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1 Introduction

Firms that are active in oligopolistic markets often face a considerable amount

of uncertainty about demand, competitors’ costs, and other market features

that are important for the firms’ decisions. Reflecting this fact, a large theoret-

ical literature has developed that studies firm behavior under such uncertainty.

In particular, a significant number of papers have investigated firms’ incentives

to engage in information sharing, information acquisition, and strategic experi-

mentation.1

Although this is a rich literature with many important and useful insights,

almost all of its contributions2 share an unappealing feature: they make as-

sumptions that imply that either (for those models where firms choose quan-

tities) market price can be negative or (for those models where firms choose

prices) firms’ output can be negative. The typical justification for making these

assumptions is analytical tractability. It is also often argued that, by making

appropriate additional assumptions about the distribution of the stochastic vari-

able (e.g., by letting its variance be sufficiently low), one can ensure that a neg-

ative price/quantity will occur only with a low probability.3 One problem with

this argument, however, is that the real-world situations that the models are

supposed to capture often involve a substantial amount of uncertainty. One may

therefore wonder whether the practice of using models where prices/quantities

can be negative makes us overlook valuable insights.4

In this paper I argue that we are indeed missing important economic in-

sights by ignoring the non-negativity constraint. In particular, taking the non-

negativity constraint explicitly into account has important implications for (1)

the possibility of multiple equilibria and for (2) the desirability (from an ex-

1For example, papers on information sharing include Clarke (1983), Gal-Or (1985, 1986), Li
(1985), Novshek and Sonnenschein (1982), Ponssard (1979), Raith (1996), Sakai and Yamato
(1989), Shapiro (1986), and Vives (1984, 1990).

2The notable exception is Malueg and Tsutsui (1998), which also is the paper that is most
closely related the the present one. I will relate my paper to theirs later in this introduction.

3 See, for example, Vives (1984, p. 77, n. 2; 1999, Ch. 8, n. 6).
4A common modeling framework is to assume a linear cost function and a linear inverse

demand function, P (X) = a− bX, where a is stochastic. Each firm observes a private signal
si, and the joint distribution of a and si has the proporty that the conditional expectation
function, E (a | si), is linear. An example of such a distribution, which is often explicitly
assumed, is a bivariate normal. If the demand intercept a indeed is normally distributed,
then obviously market price will be negative for some realizations, since then a itself can be
negative. But also if the distribution is such that a always takes non-negative values, market
price will be negative if industry output (which is an endogenous variable) is large enough.
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pected total surplus point of view) of the firms’ obtaining access to more infor-

mation. Whether and under what circumstances an oligopoly model can have

multiple equilibria is important to know, given that we want to understand our

work-horse models well. Such knowledge is, for example, crucial for empirical

(e.g., experimental) work, since then the analyst needs to know what behavior

theory predicts and whether he or she should be worried about the firms’ (or

subjects’) ability to coordinate on one of the equilibria. A thorough understand-

ing of the welfare implications of better informed firms are of great importance

from the point of view of antitrust policy. In particular, the desirability of regu-

latory measures that discourage or encourage information sharing among firms

critically depends on this issue.5

The formal setting in which I will develop my arguments is a traditional

Cournot model. Following a large part of the literature, I assume that the inverse

demand function is linear and that the uncertainty concerns the intercept of this

function. For simplicity, all firms face the same uncertainty, so information is

incomplete but symmetric. Moreover, all firms have the same constant marginal

cost technology. The special feature of the model is the assumption that market

price must be non-negative for all demand realization. That is, if the firms

have been optimistic about demand to such an extent that a negative price is

required for the market to clear, then market price simply equals zero.6

The reason why this model gives rise to a multiplicity of equilibria is that the

uncertainty about (inverse) demand together with the assumption that market

price cannot be negative make the expected (inverse) demand function convex.

It is well known that a Cournot model with known demand may have multiple

equilibria if the demand function is sufficiently convex. Intuitively, for a demand

function that is convex enough, the choice variables (i.e., the output levels) of a

typical firm and one of its competitors are strategic complements: the marginal

profit of a typical firm increases with the output of its competitor. As a result,
5For discussions of such regulatory measures, see Kühn and Vives (1995) and Kühn (2001).
6The fact that market price on these occasions is zero should not be interpreted too literally.

A richer model, which I conjecture would give rise to qualitatively the same results as here,
could assume that there are (constant unit) costs associated with selling the good. If market
price falls below this cost level, the firms will prefer not to sell. In such a model, the non-
negativity constraint assumed in the present paper would refer to the market price net of
selling costs, and it could thus be binding also for a strictly positive (gross) market price.
Another way of thinking about the non-negativity constraint would be that it refers to the

market price net of marginal cost, and that there is a regulatory rule that makes a negative
such net price illegal (justified by concerns for limit pricing).
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multiple equilibria can be sustained through self-fulfilling beliefs on the part of

the firms. In the model studied in the present paper, where demand is known

to be linear but has an unknown intercept, a convexity of the expected demand

schedule arises naturally because of the non-negativity constraint on price, and

this creates a multiplicity of equilibria for the same reason as in a model with

known and sufficiently convex demand.7

The reason why informed firms can be detrimental to expected total surplus

is that if a firm chooses a relatively large quantity and demand turns out to be

low, its losses will, because of the non-negativity constraint on price, be limited

to its production costs. Relative to a model in which price can be negative,

this makes the firm bolder (or more aggressive) when choosing its output: it

chooses a larger quantity than it would have done without the non-negativity

constraint, which is good for the consumers and for total surplus. This “boldness

effect” is particularly strong for low values of the marginal cost parameter, since

then the overall production costs are low. As a consequence, for that part of

the parameter space, uninformed firms are beneficial to expected total surplus

given that we impose the non-negativity constraint, a result that cannot occur

in the Cournot model without this constraint.8

The paper that is most closely related to the present one is Malueg and Tsut-

sui (1998).9 By means of a numerical duopoly example, they show a result that

is quite similar (although not identical) to the welfare result discussed above.

