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ABSTRACT
The Law of One Price (LoOP) states that all firms face the same prices for their inputs and
outputs in the competitive market equilibrium. This law has powerful implications for
productive efficiency analysis, which have remained unexploited thus far. This paper shows
how LoOP-based weight restrictions can be incorporated in Data Envelopment Analysis
(DEA). Utilizing the relation between the industry level and the firm level cost efficiency
measures, we propose to apply a set of input prices that is common for all firms and that
maximizes cost efficiency of the industry. Our framework allows for firm-specific output
weights and variable returns-to-scale, and preserves the linear programming structure of the
standard DEA. We apply the proposed methodology for evaluating research efficiency of
economics departments of Dutch Universities. This application shows that the methodology is
computationally tractable for practical efficiency analysis, and that it helps in deepening the
DEA analysis.

Keywords: Data Envelopment Analysis; Law of One Price; industry-level efficiency; weight
restrictions; research efficiency.

JEL classification: C14, C61, D21, D24
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1. INTRODUCTION

Data Envelopment Analysis (DEA; Charnes, Cooper and Rhodes, 1978) is a widely applied
nonparametric mathematical programming approach for analyzing the productive efficiency
of firms. The principle of DEA is to let the data speak for themselves rather than to enforce
them to some rigid, arbitrarily specified functional form.1 This principle is firmly rooted in the
economic literature on activity analysis (e.g., Dantzig, 1949; Koopmans, 1951a,b) and
nonparametric production analysis (e.g., Afriat, 1972; Varian, 1984); see, e.g., Banker and
Maindiratta (1988), Färe, Grosskopf and Lovell (1994) and Färe and Grosskopf (1995) for
discussion. Following this economic perspective, a number of authors (see e.g. Kuosmanen
and Post, 2001) state the lack of prior price information for some inputs and/or outputs as the
prime motivation for using DEA. Examples of inputs/outputs that are notoriously difficult to
price include public goods and services, environmental bads, new goods introduced to the
market within the time-frame of the analysis, and durable goods with life-time exceeding the
length of “one period” in the analysis (most notably capital inputs). The multiplier weights
generated by DEA can be interpreted as implicit/shadow prices that express the performance
of the evaluated firm in the most favorable light. If the firms’ choices of input-output bundles
are guided by rational economic objectives, these shadow prices then reveal, in the spirit of
the revealed preference theory of Samuelson (1948), the underlying economic prices
(opportunity costs) which are unknown to the researcher.

Generally, DEA derives shadow prices exclusively from the quantity data. Such analysis can
be strengthened by imposing additional price information in the form of additional constraints
that define a feasible range for the relative prices. These constraints are useful for modeling
prior knowledge or expectations about prices. At least, we may typically rule out the most
bizarre extreme cases where a relative price of a commodity approaches to zero or infinity
when we think it should be close to one. However, the technical questions related to
incorporating such price restrictions have been mainly discussed in the DEA context, most
commonly under the label ‘weight restrictions’ or ‘assurance regions’ (see, e.g., Allen et al.,
1997; Pedraja-Chaparro et al., 1997, for surveys), without making a clear distinction between
the alternative interpretation of the multiplier weights as economic prices or marginal
substitution (transformation) rates between inputs (outputs) (one exception is Kuosmanen and
Post, 2001). This almost exclusive focus on technical (rather than economic) issues may
explain why the DEA literature has so far ignored the coordinating function of prices in
guiding the allocation of resources within the economy.

The shadow prices obtained as the optimal solution of a DEA model tend to exhibit huge
variations across firms. This is at odds with the common perception about price formation in
competitive markets. The prevalence of price differences across firms supplying the same
homogenous good entails mixed signals for both the producers and the consumers. Moreover,
multiplicity of prices implies arbitrage possibilities, which signals inefficiency at the level of
the economy as a whole. By definition, the economy reaches a state of competitive
equilibrium when the prices of homogenous goods stabilize at some commonly known and
accepted level at which no economic agent wishes to engage into further transactions. As a

                                                          
1 This makes DEA particularly attractive in comparison to parametric efficiency analysis (see, e.g., Kumbakhar
and Lovell, 2000), which is ultimately constrained by the functional structure that is imposed on the production
possibilities. This argument is all the more valid in the case of efficiency analysis: imposing minimal a priori
structure minimizes the risk of rejecting efficiency in the case of truly efficient behavior (i.e., so-called Type I
errors). Such concern is especially important when minimal a priori information about the technology is
available, which is frequently the case in practical application settings.
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result, firms that operate on the same markets trade (homogenous) input/output commodities
against the same unique prices. This definitional fact is commonly referred to as the Law of
One Price (LoOP).2

One might be tempted to dismiss LoOP as a theoretical property, which does not hold in the
real life markets that are never perfectly competitive. Indeed, perfect competition would tend
to eliminate any inefficiencies that DEA tries to identify and measure. Consequently, DEA is
most powerful in application areas where competitive markets fail, for example, in the
production of public goods. For this reason, we may doubt the validity of the LoOP as a
descriptive hypothesis of the real markets. However, this is not a valid excuse for ignoring the
microeconomic theory of competitive markets and its powerful concepts such as the LoOP.
Stated conversely, the LoOP typically fails as a descriptive hypothesis in the real markets
because of inefficiencies. To be able to identify inefficiencies, we first have to define what
constitutes efficient performance. This is where DEA becomes useful. We may think of DEA
as a “simulator” tool that enables us to estimate the underlying economic prices (based on the
shadow prices) as if the sample firms under study would be operating under competitive
markets. This is where the LoOP can be very useful as a normative property that any efficient
market should satisfy. By introducing the LoOP, we require that performance should be
efficient not just at the level of individual firms, but also at the level of the industry or sector
as a whole. In this sense, the incorporation of the LoOP restrictions into DEA can bind it
more closely to its intellectual roots in activity analysis.3

In fact, we find that many of the basic features and implicit assumptions behind DEA are
geared towards the competitive markets, and are at odds with non-competitive settings.
Firstly, non-competitive industries are characterized by a relatively small number of firms,
which causes a fundamental data problem for a firm-level DEA analysis that requires a
relatively large sample of firms. Secondly, in non-competitive markets the input-output prices
are not exogenously defined for the firm, as implicitly assumed in DEA, but depend on the
input-output quantities demanded and supplied by the firm (see Cherchye, Kuosmanen and
Post, 2002, for discussion). Thirdly, in the non-competitive markets, firms tend to
qualitatively differentiate their products from other available products, whereas DEA makes
the implicit assumption that outputs are homogeneous and so only differ in terms of quantity.
In light of the previous arguments, we believe that the LoOP is a reasonable normative
efficiency requirement to consider in most of the traditional application areas of DEA. While
we can certainly think of other application areas where the LoOP has no meaningful
economic content, we think that the general idea of making the optimal shadow prices of a
firm dependent on the optimal shadow prices of other firms by restricting weight flexibility
across firms has potential applications even if we abstract from the microeconomic content of
the LoOP.4

                                                          
2 The history of the Law of One Price can be traced back at least to Jevons (1871), who referred to it as the “Law
of Indifference”.
3 Compare with the notion of efficiency prices introduced by Koopmans (1951a,b).
4 See Cherchye and Kuosmanen (2004) for an application of the DEA-inspired “benefit of the doubt”-weighting
principle for constructing a meta-level index of sustainable development (that enables cross-country
comparisons). These authors limit weight flexibility across countries so as to direct the country-specific weight-
profiles towards a more universally accepted consensus. Interestingly, this first application of the approach did
not interpret the multiplier weights as prices, and hence does not directly relate to the LoOP discussed in the
current study.
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This paper presents a first attempt to integrate the LoOP, taken as an additional normative
requirement for efficiency, in the DEA assessment.5 In contrast to the currently available
price/weight restriction tools that impose bounds on the relative prices of inputs/outputs
within the evaluation of a single firm, we propose to restrict price variations across firms.
That is, we operationalize the LoOP conditions by imposing weight restrictions that limit the
extent to which the shadow prices of one firm may deviate from the shadow prices of another
firm. Given the important role of shadow prices in DEA, we believe that such an extension of
the existing apparatus opens up promising new routes in a wide variety of applications. The
LoOP offers an economically sound justification for restricting price flexibility and thus
improving the discriminatory power of the DEA assessment. In fact, it is often much easier to
put intuitive constraints on the variation of (shadow) prices across (directly comparable) firms
than to bound the price variation across (often not directly comparable) input/output
dimensions. In this respect, LoOP restrictions can enrich and complement the existing
machinery for modeling weight restrictions in DEA.

