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Abstract

A Rational Shortlist Method (RSM) translates into economic language some

sequential choice heuristics studied in psychology. We show that the use of this

boundedly rational procedure can be detected from observed choice data through

tests that are very similar to those used to detect �rational�choice (such as Samuel-

son�s WARP). Yet, RSMs are compatible with some highly �irrational�patterns of

choice observed in experiments, such as pairwise cycles. We also provide partial

results on a generalization of RSMs.
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1 Introduction

Cyclical choice is persistently observed in experimental evidence. It typically occurs in

simple decision problems (involving only binary comparisons and few alternatives) and

in signi�cant proportions, sometimes nearing or even exceeding 50%.1 This is obviously

incompatible with the classical model of rational choice, in which choice is constructed as

the maximizer of a single preference relation (which we call a rationale), or of a utility

function. If a decision maker exhibits cycles of choice over some set of alternatives, for

any candidate �best�alternative there is always another one in the set which is judged

better still: it is not possible to express his preferences by a utility function, since it is

not possible to �nd a maximizer for it. In this paper we propose and study a family of

boundedly rational choice procedures that can account for these observed anomalies.

A notable aspect of these procedures is that they are testable based on a �revealed

preference�type of analysis that, despite the highly non-standard choices to be explained,

does not depart too much from the standard one2. In other words, we ask the following

question: when are observed choices compatible with the use of our boundedly rational

choice procedure? The answer is: if and only if the choice data satisfy two testable

conditions. Of these conditions one is a standard Expansion axiom, and the other is a

modi�cation of Samuelson�s Weak Axiom of Revealed Preference (WARP)3. We believe

this is the �rst application of revealed preference analysis to infer boundedly rational

procedures. The simplicity of our tests stands in contrast with the indirect estimation

algorithms normally used (notably in the marketing literature) to infer boundedly rational

procedures.4

In line with some prominent psychology and marketing studies (see below) in our model

1See e.g. Roelofsma and Read [18], Tversky [22] and Loomes et al. [13]. Roelofsma and Read [18] �nd

that the majority (52%) of choices exhibited binary cycles in a universal choice set of four alternatives.

In the experiment carried out in Loomes et al. [13] between 14% and 29% of choices made by all subjects

were cyclical, and a staggering 64% of subjects exhibited at least one binary cycle in a universal choice

set of just three alternatives. More recent results in this same line are in Blavatskyy [4], who �nds that

55% of his experimental subjects violate transitivity of choice. Humans seem to fare better than non

human animals: for instance, in an experiment of choice behavior on gray jays, Waite [25] �nds that

all the birds preferred choices a to b and b to c, but none preferred a over c, where all alternatives

(n; l) consisted in going and getting n raisins at the end of a lcm long tube, with a = (1 raisin; 28 cm),

b = (2 raisins; 42 cm) and c = (3 raisins; 56 cm). Thus none of the birds exhibited transitive choice;

moreover, 25% of them exhibited consistently intransitive choice.
2See Varian [24] for a recent survey on standard revealed preference theory.
3Recall that the Weak Axiom of Revealed Preferences, in its general form, states that if an alternative

a is chosen from some menu of alternatives when some other alternative b is present (i.e. a is directly

revealed preferred to b), then it can never be the case that alternative b is selected from any other menu

including both a and b.
4For recent examples see e.g. Kohli and Jedidi [12] and Yee et al. [26].
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we assume that the decision maker uses sequentially two rationales to discriminate among

the available alternatives. These rationales are applied in a �xed order, independently of

the choice set, to remove inferior alternatives. This procedure �sequentially rationalizes�

a choice function if, for any feasible set, the process identi�es the unique alternative

speci�ed by the choice function. In this case we say that a choice function is a Rational

Shortlist Methods (RSM). Intuitively, the �rst rationale identi�es a shortlist of candidate

alternatives that the second rationale then selects among. The special case in which the

�rst rationale always yields a unique maximal element corresponds to the standard model

of rationality.

Typically, RSMs will lack standard menu-independence properties, so that it may be

possible for an alternative to be revealed preferred to another alternative in some choice

set, but for that preference to be reversed in a di¤erent choice set (thus violating WARP).

Because of this feature, RSMs can exhibit cyclical patterns of choice; however, they still

rule out other types of irrational choice. In this sense, an RSM is a non-vacuous notion

and this gives it empirical content: it can be tested by observable choice data.