They therefore deserve credit for the observation that information sharing can

reduce social welfare in a Cournot model with demand uncertainty when the

non-negativity constraint on price is explicitly taken into account. The modeling

framework they use, however, is primarily designed for the particular purpose of

7 In a complete information Cournot model more generally (also in symmetric versions of
this model), there can exist multiple equilibria of another kind, namely equilibria in which
one firm or a subset of firms produce a positive quantity whereas the others are inactive,
producing nothing; see Amir and Lambson (2000). Such equilibria will not exist, however, in
the model that I investigate.
The standard formulation of the linear-quadratic Cournot model with incomplete informa-

tion – which allows for negative prices and quantities – does have a unique equilibrium. This
is typically proven by rewriting (using a technique suggested by Basar and Ho, 1974) a firm’s
payoff function in a way that does not alter the first-order condition but which transforms the
problem into a team decision problem. Then a uniqueness theorem due to Radner (1962) can
be used. See, for example, Vives (1999).

8A more detailed review of the relevant literature will be provided later in the paper.
9This relatively short article in the Australian Economic Papers came to my attention –

I am grateful to Jos Jansen for finding it – in February 2003, two and a half years after I
had finished the first version of the present paper.
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investigating the profitability of information sharing between firms, as it assumes

that firms have private information which they may or may not want to share.

My model cannot address questions about information sharing directly, since

it assumes that information is symmetric (although incomplete), but instead it

can study the effects of providing all firms with the same additional information.

Thanks to this modeling approach my analysis becomes much more tractable

than theirs, which makes it possible not just to note that better informed firms

can, under some circumstances, be bad for welfare, but also to derive insights

into what these circumstances look like in terms of the cost parameter and the

number of firms in the industry. (The multiplicity result discussed above is, to

the best of my knowledge, completely novel.)

Although the arguments of the paper are developed in a Cournot setting and

with uncertainty about the demand intercept, the points I make are relevant

also under other assumptions. Later in the paper I will discuss the effects of

imposing a non-negativity constraint on quantities in the Bertrand model (see

the end of Section 2.2) and the consequences of assuming uncertainty about

other parameters than the demand intercept (see the concluding section).

The remainder of the paper is organized as follows. In the next section a

model with two states is described and analyzed, and the multiplicity result

and the welfare result are demonstrated and discussed. Section 3 considers

a model with a continuum of states. In particular, that section provides a

sufficient condition (stated in terms of some properties of the distribution of

the stochastic demand intercept) for this model to have a unique equilibrium.

Section 4 concludes. Some of the proofs are relegated to an appendix.

2 A Model with Two States

2.1 Model

Consider a Cournot model with n ≥ 1 firms producing a homogenous good.

The firms are identical and indexed by i ∈ {1, 2, . . . , n}. Each one of them
faces a linear inverse demand function p (X) = max {0,α− bX}, where p is
price, X ≡ Pn

i=1 xi is industry output, xi is firm i’s output, and α > 0 and

b > 0 are exogenous parameters. All firms have the same constant marginal

cost technology, with marginal cost denoted c > 0, and there is no fixed cost.
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The intercept of the demand function, α, is unknown by the firms. The

intercept is either “low,” in which case α = a − ∆, or “high,” in which case
α = a+∆, with a > ∆ > 0 and a > c. Each one of the states of nature occurs

with equal probability: Pr (α = a−∆) = Pr (α = a+∆) = 1/2.
Each firm i is risk neutral and maximizes its expected profits. Its choice

variable is its own output, xi ≥ 0, which it chooses simultaneously with the

other firms. I will confine attention to pure strategy Nash equilibria of this

game.

2.2 Analysis and Results

The algebra of the model is worked out in the Appendix. Here I will just state

the results and subsequently explain the logic behind them. First, however, we

need some more terminology and notation.

Let us make the observation that the fact that the intercept of the inverse

demand function is stochastic together with the non-negativity constraint on

market price imply that the expected price schedule, E {p (X)}, has a kink. (To
see this, the reader may want to draw a figure.) The kink is located at that

level of industry output where the price schedule in a low-demand state meets

the horizontal axis,10 (a−∆) /b ≡ Xkink. I will say that if X < Xkink, then

industry output is located left of the kink; and if Xkink < X, then industry

output is located right of the kink.

Let the cut-off values ∆∗ and ∆∗∗ be defined by

∆∗ ≡
¡
2−√2¢ a+ ¡n+ 2√2− 3¢ c

n+
√
2− 1 , (1)

∆∗∗ ≡ 2
¡√
2− 1¢ a+ ¡n+ 3− 2√2¢ c

n+ 1
. (2)

One can readily verify that 0 < ∆∗ < ∆∗∗ < a for n ≥ 2, and 0 < ∆∗ = ∆∗∗ < a
for n = 1. Moreover, let the output levels x∗L and x

∗
R be defined by

x∗L ≡
a− c

b (n+ 1)
, x∗R ≡

a+∆− 2c
b (n+ 1)

. (3)

10Of course, the expected price schedule has a kink also at the point where it meets the
horizontal axis. Throughout the paper, however, the word “kink” will refer to the kink on the
downward sloping part of the expected price schedule.
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Proposition 1.

– For ∆ ∈ (0,∆∗∗) there is a unique pure strategy equilibrium in which
each firm’s output equals x∗L. Industry output in this equilibrium is

located left of the kink.

– For ∆ ∈ (∆∗, a) there is a unique pure strategy equilibrium in which

each firm’s output equals x∗R. Industry output in this equilibrium is

located right of the kink.

– For ∆ ∈ [∆∗,∆∗∗] there are exactly two pure strategy equilibria.
One is left of the kink with each firm’s output equal to x∗L, whereas

the other is right of the kink with each firm’s output equal to x∗R.

