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Abstract

We characterize asymmetric equilibria in two-stage process inno-
vation games and show that they are prevalent in the different models
of R&D technology considered in the literature. Indeed, cooperation
in R&D may be accompanied by high concentration in the product
market. We show that while such an increase may be profitable, it
may be socially inefficient.
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1 Introduction

Because the economics of R&D offer a congregation point for most forms of
market imperfections, be they large fixed costs, uncertainty, or externalities,
the design of optimal policies becomes a delicate exercise. In particular, the
conflict between marginal cost pricing and the free-rider problem associated
with R&D spillovers calls for a policy that can restore the firms’ incentives to
engage in R&D while simultaneously maintaining a competitive environment.

Solutions to the externality problems associated with R&D, such as Re-
search Joint Ventures (RJV), have been pioneered by the seminal works of
d’Aspremont and Jacquemin (1988) and Kamien, Muller, and Zang (1992).1

In this literature, firms invest in R&D in a first stage and engage in Cournot
or Bertrand competition in a second stage. Under RJVs, firms maximize
joint profits, thereby alleviating free-riding by internalizing externalities.2

As a consequence, RJVs dominate independent R&D and lead to higher so-
cial surplus, so long as knowledge spillovers are sufficiently large. Salant and
Shaffer (1998), however, show that RJVs also dominate independent R&D
when spillovers are small, provided the previous models’ arguably artificial
imposition of symmetry –where each firm engages in the same amount of
R&D and produces the same amount of output– is dropped. Salant and
Shaffer’s result may surprise, since the socially desirable outcome is accom-
panied by potentially severe concentration in the product market. Is this a
robust result or does it hinge on the R&D technology?

Two distinct R&D technologies, that is, mappings from R&D investment
levels into cost reductions, are prevalent in the theoretical literature. Amir
(2000) shows that R&D technologies can be characterized by the nature
of R&D spillovers: either spillovers are in R&D inputs, that is, in R&D
investments (as in In Kamien, Muller, and Zang), or they are in R&D output
(as in d’Aspremont and Jacquemin), that is, in knowledge created.

1The large subsequent literature includes Suzumura (1992), De Bondt, Slaets, and
Cassiman (1992), Vonortas (1994), Martin (1996), Leahy and Neary (1997), Salant and
Shaffer (1998, 1999), Amir and Wooders (1998, 2003), Long and Soubeyran (1999, 2001),
Amir (2000), Cabral (2000), and Martin (2002). For excellent surveys, see De Bondt
(1997) and Martin and Scott (1998).

2D’Aspremont and Jacquemin consider the scenario where the firms participating in
an RJV do not actively share R&D output. Kamien, Muller, and Zang (1992), on the
other hand, introduced the concept of RJV cartels, where firms not only maximize joint
profits, but also share all research output. These RJV cartels have the additional benefit
of solving the duplication problem.
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Salant and Shaffer assume that spillovers are in output (as did d’Aspremont
and Jacquemin). Moreover, the R&D production function takes a specific
functional form: a square-root function. Indeed, Salant and Shaffer (p. 207)
do recognize that “the welfare changes associated with increased concentra-
tion remain to be determined in more general formulations.”

In this paper, we revisit Salant and Shaffer’s result for both types of
spillovers and for a wider class of concave R&D technologies, extending be-
yond the square-root function. We do so by constructing economies for which
higher concentration in the product market does allow for a more efficient al-
location of R&D resources between firms and greater joint profits, yet implies
a loss of social welfare. In other words, profit maximizing concentration in
R&D and social welfare maximizing concentration in R&D do not generally
coincide.

Moreover, we show that for output-side spillovers, asymmetry is more
likely to occur when spillovers are small and the cost reduction function is
not too concave. For input-side spillovers, on the other hand, asymmetry
is more likely to be optimal when spillovers are large. This implies that
the two models generate different implications for various R&D scenarios, a
result in the spirit of Amir (2000), who shows that the two types of R&D
technology lead to different policy recommendations regarding subsidies and
R&D cooperation. In particular, he shows that joint labs are desirable for
R&D cooperatives when spillovers are in input, while they are to be avoided
when spillovers are in output. Our results are thus consistent with a grow-
ing literature analyzing the effect of different R&D technologies on R&D
incentives.