The assimilation of the LoOP within DEA presents a number of theoretical and technical
challenges:
1) Since it seems most natural to impose LoOP restrictions at the aggregate level of the

industry, one critical question concerns the relation between the firm-specific efficiency
indices and the industry efficiency. The recent work by Blackorby and Russell (1999) and
Färe and Zelenyuk (2003) has shed light on this aggregation issue, which will be utilized
in this paper.

2) The simultaneous implementation of LoOP constraints, maintained production
assumptions, and other constraints requires a general and flexible enough framework.
Following Kuosmanen and Post (2001), we adopt the general Free Disposable Hull (FDH)
technology as the minimal reference technology, and enhance discriminatory power of the
model by imposing constraints on relative prices and technical substitution/transformation
rates.

3) The optimal multiplier weights/shadow prices generated by DEA need not be unique.
While possible non-uniqueness does not affect the industry-level efficiency measures, it
can influence the efficiency distribution at the firm level. To resolve this problem, we
propose a framework for testing uniqueness of the LoOP prices.

4) To keep the assessment procedure tractable even in large data sets, it is desirable to
preserve the Linear Programming (LP) structure of the conventional DEA programming
problems. Inspired by Agrell and Tind (2001), we present a general LP formulation for
FDH-based cost efficiency measures which permits additional economic constraints on
relative prices, as well as additional production assumptions regarding convexity,
technical substitution/transformation rates, and returns to scale.

Next, we apply the proposed methodology for evaluating research programs organized at
Economics and Business Management faculties of Dutch universities. This study
complements an earlier study by Cherchye and Vanden Abeele (2002), who evaluated the
same research programs without imposing LoOP restrictions. We believe that the main
potential of the proposed methodology lies in public sector applications, where unambiguous
market prices are not available although it may reasonably be argued that the same notional
rates should be used across all units for cost-effectiveness evaluations. As explained below,
the latter indeed seems to apply to university research in the Netherlands. This application
                                                          
5 Parallel to this study, Cross and Färe (2003) investigate the relationship between DEA and the LoOP from the
opposite perspective: these authors examine the empirical validity of the LoOP hypothesis to determine whether
it is justified to use monetary expenditure and cost data as input indicators (or quantity index) in DEA.
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should also give us a deeper insight into the computational tractability of the proposed
methodology for practical efficiency analysis, and into the value added that it produces in
terms of the qualitative conclusions of the efficiency analysis.

The remainder of the paper unfolds as follows. In section 2, we briefly review the
conventional firm-specific DEA efficiency assessment, and introduce the problem of
including LoOP restrictions into such an evaluation. In section 3, we tackle the problem of
efficiency assessment at the industry level. Section 4 presents operational tools to deal with
the possibility of non-uniqueness of the optimal shadow prices, and to investigate sensitivity
of the efficiency estimates with respect to (minor) departures of the LoOP conditions that are
imposed. Section 5 presents our empirical application. Section 6, finally, recaptures our main
findings and concludes.

2. MEASURING ECONOMIC EFFICIENCY AT THE FIRM LEVEL

2.1 Preliminaries
Consider an industry consisting of N firms, indexed by { }1,...,n Nν∈ ≡ , which utilizes a

common technology that transforms R inputs into S outputs, indexed by { }1,...,r Rρ∈ ≡  and

{ }1,...,s Sσ∈ ≡  respectively. Using standard notation, the vector ( )1 ' R
Rx x x += ∈" \

represents an arbitrary input vector and ( )1 ' S
Sy y y += ∈… \  an output vector; the input price

vector (representing the marginal opportunity cost of each input) is denoted as
( )1

R
Rw w w += ∈… \ . The empirical production data are represented by the input matrix

1( )NX X X= …  and the output matrix 1( )NY Y Y= … , where vectors 1( )n n nRX X X ′= "  and

1( )n n nSY Y Y ′= …  represent the input and the output vectors of firm n ν∈ .

To enhance transparency of our discussion, we solely focus on cost efficiency analysis in
presenting the methodology. (The reasoning is easily adapted to other notions of economic
efficiency such as revenue efficiency.) Cost efficiency analysis typically starts from
representing the production technology in terms of the input correspondence : 2

RSL +
+ → \\ ,

(1) { }( )   can produce  R SL y x x y+ +≡ ∈ ∈\ \ .

That is, the input set L(y) contains all input vectors x that yield output y. Sets L(y) are assumed
to satisfy the following well-known regularity conditions: 1) closedness; 2) non-emptyness;
and 3) no free lunch [ 0 , 0 0 ( )S S Ry y L y≥ ≠ ⇒ ∉

G G G
].

Using (1), we define cost efficiency of a firm n ν∈  (associated with an input-output
combination ( ),n nX Y ) as the ratio of minimum cost over actual cost for given output nY ,

input prices w and the input reference set ( )nL Y . Representing the cost function by

(2) { }( , ) min ( )L

x
C y w wx x L y≡ ∈ ,

we can formally express cost efficiency of firm n ν∈  as
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(3) ( , )( , , )
L

L n
n n

n

C Y wCE X Y w
wX

≡ .

In practical efficiency analysis, the input price vector w is often not observed, or the observed
input prices do not constitute reliable proxies for the true opportunity costs faced by the
evaluated firm. In that case, cost efficiency analysis can proceed by resorting to an input price
domain rather than a single-valued input price vector; that price domain should then capture
the true (but unknown) input prices faced by the firm under study. Specifically, we consider a
general price domain that is characterized as the polyhedral convex set

(4) { }RW w Aw b+≡ ∈ ≥\ .

This set represents the price domain in terms of l linear inequalities; A is an l S×  matrix and b
an l-dimensional column vector. (If A and b are void, then we have SW += \ .) In the
following, we assume the price domain W merely includes relative price restrictions, which
cannot be violated by equiproportionate rescaling of the input prices. In such a setting, we
obtain for input prices w W∈ an upper bound for ( , ; )LCE x y w  as

(5) { }( )( )
( , ; ) max ( , , ) max min 1

n

L L
n n n n x L Yw W w W

CE X Y W CE X Y w wx wx
∈∈ ∈

= = =
�

� .

