for
losses will be observed for small positive t if the utility over losses is concave,
and either uncertainty is sufficiently large or the exogenous background discount
rate is sufficiently small. Indeed, for a concave disutility function uL, we obtain
β := E[u(ct)]/u(c0) > 1.

Notice, however, that the δ is independent of the uncertainty, and therefore,
to account for fairly large values of observed discounting rate for gains, it is
necessary to presume that the exogenous background discount rate is rather
large. In our model, it is possible to obtain a sizable discount rate for gains even
for arbitrary small levels of the exogenous discount rate. Further, the magnitude
effect is observed but its size is several times smaller than in our model for the
same instantaneous utility function and uncertainty modeled as c1 = eX∆ , where
∆ < 0.5 and Xt is the Brownian motion with the drift used in our model. Notice
that ∆ < 0.5 means a reasonable time period less than half a year.

5.2 Naive endogenous discounting revisited

In Subsection 3.1, we showed that for the simplest instantaneous utility u(c) = cγ

and the geometric Brownian motion model for consumption stream {ct}, the
constant discount rate result, and we remain in the realm of the exponential dis-
counting. One might have hoped that the use of more natural utility/disutility
functions as in Subsubsection 4.2.5 will produce the hyperbolic effect. Unfortu-
nately, this is not the case, and the resulting curves are essentially straight and
dull. Unlike the case of i.i.d. draws, some corrections to the discount rate can
be obtained but they are much smaller than in our model where the optimizing
behavior of the individual is taken into account. The size of the magnitude ef-
fect is also smaller, and the sign and asymmetry effects cannot be reproduced
for uL = uG, because for the same instantaneous utility function and process,
the discount factors for gains and losses are the same.

5.3 A version of the model with optimizing agents, for
instantaneous payoffs

Assume that the individual contemplates consumption of a non-storable good
with the delivery (hence, consumption) date t > 0, and the uncertain con-
sumption value ct = eXt . Assume further that uG(c) = cγ , where γ > 0.
Then u(c(Xt)) = eγXt , and we can represent the expected discounted utility
of the instantaneous consumption as G(x) := e−rtEx[eγXt ] = D0(t)eγx, where
D0(t) = e−(r+γ(1−γ)σ2/2)t. For a call option with the strike K and the instanta-
neous payoff G(x), it is well-known that the optimal exercise price is the solution
to the equation

K = D0(t)
β+ − γ

β+
eγx, (5.1)

where β+ > 1 is the positive root of the quadratic equation

σ2

2
(β2 − β)− r = 0. (5.2)
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Equivalently, at the current level X0 = x, the individual should be willing to pay
K for the delivery at time t. We obtain the following formula for the discounting
factor for gains:

DG(t) =
β+ − γ

β+
e−(r+γ(1−γ)σ2/2)t, (5.3)

which is exactly the formula in the quasi-hyperbolic model (in the discrete time
model, we obtain a similar formula: see Boyarchenko and Levendprskǐi (2004a)).
Indeed, the first factor (β+ − γ)/β+ ∈ (0, 1), since 0 < γ < 1 < β+.

A similar argument leads to the following formula for the discounting factor
for the losses:

DL(t) =
β− − γ

β−
e−(r+γ(1−γ)σ2/2)t, (5.4)

where β− < 0 is the positive root of the quadratic equation (5.2). This time,
the first factor (β− − γ)/β− > 1, since β− < 0 < γ.

We see that as in the model with consumption streams, the use of an over-
simplified instantaneous utility function does not allow one to reproduce the
magnitude effect. Consider more general utility functions. As Boyarchenko and
Levendorskǐi (2004b) notice, we can reduce the optimal stopping problem with
an instantaneous payoff G(x) := e−rtEx[u(c(Xt))] to a problem with the payoff
stream g(x) := (r − LX)u(c(x)), where LX = σ2

2 ∂2 + b∂ = σ2

2 (∂2 − ∂2) is the
infinitesimal generator of the Brownian motion Xt. If g is monotone (straightfor-
ward calculations show that this is the case if u(c) = (1 + c)γ − 1, for instance),
then general results of Boyarchenko and Levendorskǐi (2004b) apply, and the
resulting formulas for the discount factors for gains and losses are

DG(x, t) =
e−rt

√
2πσ2t

∫ +∞

−∞
e−(y−σ2t/2)2/(2σ2t)

(
g(x + y)− 1

β+
g′(x + y)

)
dy,

(5.5)
and

DL(x, t) =
e−rt

√
2πσ2t

∫ +∞

−∞
e−(y−σ2t/2)2/(2σ2t)

(
g(x + y)− 1

β−
g′(x + y)

)
dy.