Figure 1 depicts ∆∗ and ∆∗∗ as (linear) functions of c for the case where

n ≥ 2 (recall that ∆∗ and ∆∗∗ coincide if n = 1). We know from Proposition 1

that an equilibrium in which industry output is right of the kink exists above

the graph of ∆∗, and an equilibrium in which industry output is left of the kink

exists beneath the graph of ∆∗∗. Thus, in the region between the two graphs

(the shadowed area in the figure) an equilibrium left of the kink co-exists with

an equilibrium right of the kink.

Clearly, the reason why this model gives rise to a multiplicity of equilibria is

related to the non-negativity constraint and the kink that it implies. The crucial

model feature, however, is not the existence of a kink per se, but the fact that

the expected price schedule is convex in a region where it pays off for the firms

to produce. It is well known from work on the Cournot model under complete

information that there can exist multiple equilibria if the demand function is

sufficiently convex. The reason why a convexity of demand has this effect is that

it tends to create a strategic complementarity between a firm’s own output and

its competitors’ output: the marginal gain in profits from increasing the own

strategic variable is increasing in each of the competitors’ strategic variables.11

As a consequence, a low-output equilibrium can exist simultaneously with a

11To see this, suppose inverse demand is known and given by D (x+ y), where x is own
output and y is the competitors’ joint output, and denote the cost function by C (x). Then
own profits are given by π (x, y) = D (x+ y)x − C (x). Differentiating π twice, first with

respect to x and then with respect to y, one has π
00
12 (x, y) = D

0
(x+ y) + xD

00
(x+ y). This

expression can be positive if D
00
(x+ y) is positive and sufficiently large, even if the demand

function is downward-sloping.

6



high-output equilibrium, since beliefs about the competitors’ behavior become

self-fulfilling.

In the model studied here, the requirement that price cannot be negative

creates a convexity of the expected demand schedule, which again leads to a

strategic complementarity and thus the possibility of multiple equilibria. In par-

ticular, although otherwise linear and downward sloping, firm i’s best-response

correspondence makes, because of the kink, one jump upwards. The jump oc-

curs at an output level of the other firms that is just large enough to make it

optimal for firm i to produce such a large quantity itself that industry output

locates right of the kink instead of left of it.

Figure 1 also tells us that as the number of firms in the market, n, increases,

the intercept of the graphs of ∆∗ and ∆∗∗ move downwards and, in the limit,

both straight lines approach the 45-degree line. Hence, as the market approaches

perfect competition, the scope for multiple equilibria in this model vanishes.

Let us now ask the question how the fact that the firms have incomplete

information affects expected profits and expected total surplus. The model

that I will use as a benchmark for comparison is identical to the one described

in Section 2.1, except that in the benchmark all firms know the realization of

the demand shock when they make their output decisions. I will make the

comparison from an ex ante perspective.

When the value of the demand intercept, α ∈ {a−∆, a+∆}, is common
knowledge, we know from standard calculations that there is a unique equi-

librium in which each firm produces xB ≡ max {0, (α− c) / [b (n+ 1)]} (the
subscript B is short for “benchmark”). Thus, in a high-demand state the out-

put level xB is always strictly positive, whereas in a low-demand state xB = 0

for ∆ ≤ a− c. Denote by πB (α) and CSB (α) a firm’s profits respectively the

consumer surplus in the benchmark model, given a realization of the demand

intercept α. We have

πB (α) = (α− c− bnxB)xB, CSB (α) =
b (nxB)

2

2
. (4)

Total surplus (or “welfare”) in the benchmark model, given a realization of α,

then equals WB (α) = CSB (α) + nπB (α). The expected profit and expected

total surplus, EπB and EWB, are defined as the expected values of πB (α) and

WB (α), given that the probability of each state is 1/2.
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Now let us return to the incomplete information model. In an equilibrium

left of the kink, the non-negativity constraint on price is never binding. Hence,

results that are novel relative to the existing literature can be expected to be

found only in an equilibrium right of the kink. Therefore, I will make the profit

and total surplus comparison only for such an equilibrium of the incomplete

information model.

Accordingly, assume that ∆ ∈ (∆∗, a) and that an equilibrium right of the

kink is played. Denote by π∗ (α) and CS∗ (α) a firm’s profits respectively the

consumer surplus in the incomplete information model, given a realization of

the demand intercept α. In a low-demand state, market price is zero. Hence,

π∗ (a−∆) = −cx∗R (i.e., the firm has no revenues, so its profits equal minus

its production costs). In a high-demand state, π∗ (α) is defined analogously to

πB (α) in (4), but with x∗R substituted for xB. Similarly, since market price

is zero in a low-demand state, I say that CS∗ (a−∆) is given by the whole
area beneath the demand schedule, CS∗ (a−∆) = (a−∆)2 /2b (i.e., all the
goods that are produced are handed over to the consumers free of charge). In a

high-demand state, CS∗ (α) is defined analogously to CSB (α) in (4), but with

x∗R substituted for xB. Total surplus, given a realization of α, is defined by

W ∗ (α) = CS∗ (α) + nπ∗ (α). Finally, the expected profit and expected total

surplus, Eπ∗ and EW ∗, are defined as the expected values of π∗ (α) andW ∗ (α),

given that the probability of each state is 1/2.

The following result is proven in the Appendix.

Proposition 2. Suppose ∆ ∈ (∆∗, a) and that an equilibrium right of the

kink is played in the incomplete information model. Then:

a) Expected profits are always strictly higher under complete informa-

tion than under incomplete information (i.e., Eπ∗ > EπB).

b) Expected total surplus under incomplete information is (strictly)

higher than expected social welfare under complete information (i.e.,

EW ∗ > EWB) if and only if ∆ < ϕ (a, c, n), where

ϕ (a, c, n) ≡ a− 2a− c
1 +

q
1 + 2a−c

2n(n+2)c

. (5)
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Part a) of Proposition 2 is quite intuitive and in line with what we know

from the existing literature. Part b) is illustrated in Figure 2. This figure shows

(the relevant part of) the graph of the function ϕ, in the same (∆, c) space as in

Figure 1. In the (non-empty) subset of the parameter space beneath this graph

and above the graph of ∆∗ (the shadowed area in the figure), an equilibrium

right of the kink exists in the model with incomplete information and expected

total surplus in that equilibrium is higher than in the benchmark model where

the firms do know demand.