Hence, ( , ; )
L

n nCE X Y W  approximates ( , ; )L
n nCE X Y w  by maximizing it in terms of the prices

w W∈  that are endogenously selected; the firm k is assessed in the most favorable light. See
Kuosmanen and Post (2001) for a more in-depth discussion.6

Another challenge of the empirical efficiency analysis is that the input correspondence L is
not known either, but must be empirically estimated. In DEA, an inner bound approximation
of the set ( )nL Y  is constructed from the data by imposing some additional production
assumptions. A minimal assumption in conventional DEA models is free disposability of
inputs and outputs. Solely maintaining this production assumption yields the free disposable
hull (FDH) reference technology (see Deprins et al., 1984, and Tulkens, 1993, for detailed
discussions), represented as ( ) { }: ; ;FDH n m m nL Y x x X Y Y m ν≡ ≥ ≥ ∈ . Using this reference
technology, we obtain an estimate for the cost efficiency of firm k ν∈  as the optimal solution
to the following Linear Programming (LP) problem:

                                                          
6 Kuosmanen and Post (2001; 2003) actually also introduce a lower bound for ( , , )LCE x y w  based on w W∈ .
We will not explicitly discuss this measure here. Still, it is easy to see that the lower bound estimate will
coincide with the upper bound under the LoOP condition (introduced below), in which case W reduces to a ray.
Also, given that DEA typically works with an inner bound approximation of the input correspondence L(y)

generally makes the upper bound measure ( , ; )
L

CE x y W  more meaningful for empirical application than its
lower bound counterpart (which can actually overestimate the true value of ( , , )L

k kCE X Y w when an inner bound
approximation is used for ( )kL Y ).



8

(6)

, , ,

1

1 1

1

( , ; ) max

. .

0 

1

 

FDH

m m

L
k k c p w f

S

ks ms m
s

S R

ms ms mr r m
s r
R

kr r
r

S
m

CE X Y W c

s t

c Y p f m

Y p X w f m

X w

p m
w W

ν

ν

ν

=

= =

=

+

=

≤ + ∀ ∈

− + ≤ ∀ ∈

=

∈ ∀ ∈
∈

∑

∑ ∑

∑
\

Model variables pm and fm can be interpreted as the vector of output shadow prices and fixed
cost, respectively. This LP formulation exploits the fact that the free disposable hull reference
technology can be expressed as the union of a set of convex monotone hull reference
technologies, defined with respect to each separate firm in the sample (see also Lovell and
Vanden Eeckaut, 1993; p. 448-449). Problem (6) essentially solves the usual DEA input
efficiency problem separately for each possible reference firm m ν∈ ; notice that output prices
pm

 and fixed costs fm are allowed to differ across reference firms m. The first constraint
effectively selects the reference firm which produces the target output with the lowest cost.

The LP relaxation of the FDH model is not well known. It is worth to stress that our LP
formulation (6) provides a more immediate link between FDH and convex DEA model
formulations than the earlier approach by Agrell and Tind (2001). To gain further intuition for
the LP formulation of the non-convex FDH, the dual of problem (6) is derived in a step-by-
step fashion in the Appendix.

Apart from free disposability, other production assumptions are frequently maintained in
practical DEA assessment. For example, many models assume convexity of the production
possibilities (see, e.g., the popular DEA model introduced by Banker, Charnes and Cooper,
1984) and non-increasing, non-decreasing or constant returns-to-scale (see, e.g., Seiford and
Thrall, 1990). These additional assumptions are implemented in model (6) by adding the
restrictions (NIRS stands for non-increasing returns-to-scale; NDRS stands for non-decreasing
returns-to-scale; CRS stands for constant returns-to-scale)

(7)

: , , 1,...,
: 0 1,...,
: 0 1,...,

: 0 1,...,

m n m n

m

m

m

Convexity p p f f m n N
NIRS f m N
NDRS f m N
CRS f m N

= = ∀ =
 ≥ ∀ =
 ≤ ∀ =
 = ∀ =

   
  
  

  

These constraints apply (with straightforward modifications) to all model formulations
specified below. We will therefore focus on the general FDH technology, and consider
alternative production assumptions and constraints only where those are not immediately
obvious from (7).
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As the first step towards aggregate analysis, note that instead of solving problem (6)
separately for each firm, we may calculate the cost efficiency measures simultaneously for all
N firms by solving a bigger LP problem:

(8)

, , , 1

1

1 1

1

max

. .

,

0 ,

1

 ,

mn n

N

nc p w f n

S

n ns mns mn
s

S R

ms mns mr nr mn
s r
R

nr nr
r

S
mn

n

c

s t

c Y p f m n

Y p X w f m n

X w n

p m n
w W n

ν

ν

ν

ν
ν

=

=

= =

=

+

≤ + ∀ ∈

− + ≤ ∀ ∈

= ∀ ∈

∈ ∀ ∈
∈ ∀ ∈

∑

∑

∑ ∑

∑
\

Notice that the model variables of (8) include N input price vectors wn, 2N  output price
vectors pmn, and 2N  fixed cost variables fmn: this guarantees that problem (8) encompasses all
constraints of problem (6) simultaneously for all firms. Since the shadow prices of individual
firms are independent of the shadow prices of other firms in the sample, we may maximize
the sum of cost efficiency measures, and hence ( , ; )DEAL

n nCE X Y W  is obtained as the optimal

nc∗  from (8).

It is important to observe that both problems (6) and (8) select input prices nw W∈  that are
specific to each firm n=1,…,N. Hence, there is no guarantee that the optimal (endogenously
selected) input price vectors wn would satisfy the LoOP. We next investigate how we can
implement this LoOP condition in terms of additional weight restrictions.

As a preliminary step, we note that the cost efficiency measure is homogenous of degree zero
in the input prices (see definition (3)), which means that multiplying the input prices by a
positive scalar does not affect its value. Therefore, it does not suffice to compare the different
values *

nw W∈  over all firms n in order to check consistency with the LoOP; the same cost
efficiency values are obtained when re-scaling the optimal input vector as *

nwα  for all 0α > .
In other words, given our focus on cost efficiency, it does not matter whether we impose the
LoOP condition in terms of absolute input prices, i.e.

(9)  ,m nw w m n ν= ∀ ∈ ,

or in terms of relative input prices, i.e.

(10)  , ; ,mr nr

mq nq

w w m n q r
w w

ν ρ= ∀ ∈ ∈ .
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It follows from our above argument that if the optimal input prices satisfy (10), then we can
always normalize the input prices to satisfy (9) without influencing the firm-specific cost
efficiency values. In fact, the zero-homogeneity property of cost efficiency is already utilized
in the LP formulations (6) and (8) for normalizing the firm-specific input prices such that the
total cost of production activity equals one for each firm. Imposing the LoOP in absolute
terms as in (9) would typically conflict with these normalization constraints, so we have to
formulate the LoOP in terms of relative prices as in (10). In the following, we thus focus on
implementing condition (10) in the standard evaluation problem (8).

Unfortunately, direct implementation is difficult in practice due to the non-linearity of
condition (10), which involves ratios of two unknown (decision) variables. To solve this
technical problem, we need to expand our discussion to economic efficiency evaluation at the
industry level.

3. MEASURING ECONOMIC EFFICIENCY AT THE INDUSTRY LEVEL

3.1 Theory
Aggregation of efficiency indices from the firm level to the industry level has attracted some
deserved attention in the recent literature. Generally, guaranteeing consistency of efficiency
indices defined and measured at different aggregation levels proves trickier than one might
first expect; see Blackorby and Russell (1999) for some general results. Building on these
results, Färe and Zelenyuk (2003) discuss aggregation conditions for revenue efficiency. In
the present context, it is interesting to note that Färe and Zelenyuk have to assume the LoOP
holds to make their aggregation work. In this section we re-interpret the Färe and Zelenyuk
approach within the context of cost efficiency analysis.

Industry efficiency analysis starts from a specification of the industry production technology.

Let the aggregated industry input-output combination be denoted by ( ) ,n n
n n

X Y
ν ν∈ ∈

 ≡  
 
∑ ∑X,Y .

Following usual practice, we define the industry input set as the sum of the individual firm
input sets7

(11) ( ) ( )k
k N

L Y
∈

≡ ∑YL .