For a simple example of how an RSM works, suppose that an arbitrator has to pick one

out of the available allocations a, b or c. Suppose that c Pareto dominates a, while no other

Pareto comparisons are possible. Assume further that the arbitrator deems a fairer than

b and b fairer than c. The arbitrator decides �rst on the basis of the Pareto criterion,

invoking the fairness criterion only when Pareto is not decisive. Then the arbitrator�s

choice function  would be such that  (fa; b; cg) = b, since �rst a is eliminated by c using
the Pareto criterion, and second c is eliminated by b using the fairness criterion. On the

other hand,  (fa; bg) = a, given that the Pareto criterion has no bite, and the arbitrator
would select on the basis of fairness. Similarly,  (fb; cg) = b, whereas  (fa; cg) = c by
Pareto. This seems an entirely reasonable way for the arbitrator to come to a decision. In

fact, this procedure has been proposed in a social choice setting by Tadenuma [21]. Yet

it produces a violation of WARP and pairwise cyclical pattern of choice.

One can think of a wide array of other practical situations where RSMs may apply.

A cautious investor comparing alternative portfolios �rst eliminates those that are too

risky and then ranks the surviving ones on the basis of expected returns. A recruiting

selector �rst excludes candidates without some desired skills and then selects based on

merit from the remaining ones. The notion of RSM is relevant also in other �elds in

the social sciences. For instance, psychologists have often insisted on sequential �non-

compensatory�5 heuristics, as opposed to one single rationale, to explain choices (though

axiomatic characterizations of such boundedly rational procedures are lacking). Notable

in this respect are Tversky�s [23] Elimination by Aspects procedure and Gigerenzer and

5That is, in which the several �criteria�used for choice cannot be traded o¤ against each other.
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Todd�s (e.g.[10]) idea of �fast and frugal heuristics�. Similarly, this type of model is widely

used and documented in the management/marketing literature. Yee et al. [26] provide

recent and compelling evidence of the use by consumers of �two stage consideration and

choice�decision making procedures, and also refer to �rms taking account of this fact in

product development.

In summary, RSMs are simple boundedly rational procedures that are introspectively

plausible and can explain empirically relevant �anomalies�of choice patterns. Above all,

whether or not the choice pattern of a decision maker can be explained by a RSM is a

testable hypothesis. Last but not least, RSMs provide rigorous formal underpinnings to

the heuristics approach central to much psychology and marketing literature.

In addition to providing a characterization of RSMs, we also consider a natural exten-

sion whereby the decision maker applies sequentially more than two rationales, much in

the same way as they are used in the elimination procedure described before for RSMs.

We call choice functions recoverable in this way sequentially rationalizable. Although a

full characterization of sequentially rationalizable choice functions remains a non-trivial

open problem, we are able to present some partial results. Interestingly, even when the

number of rationales allowed is unboundedly large, not all choice functions are sequentially

rationalizable.

The rest of the paper is organized as follows. In the next section we de�ne and

characterize RSMs. In section 3 we extend RSMs to sequential rationalizability. Some

examples are provided in section 4. We conclude in section 5, while in the Appendices we

report the proof of the main result and some technical examples.

2 Rational Shortlist Methods

2.1 Basic de�nitions

Let X be a set of alternatives, with jXj > 2. Given S � X and an asymmetric binary

relation P � X �X, denote the set of P -maximal elements of S by

max (S;P ) = fx 2 Sj @y 2 S for which (y; x) 2 Pg

Let P (X) denote the set of all nonempty subsets of X. A choice function on X selects

one alternative from each possible element of P (X): so it is a function  : P (X) ! X

with  (S) 2 S for all S 2 P (X). We abuse notation by often suppressing set delimiters,
e.g. writing  (xy) in place of  (fx; yg).
The main characterization in this section goes through (as can be easily checked by an

inspection of the proof) whether the choice sets S are �nite or not. However for simplicity

of notation, we con�ne ourselves to the case where X is �nite.
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Since Samuelson�s [19] paper, economists have looked to express choice as the outcome

of maximizing behavior. Formally, a choice function  is rationalizable if there exists an

acyclic binary relation P such that

 (S) = max (S;P ) for all S 2 P (X)

The main new concept we introduce is the following:

De�nition 1 A choice function  is a Rational Shortlist Method (RSM) whenever
there exists an ordered pair (P1; P2) of asymmetric relations, with Pi � X�X for i = 1; 2,

such that:

f (S)g = max (max (S;P1) ;P2) for all S

In that case we say that (P1; P2) sequentially rationalize . We call each Pi a rationale.

So the choice from each S can be represented as if the decision maker went through

two sequential rounds of elimination of alternatives. In the �rst round he retains only the

elements which are maximal according to rationale P1. In the second round, he retains

only the element which is maximal according to rationale P2: that is his choice. Note

that, crucially, the rationales and the sequence are invariant with respect to the choice

set.

2.2 An Example

To glean some intuition on what RSMs can and cannot do, let us consider an example

where two types of �pathologies of choice�are displayed. We show in the next section that

the decomposition of pathologies illustrated in the example is very general; of these, only

one can be accommodated by an RSM.