The reason why expected total surplus can be lower when the firms are

informed is that a firm that does not know demand is bolder (or more aggressive)

when choosing its output: it chooses a quantity that is large relative to what

it would have chosen on average if it had known demand. The reason for this,

in turn, is that if the firm chooses a relatively large quantity and demand turns

out to be low, its losses will, because of the non-negativity constraint on price,

be limited to its production costs.

Given this logic, we should expect the “boldness effect” to be stronger the

lower is the marginal/average cost. Indeed, provided an equilibrium right of

the kink exists, ϕ02 (a, c, n) < 0. Moreover, limc→0 ϕ (a, c, n) = a, which means

that in the limit, as the constant marginal cost approaches zero, informed firms

are detrimental to expected total surplus for all ∆ ∈ (∆∗, a), i.e., whenever an
equilibrium right of the kink exists. We also have that ϕ03 (a, c, n) < 0: stiffer

competition decreases the cut-off value below which ∆ must be for informed

firms to be bad for expected total surplus. Indeed, in the limit as n approaches

infinity, informed firms are never detrimental to expected total surplus.

To see the significance of Proposition 2b, let us briefly review what re-

ceived theory has to say about the welfare effects of better informed firms in an

oligopoly (or monopoly) market. Vives (1984) studies a linear-quadratic duopoly

model with uncertainty about the intercept of the demand function. In one ver-

sion of his model he assumes Cournot competition, whereas in another there is

Bertrand competition. Vives does not impose any non-negativity constraint on

the variable that is not chosen by the firms (i.e., in the Cournot model price

can be negative and in the Bertrand model output can be negative). He com-

putes the social value (i.e., the difference in expected total surplus) of the firms’

9



having access to more information and shows that there is a strict dichotomy

between the Cournot and Bertrand models: the social value of information is

positive under Cournot and negative under Bertrand competition.12

How can we understand this dichotomy? One might have expected more

information to be socially beneficial under both Cournot and Bertrand compe-

tition, since it should help the firms to tailor their decisions to actual demand,

thus facilitating the exploitation of gains from trade and making the cake to

be shared between the firms and the consumers bigger. Of course, however,

the firms do not care about the size of this cake per se but about their share

of it. Still, it turns out that when the firms are quantity setters, then a firm’s

objective of maximizing the share of the cake is relatively well aligned with the

social goal of maximizing the cake size; for price setters, though, these goals

are less well aligned. This difference between quantity setting and price setting

is due to the facts that: (1) socially “good behavior” on the part of the firms

(i.e., their choosing large quantities respectively low prices) is more valuable in

a high-demand state than in a low-demand state (basically because the traded

quantity is larger in a high-demand state); and (2) a quantity setter who gets

access to information responds by producing more in a high-demand state and

less in a low-demand state, whereas a price setter responds by choosing a high

price in a high-demand state and a low price in a low-demand state.13

The effect discussed in the previous paragraph is present also in the model

studied in the current paper – indeed, this is why expected total surplus is

greater with informed than with uninformed firms whenever ∆ > ϕ (a, c, n). In

the model studied here, however, there is a non-negativity constraint on price,

which gives rise to the boldness effect discussed earlier. As a result, whether

information is good or bad does not depend only on whether the firms choose

price or quantity, but also on the strength of the boldness effect. In particular,

when the marginal cost parameter is relatively low, which makes the boldness

effect strong, information is bad also under Cournot competition.

Although the case with Bertrand competition (with differentiated goods) is

12For discussions of the welfare effects of information sharing, see also, for example, Clarke
(1983), Novshek and Sonnenschein (1982), Sakai and Yamato (1989), Shapiro (1986), and
Vives (1990).
13Kühn and Vives (1995) discuss this intuition at length and also illustrate it in figures.

See also Weitzman (1974) for an early analysis of the difference between price and quantity
setting under uncertainty.
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not analyzed in the present paper, it is fairly straightforward to understand how

the logic would work in such a model: a non-negativity constraint on quantity

would make it more tempting for firms to choose a high price. Thus, in a model

where firms choose prices and there is a non-negativity constraint on quantity,

the boldness effect would tend to make uninformed firms harmful to consumers,

since it creates an incentive to set a higher price. Also in such a model, the

boldness effect would be stronger when the production costs are relatively low.

Hence, one should expect that for sufficiently low values of the marginal cost

parameter, the boldness effect would be stronger than the effect present in Vives

(1984) also under Bertrand competition, with the result being that, for a subset

of the parameter space, informed firms is good for expected total surplus.

In sum, the strict dichotomy between Cournot and Bertrand is broken once

we introduce the non-negativity constraint: depending on the parameters, infor-

mation can be either good or bad in each one of the two models. In particular,

the traditional welfare result in the Cournot model (information is good) is re-

versed for sufficiently low values of the marginal cost parameter (for then the

boldness effect is relatively strong), and we should expect the analogous result

in the Bertrand model.

3 A Model with a Continuum of States

3.1 Model

In this section I will assume that α, the intercept of the inverse demand function,

can take on any value in the interval [0,α], where α > 0. (We can also have

α ∈ [0,∞), a case which corresponds to α = ∞ in the text and the formulas

below.) More precisely, although the intercept α is unknown by the firms, they

know that it is distributed according to the cumulative distribution function F ,

which is three times continuously differentiable. Its associated density function

is denoted f and is strictly positive on (0,α). Moreover, the expected value of

α is assumed to exceed the constant marginal cost, E (α) ≡ R α
0
af (a) da > c.