Assuming that the LoOP holds, all firms in the industry face the same input prices w. The
industry cost function is then defined as

(12) { }( , ) min ( )
x

w wx x≡ ∈Y YC L ,

and industry cost efficiency is defined directly analogously to (3) as

(13) ( , , )ICE wX YL ( , ) n
n

w w X
ν∈

≡ ∑C Y .

                                                          
7 Note that this setting does not allow for reallocation of output targets. Färe and Zelenyuk (2003) allow for firm-
specific technologies, but those are of little use in the present context.
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Focusing on revenue efficiency, Färe and Zelenyuk (2003) show that the industry efficiency
can be decomposed as the revenue-share weighted average of the individual firm efficiencies.
This result is directly adapted to the present setting. Specifically, industry cost efficiency can
be decomposed into the cost-share weighted average of the firm cost efficiencies

(14) ( , , )ICE wX YL  ( , )L
nn

n n

C Y w Sh
wXν∈

= ⋅∑ ,

where  nSh  is the cost share of firm n ν∈  in the total costs of the industry, that is,

(15)  n n

n
n

wXSh
w X

ν∈

=
∑

.

3.2 Industry efficiency under incomplete price information

The previous aggregation result was derived under the assumption that the price vector w is
known. As discussed above, we consider DEA to be most useful in the situations where the
prices are not (completely) known. We therefore next extend the DEA approach to finding the
optimal shadow prices from the firm level to the industry level. In the absence of reliable
information about prices w, we propose to select those (implicit or shadow) input prices w that
maximize the cost efficiency of the industry ( , , )ICE wX YL . Intuitively, individual firms may
be more or less cost efficient, but in a competitive environment, the industry as a whole
should operate close to its efficiency limits.

We see at least two approaches for empirical estimation of the price vector w, which directly
exploit the result in (14) and (15). We shall refer to these alternative routes as respectively the
Top-Down approach and the Bottom-Up approach.

3.2.1 Top-Down Approach
The Top-Down approach starts directly from the definition of ( , , )ICE wX YL  in (14). This
approach only applies if the technology exhibits constant returns-to-scale. Given that all firms
are assumed to operate under the same technology, represented by the input correspondence
L, the constant returns-to-scale property implies that

(16) ( ) ( )L=Y YL ,

which in turn entails

(17) ( ; )ICE WX,YL = ( ; )LCE WX,Y .

We may thus take the DEA production set based on the observed input matrix X and output
matrix Y as the reference set, and assess cost efficiency of the industry input-output
combination ( )X,Y  relative to that empirical set. Formally, the industry cost efficiency is
estimated as
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(18)

, ,

1

1 1

1

( ; ) max

. .

0 

1

 

FDH

m

L

c p w

S

s ms
s

S R

ms ms mr r
s r
R

r r
r

S
m

CE W c

s t

c p m

Y p X w m

w

p m
w W

ν

ν

ν

=

= =

=

+

=

≤ ∀ ∈

− ≤ ∀ ∈

=

∈ ∀ ∈
∈

∑

∑ ∑

∑
\

X,Y

Y

X

Problem (18) is directly analogous to the firm-level problem (6). Note that we exclude the
“fixed cost” variable fm because we have to assume constant returns-to-scale to guarantee
equality (16). Note that problem (18) uses the nonconvex FDH under constant returns-to-scale
as an approximation of the technology. Like before, convexity can be imposed by inserting an
additional constraint mp p m ν= ∀ ∈ .

The optimal solution to (18) gives us an estimate of the industry cost efficiency
( , , )ICE wX YL , but it also provides us with the optimal input shadow prices *w  that

maximize cost efficiency at level of the industry as a whole. We may subsequently use these
industry shadow prices within the firm level efficiency analysis. Specifically, we can impose
that the relative input prices at the firm level should equal the relative prices implied by *w .
In practice, this is simply implemented by specifying the price domain W as

{ };RW w w wα α∗
+ += ∈ = ∈\ \  or, equivalently, inserting in problem (6) or (8) the following

linear constraint:

(19)
 mw w mα ν

α

∗

+

= ∀ ∈

∈\
.

Note, however, that in doing so we have to assume that the shadow prices *w  are unique.
Unfortunately, there is no guarantee for such uniqueness: the optimal ( , , )ICE wX YL  may
equally well be obtained with alternative input prices, associated with a different distribution
of the firm-level efficiency indices. We return to this problem in more detail in Section 4.1.

3.2.2 Bottom-Up Approach

The previous Top-Down approach only applies if the technology exhibits constant returns-to-
scale. Under variable returns-to-scale, we can adopt a Bottom-Up approach, which starts from
the firm-specific cost efficiencies. This alternative approach builds on the observation that
(see (14) and (15))
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That is, the industry cost efficiency can be seen as the sum of the firm-specific minimum
costs divided by the total cost of the industry. Therefore, we can estimate ( , , )ICE wX YL  by
the optimal solution to the LP problem that selects w W∈  that satisfies 1w =X , and that
maximizes the sum of minimum costs associated with the individual firms n ν∈ , that is,
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Analogous to (7), the additional convexity and/or returns-to-scale postulates can be imposed
by means of the following constraints:

(22)
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It is illustrative to compare this problem with problem (8) of Section 2. Problem (21) is
consistent with the LoOP because it applies the same input prices for all firms. The earlier
nonlinearity problem associated with the LoOP constraint (10) is avoided by normalizing the
input prices such that the total cost at the industry level equals unity, in line with (20).
Consequently, the optimal nγ ∗  do not directly represent the firm level cost efficiency indices,
but should be interpreted as the values of the cost function at the normalized prices. The firm-
specific cost efficiencies, which are consistent with the industry level cost efficiency
computed on the basis of (21), are obtained from the decomposition of Färe and Zelenyuk,
viz.

(23) ( , ; )FDHL
n nCE X Y W n

nw X
γ ∗

∗= ,
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where the vector w∗  represents the optimal input prices that are obtained as the solution of
(21). Like in the Top-Down approach, however, these optimal shadow prices need not be
unique. We turn to this non-uniqueness problem in the next section

4. Uniqueness and sensitivity analysis

4.1 Uniqueness
We concluded Sections 3.2 and 3.3 by noting that the optimal shadow prices obtained from
either the top-down or the bottom-up approach need not be unique. This is not a problem if
we are primarily interested in economic efficiency at the industry level, because non-
uniqueness of shadow prices does not impact on the value of ( , , )ICE WX YL . At the firm-
level, however, non-uniqueness does matter. If the optimal input prices that maximize

( , , )ICE WX YL  are not unique, then the cost efficiency levels of individual firms may vary
considerably depending on which particular shadow prices we choose at the industry level. It
is therefore important to test whether the industry-level optimal solution is indeed unique.

The simplest way to proceed is to search for alternative input price vectors that yield the same
optimal solution to the industry level problems (18) and (21). In this context, we can specify
uniqueness of the optimal input prices *w W∈  as the null hypothesis. (Based on the fact that
the number of firms is usually considerably larger than the number of input and output
dimensions, we may indeed reasonably expect the null hypothesis to hold in most
applications.) Consider then the following additional constraint for relative prices of inputs

,q r ρ∈ :

(24)
*

* +r
r q
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ww w
w

ε
 

≥    
,

where 0ε >  can be interpreted as an exogenously specified ‘tolerance’ parameter; we
consider the difference between the prices *,w w W∈  to be (economically) insignificant if the
difference * */ /r q r qw w w w−  is less than or equal to ε . Condition (24) is linear in the unknown
variables w, so that we may directly implement it in problems (18) or (21). Let the new price
domain that includes (24) be denoted by W +  and denote the corresponding optimal solution
of the industry cost efficiency problem by ( )ICE W + . We can now distinguish two cases.
First, if ( ) ( )ICE W ICE W+ = , then we have identified an alternative set of input prices that
yields the same industry-level cost efficiency as the original *w , and the (uniqueness) null
hypothesis is to be rejected. Alternatively, if ( ) ( )ICE W ICE W+ < , then it is not possible to
increase the price of input r and decrease price of input q without affecting the industry cost
efficiency measure. The next step is to reverse the signs of the inequality and the tolerance
parameter ε  in (24) as

(25) 
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and perform the same test again. This procedure should be repeated for every pair of inputs,
until the null hypothesis is rejected or all pairs have been considered. If we fail to reject the
null hypothesis in all cases, we may conclude uniqueness of the optimal industry-level
shadow prices. Since the number of inputs is usually relatively small, the number of
combinations to be tested should not present a major computational problem.