Suppose that the decision maker can conceivably choose between three alternative

routes to go to work, A, B and C. Because of periodic road closures, we can observe

his choices also between subsets of the grand set fA;B;Cg. Up to a relabelling of the
alternatives, it is not di¢ cult to check that there are only three possible con�gurations of

choice behavior. Fix the route which is taken when all are available, say route A. Then

consider the situation when at any one time only two routes are available. Those that

follow exhaust all choices possible6:

6Let XtY denote �route X is taken when route Y is also available�. Then it is easy to see that, once

we �x the route selected when all are available, there are eight possible combinations of routes chosen in

each of the three possible pairwise comparisons between A and B, A and C and B and C, namely: (1)

AtB, AtC and BtC; (2) AtB, AtC and CtB; (3) AtB, BtC and CtA; (4) BtA, AtC and CtB; (5) BtA,

BtC, AtC; (6) BtA, BtC, CtA; (7) CtA, CtB, AtB; and (8) CtA, CtB, BtA. Of these possibilities, (1)
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Case 1 (Dominance of the best route): Route A (the choice form the grand set)
is also taken whenever only one other route is available, regardless of the choice when A

is not available.

Case 2 (Pairwise cycle of choice): Route A is taken when B is the only other

available route; route B is taken when C is the only other available route; route C is

taken when A is the only other available route.

Case 3 (Always chosen): Some route di¤erent than A is always taken when only
one other route is available, regardless of the choice when A is available.

These cases are depicted in �gure 1, where arrows point away from the selected route

to the unselected one in pairwise choice.

Case 1 can be rationalized in the standard way, with only one preference relation such

that A is preferred to both B and C .

Case 2 is pathological from the point of view of standard economic rationality. Nonethe-

less it can be sequentially rationalized by two rationales, let us call them �tra¢ c�and

�length�, as follows. The decision maker prefers less tra¢ c to more, and prefers shorter

routes. Route A and C have the same level of tra¢ c, but route C is shorter. Route A has

less tra¢ c than route B, and route B has less tra¢ c than route C. The decision maker

looks �rst at tra¢ c to eliminate routes, and then at length. It is immediate to see that

the criteria applied in the given sequence generate the choice behavior of Case 2.7

In case 3, a di¤erent pathology of choice is observed. There is one route, say B to �x

ideas, that is revealed preferred in pairwise choices to all other routes, yet it is not chosen

when all routes are available. This pattern of choice is not an RSM. To see this, suppose

to the contrary that this were an RSM, again with rationales �tra¢ c�and �length�applied

in that order. If so, the fact that B is chosen in pairwise comparison over A means that if

B and A are comparable by tra¢ c, then B has less tra¢ c than A. Otherwise, B must be

shorter than A. Similarly, since B is chosen in pairwise comparison over C, either B has

less tra¢ c than C, or is shorter (or both). But then, when all three routes are available,

B can never be eliminated by either the tra¢ c or the length criterion. This contradicts

and (2) correspond to case 1 in the text; (3) and (4) are the same subject to relabelling by switching B

and C, and correspond to case 2 in the main text; �nally both (5) and (7), and (6) and (8) are the same

subject to swapping B for C, and correspond to Case 3 in the main text.
7An alternative possibility for rationalization is identical to the one just described, except that routes

A and B have the same level of tra¢ c but A is shorter than B. Again, it is easy to check that these

criteria also generate the stated choices. This serves to illustrate the fact that even in simple situations

such as this one, an external observer may have more than one way to explain choices as an RSM. This

stands in contrast to standard rationalization, where the choice of a preference relation explaining choices

is uniquely determined.
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Figure 1: The patterns of choice in the route example
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the initial hypothesis that the choice was an RSM. We shall see later that this reasoning

can be generalized to more complex cases, and in fact it would stand even if the number

of possible criteria were not limited to two. It is this type of pathological behavior that

gives our theory empirical content.

2.3 Characterization of Rational Shortlist Methods

In general, suppose that we observed the choices of a decision maker. How could we

test whether his behavior is consistent with the sequential maximization of two ratio-

nales? Surprisingly, it turns out that RSM�s can be simply characterized through familiar

observable properties of choice.

Recall �rst the standard Weak Axiom of Revealed Preference pioneered by Samuelson

[19] for consumer theory:

WARP: If an alternative x is chosen when y is available, then y is not chosen when x is
available. Formally, for all S; T 2 P (X) : [x =  (S) ; y 2 S; x 2 T ]) [y 6=  (T )].

It is well-known that (in the present setting) WARP is a necessary and su¢ cient

condition for choice to be rationalized by an ordering (i.e. a transitive binary relation).8

WARP essentially asserts the absence of a certain type of �menu e¤ects� in choice: if

an alternative is revealed preferred to another within a certain �menu�of alternatives,

changing the menu cannot reverse this judgement. The property we introduce allows

menu e¤ects, but requires some consistency in the way they operate. It is in the following

spirit: if you are observed to choose steak over �sh when they are the only items on the

menu, and also when a large selection of pizzas is on the menu, then you do not choose

�sh over steak when a small selection of pizzas is on the menu. A pairwise preference

for x over y does not exclude in principle that in larger menus some reason can be found

to reject x and choose y instead. However, if a large menu does not contain any such

reason, no smaller menu contains such a reason either. Although this property may look

introspectively plausible, here we are not interested in issues of plausibility: we simply

propose this property as an observable test for the RSM model.