All other parts of the model are exactly as in the two-state model described in

Section 2.1. I will again confine attention to pure strategy Nash equilibria.
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3.2 Analysis and Results

Since market price is zero for any α ≤ bX, firm i’s expected profits can be

written as Eπi = (P (X)− c)xi, where

P (X) ≡ max
(
0,

Z α

bX

(a− bX) f (a) da
)
.

Thus, our incomplete information model is strategically equivalent to a symmet-

ric Cournot model with complete information and with inverse demand function

P (X), where P (X) is continuously differentiable and with P 0 (X) < 0 in the

relevant output interval. From the existing literature we know several things

about such a model. In particular, the results of Amir and Lambson (2000) tell

us the following.14

Lemma 1. A pure strategy Nash equilibrium exists. In any such equilibrium,

all firms produce the same quantity, x∗. Moreover, x∗ > 0 and equilibrium

industry output, X∗ ≡ nx∗, satisfiesZ α

bX∗
af (a) da− c = (n+ 1) bX∗

n
[1− F (bX∗)] . (6)

Proof. From Theorem 2.1 of Amir and Lambson (2000) we know that, under

conditions that are satisfied in our setting, our model has at least one symmetric

equilibrium and no asymmetric equilibria. Moreover, by differentiating Eπi with

respect to xi we have

∂Eπi
∂xi

=

Z α

bX

af (a) da− b (xi +X) [1− F (bX)]− c. (7)

Evaluating this expression at xi = 0 andX = 0 yields ∂Eπi∂xi
|xi=0,X=0= E (α)−c,

which is strictly positive by assumption. Hence, all firms cannot produce zero

output in a Nash equilibrium. It follows that all firms must produce the same

positive quantity and that this satisfies ∂Eπi/∂xi = 0, which rewritten yields

(6). ¤

3.2.1 A Sufficient Condition for Uniqueness

Let us now ask under what circumstances there is a unique pure strategy Nash

equilibrium. I will derive a sufficient condition for this, stated in terms of some
14The symmetry and existence results below actually hold for any convex cost function.

In order to prove the results reported on later in this section, however, I need the constant
marginal cost assumption, which is why I impose it already from the outset.
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properties of the distribution F , under the following assumption:15

Assumption 1. f (0) < [E (α)− c]−1 .

Rewriting firm i’s first-order condition ∂Eπi/∂xi = 0 (using (7)) one has

xi =

R α
bX
af (a) da− c

b [1− F (bX)] −X ≡ R (X) . (8)

The function R (X) defined in (8) is sometimes called an inclusive best-response

function. It differs from a standard best-response function in that its argument

is the sum of all firms’ output, including firm i’s own.16 Although it may

– because of this reason – be hard to interpret, the inclusive best-response

function will prove very convenient to work with. Under our assumptions about

F , R is continuous and differentiable with respect to X for all X ∈ (0,α/b).
Note that differentiating R (X) yields

R
0
(X) = bR (X)h (bX)− 1, (9)

where h (X) ≡ f (X) / [1− F (X)] is the hazard rate of F .
Under Assumption 1, if there exist more than one Nash equilibrium, the

graph of R (X) must look something like the one that is depicted in Figure 3.

More precisely, since the graph must cross the straight line R (X) = X/n at least

twice and it begins above it and ends below it,17 there must exist two distinct

X’s, sayX 0 andX 00, with 0 < X 0 < X 00 < α/b, such thatR0 (X 0) = R0 (X 00) = 0,

R00 (X 0) > 0, and R00 (X 00) < 0.

What restrictions do these conditions impose on the distribution F? To see

this, differentiate the expression for R0 in (9):

R
00
(X) = b

h
R

0
(X)h (bX) + bR (X)h

0
(bX)

i
.

Hence, since R0 (X 0) = R0 (X 00) = 0,

R
00
(X 0) =

bh
0
(bX 0)

h (bX 0)
and R

00
(X 00) =

bh
0
(bX 00)

h (bX 00)
.

15Assumption 1 is obviously satisfied for any distribution for which f (0) = 0, such as a
log-normal. One can verify that it holds also for an exponential distribution, for a uniform
distribution on [0,α], and for the following “triangular” distribution: f (a) = 2 (α− a) /α2 for
a ∈ [0,α] and f (a) = 0 otherwise (obviously, here α must be finite).
16The inclusive best-response function was first used by Selten (1970) and then later, but

independently, by Novshek (1985) to prove existence results.
17Moreover, Assumption 1 guarantees that R

0
(0) < 0.
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This means that h
0
(bX 0) > 0 whereas h

0
(bX 00) < 0.

The above analysis in conjunction with Lemma 1 yield the following propo-

sition.

Proposition 3. Suppose that Assumption 1 is satisfied. Moreover, suppose

that F is such that its hazard rate is either (i) monotone or (ii) changing

sign exactly once and it is first decreasing and then increasing. Then there

exists exactly one pure strategy Nash equilibrium.

Most standard distribution functions have a monotone hazard rate, and it is

an often-made assumption in many areas of economic theory. Of course, how-

ever, this does not necessarily mean that the condition is satisfied empirically.

I will leave for future work the task of exploring in greater detail what kind

of distributions that do give rise to multiple equilibria. Let us note, though,

that the two-state distribution that was assumed in Section 2 could be ap-

proximated with a continuous-state two-hump distribution that satisfies all the

differentiability and full-support assumptions made in this section, and which

would therefore also give rise to two co-existing equilibria.18

What is the role of Assumption 1 in Proposition 3? As already mentioned,

this assumption guarantees that the graph of R (X) has a negative slope at

X = 0, which is needed for the argument in the proof of Proposition 3 to be

valid. Another way of understanding Assumption 1 is to note that it equivalently

can be written as

lim
X→0

∂2 log (P (X)− c)
∂X2

< 0.