As explained above, non-uniqueness of the optimal LoOP prices may affect the firm-level
(but not the industry-level) efficiency estimates. One possibility to extend the firm-level
analysis in such a case consists of calculating the upper and lower bounds of cost efficiency
for each firm k ν∈ , restricting to input prices that keep the industry cost efficiency to its
minimum (i.e., solving ( , , )ICE WX YL  in (18) or (21)). However, it turns out that calculating
these bounds is extremely complicated: changing the input prices not only influences the
actual cost, but also the minimum cost for producing the given output (i.e., the cost function
value). Given these computational problems, we leave the development of an efficient
algorithm for calculating the firm-specific upper and lower bounds in the case of a non-unique
industry optimum as an interesting topic for follow-up research.

4.2 Sensitivity analysis
A related issue concerns the sensitivity of firm level efficiency indices to the LoOP condition.
The motivation is that the individual firms may be allocatively inefficient, and hence the
shadow prices may deviate from the true economic prices that the firms face. The key idea
behind our empirical cost efficiency estimates is that these inefficiencies should cancel out at
the level of the industry. If allocative efficiency is viewed as purely irrational behavior, there
is no reason to expect allocative inefficiencies to be systematically biased in any direction.
Therefore, the LoOP constraints should provide a meaningful approximation at the level of
the industry. However, errors that are small at the level of the industry can be very significant
at the level of the individual firms. Therefore, we might want to test whether minor departures
from the LoOP condition make a difference at the firm level. To this end, we consider two
approaches for “weakening” the strict LoOP condition adopted above.

The first approach is a two-stage procedure that applies in the Top-Down as well as the
Bottom-Up cases. In the first stage we estimate the optimal shadow prices. In the second stage
we calculate the firm-specific efficiency indices; we start from the relative prices obtained in
the first stage, but allow for deviations of the firm-specific input prices from the common
(first stage) shadow prices. In other words, we first solve either (18) or (21) to obtain shadow
prices w*; subsequently, we calculate firm-specific efficiency indices by solving either (6) or
(8) incorporating the price domain W specified as

(26) 
* *

* *  ,R nr nr nr
n nqr nqr

nq nq nq

w w wW w q r
w w w

α α ρ+

  = ∈ ≤ ≤ ∀ ∈ 
  

\ ,

with the parameters ( , )nqr nqrα α  defining the minimum and maximum factors by which the
relative price of inputs q and r of the firm n can deviate from the industry-level relative
shadow prices (w*). Firm-specific and/or input-specific factors may be used, or the same
factor (e.g. 1/ 0.95nqr nqrα α= = ) may be applied across all firms and inputs. Of course, the
specification of the values ( , )nqr nqrα α  is particular to the application setting under study.
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From the sensitivity analysis perspective, it may be worthwhile to examine the robustness of
efficiency indices with respect to different values for ( , )nqr nqrα α .

The second approach is to model the weak LoOP bounds directly in the cost efficiency
problem. This approach only applies in the Bottom-Up models. Specifically, the weaker
LoOP condition can be implemented by rewriting problem (21) in the form

(27)
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where the parameters ( , )mnr mnrβ β  define the minimum and maximum factors by which the
price of input r is allowed to deviate between firms m and n. The interpretation of these
parameters is directly analogous to that of ( , )nqr nqrα α  above. Notice that in the special case

where  , ,mnr mnr m n rβ β= ∀  problem (27) reduces to (21). On the other hand, in the limiting

case where 0,  , ,mnr mnr m n rβ β= → ∞ ∀ , problem (27) simplifies to problem (8).

The previous two approaches cover the entire continuum between the non-LoOP DEA/FDH
specification (8) on the one hand and the strict LoOP specifications (18) and (21) on the other.
Therefore, the sensitivity analysis of the LoOP condition can be based on the comparison of
efficiency indices calculated with different values for the parameters ( , )nqr nqrα α  or

( , )mnr mnrβ β  parameters. Allowing for some limited firm-specific deviations from the LoOP
conditions might improve robustness of the firm-specific efficiency indices with respect to
data errors and possible asymmetries in terms of allocative inefficiency. Note, however, that
the firm-specific efficiency indices can be consistently aggregated to the industry level only
when the LoOP is interpreted in the strict sense as in (18) and (21).

5. Application: research efficiency in Dutch universities

5.1 Data and setting
We apply the presented methodology for examining the productive efficiency of research in
Economics and Business Management faculties of Dutch universities. Specifically, we
evaluate the efficiency of 79 research programs organized at 8 universities. The same data set
was studied by Cherchye and Vanden Abeele (2002), who motivate efficiency assessment
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within this setting by the argument that efficient research production is not guaranteed by the
usual market correction mechanisms. These authors further claim that the cost efficiency
model discussed above seems particularly appropriate within this application context.

Furthermore, it is reasonable to invoke LoOP as the price condition in this application. In the
Netherlands, salaries of the university staff are centrally negotiated by unions and, hence,
should generally be the same for all universities. However, differences in overheads, which
are not directly accounted for in our input-output selection, and the fact that the exact salary
values depend on other factors that are not explicitly included in the evaluation model (such
as age/experience), make it nearly impossible to determine the exact “market prices”
unambiguously from the outset. In our opinion, all this makes academic research assessment a
suitable application area for illustrating the proposed LoOP-techniques. Moreover, it is
interesting to compare the LoOP results with the ‘non-LoOP’-results of Cherchye and Vanden
Abeele.

Generally, a research program can be defined a “a group of researchers who join forces to
investigate a particular theme, and in the process to educate researchers and to publish
research results”. Cherchye and Vanden Abeele argue that this definition institutes research
programs as the natural production units for studying academic research efficiency. Building
on that definition, they suggest the following input-output selection for characterizing the
production of each program: 8

Inputs: (1) junior research staff (=PhD candidates), (2) senior research staff (= other research
personnel).

Outputs: (1) total number of doctoral dissertations, (2) total number of refereed articles in top
international journals, and (3) total number of refereed articles in other international journals.

The input and output data are taken from the ‘Quality Assessment Reports on Research 1996-
2000’, delivered by each Dutch university in the context of the quinquennial assessment by
the VSNU (i.e., the Dutch association of universities). For each research program we have
data for the years 1998, 1999 and 2000. Pooling the three cross-sections in the same sample,
we have 237 (79 x 3) (two zero output cases excluded) observations in total. For further
details about the data and the input-output selection, we refer to Cherchye and Vanden Abeele
(2002).