WARP*: If an alternative x is chosen both when only y is also available and when y and
other alternatives fz1; :::; zKg, are available, then y is not chosen when x and a subset of
fz1; :::; zKg are available. Formally, for allR;S 2 P (X) : [fx; yg � R � S; x =  (xy) =  (S)])
[y 6=  (R)].

The second property is called Expansion, and it directly rules out pathologies of the

type considered in Case 3 of the route example above:
8See e.g. Moulin [16] and Suzumura [20].
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Expansion: An alternative chosen from each of two sets is also chosen from their union.
Formally, for all S; T 2 P (X) : [x =  (S) =  (T )]) [x =  (S [ T )].

Our main result is that Expansion andWARP* are necessary and su¢ cient for a choice

function be an RSM. While we relegate the formal proof to the Appendix, we provide a

verbal intuition of the su¢ ciency part of the proof, which will also give the reader a clue

on how to actually construct the rationales from choice data, when it is possible to do so.

Informal construction of rationales for choice functions that satisfy Ex-
pansion and WARP*: Recall that (y; x) 2 Pi means that alternative y eliminates

alternative x at the i-th round of elimination, i.e. when rationale Pi is applied. For any

alternative z which �beats� the choice x from some set S in pairwise comparisons, the

pair (z; x) must be in the second rationale: otherwise, since the pair (z; x) must be in

some rationale9, it would be impossible rationalize the choice of x from S, as x would be

eliminated in the �rst round. Moreover, it must be the case that such a z is eliminated

in the �rst round (otherwise it would eliminate x in the second round). Therefore there

must exist some �neutralizing�alternative y in S which beats z in pairwise comparisons

and for which the pair (y; z) is in the �rst rationale. However, we must be careful to

select the neutralizing alternative y: it cannot be the case that in some other set T that

contains y the choice is z (for z is eliminated in the �rst round by y). Can we �nd a

neutralizing alternative y with these desired characteristics? Suppose not: then, for every

alternative y in S that beats z, there is a set T (y; z) that contains y where z is chosen.

Expansion implies that y is chosen from the union (over y) of all such sets T (y; z). But z

also beats x in pairwise choice, so that by WARP* z should be chosen also from S, which

is �intermediate�between the union of all the T (y; z) and fx; yg. This is a contradiction.
So there must exist at least some neutralizing alternative y such that (y; z) can be safely

assigned to the �rst rationale. We can repeat this procedure for any other set where

alternatives such as x, y and z exist. This completes the set of �forced�assignments of

rationales, and we are free to explain all remaining pairwise choices with either of the two

rationales.

Theorem 2 Let X be any (not necessarily �nite) set. A choice function  on X is a

Rational Shortlist Method if and only if it satis�es Expansion and WARP*.

Proof: See Appendix A10.
9If (z; x) belonged to no rationale, the choice of z in pairwise comparisons with x could never be

rationalized.
10We are grateful to Ariel Rubinstein for suggesting the simple construction in the Su¢ ciency part of

the proof, which replaces a previous more complicated argument.
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As discussed above, the strength of this characterization lies in the fact that it connects

what would be traditionally considered highly �irrational�choice patterns to well-known

and easy to check rationality properties. The only relaxation from standard tests is to

allow a limited form of menu-dependence in the WARP* axiom.

In Appendix B we establish by means of examples that the set of axioms in Theorem

2 is tight.

3 Beyond two rationales

3.1 Sequential Rationalizability

The concept of an RSM suggests an immediate generalization. Instead of using only two

rationales, the decision maker might use a larger number of them. For example, in the

routes scenario of the previous section, one can conceive that the decision maker uses not

only tra¢ c and length, but also scenery as a criterion for choice. This leads us to the

following de�nition.

De�nition 3 A choice function  is sequentially rationalizable whenever there exists
an ordered list P1; :::; PK of asymmetric relations, with Pi � X � X for i = 1:::K, such

that, de�ning recursively

M0 (S) = S

Mi (S) = max (Mi�1 (S) ;Pi) , i = 1; :::; K

we have

f (S)g =MK (S) for all S

In that case we say that (P1; :::; PK) sequentially rationalize . We call each Pi a ratio-
nale.

So the choice from each S can be constructed through sequential rounds of elimination

of alternatives. At each round only the elements which are maximal according to a round-

speci�c rationale survive. Like for RSMs (which can now be viewed as special sequentially

rationalizable choice functions where only two rationales are used) the rationales and the

sequence are invariant with respect to the choice set.