2 The Main Result

The R&D technology specified by d’Aspremont and Jacquemin as well as
Salant and Shaffer corresponds to a square-root cost-reduction function with
output-side spillovers:

r(x1, x2) =
√

x1 + β
√

x2, (1)

where x1 and x2 represent the firms’ investment levels and β ∈ [0, 1] is the
spillover parameter. We justify expression (1) as follows: simply let the cost
of an amount y1 of R&D undertaken by firm 1 be C(y1), with C strictly
convex and C(0) = 0 and define f(·) ≡ C−1(·). If x1 ≡ C(y1) denotes the
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amount of dollars invested in R&D by firm 1, then the cost reduction of
firm 1 can be written as r1 = f(x1) + βf(x2), where f is strictly concave
since C is strictly convex. Thus, if C(y1) = y2

1 ≡ x1, as in d’Aspremont and
Jacquemin’s original paper, we obtain r1 =

√
x1 +β

√
x2. Here, however, our

specification will be a more general:

r(x1, x2) = f(x1) + βf(x2). (2)

Our setup is as follows: a given total dollar amount x is to be allocated
between an industry’s two firms,3 with a share δ going to the R&D lab of
firm 1 and the share 1− δ going to the second firm’s lab. (Without any loss
in generality, we shall confine our attention to δ ≥ 1/2.) The marginal costs
of production of firms 1 and 2 are then given by{

c1(δ) = A− f(δx)− βf((1− δ)x)
c2(δ) = A− f((1− δ)x)− βf(δx)

(3)

where A is the constant marginal cost in the absence of any R&D and the cost
reduction function f is twice differentiable, increasing, and concave. Assume
furthermore that ci(δ) ≥ 0, for all δ ≥ 1/2. Finally, let the inverse demand
function be given by P = a− (Q1 +Q2), where P is the market price and Qi

is the quantity produced by firm i.
Then at the Cournot equilibrium, P = (a + c1 + c2)/3, Qi = (a − 2ci +

cj)/3, firm i’s profit πi = (a − 2ci + cj)
2/9, i 6= j, and consumer surplus

CS=(2a − c1 − c2)
2/18. Define social welfare W as the sum of consumer

surplus and joint profit. It is easy to verify that consumer surplus, profits,
and welfare reach critical points at δ = 1/2.

We are interested in cases where W is globally maximized at the sym-
metric allocation, but joint profit is not.4 It can be shown that concavity of
W at δ = 1/2, i.e., ∂2W

∂δ2 < 0, is equivalent to

4.5

(
1− β

1 + β

)2

<
−f ′′(x

2
)(f(x

2
) + a−A

1+β
)

(f ′(x
2
))2

. (4)

3We are thus not restricting our attention to some optimal total R&D investment.
4It may be instructive to note that if joint profit is not maximized at the symmetric

allocation, then no single asymmetric allocation can simultaneously maximize both joint
profits and total surplus. Since ∂W

∂δ = ∂π
∂δ + ∂CS

∂δ , ∂π
∂δ = 0 for some δ∗ implies ∂W

∂δ = ∂CS
∂δ .

Since consumer surplus is strictly concave in δ and reaches a global maximum at δ = 1/2,
then for all δ > 1/2, ∂CS

∂δ < 0. Therefore ∂W
∂δ 6= 0 at δ∗.
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Therefore, if

4.5

(
1− β

1 + β

)2

<
−f ′′(x

2
)f(x

2
)

(f ′(x
2
))2

, (5)

then inequality (4) holds for all a > A. Note that inequality (5)’s right-
hand side can be interpreted as a measure of curvature of the cost-reduction
technology. Joint profit, on the other hand, reaches a local minimum at

δ = 1/2 if ∂2(π1+π2)
∂δ2 > 0, i.e. if,

−f ′′(x
2
)(f(x

2
) + a−A

1+β
)

(f ′(x
2
))2

< 9

(
1− β

1 + β

)2

. (6)

It follows that if
−f ′′(x

2
)f(x

2
)

(f ′(x
2
))2

< 9

(
1− β

1 + β

)2

, (7)

then there exists an a > A such that joint profit is not maximized at the
symmetric allocation of R&D resources.

