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ABSTRACT

This note addresses the reasons why additive and multiplicative demand uncertainty

produce differently signed biases in output price as compared to the certainty case in two-

period monopoly models. With multiplicative uncertainty the price should be set above the

certainty level while for additive uncertainty the price should be lower than the certainty

level. This note gives an intuitive explanation for the result after first presenting a

parsimonious review of the two models. We also discuss which, if either, of the two models

is more realistic.
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1. Introduction
Investment under uncertainty has recently been dominated by real option models that stress

the value of waiting or the value of flexibility. This contrasts with more traditional two-

period models where convexity of the marginal profit under risk was argued to bias

decisions (Abel 1983); or where the bias arose from a discontinuity in the profit function in

the fix-price capacity-rationing case (Nickell 1978; Aiginger 1987; Lambert and Mulkay

1990). In our view, two-period models involving bets rather than options are still important

in many economic applications.

To motivate the paper, imagine that you are the organiser of a concert or exhibition where

the floor space or capacity has to be decided in advance of the show and where the price is

also set in advance. The demand is only known stochastically. How should price and

capacity be set? Should the price of tickets be higher or lower than under certainty?1

It turns out that the nature of the bias that is introduced depends radically on the type of

demand uncertainty that is assumed. With multiplicative uncertainty the price should be set

above the certainty level while for additive uncertainty the price should be lower than the

certainty level. Most authors assume one or the other form of uncertainty in their models,

e.g. additive (Pennings 2001) or multiplicative (Driver et al 1993; 1996). And although the

result may be traced back to the classic edited collection of Arrow et al (1962), it has never

been satisfactorily explained why the apparently minor change in specification of stochastic

demand can have such radical implications for the bias to price under uncertainty.2 Thus

this note also serves as a warning to those working on uncertainty that results may be very

sensitive to exact specifications.

                                                
1 Other contexts where the model applies include manufactured items where capacity is decided in advance
and for marketing reasons the price has to be announced and held whatever the demand (new cars, seasonal
toys and products that become obsolete at the end of a period are sometimes cited as examples). This context -
where both price and quantity or capacity have to be set ex-ante - is regarded by firms as highly relevant. See
the discussion of “P-Q models” in Aiginger 1987, p.163-7; Karlin and Carr 1962; Driver et al 1993; 1996. See
also Dana and Petruzzi (2001) for a recent contribution that extends the classic newsvendor problem by
introducing an exogenous outside option for consumers.
2 We focus on the price results rather than the bias that is caused to capacity under uncertainty. This is
because the results for price are quite general whereas the result for capacity in the multiplicative case
requires some restrictions on the demand curve (Driver et al 1993).
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2. Formal derivation of the results

Let us denote by D0(p) the certainty demand curve. In the multiplicative case, certainty

demand is multiplied by a stochastic shift term; in the additive case, a stochastic term is

added to the certainty demand curve. Realised demand is in the two cases:
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A risk-neutral monopolist sets the price p and the capacity Y before uncertain demand is

realised. Capacity costs c per unit. Denoting by X expected sales, we have:

Additive Multiplicative

aaFYpDYFY

aFapDYpX
pDY

a

pDY

a

d)())]((1[

)(d])([),(
)(

0

)(

0

0

0

∫
∫

−

−

−=−−

++=

∫
∫

−=−

+=
)(/

00

)(/

0

0

0

d)()())](/(1[

)(d)(),(
pDY

k

pDY

k

kkFpDYpDYFY

kFpkDYpX

In each case we define profit and the two first-order conditions:

0// =∂∂+=∂Π∂ pXpXp (1)

0// =−∂∂=∂Π∂ cYXpY (2)

2.1 Additive vs multiplicative: expected sales and the incidence of rationing
We now explain the contrasting results between the models.3 It is useful to make a change

of variable. In the additive case, define )(0 pDYz a −=  as the (additive) capacity stance

level, which represents the planned margin of spare capacity or the difference between the

set capacity and expected demand. In the multiplicative case, define )(/ 0 pDYz k =  as the

cYYppX −=Π ),(
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multiplicative capacity stance ratio. Since actual capacity at a given price can be set below

or above unconstrained expected demand, it follows that za can be either negative of

positive, and zk can be lower or greater than 1. Expected sales (X) is then transformed into:

Additive Multiplicative
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From the final twin expressions above it is obvious that expected sales will be lower than

(unconstrained) certain demand. So there will be a demand loss due to rationing. But in the

additive case the loss depends only on za, while, for a given zk, in the multiplicative case the

loss will be lower at higher prices. This gives a first hint: in a sense, the pricing decision

may be used in the k-model to "reduce" uncertainty by setting high prices, while this does

not happen with the a-model (for a given za). 4

2.2 Additive vs multiplicative: profit maximisation
To derive formal results we focus on the profit functions. For now onwards, to save on

notation, we simply refer to z with no superscript, knowing that it represents a level and a

ratio in the two cases. Define expected profit:

Additive
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3 For the reader who prefers to see a graphical presentation, the multiplicative case is drawn and discussed in
Appendix 1.
4 Alternatively, we may see this by contrasting the two expressions for expected sales X given before (1)
above. We note that the level difference (Y - X) conditional on a given F(·) depends on p (via D0) in the
multiplicative case but not in the additive case. This (Y - X) term denotes the expected quantity of rationing
for a given F(·). In the multiplicative case (but not the additive one) a higher p leads to a lower level of
expected rationing for any given F(·).
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Hence, the expected profit can be conveniently decomposed into the sum of different terms.