That is, Assumption 1 guarantees that (P (X)− c) is log-concave for X close

to zero. In his analysis of a complete information Cournot duopoly model with

constant marginal costs, Amir (1996, Theorem 2.7), too, proves a uniqueness

result under the assumption that (P (X)− c) is log-concave, although for X’s
lying in another region (namely, between the monopoly output and the output

associated with marginal cost pricing). Of course, Amir’s analysis is not a

substitute for Proposition 3, but it suggests that Assumption 1 might not be

needed for the proposition to hold. (I leave for future work any attempts to

strengthen the result reported in Proposition 3.)
18Thus, a conjecture would be that markets in which demand is likely to be either relatively

low or relatively high give rise to a multiplicity of equilibria.
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3.2.2 The Value of Information

Let us now turn to the question how the fact that the firms have incomplete

information affects expected firm profits and expected consumer surplus. As in

the previous section, the benchmark with which I will compare is a model where

all firms know the realization of α when making their output decisions. Using

the same notation as in that section, each firm’s output in the benchmark equals

xB ≡ max {0, (α− c) / [b (n+ 1)]}. Thus, output is zero for any realization of
the demand intercept such that α ≤ c. Expected firm profits and expected

consumer surplus in the benchmark can be written as (cf. (4))

EπB =

R α
c
(a− c)2 f (a) da
b (n+ 1)2

, ECSB =
n2
R α
c
(a− c)2 f (a) da
2b (n+ 1)2

. (10)

In an equilibrium of the model with incomplete information, expected firm

profits in equilibrium are given by

Eπ∗ =
X∗

n

"Z α

bX∗
(a− bX∗) f (a) da− c

#
=
b (X∗)2

n2
[1− F (bX∗)] (11)

(the second equality follows from (6)). Expected consumer surplus in the model

with incomplete information is given by

ECS∗ =
b (X∗)2

2
[1− F (bX∗)] + 1

2b

Z bX∗

0

a2f (a) da. (12)

Let us write ∆π ≡ EπB − Eπ∗ and ∆CS ≡ ECSB − ECS∗. We have
immediately from (10)-(12) that the following relationship holds:

∆CS =
n2

b
∆π − 1

2b

Z bX∗

0

a2f (a) da. (13)

That is, if the consumers gain from informed firms, so do the firms themselves.

The following proposition tells us that the consumers gain if the marginal cost

is large enough.

Proposition 4. For c sufficiently close to E (a), ∆CS > 0.

Further general results seem hard to obtain. Let us instead consider the

following example.
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Example 1: Uniform Distribution. Assume F (a) = a/α and f (a) = 1/α

for a ∈ [0,α]. Using (6), one can then show that

X∗ =
n (α− 2c)

b

µ
n+ 1 +

q
1 + 2n(n+2)c

α

¶ .
Furthermore, by using this expression for X∗ together with (10) and (12) and

carrying out some algebra, one can show that ∆CS > 0 as

¡
1− c

α

¢3¡
1− 2c

α

¢2 > (n+ 1)2
·
3

µ
1 +

q
1 + 2n(n+2)c

α

¶
+ 4n cα + n

¸
µ
n+ 1 +

q
1 + 2n(n+2)c

α

¶3 . (14)

One can easily verify that, for any finite n, the inequality in (14) is satis-

fied for c/α close to 1/2, whereas the reverse equality holds for c/α close to

0. That is, for values of c sufficiently small, the expected consumer surplus

is greater when the firms do not know demand than when they do. In the

limit, however, as n approaches infinity, the right-hand side of (14) approaches³
3
q

2c
α +

4c
α + 1

´
/
³
1 +

q
2c
α

´3
, which can be shown to be strictly smaller than

the left-hand side (for all c/α).

4 Concluding Remarks

In this paper I have argued that ignoring the non-negativity constraint on price

when modeling uncertainty in oligopolistic (or monopolistic) markets may make

us overlook important economic insights. In particular, I showed that taking

the non-negativity constraint explicitly into account in a simple Cournot model

with demand uncertainty can lead to (1) a multiplicity of equilibria and to (2)

the phenomenon that expected total surplus is larger when the firms do not

know the demand than when they do.

Observation (2) has been made before by Malueg and Tsutsui (1998), al-

though only by means of a numerical duopoly example. In the present paper,

thanks to the fact that here information is symmetric (but incomplete), I could

derive more general results. These suggest that the tendency for informed firms

to be bad for welfare is stronger when marginal/average cost is low and that

providing the firms with more information is always good if the number of firms

16



in the market is sufficiently large. Observation (1) was complemented by a re-

sult showing that if the distribution of the unknown demand intercept has a

monotone hazard rate and if another, rather weak, assumption is satisfied, then

uniqueness of equilibrium is guaranteed.

The arguments of the paper are relevant also for price competition (see the

end of Section 2.2) and for uncertainty about market features other than the

demand intercept. Suppose, for example, that there are at least two firms in

a Cournot market and that each firm has private information about its own

(constant) marginal cost, thus making its output decision contingent on this

information. Then, from the point of view of an individual firm, aggregate

output will be stochastic and the non-negativity constraint on price will, at

least for some possible output choices, be binding with positive probability. In

such a model the non-negativity constraint should play a role that is very similar

to the one explored in the models of the present paper. The same is true for

anything else that is private information to a firm and which affects its output

choice. It could also be that the number of firms in the market is unknown to

an individual firm, which again would make aggregate output stochastic from

the point of view of that firm. Examining these and other alternative models in

greater detail could yield further insights.

Appendix

Proof of Proposition 1. Let us first look for equilibria left of the kink,

i.e., where X∗ < Xkink (= (a−∆) /b). It is straightforward to verify that in
such an equilibrium, given that it exists, all firms produce the same quantity,

namely x∗L as defined in (3). Now consider firm i’s incentive to deviate to some

xi such that xi + (n− 1)x∗L ≥ (a−∆) /b or, rewriting, to some xi such that

xi ≥ a−∆
b
− (n− 1)x∗L =

2a− (n+ 1)∆+ (n− 1) c
b (n+ 1)

≡ A (∆) .