In summary, if we can find a cost-reduction technology satisfying inequal-
ity (5), then total welfare has a local maximum at δ = 1/2 for all a > A, and
there exists an a > A such that joint profits are not maximized at the sym-
metric allocation. (Of course, in the examples we analyze below, we check
that the local maximum is also a global one.)

In the case of the literature’s commonly assumed (or implied) square-root
cost-reduction function, for example, conditions (5) and (7) simplify to

4.5

(
1− β

1 + β

)2

< 1 < 9

(
1− β

1 + β

)2

i.e.,
3−

√
2

3 +
√

2
= 0.359 < β <

1

2
.

For each economy, we can easily construct examples where firms’ preferences
for a lop-sided investment into R&D and higher concentration in the product
market is detrimental to social welfare. Figure 1 shows joint profit, consumer
surplus (dashed line), and social welfare (thick line) as functions of allocation
parameter δ, when β = 0.4 and a = A + 3.5

5For better visualization, the functions are scaled to share the same value at δ = 1/2.
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Figure 1: Joint Profit and Welfare as a function of δ

We have, so far, explored the R&D technology originally assumed by
d’Aspremont and Jacquemin and further investigated by Salant and Shaf-
fer, namely cost-reduction with output-side spillovers. In contrast, when
spillovers are in R&D inputs, as assumed by Kamien, Muller, and Zang, for
example, the constant marginal cost functions can be written as{

c1 = A− f(δx + β(1− δ)x),
c2 = A− f((1− δ)x + βδx),

(8)

where f is also increasing and concave.
Here, too, we can construct examples where a symmetric allocation maxi-

mizes total welfare but fails to maximize joint profits. We find that concavity
of total surplus at the symmetric allocation is satisfied if

4.5 <
−f ′′(α)(f(α) + a− A)

(f ′(α))2 , (9)

where α = x(1+β)
2

, whereas profit is convex at the symmetric allocation if

−f ′′(α)(f(α) + a− A)

(f ′(α))2 < 9. (10)

Therefore, if

4.5 <
−f ′′(α)f(α)

(f ′(α))2 , (11)

there exists an a > A such that both inequalities (10) and (11) are satisfied.
Note that if the cost-reduction function f takes the square-root form,

inequality (10) cannot be satisfied, since

−f ′′(α)f(α)

(f ′(α))2 = 1 < 4.5.
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On the other hand, for the class of cost-reduction functions f(y) = yz, 0 <
z ≤ 1, the measure of concavity is

−f ′′(α)f(α)

(f ′(α))2 =
1− z

z
.

Inequalities (7) and (9) are therefore satisfied if

1

10
< z <

2

11
.

An example is illustrated in Figure 2, where joint profit, consumer surplus
(dashed line), and social welfare (thick line) are plotted as functions of alloca-
tion parameter δ; the parameters are z = 0.15, β = 0.3 and a = A + 1. Joint

0 0.2 0.4 0.6 0.8 1
d
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Figure 2: Joint Profit and Welfare as a function of δ

profit is maximized at an asymmetric allocation, but welfare is maximized
at the symmetric one.