We model the production technology as follows. Since larger research programs are generally
expected to benefit of economies of scale, we take the non-convex FDH technology as the
starting point. Since we focus on cost efficiency, convexity or non-convexity of input sets
does not make any difference whatsoever (see Kuosmanen, 2003, Theorem 3.3). To enhance
the discriminatory power of our efficiency measures, we impose further restrictions on the
                                                          
8 A careful reader will notice that our specification of output variables differs from that used by Cherchye and
Vanden Abeele (CA: 2002). CA substitute output 3 by the sum of outputs 2 and 3 (i.e., total number of articles)
in their efficiency assessment. This way, CA implicitly constrain the shadow price of output 2 (articles in top
journals) to be greater than or equal to the price of output 3 (observe that 2 2 3 2 3( )p y p y y+ +

2 3 2 3 3( )p p y p y= + + , so in the treatment of CA, price p2 can be interpreted as the extra premium for the top-
journal articles, which is added to the normal article price p3). In the present paper, the same constraint is
modeled explicitly, since or LP formulation of the FDH technology allows for implementing additional
constraints on the relative prices. The reference technology is exactly the same in both papers.
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relative input prices and the output multipliers, permitted by our novel LP formulation of the
nonconvex FDH technology (see section 2 and the Appendix). Specifically, for input prices
we postulate that the first input (junior staff) cannot be more expensive than the second input
(senior staff). Similarly, for output weights we postulate that the shadow price of output 2
(articles in top journals) must be greater than or equal to the weight of output 3 (articles in
other journals) (i.e., articles in top journals are at least as good as articles in other journals).

5.2 Results for the basic FDH LoOP model

Table 1 provides a number of summary statistics for the LoOP and non-LoOP results. The
industry efficiency for the LoOP model corresponds to the weighted average of the
observation-specific efficiency values, which is computed on the basis of (14) and (15). As
for the non-LoOP results, we use equal weights for aggregating the different research
programs, given that there is no consistent weighting scheme for aggregating the firm-specific
non-LoOP efficiency indices to the industry efficiency. A first observation from the table is
that, when comparing the LoOP and non-LoOP efficiency values, we observe that efficiency
values decrease when imposing additional LoOP structure on the endogenously defined
prices. Recall that the LoOP model differs from the non-LoOP model only in that it imposes
an additional constrain on input prices. Still, the industry-level efficiency does not decrease
very drastically. We further find that also the coefficient of variation is fairly similar in both
cases. This leads to a first (tentative) conclusion that imposing the LoOP conditions in this
particular setting does not substantially alter the distribution of efficiencies over the different
production units; in other words, the computed efficiency values are fairly robust with respect
to the specific restrictions on the distribution of shadow prices across observations.

By contrast, the computed input shadow prices are heavily influenced by the LoOP
restrictions. Specifically, we obtain a very unbalanced picture in the non-LoOP case: the
relative shadow prices of junior staff (see ‘rel. price PhD’) and senior staff (see ‘rel price
other’) respectively equal (on average) approximately 0% and 100%; non-surprisingly, these
extreme values are associated with huge coefficients of variation over the different evaluated
research programs. By contrast, we get a much more balanced 40% (junior staff) versus 60%
(senior staff) shadow price structure in the LoOP case (where we impose equality of shadow
across all research programs under evaluation). In our opinion, these LoOP prices have a
much more “reasonable” interpretation. More generally, we believe that imposing LoOP
conditions may often generate more realistic estimates for the shadow prices. This is an
important point to make, as the estimation and interpretation of these shadow prices often
constitutes a core issue in practical DEA applications; in such instances the presented LoOP
methodology may provide substantial value-added.

Table 1: Summary statistics for cost efficiency with and without LoOP

 
Industry
efficiency

Coefficient of
variation

Relative price
Junior staff

Relative price
Senior staff

LoOP 0.567 0.568 0.402 0.598

Non-LoOP 0.623 0.510 0.002
(42.789)

0.998
(144.203)

Note: between brackets are coefficients of variation associated with the reported
average values

Next, we compare the qualitative conclusions with respect to efficiency differences across
universities (Table 2), considering both the LoOP and the non-LoOP efficiency indices. For
each university, Table 2 reports the number of observations (see ‘# observations’) and the
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‘university efficiency’: for the LoOP results we use the Färe-Zelenyuk aggregation described
in Section 3.1, for non-LoOP results we report the unweighted averages. The column ‘p-
value’ reports the (two-sided) probability value for the hypothesis that the aggregate
efficiency of that university equals the aggregate efficiency of all other universities.
Assuming the deviations of the program efficiencies from the overall university efficiency are
normally distributed, we use the t-tests of sample means for examining systematic efficiency
differences across universities. The use of t-tests allows for exploiting the weighting structure
of the industry efficiency in the LoOP case (see (14) and (15)); for the LoOP results we use
weighted t-tests. Given that consistent aggregation of the non-LoOP results is impossible, we
use the standard unweighted t-tests of sample means in that case.9

The numerical values in Tables 2 differ slightly when comparing the LoOP and non-LoOP
results. As can be expected, university efficiency tends to be higher in the latter case than in
the former case; only universities of Tilburg and Nijmegen form exceptions. Still, although
some variation is observed, we generally obtain the same qualitative results in the two
exercises. As for differences over universities, we specifically find that Tilburg University is
performing well; Wageningen University is no longer identified as generally outperforming
the (average of the) remaining universities when LoOP constraints are taken up in the
efficiency evaluation. On the other hand, the University of Amsterdam and Maastricht
University are performing relatively poorly in terms of both the LoOP and the non-LoOP
results.

Table 2: Efficiency differences across universities
  LoOP non-LoOP

 # obs.
University
Efficiency p-value

Average
Efficiency p-value

Tilburg Univ. 27 0.806 0.000 0.788 0.005
Wageningen Univ. 21 0.616 0.286 0.752 0.057
Free Univ. Amsterdam 36 0.596 0.656 0.643 0.746
Univ. Groningen 18 0.560 0.872 0.584 0.548
Erasmus Univ. Rotterdam 59 0.552 0.703 0.652 0.473
Univ. Maastricht 27 0.478 0.100 0.515 0.050
Univ. Nijmegen 6 0.465 0.339 0.449 0.162
Univ. Amsterdam 41 0.365 0.000 0.525 0.022

We next applied the same procedure to examine the differences across fields of specialization
(Table 3). We find good performances in the fields Econometrics and Theoretical and Applied
Microeconomics. On the other hand, research programs in the field of Applied Labor
Economics appear to perform relatively badly in comparison to the other programs. When
imposing LoOP conditions, also the research in the Economic of Public Policy does not seem
to “pay off” to the same extent as the research in other domains. (We refer to Cherchye and
Vanden Abeele for further discussion and various interpretations of these findings.)

                                                          
9 Cherchye and Vanden Abeele (2002) use Wilcoxon rank signed tests for identifying such differences. Their
qualitative conclusions are generally the same as those obtained from the t-tests. These authors also investigate
efficiency changes over time; comparing their non-LoOP results to our LoOP results leads to the same
qualitative conclusions as the comparisons based on Tables 2 and 3. Finally, Cherchye and Vanden Abeele
consider combinations of the two categorizations that are considered in Tables 2 and 3; e.g., they examine the
relative efficiency of research programs (i) within a specific specialization unit that (ii) are organized at one
particular university. To keep our discussion focussed, we abstract from such (admittedly interesting) study in
this paper, where the application illustration mainly serves to illustrate the proposed methodology.
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Table 3: Efficiency differences across field of specialization
  LoOP non-LoOP

 # obs.
Field

Efficiency p-value
Average

Efficiency p-value
Theoretical and Applied
Microeconomics 21 0.832 0.000 0.746 0.069
Econometrics 15 0.810 0.014 0.817 0.015
Spatial and Environmental
Economics 18 0.689 0.130 0.741 0.109
Macroeconomics, Money and
International Issues 18 0.659 0.161 0.639 0.863
Development, Growth and
Transition 15 0.590 0.752 0.604 0.771
Applied Mathematics 18 0.536 0.695 0.644 0.814
Marketing and Business
Economics 66 0.534 0.273 0.601 0.433
Accounting and Finance 36 0.500 0.203 0.570 0.245
Applied Labor Economics 13 0.388 0.054 0.434 0.023
Economics of Public Policy 9 0.324 0.042 0.500 0.219

The close similarity of the LoOP and non-LoOP results additionally supports our earlier
(tentative) conclusion: in this specific application, the distribution of the computed efficiency
values is fairly robust with respect to the specific restrictions on the distribution of shadow
prices across production units. (From our above discussion: the sole exceptions concern the
different qualitative conclusions regarding the research at Wageningen University and the
research programs operating in the area of Economics of Public Policy.) Generally, it seems
interesting to investigate such robustness. The next section provides a more detailed
discussion of how the proposed methodology can be used for the purposes of sensitivity
analysis.