(5.6)
Details are available on request. Numerical examples show that for small and
moderate levels of the volatility σ and the background discount factor r, the
discount factor curves are essentially straight, and agree well with the (β, δ)-
model (with β ∈ (0, 1) for gains, and β > 1 for losses). The discount curves
become really curved only for very large values of σ and r. In all cases, the
discount factors for gains are too large, and for losses, they are too large in
absolute values (the negative discounting effect is very large). In addition, both
for convex and concave uL, the magnitude effect is of the wrong sign (large losses
are discounted more than small ones). See Fig. 8–11.
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6 Suggestions for empirical verification of the
model of endogenous time preference

We started from simple plausible assumptions about the behavior of humans
who are not exposed too much to modern financial markets, and we showed that
their optimizing behavior under uncertainty naturally leads to the DU anomalies.
We make a simple observation that the behavior of traders in financial markets
should not exhibit these anomalies, and we conjecture that the type of behavior
of traders in modern financial markets, and the type of behavior formalized
in the paper, lead to two extreme forms of time preference. Naturally, there
must be intermediate forms, and we surmise that the DU anomalies should
be the more prominent the more the members an experimental group differs
from traders either by the culture they belong to or lifestyle or upbringing or
education. Roughly speaking, the less exposure to the practice and/or theory of
modern financial markets of the individual, the more prominent DU anomalies
she will demonstrate. For instance, we expect that an Indian from the deep forest
in Amazonia and a villager in Siberia will demonstrate more of DU anomalies
than a city dweller; a villager involved in trade (even of a simplest type) will
demonstrate less of DU anomalies than his neighbor who works in a corn field;
and the same will be true for a person with a BA degree as opposed to his sibling
with only high school education. Finally, we presume that an MBA in Finance
will exhibit less DU anomalies than a PhD in humanities.

These observations imply that it is interesting and important to conduct
empirical studies taking into account the differences across humans described
above. Assuming that a group subject to an experiment consists of individu-
als with a similar background (similar exposure to markets of a similar degree
of efficiency), it is necessary to separate the group into subgroups with close
characteristics along the following two dimensions: the attitude toward risk,
and accuracy of perception of the uncertainty of the future. This implies that
prior to an experiment aimed at the study of DU anomalies, “introductory” ex-
periments are needed to separate subgroups with similar attitude towards risk,
and ability to access the uncertainty. In these “introductory” experiments, the
questions should relate to the present only. In experiments (with a particular
subgroup) aimed at the study of DU anomalies proper, it is important to study
the dependence of inferred discount factors on the level of uncertainty.

Once all these factors are accounted for, it will be possible to test the pre-
dictions of the model. Probably, the following essentially qualitative (not just
quantitative) effects are good candidates for testing:

(i) the correct sign of the magnitude effect for losses (large losses are dis-
counted less than small ones) is consistent with a concave utility function
over losses but not with a convex one (used in the prospect theory);

(ii) the higher the uncertainty level, the larger the “sign effect” is, equivalently,
the larger the ratio of the discount factor for losses to the one for gains is;

(iii) the higher the uncertainty level, the larger the discounting rate for gains
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is, and the more prominent the “negative discounting effect” for losses is;

(iv) the better the fit of the (β, δ)-model for gains, the smaller the γ in the for-
mula u(c) = cγ or u(c) = (1+ c)γ is (equivalently, the larger the coefficient
of relative risk aversion is);

(v) the discount factors for gains should be independent of the instantaneous
utility of gains, if the coefficient of the relative risk aversion is not large;

(vi) for losses, the hyperbolic effect of the opposite sign should be observed; a
simplified version is: the (β, δ) model may hold with β > 1 only;

(vii) if the utility function over losses is concave then both β and δ depend on
the coefficient of the relative risk aversion; if the utility function over losses
is convex, δ must be independent of this coefficient.

Finally, we would like to stress once again that the DU anomalies are expected to
be more prominent, when an experimental group belongs to either a non-market
oriented society (as opposed to well-developed industrial one) or a profession
with little (if any) exposure to trade especially in financial instruments or its
education level and/or type of education is different from the education of an
MBA in Finance.