Are there choices which are not sequentially rationalizable? At �rst sight, it may seem

that if we are free to use as many rationales as we like, any choice can be rationalized by

a su¢ ciently large number of rationales. On the contrary, the answer may be negative

even for very simple choice functions (on a domain X with as few as thee alternatives).

Examples are provided in section 4.1 below.11

11See also example 8 in Appendix B.
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3.2 Violations of Economic Rationality Are of Just Two Types

To delve deeper into the notion of sequential rationalizability, let us recall another well-

known property of choice.

Independence of Irrelevant Alternatives12: If an alternative is chosen from a set, it

remains chosen when some rejected alternatives are discarded from the set. Formally, for

all S; T 2 P (X) : [ (T ) 2 S; S � T ]) [ (S) =  (T )].

Recall that, at least for the �nite case, Independence of Irrelevant Alternatives is equiv-

alent to WARP and therefore is a necessary and su¢ cient condition for rationalizability

with a single ordering.13

What types of boundedly rational behavior does sequential rationalizability allow? To

answer this question consider the following two very basic rationality requirements. The

�rst one requires that if an alternative �beats�all others in a set in binary choices, then this

same alternative is chosen from the set - this is obviously a weakening of Expansion. The

second property requires that there are no pairwise cycles of choice - this is a weakening

of Independence of Irrelevant Alternatives and WARP. Formally:

Always Chosen: If an alternative is chosen in pairwise choices over all other alternatives
in a set, then it is chosen from the set. Formally, for all S 2 P (X): [x =  (xy) for all y 2 S])
[x =  (S)].

No Binary Cycles: There are no pairwise cycles of choice. Formally, for all x1; :::; xn 2
X: [ (xixi+1) = xi; i = 1; :::; n]) [x1 =  (x1xn+1)].

The reason for highlighting these two properties is that the class of choice functions

that do not satisfy WARP (i.e. are not rationalizable by a single standard economic

preference relation) can be classi�ed very simply: they are partitioned into just three

subclasses: the choice functions that violate exactly one of No Binary Cycles or Always

Chosen, and those that violate both. This is established in the next Proposition, which

is of independent interest.

Proposition 4 A choice function that violates WARP also violates Always Chosen or

No Binary Cycles.

Proof. It is easier to conduct the proof in terms of IIA instead of the equivalent property
WARP. Let  be a choice function on X. We argue by induction on the cardinality of

12For single-valued choice functions this con�ates several properties of correspondences such as Cher-

no¤�s property (S � T )  (T ) \ S �  (S)) and Arrow�s condition (S � T ,  (T ) \ S 6= ; )  (S) =

 (T ) \ S).
13See e.g. Moulin [16] and Suzumura [20].
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X. Let X = fx; y; zg. Suppose that x =  (X) and y =  (xy), so that Independence of
Irrelevant Alternatives is violated. Then there are two possibilities: if y =  (yz), then

Always Chosen is violated; if instead z =  (yz), then either Always Chosen is violated (if

z =  (xz)), or No Binary Cycles is violated (if x =  (xz), so that x =  (xz), z =  (yz),

y =  (yx)).

Assume now that the statement holds for all sets X with jXj � K. Take X 0 such

that jX 0j = K + 1. Suppose that x =  (X 0) but there exists fx; yg � S � X 0 such that

y =  (S). If the restriction of  to S violates Independence of Irrelevant Alternatives,

then we are done by the inductive hypothesis. Suppose then that the restriction of  to S

satis�es Independence of Irrelevant Alternatives. Consider the set V = X 0nS. Obviously
V 6= ?, and let z =  (V ).
If the restriction of  to V violates Independence of Irrelevant Alternatives, then we

are done by the inductive hypothesis. Suppose it satis�es Independence of Irrelevant

Alternatives. Then z =  (vz) for all v 2 V nz.
Suppose z =  (yz). If z =  (sz) for all s 2 S, then Always Chosen is violated. If

there exists some t 2 S such that t =  (tz), then this generates the cycle t =  (tz),

z =  (yz), y =  (ty), where the last relation follows from Independence of Irrelevant

Alternatives on S.

Suppose alternatively y =  (yz). By a reasoning similar to the one above we can

show that Always Chosen or No Binary Cycles is violated.

3.3 Sequential Rationalizability Excludes One Type of Irrational
behavior

Next we show that sequential rationalizability restricts violations of the two basic ratio-

nality properties introduced in this section:

Lemma 5 If a choice function is sequentially rationalizable it satis�es Always Chosen.

Proof. Let  on X be sequentially rationalizable by the rationales P1; P2:::PK . For any

two alternatives a; b 2 X, let i(a; b) be the smallest i such that Pi relates a and b, that is

i (a; b) = min fi 2 f1; :::; Kg j (a; b) 2 Pi or (b; a) 2 Pig

Given S � X and x 2 S, let x =  (xy) for all y 2 Snx. For each y 2 Snx we must have
(x; y) 2 Pi(x;y), so that the successive application of the rationales eliminates all y 2 Snx,
and no rationale can eliminate x. Therefore x =  (S), as desired.