5.3 Uniqueness and sensitivity analysis

We next complement the analysis by investigating uniqueness of the efficiency of the optimal
shadow prices and the sensitivity of the computed efficiency values with respect to the LoOP
condition and the hypothesized production properties. Firstly, we tested for uniqueness of the
industry-level optimal solution using the algorithm described in Section 4.1, using a tolerance
value of 0.0001 for ε in (24) and (25). Since our application includes only two inputs, we only
need to solve two LP problems. In both these LP problems the optimal solution (i.e., the
newly computed industry efficiency value) lies below the original solution (that does not meet
the restrictions (24) and (25)). Hence, we cannot reject the null hypothesis of unique input
prices: forcing the relative shadow prices to deviate minimally from the original shadow
prices entails a lower industry efficiency value.

We next study the sensitivity of the efficiency results with respect to the strong nature of the
LoOP condition stricto sensu. As discussed before, there may indeed be small variations in
input prices across university departments due to differences in overheads; in addition, salary
deviations may follow from age, experience and competence differences between staff
members. While we do not expect the differences to be very large, these considerations do
call for some analysis of the sensitivity of the obtained efficiency values with respect to
relaxations of the LoOP condition.
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Table 4 presents a number of summarizing statistics for alternative formulations of the LoOP
condition; we specifically consider the original LoOP constraint and some weaker alternatives
that respectively allow (for each individually evaluated observation) for 5%, 10% and 20%
deviations from the original LoOP relative prices (compare with the specification of
( , )nqr nqrα α  in Section 4.2 above).10 Generally, we find that the FDH results are fairly robust
with respect to the specific LoOP formulation, both in terms of the efficiency values that are
obtained and in terms of the shadow price values: the average values hardly change; also, the
coefficients of variation for the relative prices remain of fairly similar magnitude even when
we allow for deviations of 20% from the unique LoOP prices.

The table contains some further information on the computational burden of the alternative
efficiency assessments. While we generally find that the computational burden increases
when tolerating more weight flexibility, the programming problems do remain easily
tractable; the maximum execution time does not exceed 40 seconds. Generally, we may safely
conclude that the (seemingly complex) linear programming problems associated with
alternative LoOP specifications should not pose insurmountable computational problems for
the PC configurations that have nowadays become standard. This argument seems all the
more valid when considering that our sample consists of 237 research programs; this size
exceeds that of most samples that are more commonly subject to DEA evaluation.

Table 4: LoOP efficiency results; summary statistics for alternative price conditions

 
Industry
efficiency

Coefficient
of variation

Relative price
Junior staff

Relative price
Senior staff

Execution time
(sec)

# of
iterations

0% dev. 0.567 0.568 0.402 (0.000) 0.598 (0.000) 14.711 15700
5% dev. 0.559 0.566 0.401 (0.031) 0.599 (0.021) 18.977 22100
10% dev. 0.562 0.564 0.401 (0.057) 0.599 (0.068) 17.034 23200
20% dev. 0.568 0. 563 0.400 (0.108) 0.600 (0.072) 37.956 24600
Note: (i) between brackets are coefficients of variation associated with the reported average values. (ii)
execution time (“exec. time”), expressed in seconds, and the number of iterations (“# iterations”) refer to a PC
with a Pentium 4 processor (2 GHz CPU, 256 Mb RAM).

Our above discussion restricts to the basic case of the FDH technology with variable returns-
to-scale As a final exercise, we examine the impact of additional assumptions about the
production technology on the computed industry and firm level cost efficiency measures. The
additional assumptions of convexity and/or returns-to-scale were implemented by imposing
constraints (7) in the Top-Down model (17) or constraints (21) in the Bottom-Up model (20).
Table 5 presents summary statistics for a selection of alternative specifications of the
production technology: FDH with and without the assumption of constant returns-to-scale
(respectively referred to as FDH and FDH-crs) and the convexified counterpart of FDH with
and without the same returns-to-scale assumption (respectively referred to as conv and conv-
crs). For each alternative, we restrict attention to the strict LoOP version (i.e., we impose
equality of shadow prices across all research programs).

The first column in Table 5 reports the industry efficiencies. The second column reports the
coefficients of variation in the firm-level efficiency values. Generally, we find that the model
specification has a strong impact on the efficiency measures, both at the industry level and at
the firm level. Also the estimation of the relative prices varies substantially according to the
                                                          
10 Like for the non-LoOP results in Table 1, we use the equally weighted average for computing the industry
efficiency under a relaxed formulation of the LoOP condition. Indeed, also in these cases the aggregation à la
expressions (14) and (15) does not apply; see also our discussion in Section 4.2.
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model specification; especially the shadow prices under conv-crs differ considerably from
those under the other configurations. Generally, these findings seem to call for a careful
inspection of the production assumptions (like convexity and constant returns-to-scale) prior
to the actual efficiency analysis. In this respect, we believe that the non-parametric
perspective advocates imposing production properties only when they are convincingly
verified. Such practice minimizes the risk of specification error, which in our opinion
constitutes the basic conceptual advantage of the nonparametric approach vis-à-vis its
parametric counterpart.

Like before, Table 5 includes figures on the computational burden of the different efficiency
assessments. Generally, we observe that the computational burden decreased substantially
when using a convex reference production set. Imposing constant returns-to-scale increased
computational burden in the FDH specification, while it decreased the burden in the convex
DEA specification. But again, the execution time remains rather small in each variant. Based
on these findings, we may safely argue that the computational effort should not be considered
as a pivotal decision criterion when choosing amongst alternative model specifications.

Table 5: LoOP efficiency results; summary statistics for alternative technology assumptions

 
Industry
efficiency

Coefficient
of variation

Relative price
Junior staff

Relative price
Senior staff

Execution time
(sec)

# of
iterations

FDH 0.567 0.568 0.402 0.598 14.711 15700
FDH-crs 0.419 0.638 0.267 0.733 21.180 20300
conv 0.358 0.707 0.311 0.698 5.878 1500
conv-crs 0.300 0.658 0.090 0.910 4.085 1200
Note: execution time (“exec. time”), expressed in seconds, and the number of iterations (“# iterations”) refer to a
PC with a Pentium 4 processor (2 GHz CPU, 256 Mb RAM).

6. Summary and concluding discussion

In this paper we have argued that prevalence of The Law of One Price (LoOP), taken as a
normative property, could be a powerful efficiency criterion in the context of productive
efficiency analysis in general and DEA in particular. LoOP emphasizes the coordinating
function of prices in the allocation of resources, and hence naturally relates the efficiency of
individual firms to the efficiency at the aggregate level of the industry or sector as a whole.
Specifically, the LoOP condition modeled in this paper guarantees consistency of the firm
level and the industry level efficiency scores. The LoOP constraints restrict shadow price
flexibility across firms, whereas all exiting tools restrict multiplier weights within the
evaluation of a single firm. We believe that this new approach of restricting weight flexibility,
when properly applied, can considerably enhance the discriminatory power of DEA; its
particular strength can often be motivated by meaningful and intuitive economic rationale.