7 Conclusion

We made plausible assumptions about the behavior of humans who are not
exposed too much (if at all) to modern efficient financial markets. These as-
sumptions are: the individual perceives a durable good as an (almost) perpetual
utility stream and assumes that she can wait for a fair price for the stream
to materialize. We added standard assumptions about the instantaneous utility
function (monotonicity and concavity) over both gains and losses, and about the
uncertainty of the future consumption stream. Using general optimal exercise
rules for the perpetual American call option (on a utility stream) and perpetual
American put option (on a disutility stream), we derived explicit formulas for the
fair price of a utility stream, which the individual would be willing to pay, and
the fair compensation for the loss of a utility stream which the same individual
would be willing to accept. We interpreted the resulting analytical expressions
as integrals of deterministic streams with discounting factors, which turn out to
be different for gains and losses even if we assume that the instantaneous utility
function for gains equals the instantaneous disutility function for losses. The
results are obtained under the assumption that there is a background discount
rate r > 0 (killing rate). We showed that the qualitative results for gains are
independent of r, and make sense even when r vanishes. In the limit, we obtain
endogenous discount rates, with no exogenous component. For losses, arbitrary
small r is admissible if the utility over losses is convex as in the prospect theory
(however, this assumption leads to the magnitude effect of the wrong sign); if
the utility over losses is concave, then r must be not too small in order to avoid
a feeling of the infinite loss.
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We derived simpler approximate formulas for the discount factors for large t,
and showed that depending on the utility function and the sign (whether gains
or losses are considered), the (β, δ)-model of the hyperbolic discounting arises
(for gains, β ∈ (0, 1), and for losses, β > 1). The same models arises in a simple
model with the uncertainty modelled as i.i.d. draws from a given distribution
(Subsection 5.1), and a variant of our basic model with instantaneous consump-
tion (Subsection 5.3), however, these two models have serious drawbacks.

In the continuous time, natural analogs of (β, δ) model suggested by our
asymptotic formulas are: for gains,

DG(t) = (1 + a
√

t)−3e−qt,

where a, q > 0, and for losses,

DL(t) =
1 + b

√
t

1 + a
√

t
e−qt,

where b > a > 0, and q > 0.
We showed that the hyperbolic discounting model arises as a good approx-

imate universal model (in the sense that the discount factors are independent
of the utility function), in the following two cases: for gains, if the relative
risk-aversion coefficient is moderate (in the range (0, 0.5)), and for losses, if this
coefficient is less than 1.

We made suggestions how to design experiments to test the assumptions
and implications of our model, and we showed that simpler uncertainty-based
endogenous models for discount rates lead to DU anomalies of either an incorrect
type, or size or sign. In particular, we showed that if the uncertainty is modelled
as stationary i.i.d. distributions, then the (β, δ)-model can be obtained but δ will
be identical to the exogenous discount rate r. Since the observed discount rates
are too large to be explained as the natural killing rates, this simple model of
uncertainty cannot produce reasonable endogenous discount rates. We conclude
that in economics, it is better to use stochastic processes rather than i.i.d. draws.
On the contrary, the variant of our model with instantaneous consumption leads
to too large discounting rates for gains, and too large negative discounting for
losses; also, the magnitude effect for losses is of the wrong sign for concave
and convex utility functions. We surmise that when making the intertemporal
decisions, the individual assumes that she would smooth consumption over time
even if the payoff is due at a fixed instant in the future.

A Technical calculations

A.1 Proof of (4.15)–(4.20)

Making the change of variables v =
√

z and integrating by part, it is straight-
forward to derive

Erfc(x) = e−x2
(

1√
πx

+
1

2
√

πx3
+ · · ·

)
, as x → +∞. (A.1)
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If x → −∞, we use

Erfc(x) =
2√
π

∫ +∞

−∞
e−v2

dv − Erfc(−x) = 2− Erfc(−x),

and deduce from (A.1)

Erfc(x) = 2 +
1√
πx

e−x2
+ · · · , as x → −∞. (A.2)

Using (A.1)–(A.2), we derive from (4.13):
a) if γ ∈ (0, 0.5), then γ(1− γ)/2 < 1/8, and therefore (4.15) follows from

Dc
G(x, t) =

0.5− γ

1− γ
eγ(γ−1)σ2t/2 · 2 +

0.5
1− γ

2√
πσ2t/2

e−σ2t/8 + · · ·

=
1− 2γ

1− γ
e−tγ(1−γ)σ2/2 + · · · ;

b) if γ = 0.5, then (4.17) follows from

Dc
G(x, t) =

2√
πσ2t/2

e−σ2t/8 + · · · ;

c) if γ ∈ (0.5, 1), then we have to keep two terms when using (A.1) because the
leading terms (of the order e−tσ2/8t−1/2) cancel out:

Dc
G(x, t) =

0.5− γ

1− γ
eγ(γ−1)t/2 1√

π(γ − 0.5)
√

σ2t/2
e−(γ−0.5)2σ2t/2

+
0.5

1− γ

2√
πσ2t/2

e−σ2t/8 +
0.5

1− γ

2
2
√

π

(
2√

σ2t/2

)3

e−σ2t/8 + · · ·

=
8√

2π(σ2t)3/2
e−tσ2/8 + · · · .