If deviating to such an xi, firm i’s expected profits are given byµ
a+∆− bxi − b (n− 1)x∗L

2
− c
¶
xi =

µ
2a+ (n+ 1)∆− (n+ 3) c

2 (n+ 1)
− b
2
xi

¶
xi.

(15)
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Maximizing this expression with respect to xi subject to xi ≥ A (∆) yields an
optimal bx given by

bx = ( A (∆) if ∆ ≤ 2a+(3n+1)c
3(n+1)

2a+(n+1)∆−(n+3)c
2b(n+1) if ∆ > 2a+(3n+1)c

3(n+1) .
(16)

Clearly, when ∆ is such that the constraint xi ≥ A (∆) is binding, then firm i

does not have an incentive to deviate. Consider the case where the constraint is

not binding. Compute firm i’s expected profit if not deviating and if deviating:

πi (not deviating) =
(a− c)2
b (n+ 1)

2 ,

πi (deviating) =
µ
bbx− b

2
bx¶ bx = [2a+ (n+ 1)∆− (n+ 3) c]2

8b (n+ 1)2

(the last two equalities make use of (15) and (16)). It is a straightforward

exercise to verify that πi (deviating) is monotone increasing in ∆ for all ∆ >

[2a+ (3n+ 1) c] /3 (n+ 1). Moreover, aggregate output in an equilibrium left

of the kink equals nx∗L, so we will indeed have an equilibrium left of the kink

if and only if nx∗L < Xkink or, rewriting, ∆ < (a+ nc) / (n+ 1). Evaluating

πi (deviating) at ∆ = (a+ nc) / (n+ 1) yields

πi (deviating) |∆=a+nc
n+1

=
9 (a− c)2
8b (n+ 1)

2 > πi (not deviating) .

Thus, there exists a unique ∆A, satisfying

2a+ (3n+ 1) c

3 (n+ 1)
< ∆A <

a+ nc

n+ 1

and

(a− c)2
b (n+ 1)2

=
[2a+ (n+ 1)∆A − (n+ 3) c]2

8b (n+ 1)2
, (17)

such that firm i will not have an incentive to deviate if and only if ∆ ≤ ∆A.
The equality in (17) has a unique root in the relevant interval which is given by

∆A = ∆
∗∗, where ∆∗∗ is defined in (2).

Now let us look for equilibria right of the kink, i.e., where X > Xkink. It

is straightforward to verify that in such an equilibrium, given that it exists, all

firms produce the same quantity, namely x∗R as defined in (3). This output is

non-negative only if ∆ ≥ 2c − a, which thus is a necessary condition for an
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equilibrium right of the kink to exist. Consider firm i’s incentive to deviate to

some xi such that xi + (n− 1)x∗R ≤ Xkink or, rewriting, to some xi such that

xi ≤ a−∆
b
− (n− 1)x∗R =

2 [a− n∆+ (n− 1) c]
b (n+ 1)

≡ B (∆) .

Note that B (∆) < 0 if ∆ > [a+ (n− 1) c] /n, in which case firm i is unable to

move industry output left of the kink. Hence, suppose that ∆ is small enough

so that B (∆) ≥ 0. Now, if deviating to an xi ∈ [0, B (∆)], firm i’s expected

profits are given by

(a− bxi − b (n− 1)x∗R − c)xi =

µ
2a− (n− 1)∆+ (n− 3) c

n+ 1
− bxi

¶
xi.

(18)

Maximizing this expression with respect to xi subject to xi ≤ B (∆) (the con-
straint xi ≥ 0 will not be binding when B (∆) ≥ 0) yields an optimal bx given
by

ex = ( 2a−(n−1)∆+(n−3)c
2b(n+1) if ∆ ≤ 2a+(3n−1)c

3n+1

B (∆) if ∆ > 2a+(3n−1)c
3n+1 .

(19)

Clearly, when ∆ is such that the constraint xi ≤ B (∆) is binding, then firm i

does not have an incentive to deviate. Consider the case where the constraint

is not binding. Calculate firm i’s profit if not deviating and if deviating:

πNotDevi =
(a+∆− 2c)2
2b (n+ 1)2

, πDevi = (2bex− bex) ex = [2a− (n− 1)∆+ (n− 3) c]2
4b (n+ 1)2

(the last two equalities make use of (18) and (19)). Given that x∗R ≥ 0 (so that
∆ ≥ 2c−a), πNotDevi is monotone increasing in∆, and one can verify that πDevi is

monotone decreasing in∆ provided that B (∆) ≥ 0. Moreover, aggregate output
in an equilibrium right of the kink equals nx∗R, so we will indeed have an equi-

librium right of the kink if nx∗R > X
kink or, rewriting, ∆ > (a+ 2nc) / (2n+ 1).

Evaluating the above two expressions at ∆ = (a+ 2nc) / (2n+ 1), we have

πNotDevi |∆=a+2nc
2n+1

=
2 (a− c)2
b (2n+ 1)

2 , πDevi |∆=a+2nc
2n+1

=
9 (a− c)2
4b (2n+ 1)

2 .

Hence, for ∆ = a+2nc
2n+1 , π

Dev
i > πNotDevi . This means that there exists a unique

∆B , satisfying

a+ 2nc

2n+ 1
< ∆B <

2a+ (3n− 1) c
3n+ 1
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and

(a+∆B − 2c)2
2b (n+ 1)2

=
[2a− (n− 1)∆B + (n− 3) c]2

4b (n+ 1)2
, (20)

such that firm i will not have an incentive to deviate if and only if ∆ ≥ ∆B.
The equality in (20) has a unique root in the relevant interval which is given by

∆B = ∆
∗, where ∆∗ is defined in (1). ¤

Proof of Proposition 2. The proof makes use of Table A1, the entries of

which can be calculated by using the definitions and formulas provided in Section

2. Let us first prove part a) of the proposition. For the case ∆ > a− c it follows
immediately from Table A1 that EπB > Eπ∗. Next consider the case ∆ ≤ a−c.
From Table A1 we have that EπB > Eπ∗ ⇔ 2

h
(a− c)2 +∆2

i
> (a+∆− 2c)2,

which can be rewritten as

[∆− (a− 2c)]2 > 2
h
(a− 2c)2 − (a− c)2

i
= −2c (2a− 3c) .