Our partial characterization result shows the equivalence of WARP and No Binary Cy-

cles on the domain of sequentially rationalizable choice functions; it follows from Propo-

sition 4 and Lemma 5 by observing that WARP is violated if there is a binary cycle:
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Theorem 6 A sequentially rationalizable choice function violates WARP if and only if

it exhibits binary cycles.

Thus, the results in this section generalize the message of the basic �routes�example of

the previous section. We have established that in general, and not only in that example,

all violations of �rationality�can be traced back to two elementary pathologies of choice,

corresponding to case 2 and 3 of the routes example: violations of �Always chosen�and �No

Binary Cycles�. Like RSMs, even the more general notion of sequential rationalizability

is intimately connected with pairwise cycles of choice, and cannot possibly explain the

other pathology.

A full characterization of sequential rationalizability remains a nontrivial open ques-

tion.

4 More Examples

One may wonder whether other choice procedures generate choices which can be also

explained �as if�generated by an RSM. In this section we start with a �negative�result,

exhibiting some notable choice procedures which have been proposed in the literature

and that are not RSM - this highlights how sequential rationalizability is not a vacuous

notion of rationality. Next, we turn to a �positive�results and present an application of

RSM in the domain of time preferences, where, besides cycles, they can account for a

context-speci�c anomaly of choice such as preference reversal.

4.1 Notable Choice Functions That Are Not Sequentially Ra-
tionalizable

Interestingly, violations of Always Chosen14 can be generated by several well-known pro-

cedures that have attracted economists� attention. Such procedures are therefore non

rationalizable not only in the classical sense, via a single binary relation, but also in the

weaker sense of sequential rationalizability. In all examples below the set of alternatives

is X = fx; y; zg.
The �rst procedure is (a re�nement of) the �choose the median� procedure de�ned

as follows. There is a �fundamental�order B on X (e.g. given by ideology from left to

right) such that (x; y) ; (y; z) 2 B. The decision-maker chooses the median according to
B, breaking ties by picking the highest element in the set of median elements. We have

z =  (xz),=  (yz) and yet y =  (xyz), violating Always Chosen.

14Of the simple type studied in in example 8 of Appendix B.
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The same choice pattern is consistent with the �never choose the uniquely largest�pro-

cedure. There is again a fundamental order B on alternatives and the chosen alternative

cannot be the unique maximizer of B. However, to interpret the choice pattern in this

way the fundamental ordering must be exactly the reverse of the one used for the choose

the median procedure, namely (z; y) ; (y; x) 2 B. Baigent and Gaertner [3] and Gaertner
and Xu ([7], [8]) have axiomatized this type of procedure.

A third procedure generating the choice pattern is the one described in the dinner

example by Luce and Rai¤a [14] (see also Kalai et al. [11]). Imagine that when z is not

available the decision maker chooses the greatest element according to the ordering B1
given by (x; y) 2 B1, while when z is available he chooses the greatest element according to
the orderingB2 given by (y; x) ; (x; z) 2 B2. This yields the sequentially non-rationalizable
choice function. On the other hand, if the same procedure was followed but the ordering

B2 was given by (y; z) ; (z; x) 2 B2 (which is also in the spirit of Luce and Rai¤a�s

example), it would be possible to sequentially rationalize the choice function by applying

�rst P1 = f(z; x) ; (y; z)g and then P2 = f(x; y)g.

4.2 Rational Shortlist Methods and Choice over Time

Throughout the paper we have focused on general violations of rationality. However, we

believe that RSMs can prove very useful to explain other choice anomalies in speci�c con-

texts, in which certain rationales can suggest themselves. Here we consider an application

to choice over time.

The standard model of choice over time is the exponential discounting model (EDM).

It has been observed that actual choices in experimental settings violate consistently its

predictions. The most notable violation is possibly preference reversal. Let P refer to

observed pairwise choices over date outcome pairs (x; t) 2 X � T , where X is a set

of monetary outcomes and T is a set of dates. In this context, preference reversal is

the shorthand for the following situation: (x; tx)P (y; ty) and (y; ty + t)P (x; tx + t).

This violates stationarity of time preferences, a premise on which the EDM model is

constructed.

This choice pattern can be easily accounted for by interpreting  as a RSM with

rationales P1 and P2 de�ned as follows. For some function u : X � T ! < and number
� > 0, (x; tx)P1 (y; ty) if and only if u (x; tx) > u (y; ty) + �, and (x; tx)P2 (y; ty) if and

only if u (y; ty) � u (x; tx) � u (y; ty) + �, and either x > y, or x = y and tx < ty. That is,
the decision maker looks �rst at discounted value, and chooses one alternative over the

other if it exceeds the discounted value of the latter by an amount of at least �. Otherwise

he looks �rst at the outcome dimension and if this is not decisive at the time dimension.