To demonstrate the potential of the LoOP condition in the context of DEA, we considered the
standard case of cost efficiency analysis under incomplete price information. Utilizing the
results of Färe and Zelenyuk (2003) on the aggregation of efficiency indices, our approach
was to apply input prices that maximize the industry level cost efficiency within the firm level
cost efficiency analysis. Specifically, we considered two dinstinct approaches to integrate the
firm level and the industry level perspectives within the same DEA framework: the (less
sophisticated) Top-Down approach, which requires constant returns-to-scale, and the (more
sophisticated) Bottom-Up approach, which also applies under variable returns to scale. (The
two approaches are equivalent under constant returns-to-scale.) In addition, we have
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introduced operational tools for investigating sensitivity of the firm-specific efficiency results
with respect to the LoOP condition stricto sensu.

Two points of attention deserve special mentioning. Firstly, it is well known that the optimal
‘shadow’ prices produced by DEA need not be unique. Therefore, it is generally interesting to
investigate the uniqueness of the optimal LoOP-consistent shadow prices; non-unique shadow
prices may affect the firm-level efficiency estimates. In the current paper, we have proposed
an easily implemented procedure to test such uniqueness. We suggest the examination of the
robustness of firm-specific efficiencies in case of non-unique LoOP-prices as an interesting
avenue for follow-up research; e.g., it may be possible to determine upper and lower bounds
for the firm-specific efficiencies in such a case. Secondly, the more general bottom-up
approach for implementing the LoOP in the efficiency assessment requires solving the
efficiency scores simultaneously for all firms in the sample, which increases the
computational burden as compared to the standard DEA models. In our experience, this extra
comptational burden is of marginal importance in the usual applications; it becomes
significant only in large data sets when combined with other computationally intensive
techniques such as bootstrapping (e.g., Simar and Wilson, 1998).

To illustrate the practical aspects of our approach, we applied the methodology for evaluating
the research efficiency of economic research programs organized at Dutch universities; we
compared our LoOP results with the earlier non-LoOP results (based on the same data)
obtained by Cherchye and Vanden Abeele (2002). We demonstrated that the presented
techniques can be useful for investigating robustness with respect to LoOP conditions of (i)
the efficiency rankings and (ii) the calculated shadow prices. In addition, we have illustrated
our test for uniqueness of the LoOP-consistent shadow prices. Finally, we have studied
sensitivity of the efficiency results with respect to (i) different degrees of price flexibility
across production units and (ii) alternative models of the production technology.

Our results show that, for this particular application, the qualitative conclusions regarding the
efficiency rankings are not very sensitive with respect to the LoOP conditions. By contrast,
the calculated shadow prices are heavily affected by these conditions; generally, we believe
that utilizing the LoOP may often generate more realistic estimates of the true opportunity
costs faced within the production processes under evaluation. (Interestingly, we could not
reject uniqueness of the optimal shadow prices in this application.) Further, we find that the
efficiency results are fairly robust with respect to alternative specifications of (limited) LoOP
weight flexibility. By contrast, they are heavily sensitive to the imposed technological
properties; in particular constant returns-to-scale and convexity assumptions seem to have a
substantial impact on the obtained efficiency results (both in terms of average efficiencies and
estimated shadow prices). In our opinion, this pleads for not imposing such assumptions if
they are not convincingly verified.
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APPENDIX: an LP formulation for the free disposable hull (FDH) reference technology

Since the LP relaxation of the cost efficiency measures based on the non-convex FDH
technology is a new contribution of this paper, we find it useful to include an appendix that
offers further insights by deriving the dual problem of (6) in a step-by-step fashion. For
clarity, let us first re-write problem (6) in the form:
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The fact that we model γ  as a free variable has no effect on the optimal solution of (i), but it
will make the interpretation of the dual problem more transparent below.

First, recall that every (primal) LP problem has an equivalent dual problem. The primal/dual
pair is generally represented as
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where x and y are the unknown model variables (not inputs and outputs!), vectors b, c, and
matrix A include constant model parameters, and vectors s and t are slack variables. When re-
expressing problem (i) in the matrix form (ii), we get the following: (1) the vector of

unknowns x becomes ( )γ ′=x p w f  (a column vector with

dimensions (1 ) 1NS R N+ + + × ), which includes sub-vectors ( )( 11 12 1Sp p p=p "

( )21 22 2Sp p p" " ( ))1 2 'N N NSp p p"  (with dimensions 1NS × ),
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( )1 2 Sw w w ′=w "  (with dimensions 1R× ), and ( )1 2 Nf f f ′=f "  (with

dimensions 1N × ); (2) vector c is ( )1 0 0 ′=c "  (with dimensions (1 2 ) 1NS R N+ + + × );
(3) matrix A becomes
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(with dimensions ( 1 ) (1 )N N NS R N+ + × + + + ) (note that all bold elements should be
interpreted as row vectors with dimensions 1 S×  for columns 2-5 (outputs) and 1 R×  for
column 6 (input)); (4) the slack vector s has dimensions ( 1 ) 1N N+ + × , with all elements
non-negative; and (5) the vector b consists of N zeros, one 1, and again N zeros, i.e.,

( )0 0 0 1 0 0 0 ′=b " "  (with dimensions ( 1 ) 1N N+ + × ).

Next, if we write the dual of (i) in matrix form then the vectors c and b remain unchanged. In
addition, the transpose AT becomes
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(with dimensions (1 ) ( 1 )NS R N N N+ + + × + + ) (the bold elements should now be
interpreted as column vectors with dimensions 1S ×  for rows 2-5 (outputs) and 1R×  for row
6 (input)). The dual model variables of vector y can be interpreted as

( )1 2 1 2N Nκ κ κ θ λ λ λ ′=y " "
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(with dimensions ( 1 ) 1N N+ + × ) . Since the slacks s in the primal problem are non-negative,
the same holds for the corresponding y variables in the dual problem. The slack vector t has

the dimensions (1 ) 1NS R N+ + + ×  with the following signs ( )0 0 ′+ + . We can
consequently re-write the dual LP in sum notation as

(iv)
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or, equivalently,
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This last formulation has an interpretation that comes close to the more conventional
interpretation of the FDH model (that is most commonly expressed in dual form).
Specifically, the first constraint guarantees that any firm n with positive weight nλ  must
dominate the evaluated firm k in the outputs. On the input side, we allow for convex
combinations (see the second constraint). This effectively provides an LP formulation of the
Bogetoft (1996) convex input set model. Recall that convexity is a harmless property for
measuring cost efficiency (see Kuosmanen, 2003, Theorem 3.3). Note also that the sum of
intensity variables nλ  must equal unity, which has the standard interpretation of variable
returns-to-scale.

To conclude, we discuss the alternative returns-to-scale assumptions. We cannot directly
include such assumptions in (v); they are to be incorporated in the more general problem (iv).
Let us first omit the “fixed cost” vector f in problem (i). In terms of the primal–dual
conversion, this would exclude the constraint  n n nλ κ ν= ∀ ∈  in problem (ii). While the
weights nκ  are constrained to sum up to unity, the weights nλ  allow for scaling the reference
firms upwards or downwards as the sum of nλ  weights is unconstrained; this implements
constant returns-to-scale (CRS), while imposing no convexity on the output set. Non-
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increasing returns-to-scale (NIRS) and non-increasing returns-to-scale (NDRS) are
analogously modeled, viz. by imposing sign constraints on f in the primal problem (i) or
including the inequalities  n n nλ κ ν≤ ∀ ∈  or  n n nλ κ ν≥ ∀ ∈  in the dual problem (iv).
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