3 Comparative Statics

As suggested by inequalities (7) and (11), the results depend on the curvature
of the cost-reduction function. For purposes of illustration, we will confine
our attention to the class of power functions f(α) = αz, 0 ≤ z ≤ 1; then
f ′(α) = zαz−1, f ′′(α) = z(z − 1)αz−2, f ′(α)2 = z2α2z−2, and

−f ′′(α)f(α)

(f ′(α))2 =
1− z

z
.
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The less the cost-reduction function is concave, the smaller is the first-
stage efficiency loss associated with an asymmetric allocation of R&D re-
sources. For instance, in the case of full spillovers in output, the gain from a
symmetric allocation of a $2 R&D investment would be(

1.5 + 1.5
)
−
(
2.5 + 0.5

)
= 0.59

if we assume a square-root cost-reduction function, but would be a lower(
1.8 + 1.8

)
−
(
2.8 + 0.8

)
= 0.26

if we assumed a less concave f(x) = x.8.
Intuitively, then, when the cost-reduction function is sufficiently concave

and spillovers are sufficiently large, firms do best by allocating their R&D
resources symmetrically; but as spillovers become smaller, the focus of Salant
and Shaffer’s analysis, or when the cost-reduction function becomes less con-
cave, a symmetric allocation may no longer be profit-maximizing. Eventually,
with further decreases in concavity and spillovers, a symmetric allocation may
not even be welfare maximizing. This insight is shown in Figure 3. On the
other hand, when spillovers are in R&D input, we observe the opposite ef-
fect: as shown in Figure 4, the optimality of a symmetric allocation of R&D
resources becomes increasingly likely as spillovers are smaller.

4 Ceteris Paribus?

The objective of the RJV literature has been to evaluate the combined ben-
efits from product competition and from internalization of R&D spillovers.

One may thus wonder what share of the benefits to RJVs can be credited
to research consolidation and what share of the benefits can be credited to
the restructuring of the output sector.

With input-side spillovers, it is clearly wasteful to have more than a single
plant and a single lab. To see why, we look at the optimal allocation of an
investment of x dollars in R&D and the optimal allocation of an arbitrary
quantity of output Q between the two firms so as to minimize the cost of
producing Q. If firm 1 invests δx and firm 2 invests (1− δ)x dollars in R&D
(δ ∈ [0, 1]), then the marginal costs of firms 1 and 2 are given by equations (8).
Without loss of generality, let δ ≥ 1/2; this implies that c1(δ) ≤ c2(δ) since
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Figure 3: Output-side Spillovers, a = A + 3

β ≤ 1. Therefore, the total cost of producing an arbitrary quantity Q of
output is minimized at δ = 1:

min
1
2
≤δ≤1

c1(δ) ·
(

Q

2
+ k(δ)

)
+ c2(δ) ·

(
Q

2
− k(δ)

)
where 0 ≤ k(δ) ≤ Q/2 since δ ≥ 1/2

= min
1
2
≤δ≤1

c1(δ) ·Q since c1(δ) ≤ c2(δ)

= min
1
2
≤δ≤1

(A− f(δx + β(1− δ)x)) ·Q

= (A− f(x)) ·Q

With output-side spillovers, on the other hand, the concavity of f implies
an interior solution in general. While it still makes sense to only have a
single plant, both labs would get positive, though generally uneven funding,
as long as spillovers are sufficiently large: the reason lies in the tradeoff
between duplication of R&D investment levels and diminishing returns to
R&D expenditures. If the spillovers are small, however, then the social cost
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Figure 4: Input-side Spillovers, a = A + 30

of producing any level of output is minimized by having a single lab in the
R&D sector and a single plant at the output stage. (We prove this claim in
the appendix.)

As shown in Figure 5, the socially optimal allocation δ∗ of investments
among labs is decreasing in the degree of spillovers β. Therefore, the smaller
β, the more R&D investments will be allocated to a preferred lab over all
others. At one extreme, for β sufficiently low, all resources go to a single
lab; at the other extreme, with full spillovers (β = 1), all labs are treated
equally.6

5 Conclusion

This paper is a contribution to the strand of literature dealing with the
comparison of different R&D technologies and knowledge spillovers. We have

6Amir and Wooders (1999) explore the role of the spillovers rate on intra industry
heterogeneity.
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Figure 5: Optimal Allocation of R&D Investment

shown how the literature’s two main models of R&D technology lead to
different conclusions with respect to the optimal allocation of R&D and the
resulting concentration in the product market. Moreover, profit and welfare
maximixing allocation of R&D do not generally coincide.