The intuitive explanation for these terms may be simply explained. The first term (A)

coincides with the unconstrained profit under certainty, that is maximised at the certainty

price pc, obtained from:

0)()()( 00 =′−+ ccc pDcppD (4)

The second term (B) represents the loss from carrying precautionary capacity of quantity z

(the difference between capacity and expected demand) at unit cost c. The third term (C) is

the expected value of lost sales due to capacity rationing that occurs whenever a > z.

Multiplicative
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Here the first term (A) is identical to the additive case. The remaining terms have parallel

interpretations to the additive case. The second term (B) represents the expected cost of

carrying precautionary capacity of amount Y - D0 = D0(z - 1). The third term (C) represents,

as in the additive case, the value of the lost sales due to rationing where the averaging is

now over the interval where k > z. Using ∫∫ −−−+=
k

z

z

k
kFzkkFkzz )(d)()(d)(1 , it is

convenient to rewrite eq. (5) as:
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2.3 Optimal capacity stance, z
The problem that we now study is the maximisation of the expression of expected profit

with respect to p and z. This is of course a simultaneous choice, but let us do it in two steps.

Imagine that the price is somehow fixed, and consider the optimal choice of z. We have:
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Additive Multiplicative

0))(1(/ =−+−=∂Π∂ zFpcz 0)](1()[(/ 0 =−+−=∂Π∂ zFpcpDz

Hence, in both cases the FOC w.r.t. the capacity stance can be re-written as:

cppF −=⋅)(  (6)

This is the solution to the traditional newsvendor problem, where price is exogenously set.

There is no difference between the a-model and the k-model when the price is treated as an

exogenous variable.

The FOC w.r.t. z (eq. (6)) has an intuitive interpretation (see also Fig. 1). The gain to

revenue stemming from an increment to Y (or z) will only occur if the firm is already

capacity constrained (probability = 1 – F(·)) but the cost incurred (c) is unconditional.

Expected value of the increment to Y should be zero at the optimal Y: (p – c)(1 – F(·)) –

cF(·) = 0, which is the same as (6).

Figure 1 - Optimisation requires (p - c)(1 - F(·)) - cF(·) = 0 (eq. (6))

Increment
of Y at
cost c

Capacity
constrained.
Probability
= 1 - F(·)

Demand
constrained.
Probability
= F(·)

Value = p - c

Value = -c
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2.4 Optimal price, p
In contrast to the above, for a given z, the a-model and the k-model exhibit fundamental

differences w.r.t. the choice of the price. This can be seen by direct inspection of eq. (3) and

eq. (5bis).

In the a-model, expected sales is split into riskless demand minus a loss term that is not

sensitive to price changes. When we turn to the profit, this is equal to the riskless profit

(term A, maximized at pc), minus a "sunk cost" to carry extra-capacity (term B, this comes

with its algebraic sign), minus the value of the demand loss that is lower the lower is the

price (term C). Overall, the firm will want for sure to set a price below the monopoly

certainty price.

In the k-model, once the capacity stance is fixed, there is no first-order effect from the loss

term given by term B' (starting from the certainty price), while term C' is minimised for

very high prices. The effect of the high price here is to reduce the likelihood of rationed

demand. Hence there is a natural tendency to push the price above the certainty level, for

any value of the capacity stance. The effect here is due to lower precautionary capacity at

higher prices in the multiplicative case as the expected level of planned excess capacity

decreases while the ratio of planned excess capacity to expected demand remains constant.

The above intuitive account can be complemented by expressing the derivative of profit

with respect to price. After some manipulation we obtain from eq. (3) and (5bis) the

contrasting expressions below which show the opposite signed effects:
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2.5 Alternative treatment of the first order condition w.r.t. p
It is also interesting, if somewhat circuitous, to contrast the FOC w.r.t. p in terms of expected

sales for a given Y. From eq. (1), the derivative pX ∂∂ /  may be derived as follows:

Additive

)()(/ 0 zFpDpX ′=∂∂  (7)

Multiplicative
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In the multiplicative case, pX ∂∂ /  is lower (in absolute terms) than the additive

corresponding term D'0F(·). In particular, ∫′
z

k
kFkpD )(d)(0  is a weighted average over the

unconstrained (lower demand) regime, with mean (unconstrained) weight equal to unity. In

the k-model, the unconstrained states are those states when demand has higher absolute

elasticity than the average, which explains the tendency to charge higher prices.