A.2 Proof of (4.23)

We have Erfc(0) = 1 and Erfc′(0) = −2/
√

π, therefore for small t > 0

Dc
L(x, t) =

0.5− γ

1− γ

(
1 +

γ(γ + 1)
2

σ2t + · · ·
) (

1− 2√
π

(0.5− γ)

√
σ2t

2
+ · · ·

)

+
0.5

1− γ

(
1− 2√

π

(
−0.5

√
σ2t

2

)
+ · · ·

)

= 1 +
1√

π(1− γ)
[−2(0.5− γ)2 + 0.5]

√
σ2t

2
+ · · ·

= 1 + 2γ

√
σ2t

2π
+ · · ·
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A.3 Proof of (4.24) and (4.26)

If γ ∈ (0, 0.5), then

Dc
L(x, t) =

0.5− γ

1− γ
eγ(γ−1)σ2t/2 1√

π(0.5− γ)

√
2

σ2t
e−(0.5−γ)2σ2t/2 +

0.5
1− γ

2 + · · ·

=
1

1− γ
+ · · · ,

and if γ > 0.5, γ 6= 1, then

Dc
L(x, t) =

0.5− γ

1− γ
eγ(γ−1)σ2t/2 · 2 +

0.5
1− γ

2 + · · ·

=
2γ − 1
γ − 1

eγ(γ−1)σ2t/2 +
1

1− γ
+ · · · .

If γ ∈ (0, 0.5), then the first term on the RHS decreases exponentially, and if
γ > 1, it increases exponentially, which proves (4.24) and (4.26). Since Dc

L(x, t)
for γ = 1 grows not faster than Dc

L(x, t) for any γ > 1, we conclude that in the
case γ = 1, Dc

L(x, t) grows slower than any exponential function.
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Figure 1: Discount factors and rates for gains, uG(c) = cγ : dependence on time
and γ. Left panel: correction factors and rates. Right panel: (total) factors and
rates. Parameters: σ = 0.2, r = 0.02.
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Figure 2: Discount factors and rates for gains, uG(c) = cγ : dependence on time
and volatility σ. Left panel: correction factors and rates. Right panel: (total)
factors and rates. Parameters: γ = 0.75, r = 0.02.
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Figure 3: Discount factors and rates for losses, uL(c) = cγ : dependence on time
and γ. Left panel: correction factors and rates. Right panel: (total) factors and
rates. Parameters: σ = 0.2, r = 0.02.
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Figure 4: Discount factors and rates for losses, uL(c) = cγ : dependence on time
and volatility σ. Left panel: correction factors and rates. Right panel: (total)
factors and rates. Parameters: γ = 0.75, r = 0.02.
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Figure 5: Magnitude effect for gains: uG(c) = (1+c)γ−1. Left panel: correction
factors and rates. Right panel: (total) factors and rates. Parameters: σ =
0.2, γ = 0.5, r = 0.02.
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Figure 6: Magnitude effect for losses: uL(c) = (1+c)γ−1. Left panel: the wrong
sign of the magnitude effect (a convex utility function over losses, γ = 0.75).
Right panel: the correct sign of the magnitude effect (a concave utility function
over losses, γ = 1.25). Parameters: σ = 0.1, r = 0.02.
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Figure 7: Naive endogenous discount factors and rates: u(c) = (1 + c)γ − 1.
Left panel: a concave utility function over gains (convex utility function over
losses), γ = 0.75. Right panel: a convex utility function over gains (concave
utility function over losses), γ = 1.25. Parameters: σ = 0.2, r = 0.02.
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Figure 8: Instant consumption model, gains: uG(c) = (1 + c)γ − 1. Left panel:
correction factors and rates. Right panel: (total) factors and rates. Parameters:
σ = 0.2, γ = 0.25, r = 0.02.
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Figure 9: Instant consumption model, losses: uL(c) = (1 + c)γ − 1. Left panel:
a convex utility function over losses, γ = 0.25. Right panel: a concave utility
function over losses, γ = 1.25. Parameters: σ = 0.2, r = 0.02.
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Figure 10: Instant consumption model, large σ(= 0.9) and r(= 0.1), gains,
uG(c) = (1 + c)γ − 1. Left panel: correction factors and rates. Right panel:
(total) factors and rates.
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Figure 11: Instant consumption model, large σ(= 0.9) and r(= 0.1), losses:
uL(c) = (1 + c)γ − 1. Left panel: a convex utility function over losses, γ = 0.25.
Right panel: a concave utility function over losses, γ = 1.25.
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