Recall that ∆ > ∆∗ implies ∆ > c. Thus, a necessary condition for having

∆ ≤ a − c is that a > 2c. But this means that the right-hand side of the

inquality above is strictly negative, so the inequality must always hold.

C. I.: ∆ ≤ a− c C. I.: ∆ > a− c Incompl. Info.

π (a−∆) (a−∆−c)2
b(n+1)2

0 −cx∗R
π (a+∆) (a+∆−c)2

b(n+1)2
(a+∆−c)2
b(n+1)2

[a+∆+(n−1)c](a+∆−2c)
b(n+1)2

Eπ (a−c)2+∆2

b(n+1)2
(a+∆−c)2
2b(n+1)2

(a+∆−2c)2
2b(n+1)2

CS (a−∆) n2(a−∆−c)2
2b(n+1)2

0 (a−∆)2
2b

CS (a+∆) n2(a+∆−c)2
2b(n+1)2

n2(a+∆−c)2
2b(n+1)2

n2(a+∆−2c)2
2b(n+1)2

ECS
n2[(a−c)2+∆2]

2b(n+1)2
n2(a+∆−c)2
4b(n+1)2

(n+1)2(a−∆)2+n2(a+∆−2c)2
4b(n+1)2

EW
n(n+2)[(a−c)2+∆2]

2b(n+1)2
n(n+2)(a+∆−c)2

4b(n+1)2
(n+1)2(a−∆)2+n(n+2)(a+∆−2c)2

4b(n+1)2

Table A1: Profits, consumer surplus, and welfare under complete and incomplete

information. Columns two and three concern the benchmark model with complete

information, whereas the last column refers to the incomplete information model.

The notation in the first column is for simplicity written without the subindex

“B” or the superindex “ ∗”. Thus, π (a−∆), for example, should be understood
as either πB (a−∆) or π∗ (a−∆), depending on which column one is reading
from.
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Let us now prove b). First consider the case ∆ > a−c. Here, using Table A1
and simplifying, the inequality EW ∗ < EWB can be written as λ (a, c,∆, n) >

0, where λ (a, c,∆, n) ≡ n (n+ 2) c £2 (a+∆)− 3c2¤ − (n+ 1)2 (a−∆)2. The
function λ is strictly increasing in ∆. Recall that a necessary condition for an

equilibrium right of the kink to exist is that ∆ > c. Hence, in order to show

that EW ∗ < EWB for the relevant parameters (i.e., for all ∆ > max {a− c, c}),
it suffices to show that: for all a ≥ 2c, λ (a, c,∆, n) |∆=a−c> 0; and for all

a ∈ (c, 2c), λ (a, c,∆, n) |∆=c> 0. We have λ (a, c,∆, n) |∆=a−c= 4n (n+ 2) ac−¡
6n2 + 12n+ 1

¢
c2, which is indeed strictly positive for all a ≥ 2c. We also have

λ (a, c,∆, n) |∆=c= n (n+ 2) c (2a− c)− (n+ 1)2 (a− c)2, which is concave in a
and strictly positive evaluated at a = c and a = 2c. Hence, λ (a, c,∆, n) |∆=c> 0
for all a ∈ (c, 2c).
It remains to consider the case ∆ ≤ a− c. Using Table A1 and simplifying,

EWB < EW
∗ can be written as n (n+ 2)

n
2
h
(a− c)2 +∆2

i
−(a+∆− 2c)2

o
<

(n+ 1)
2
(a−∆)2. Rewriting again and then completing the square (with re-

spect to ∆) yield

{[a+ 2n (n+ 2) c]−∆}2 > 2n (n+ 2) c £¡2n2 + 4n− 1¢ c+ 2a¤ .
Since a+ 2n (n+ 2) c > ∆ and the right-hand side is positive, we can take the

square root of both sides of the above inequality. Doing this and rewriting yield

∆ < a+ 2n (n+ 2) c−
p
2n (n+ 2) c [(2n2 + 4n− 1) c+ 2a]

= a+ 2n (n+ 2) c

"
1−

p
(2n2 + 4n− 1) c+ 2ap

2n (n+ 2) c

#

= a+ 2n (n+ 2) c

 1− (2n
2+4n−1)c+2a
2n(n+2)c

1 +
q

(2n2+4n−1)c+2a
2n(n+2)c


= a+ 2n (n+ 2) c

 2n(n+2)c−(2n2+4n−1)c−2a
2n(n+2)c

1 +
q

(2n2+4n−1)c+2a
2n(n+2)c

 ,
which simplifies to ∆ < ϕ (a, c, n). ¤

Proof of Proposition 4. As c approaches E (a), bX∗ must approach zero

for (6) to hold. Moreover, ECS∗ approaches zero as bX∗ approaches zero,
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whereas

lim
c→E(a)

ECSB =
n2
R α
E(a)

(a−E (a))2 f (a) da
2b (n+ 1)

2 > 0.

Thus, ∆CS > 0 for c close to E (a). ¤
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Fig. 1. An equilibrium left of the kink exists beneath ∆**, and 
an equilibrium right of the kink exists above ∆*. Hence, in the 
shadowed area between ∆* and ∆** both equilibria exist.
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Fig. 2. In the shadowed region is, given that an equilibrium 
right of the kink is played, expected total surplus lower when 
the firms know demand than when they do not.
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Fig. 3. The shape of R(X), given that there exist more than 
one equilibrium.
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