For a formal proof for the k-model, we can manipulate (1) as follows:
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Using the certainty condition for maximising profit (eq. (4)), it is immediate to see that the

last term in the square bracket in eq. (9) is equal to zero when evaluated at the certainty price

pc. This implies that, as before, price is higher than the certainty price under multiplicative

uncertainty.

We give below a parallel alternative proof for the additive case that the uncertainty price is

lower than the certainty price. Using (7) and substituting (6) into (1)
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gives: 0))((),( 0 =−′+ cppDYpX  which, when evaluated at the certainty price, may be

compared with the certainty condition for maximum profit, equation (4). As proved earlier,

expected sales must be less than certainty unconstrained demand: 0)(),( 0 <− cc pDYpX .

Thus, expected marginal profit w.r.t. p under additive uncertainty is less than zero at the

certainty price pc and price should accordingly be lower under this form of uncertainty.

3. Which model is more realistic?

Given the contrasting results of the two models it seems important to consider which, if

either, has a better claim to realism. This question was considered in Aiginger (1987, p. 166)

but he concluded that there was no rational economic basis to choose between the

specifications. In this final section we offer a slightly different perspective. We consider

constant elasticity demand curves and note that the conjectured price elasticity of demand

may remain invariant to the realisation of high or low demand schedules only in the

multiplicative case. In the additive case, by contrast, the (absolute) elasticity is lower in the

case of high realised demand than under certainty.5 This makes the elasticity anti-cyclical,

even under monopoly. Some industrial economists have argued that in different market

structures, thin-market effects or easier collusion in recessions should make the elasticity

pro-cyclical, while others argue for an a-cyclical or pro-cyclical mark-up (for this debate, see

Bloch and Olive 2001, Haskel et al 1995, Rotemberg and Saloner 1986). Even under

monopoly there may be different views as to the cyclicality of the elasticity and one’s

modelling strategy in setting up the stochastic demand equations may be influenced by one’s

beliefs in respect of that. Those who want to hedge their bets can do so by choosing the

multiplicative model where the effect can be neutral.

                                                
5 To see this, consider the intersection of each parallel realised demand curve with the ray P = Q in a standard
demand curve setting in P-Q space. The slopes of the demand curves at these intersections measure inverse
demand elasticities. A conjectured translation to the right of the demand curve (say from central demand D0 to
high realized demand D1) corresponds to conjectured upward cyclical movement. Since the derivative of P
w.r.t. Q is higher at this intersection of the ray than at the central demand intersection, the absolute elasticity of
demand is lower at high realised demand.
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Appendix 1. Graphical presentation
Both eq. (1) and eq. (2) in the text can be represented in a diagram. Fig. A1 plots a graphical

solution for the multiplicative case.6 The thick line represents expected sales X for a given Y.

Clearly, X coincides with D0(p) when prices are so high that there is never rationing. X starts

departing from certainty demand when prices are lowered such that YpDk ≥)(0 , where the

limiting condition is obtained, in graphical terms, as the resulting price when Y hits the

highest possible realization of demand (in the figure, this happens for prices below .705). We

can also quite easily anticipate that X has to coincide with Y when prices are so low that

demand is always rationed, in all possible states, i.e. YpDk ≥)(0 . In graphical terms, the

limiting price is obtained as the resulting price when Y hits the lowest possible realized

demand (prices below .114 in the figure).

Similarly, marginal revenue coincides first with certainty marginal revenue, then the two

curves depart when sales start being capacity constrained (eq. (1)). Notice that for the

parameter constellation chosen in Fig. A1, the plot of marginal revenue under certainty

coincides with the realization in the lowest state kD0(p). This was simply done to keep the

number of curves drawn in the diagram at a minimum and to prevent cluttering the diagram.

As far as optimality w.r.t. Y is concerned, when the firm is not capacity constrained (which

happens for high prices), an increase in Y would not cause a change in X. As the price is

reduced, X becomes more and more sensitive to an increase in Y, which explains the

increasing curve depicting eq. (2). At equilibrium, the marginal revenue w.r.t. price is set

equal to zero (eq. (1)) and, simultaneously, capacity is optimally set where the marginal cost

c is equal to the marginal benefit (eq. (2)). The corresponding optimal price for this

multiplicative example is denoted by pm. The graphical representation for the additive case

would show similar behavior of the curves.

[Figure A1]

                                                
6 Fig. 1 is drawn for the following specification: D0(p) = 1 - p, c = 0.2, k uniformly distributed between 0.5 and
1.5. The certainty price is pc = 0.6. The optimal price and capacity under uncertainty are respectively pm =
0.624346 and Y = 0.443145.
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