This is compatible with preference reversal even with an exponential discounting type
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of u function. Let x < y, tx < ty and u (x; tx) = x�tx for � 2 (0; 1). Suppose that

x�tx > y�ty + � so that (x; tx) is chosen over (y; ty) by application of P1. Given �, if

t is su¢ ciently large it will be x�tx+t < y�ty+t + �, so that the two date outcome pairs

(x; tx + t) and (y; ty + t) are not comparable via P1. However, the application of P2 yields

the choice of (y; ty + t) over (x; tx + t), thus �reversing the (revealed) preference�.

Obviously, P could also be sequentially rationalized by using three rationales, where

the outcome and time dimension comparisons are used in two separate Pi.

The same model can explain cyclical intertemporal choices and other �anomalies�(see

Manzini and Mariotti [15] and bibliography therein).

5 Concluding Remarks

We have proposed an economic, �revealed preference�approach to the type of decision

making procedures which are often promoted by psychologists. For example Gigerenzer

and Todd [9] in their work on �fast and frugal�heuristics observe that �One way to select

a single option from multiple alternatives is to follow the simple principle of elimination:

successive cues are used to eliminate more and more alternatives and thereby reduce the

set of remaining options, until a single option can be decided upon�. Such heuristics

focus mostly on the simplicity of cues used to narrow down possible candidates for choice.

Simplicity is an essential virtue in a world in which time is pressing. An overarching

preference relation - let alone a utility function - is not a cognitively simple object, and

as a consequence these authors stress the di¤erence from heuristics based reasoning and

the �unlimited demonic or supernatural reasoning�15 relied upon in economics. Yet in

this paper we have shown that the standard tools, concepts and properties of revealed

preference theory can be used to formalize and infer the use of such heuristics. A seemingly

limited form of menu-dependence (encapsulated in our WARP* property) is equivalent

to the use of a two-stage procedure that may generate economically �irrational� choice

behavior.

Our way of incorporating bounded rationality is to translate the psychological notion

of �cues�into a set of not necessarily complete binary relations. Rationality for us is the

consistent application of a sequence of rationales. The order in which they are applied

may be hardwired and may depend on the speci�c context and on the type of decision

maker16, but it should be the same in a relevant class of decision problems. Each single

15See Gigerenzer and Todd [9].
16For example, in order to �choose�whether to stay or �ee in the presence of a bird, a rabbit may use

as its �rst rationale the fact that bird is gliding, which would identify a predator. Conversely, a human

decision maker may well look �rst at size or shape in order to recognize the bird.
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rationale in itself needs not exhibit any other strong property, such as completeness and

transitivity.

The usefulness of elimination heuristics in practical decision making is self-evident17

and widely spread in disparate �elds, from clinical medicine18 to marketing and manage-

ment. In this perspective the sequentiality in the application of rationales, which lies at

the core of our analysis, is an appealing feature of our rationalization results. Our ap-

proach may be contrasted with the recent contribution by Kalai et al. [11] and Apesteguia

and Ballester [2]. They use multiple rationales to explain choices, but each rationale is

applied to a subset of the domain of choice. This results in all choices being rationalizable

and the focus becomes that of �counting�the minimum number of rationales necessary to

explain choices. Finally we should mention the work by Ok [17] who characterizes the

choice correspondences satisfying Independence of Irrelevant Alternatives by means of a

two-stage procedure. Unlike this paper, in the second stage of Ok�s procedure elimination

of alternatives does not occur on the basis of a relation, but rather on the information

contained in the entire feasible set.

Appendix A

Proof of Theorem 2:19 Necessity: Let  be an RSM on X and let P1 and P2 be the

rationales.

(i) Expansion. Let x =  (S) =  (T ) for S; T 2 P (X). We show that for any y 2 S [ T
it cannot be (y; x) 2 P1, and for any y 2 M1 (S [ T ) it cannot be (y; x) 2 P2. If

(y; x) 2 P1, this would immediately contradict x =  (S) or x =  (T ) and  being

rationalized. Suppose now that for some y 2 M1 (S [ T ) we had (y; x) 2 P2. Since

M1 (S [ T ) � M1 (S) [M1 (T ), we have y 2 M1 (S) or y 2 M1 (T ), contradicting x 2
M2 (S) or x 2M2 (T ).