At this point, it is useful to remark that we have been comparing and
contrasting two polar technologies, even though they may not necessarily
be mutually exclusive modeling choices. A new literature is emerging in
which both types of R&D technologies are treated simultaneously. Martin
(2002), for example, develops a model with stochastic innovation that in-
cludes both input and output side spillovers and investigates the effect of
input side spillovers and the degree of appropriability of R&D output on
R&D incentives.7

In conclusion, it is critical that policy makers carefully assess the nature
of R&D spillovers in an industry before adopting any policy on research joint
ventures or R&D subsidies.

7He shows that a successful innovator’s payoff increases with greater appropriability.
However, in industries where input side spillovers are low, firm value is maximized when
appropriability is low.
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Appendix

Proof of Claim in Section 4:
If firm 1 invests δx and firm 2 invests (1 − δ)x dollars in R&D (δ ∈ [0, 1]),
then the marginal costs of firm 1 and 2 are given by{

c1(δ) = A− f(δx)− βf((1− δ)x)
c2(δ) = A− f((1− δ)x)− βf(δx)

(12)

Without loss of generality let δ ≥ 1/2; this implies that c1(δ) ≤ c2(δ). There-
fore, the total minimum cost of producing an arbitrary quantity of output
Q, C(Q), is obtained by

min
1
2
≤δ≤1

c1(δ) ·
[
Q

2
+ k(δ)

]
+ c2(δ) ·

[
Q

2
− k(δ)

]
= min

1
2
≤δ≤1

c1(δ) ·Q since c1(δ) ≤ c2(δ)

= min
1
2
≤δ≤1

[A− f(δx)− βf((1− δ)x)] ·Q.

12



To minimize c1(δ), we maximize cost-reduction R ≡ f(δx)+βf((1−δ)x).
Note that the second order condition is satisfied:

d2R

dδ2
= x2 (f ′′(δx) + βf ′′((1− δ)x)) < 0 since f ′′ < 0.

As for the first-order condition, we have

dR

dδ
= x (f ′(δx)− βf ′((1− δ)x)) .

If dR
dδ

> 0 for any δ, then δ = 1 maximizes R. This happens if f ′(δx) >
βf ′((1− δ)x) for any δ. A sufficient condition for this is

min
1
2
≤δ≤1

f ′(δx) > max
1
2
≤δ≤1

βf ′((1− δ)x).

Since f ′ is decreasing,
min

1
2
≤δ≤1

f ′(δx) = f ′(x).

Similarly,
max
1
2
≤δ≤1

βf ′((1− δ)x) = βf ′(0).

Hence if β ≤ f ′(x)
f ′(0)

, then δ = 1 maximizes R. Thus, for sufficiently small
spillovers, it is cheaper to have one firm invest in R&D in the first stage
and a single firm produce the total output in the second stage. Similarly,
if f ′(δx) < βf ′((1 − δ)x) for any δ, then δ = 1

2
maximizes R. A sufficient

condition for this is

max
1
2
≤δ≤1

f ′(δx) < min
1
2
≤δ≤1

βf ′((1− δ)x)

or f ′
(

x

2

)
< βf ′

(
x

2

)
.

But this is not possible, since β ≤ 1. Hence for β > f ′(x)
f ′(0)

, an interior solution

δ∗ exists and satisfies the first order condition f ′(δ∗x) = βf ′((1 − δ∗)x) or

β = f ′(δ∗x)
f ′((1−δ∗)x)

. Note that f ′(δx)
f ′((1−δ)x)

is decreasing in δ since f ′′ < 0. It follows

that δ∗ is decreasing in β. If β ≤ f ′(x)
f ′(0)

, then δ∗ = 1. If β > f ′[x]
f ′[0]

, then δ∗ < 1

and reaches a minimum δ∗ = 1
2

when β = 1. This implies that for large
spillovers, it is cheaper to have two firms invest in R&D in the first stage and
one firm produce the total output in the second stage.
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