Therefore x survives both rounds of elimination and we can conclude that x =

 (S [ T ).20

17As put very e¤ectively by Gigerenzer and Todd [9] �If we can decide quickly and with few cues

whether an approaching person or bear is interested in �ghting, playing, or courting, we will have more

time to prepare and act accordingly (though in the case of the bear all three intentions may be equally

unappealing)�.
18As an example, the online self-help guide of the UK National Health Service

(http://www.nhsdirect.nhs.uk/SelfHelp/symptoms/) helps users to recognize an ailment by giving

yes/no answers along a sequence of symptoms. This presumably formalizes the mental process of a

trained doctor.
19We are grateful to Ariel Rubinstein for suggesting the simple construction in the Su¢ ciency part of

the proof, which replaces a previous more complicated argument.
20Note that this argument cannot be iterated further in the case of more than two rationales
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(ii) WARP*. Let x =  (xy) =  (S), y 2 S. Then x =  (xy) implies that (x; y) 2
P1 [ P2. If (x; y) 2 P1, then the desired conclusion follows immediately. Suppose then
that (x; y) 2 P2. The fact that x =  (S) implies that for all z 2 S it is the case that
(z; x) =2 P1. Therefore x 2 M1 (R) for all R � S for which x 2 R. Since (x; y) 2 P2 then
y =2M2 (R) for all such R, and thus y 6=  (R).

Su¢ ciency: Suppose that  satis�es the axioms. We construct the rationales explicitly.

De�ne

P1 = f(x; y) 2 X �Xj there exists no S 2 P(X) such that y =  (S) and x 2 Sg

De�ne (x; y) 2 P2 if and only if x =  (xy).
Observe that P1 and P2 are asymmetric: if xP1y and yP1x then in particular  (xy) 6=

x; y which is not possible; and P2 is consistent with binary choices.

To check that P1 and P2 rationalize  take any S 2 P(X) and let x =  (S). All z 2 S
such that z =  (xz) are eliminated by P1. For suppose not: this means that for all y 2 Snz
there exists Tyz 3 y; z such that z =  (Tyz). Then by Expansion z = 

�S
y2Snz Tyz

�
.

Since S �
S
y2Snz Tyz, by WARP* x 6=  (S), a contradiction.

Clearly x is not eliminated by either P1 or P2: for y 2 S, if yP1x then it could not be
x =  (S), whereas if yP2x by the argument in the previous paragraph y would have been

eliminated by the application of P1 before P2 can be applied.

Finally all z 2 S such that x =  (xz) are eliminated by P2.

Appendix B

We establish by means of examples that the set of axioms in Theorem 2is tight. In order

to describe choice functions compactly in examples we use the following notation: given

x 2 X, let C (x) = fS 2 P (X) jx =  (S)g.21

Example 7 Expansion but not WARP*:
X = fx; y; w; zg
C (w) = fwxg
C (x) = fxy; xz; xyz; wxy; wxyzg
C (y) = fwy; yz; wyzg

since it is not necessarily true that M2 (S [ T ) � M2 (S) [ M2 (T ). There could in fact be y 2
(M1 (S) [M1 (T )) nM1 (S [ T ) such that (y; z) 2 P2 for some z 2 M1 (S) [ M1 (T ) while for all

y0 2 M1 (S [ T ) it is the case that (y0; z) =2 P2. So if it were (z; x) 2 P3, x could not be chosen

from S [ T .
21In this notation , the Expansion axiom says that for all x 2 X : C (x) is closed under set union.
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C (z) = fwz;wxzg
Binary choices are visualized in �gure 2, where a ! b stands for a =  (ab). It is

straightforward to verify that this choice function satis�es Expansion, but not WARP*

(e.g. x =  (X) and x =  (xz) but z =  (wxz)). This choice function is not an RSM. To

see this, suppose (w; x) 2 P1. Then x =  (X) cannot be rationalized. Suppose then that
(w; x) 2 P2. Then z =  (wxz) cannot be rationalized, for x will eliminate z regardless of
whether (x; z) 2 P2 or (x; z) 2 P1.

w y

z

x

Figure 2: The base relation for example 7.

Example 8 WARP* but not Expansion:
X = fx; y; zg
C (x) = fxy; xzg
C (y) = fyz; xyzg
C (z) = f?g
Binary choices are visualized in �gure 3. While this choice function satis�es WARP*

(trivially, as the premise of WARP* does not apply), it fails Expansion. This choice

function is not an RSM. Indeed, it is not sequentially rationalizable. As before, for any

two alternatives a; b 2 X, let i(a; b) be the smallest i such that Pi relates a and b. Suppose
by contradiction that  were sequentially rationalizable by P1; :::; PK . Since x =  (xy)

it must be (x; y) 2 Pi(x;y). Given this, y =  (xyz) can only hold if (z; x) 2 Pi(x;z), which
contradicts x =  (xz).

The above examples can be used to make two additional points. First, there are choice

functions which are not RSMs but are sequentially rationalizable. Namely,  in example

7 is rationalized by P1 = f(y; w)g, P2 = f(z; w) ; (w; x) ; (x; y)g and P3 = f(x; z) ; (y; z)g.
Second, the notion of sequential rationalizability is not vacuous, in the sense that there

exist choice functions which are not sequentially rationalizable (example 8).
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z y

x

Figure 3: The base relation for example 8.
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